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Abstract

The theme of this paper is the study of typical distances in a ran-

dom graph model that was introduced by Krioukov et al. [25] and

envisages basic properties of complex networks as the expression of an

underlying hyperbolic geometry. This model gives rise to sparse ran-

dom graphs on the hyperbolic plane which exhibit power law degree

distribution as well as local clustering (i.e., they are locally dense). In

this paper, we show that in fact these random graphs are ultra-small

worlds. When the parameters of the model yield a power law degree

distribution with exponent between 2 and 3, we show that the dis-

tance between two given vertices conditional on belonging to the same

component is proportional to log logN a.a.s., where N is the number

of vertices of the random graph. To be more precise, we show that the

distance rescaled by log logN converges in probability to a certain con-

stant that depends on the exponent of the power law. This constant

actually emerges in the same setting in the Chung-Lu model.

We also consider the regime where the exponent of the power law

is larger than 3. There we show that most pairs of vertices that belong

to the same component are within distance poly(log logN) with high

probability asymptotically as N →∞.
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1 Introduction

The small-world problem was first stated by Stanley Milgram in his 1967

paper [26] through which he gave strong evidence of the so-called small-

world effect. The simplest formulation of the small-world problem [26] is:

“Starting with any two people in the world, what is the probability that they

will know each other?”. A more sophisticated formulation of the problem

asks whether any two people, if they do not directly know of each other,

have common acquaintances. Milgram’s experiment indicated that this is

indeed the case within a relatively small random sample of the population of

the United States. In particular, it turned out the at least half of the sample

was within six degrees of separation from the “target” individual. In graph

theoretic terms, in the graph of acquaintances the nodes that represent these

individuals are within distance 6 from the node that was representing the

target individual.

The small-world phenomenon is ubiquitous in natural and technological

networks such as neural networks, the Internet, the World-Wide-Web or

the power grid – see the book of Chung and Lu [14] as well as the book of

Dorogovtsev [10] for experimental evidence regarding such networks. For

example, it was announced relatively recently that between any two active

users of Facebook there are 3.74 degrees of separation on average [31].

There have been numerous attempts to explain this phenomenon through

the theory of complex networks. Among the initial attempts was the “small-

world” model of Watts and Strogatz which is defined through random re-

wiring of the edges of a cyclic lattice. This model exhibits small average

distance, but lacks a basic feature of such large self-organizing networks

which is the scale freeness. Experimental evidence [1] suggests that these

networks have a distribution of degrees whose tail decays like a power law

with exponent usually between 2 and 3.

Of course the term “small-world” itself is somewhat vague. Loosely

speaking, the term refers to average distances that are slowly growing func-

tions of the number of vertices of the network. A possible candidate is

the logarithmic function. Thus, the classical Erdős-Rényi random graph

may be thought of as a small-world graph as it has logarithmic diameter

– see [4]. However, it lacks the scale freeness as well and, furthermore, it

represents a very homogeneous network. This is a very unrealistic feature as

most large scale networks contain vertices that have very different properties
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from each other. Sub-logarithmic bounds on the diameter were established

for the preferential attachment model [2] by Bollobás and Riordan [6]. As

it was shown by Bollobás et al. [7], this is scale-free with exponent equal to

3.

Recent research that focused on models for complex networks that are

scale free with power law exponent between 2 and 3 identified cases of such

networks that are ultrasmall. This term is associated with models in which

the distance between two randomly chosen connected vertices grows doubly

logarithmically in the number of vertices of the random graph. With N de-

noting the number of vertices, the function log logN is a very slowly growing

function. Presumably this is closer to empirical evidence which comes from

networks that have millions of vertices but whose average distance between

two randomly chosen vertices is very small.

An analytical relation between the two was first established by Cohen

and Havlin [8] and by Dorogovtsev, Mendes and Samukhin [11]. It was

shown rigorously for a variety of random graph models which exhibit power

law degree distribution such as the Chung-Lu model [12], the Noros-Reittu

model [27], the configuration model [20] as well as variations of the prefer-

ential attachment model [15] [9].

1.1 A geometric framework for complex networks

Recently, Krioukov et al. [25] introduced a geometric framework in order

to represent the inherent inhomogeneity of a complex network. Their basic

assumption is that the intrinsic hierarchies that are present in a complex

network induce a tree-like structure. This suggests that the geometry of a

complex network is hyperbolic.

The most common representations of the hyperbolic plane are the upper-

half plane representation {z = x+ iy : y > 0} as well as the Poincaré unit

disk which is simply the open disk of radius one, that is, {(u, v) ∈ R2 :

1− u2 − v2 > 0}. Both spaces are equipped with the hyperbolic metric; in

the former case this is dx2+dy2

y2
whereas in the latter this is 4 du2+dv2

(1−u2−v2)2
. It is

well-known that the (Gaussian) curvature in both cases is equal to −1 and

that the two spaces are isometric. In fact, there are more representations

of the hyperbolic plane of curvature −1, which are isometrically equivalent

to the above two. We will denote by H2 the class of these spaces.

We are now ready to give the definition of the basic model introduced
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in [25]. Consider the Poincaré disk representation of the hyperbolic plane.

Let N be the number of vertices of the random graph, of which we assume

that it tends to infinity. Consider also some fixed constant ν > 0 and let

R > 0 satisfy N = νeR/2. It turns out that this parameter determines the

average degree of the random graph. Let VN := {v1, . . . , vN} be the set of

vertices, where each vi is a point selected randomly and independently from

the disk of radius R centered at the origin of the Poincaré disk O; we denote

this disk by DR.

Each of these points is distributed as follows. Assume that a random

point u has polar coordinates (r, θ). The angle θ is uniformly distributed in

(0, 2π] and the probability density function of r, which we denote by ρN (r),

is determined by a parameter α > 0 and is equal to

ρ(r) = ρN (r) =

{
α sinhαr

coshαR−1 , if 0 ≤ r ≤ R
0, otherwise

. (1.1)

The above distribution is simply the uniform distribution on DR, but on

the hyperbolic plane of curvature −α2. With elementary but tedious calcu-

lations, it can be shown that the length of a circle of radius r (centered at

the origin) on the hyperbolic plane of curvature −α2 is 2π
α sinh(αr), whereas

the area of the circle of radius R (centered at the origin) is Areaα(DR) =
2π
α2 (cosh(αR) − 1). We will be using the function Areaα(·) to denote the

area of a measurable set in DR on the hyperbolic plane of curvature −α2.

Thus, if we set α = 1, then the above becomes the density of the uniform

distribution.

Alternatively, consider the disk D′R of radius R around the origin O′

of (the Poincaré disk representing) the hyperbolic plane of curvature −α2.

We select N points within D′R independently of each other, uniformly at

random. These points are projected onto DR preserving their polar coor-

dinates. The projections of these points will be the vertex set VN of the

random graph.

The curvature of the hyperbolic plane determines the rate of growth of

the space. A tedious calculation shows that the curvature of the hyperbolic

plane is −α2, if we multiply the metric by 1/α2. Hence, when α < 1, the

N points are distributed on a disk (namely D′R) which has smaller area

compared to DR. This naturally increases the density of those points that

are located closer to the origin. Similarly, when α > 1 the area of the disk
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D′R is larger than that of DR, and most of the N points are significantly

more likely to be located near the boundary of D′R, due to the exponential

growth of the volume.

Given the set VN on DR we define the random graph G(N ;α, ν) on

VN , where two distinct vertices are joined if and only if they are within

(hyperbolic) distance R from each other.

Notation

We now introduce some notation which we use throughout out proofs. Let

aN , bN be two sequences of positive real numbers. We write aN ≈ bN to

indicate that aN = Θ(bN ), that is, there are real numbers c, C > 0 such

that cbN ≤ aN ≤ CbN , for all natural numbers N . We also write aN ∼ bN
to denote that aN/bN →∞, as N →∞.

If EN is an event on the probability space (ΩN ,PN ,FN ), for each N ∈ N,

we say that EN occurs asymptotically almost surely (a.a.s.) if P(EN )→ 1 as

N → ∞. In our context, we mainly use the sequence of probability spaces

that is induced by G(N ;α, ν). However, later we introduce a variant of this

model which is its Poissonisation. We will be using the term a.a.s. for that

model as well.

1.1.1 Some facts about G(N ;α, ν)

We argue that the above model can be thought of as a geometrization of the

random graph model that was introduced by F. Chung and L. Lu [12] [13]

and is a special case of an inhomogeneous random graph. The notion of in-

homogeneous random graphs was introduced Söderberg [28], but was defined

more generally and studied in great detail by Bollobás, Janson and Riordan

in [5]. In its most general setting, there is an underlying compact metric

space S equipped with a measure µ on its Borel σ-algebra. This is the space

of types of the vertices (defined below). A kernel κ is a bounded real-valued,

non-negative function on S × S, which is symmetric and measurable. The

vertices of the random graph can be understood as points in S. If x, y ∈ S,

then the corresponding vertices are joined with probability κ(x,y)
N ∧ 1, inde-

pendently of every other pair (N is the total number of vertices). The points

that are the vertices of the graph are approximately distributed according

to µ. More specifically, the empirical distribution function on the N points

converges weakly to µ as N →∞.
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Of particular interest is the case where the kernel function can be factor-

ized and can be written κ(x, y) = t(x)t(y); this is called a kernel of rank 1.

Intuitively, the function t(x) can be thought of as the weight or the type of

vertex x. It is approximately its expected degree. In the special case where

t(x) follows a distribution that has a power law tail, the model becomes the

so-called Chung-Lu model that was introduced in a series of papers [12] [13]

(see also [19]).

We argue that in the random graph G(N ;α, ν), the probability that

two vertices are adjacent has this form. The proof of this fact relies on

Lemma 2.5, which we will state later and is proved in [3]. It provides an

approximate characterization of what it means for two points u, v to have

hyperbolic distance at most R in terms of their relative angle, which we

denote by θu,v. For this lemma, we need the notion of the type of a vertex.

For a vertex v ∈ VN , if rv is the distance of v from the origin, that is, the

radius of v, then we set tv = R−rv – we call this quantity the type of vertex v.

As we shall shortly see, the type of a vertex is approximately exponentially

distributed. If we substitute R − t for r in (1.1), then assuming that t

is fixed that expression becomes asymptotically equal to αe−αt. Roughly

speaking, Lemma 2.5 states that two vertices u and v of types tu and tv
are within distance R (essentially) if and only if θu,v < 2νetu/2etv/2/N .

Hence, conditional on their types the probability that u and v are adjacent

is proportional to etu/2etv/2/N . If we set t(u) = etu/2, then P(t(u) ≥ x) =

P(tu ≥ 2 lnx) ≈ e−2α lnx = 1/x2α. In other words, the distribution of t(u)

has a power-law tail with parameter 2α. Thus, the random graph G(N ;α, ν)

is a dependent version of the Chung-Lu model that emerges naturally from

the hyperbolic geometry of the underlying space. The fact that this is a

random geometric graph gives rise to local clustering, which is missing in

the Chung-Lu model. There, most vertices have tree-like neighborhoods.

In fact, it can be shown that the degree of a vertex u in G(N ;α, ν) that

has type tu is approximately distributed as a Poisson random variable with

parameter proportional to etu/2.

Gugelmann, Panagiotou and Peter [18] showed that the degree of a ver-

tex has a power law with exponent 2α + 1. If α > 1/2, then the exponent

of the power law may take any value greater than 2. When 1 > α > 1/2,

this exponent is between 2 and 3. They also showed that the average degree

is a constant that depends on α and ν, and that the clustering coefficient

(the probability of two vertices with a common neighbor to be joined by an
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edge) of G(N ;α, ν) is asymptotically bounded away from 0 with probability

1− o(1) as N →∞.

Furthermore, the last two authors together with Müller [3] showed that

G(N ;α, ν) with high probability has a giant component, that is, a connected

component containing a linear number of vertices if 1/2 < α < 1. When

α > 1, the size of the largest component is bounded by a function that is

sublinear in N . When α = 1, the existence of a giant component depends

on the value of ν.

1.2 Results

In this contribution, we give an almost sure bound on the (graph) distance

between two randomly chosen vertices that belong to the same connected

component. We show that G(N ;α, ν) is ultrasmall when 1
2 < α < 1, that is,

when the degree distribution has a power law tail with exponent between

2 and 3. More specifically, we show that a.a.s. the graph distance between

two randomly chosen vertices that belong to the same component is of order

log logN . However, the diameter of G(N ;α, ν) grows at least logarithmically

in N . This is a recent result of Kiwi and Mitsche [24], where they show that

there is a connected component of diameter proportional to logN . They

also derive an upper bound on the diameter showing that the diameter is at

most proportional to R1+C a.a.s., for some positive constant C that depends

on the parameters of the model. More recently, Friedrich and Krohmer [17]

improved the constant showing that the exponent is at most 1/(2(1 − α)).

They also show that if ν is small enough, then the exponent is equal to 1.

Note that the Chung-Lu model exhibits logarithmic diameter [12].

For α > 1, we show that a.a.s. G(N ;α, ν) is almost ultrasmall: the

graph distance between two randomly chosen vertices that belong to the

same component is a.a.s. bounded by some polynomial of log logN . This

range of α yields a power law degree distribution with exponent greater

than 3. For this range, Chung and Lu [12] proved that the Chung-Lu

model exhibits average distances of order logN asymptotically with high

probability.

Let dG(u, v) denote the graph distance between two vertices u and v.

Theorem 1.1. For ζ > 0, assume that 1/2 < α < 1 and u, v ∈ VN . Let τ be

such that τ−1 = log
(

1
2α−1

)
. A.a.s. if dG(u, v) < ∞, then

∣∣∣dG(u,v)
logR − 2τ

∣∣∣ <
ζ.
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In this regime, G(N ;α, ν) does have a giant component and therefore for

any two distinct vertices u, v we have dG(u, v) <∞ with probability that is

asymptotically bounded away from 0. The upper bound (which is probably

the most important) in the above result was also derived by Chung and

Lu [12] for the Chung-Lu model with power law exponent between 2 and 3.

That was under the assumption that the average degree is greater than 1.

However, in our case a giant component is formed independently of what the

average degree is, as long as 1/2 < α < 1. The full result for the Chung-Lu

model can be found in [19].

The above result was also derived in the case of random graphs with

given degree distribution that follows a power law with parameter between

2 and 3 by van der Hofstad et al. [20] in a stronger form which involves

convergence in distribution.

Our second result provides an upper bound on the typical distance be-

tween two connected vertices when α > 1. In this case there is no giant

component a.a.s. However, the largest component contains polynomially

many vertices as there is a number of a vertices of degree that scales poly-

nomially in N . However, these components form also (almost) ultrasmall

worlds.

Theorem 1.2. Let α > 1, ε > 0. There is a subset V ′ of vertices of

G(N ;α, ν) of size (1 − o(1))N so that if u, v ∈ V ′ and dG(u, v) < ∞, then

dG(u, v) ≤ log1+ε logN .

In the next section, we introduce the Poissonisation of G(N ;α, ν) which

is convenient for our calculations. Thereafter, we will state and prove some

basic geometric facts regarding the hyperbolic plane, which allow us to

express distances on the hyperbolic plane in terms of polar coordinates on

DR. Subsequently, we proceed with the proof of Theorems 1.1 and 1.2.

The main idea behind the proof of Theorem 1.1 makes use of the exis-

tence of a very dense core that is formed by those vertices that have type

at least R/2. We show that if two vertices are connected, then most likely

they have short paths to the core which itself is a complete graph. These

paths, which we call exploding, emerge also in the Chung-Lu model [12, 19].
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2 Preliminary results

2.1 Poissonisation

It will be significantly easier to work in a setting where, instead of hav-

ing exactly N random points, our vertex set consists of Po(N) points on

DR, in the hyperbolic plane of curvature −α2. Two vertices/points are

declared adjacent exactly as in G(N ;α, ν). We denote the resulting graph

by P(N ;α, ν). More specifically, the vertex set consists of the points of a

Poisson point process in DR (see [23]). In every measurable set U ⊆ DR,

the number of points in U follows the Poisson distribution with parame-

ter equal to N Areaα(U)
Areaα(DR) . Moreover, the numbers of points in any finite

collection of pairwise disjoint measurable subsets of DR are independent

Poisson-distributed random variables.

We prove the following lemma that allows us to transfer results from

the Poisson model into the G(N ;α, ν) model. Let An denote a set of graphs

on Vn := {1, . . . , n} that is closed under automorphisms. We call a family

A = {An}n∈N of graphs (vertex-) non-decreasing, if G− v ∈ An−1 for any1

v ∈ V (G) implies G ∈ An. Similarly, we call the family (vertex-) non-

increasing, if G− v /∈ An−1 for any v ∈ V (G) implies G /∈ An.

Lemma 2.1. Assume that α > 0 is fixed. Let A be a (vertex-) non-

increasing family of graphs. For N large enough we have P(G(N ;α, ν) /∈
A) < 4P(P(N ;α, ν) /∈ A). The same holds if A is (vertex-) non-decreasing.

Proof. Denote by EPo and E the events that P(N ;α, ν) /∈ A and G(N ;α, ν) /∈
A, respectively. We write

P(EPo) =

∞∑
N ′=0

P(EPo|Po(N) = N ′) · P(Po(N) = N ′)

≥
∞∑

N ′=N

P(EPo|Po(N) = N ′) · P(Po(N) = N ′)

≥
∞∑

N ′=N

P(EPo|Po(N) = N) · P(Po(N) = N ′),

where we have used in the last line that, since A is non-increasing, we have

P(EPo|Po(N) = N ′) ≥ P(EPo|Po(N) = N) for N ′ ≥ N . Let us also note

1G− v ∈ An−1 means that G− v is isomorphic to a member of An−1
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that P(EPo|Po(N) = N) = P(E). Thus,

P(EPo) ≥
∞∑

N ′=N

P(E) · P(Po(N) = N ′)

= P(E) · P(Po(N) ≥ N)

>
1

4
· P(E),

where the last line holds N large enough (by an application of, say, the

central limit theorem). The second part of the lemma follows similarly,

bounding the sum by taking only the terms where N ′ ≤ N .

This implies that if P(P(N ;α, ν) /∈ A) = o(1), then P(G(N ;α, ν) /∈ A) =

o(1).

During some of our proofs, we will need to bound probabilities of events

that are associated with a certain subset of verticesX, whose positions inDR
have been realised. For a certain measurable subset U ⊂ DR which does not

contain any vertex in X so that DR \U has positive Lebesgue measure, the

vertices of the random graph PX,U (N ;α, ν) consist of X together with set

of points of a Poisson process on DR\U with curvature −α2 with parameter

N − |X|. Hence, this process “produces” N − |X| vertices on average, thus

giving N vertices in total on average. If we condition on the number of

vertices of this Poisson process being N ′, then the resulting random graph

is distributed as G(N ′;α, ν) conditional on U being empty and X being

located at its particular positions.

Let AX be a graph property associated with the set X. We call this

non-decreasing if

PPX,U (N ;α,ν)(AX | Po(N−|X|) = N1) ≤ PPX,U (N ;α,ν)(AX | Po(N−|X|) = N2),

whenever N1 ≤ N2. If the opposite inequality holds, we call the property

non-increasing. Note that PPX,U (N ;α,ν)(AX | Po(N−|X|) = N ′) is the prob-

ability of AX in the space G(N ′ + |X|;α, ν) conditional on X being at cer-

tain positions in DR and U being empty – we denote this by GX,U (N ;α, ν).

Hence, arguing as in the proof of the previous lemma we have

Lemma 2.2. If AX is either a non-decreasing or a non-increasing property
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that is associated with a certain set of vertices X, then

PPX,U (N ;α,ν)(AX) ≥ 1

4
PGX,U (N ;α,ν)(AX),

for any measurable U ⊂ DR such that X ∩ U = ∅ and DR \ U has positive

Lebesgue measure.

The following useful fact follows directly from the definition of the pro-

cess, using the measure defined for the distribution of the points.

Fact 2.3. Let A be a subset of DR \U , for some measurable subset U ⊂ DR,

and X be a set of vertices located in DR, such that X ∩ U,A ∩ U = ∅. Let

NA be the expected number of vertices in A, in GX,U (N ;α, ν), and denote

by EA the event that A is empty. We have

PPX,U (N ;α,ν)(EA) = exp(−NA).

2.2 Geometric properties of DR
We state a simple geometric fact, which we will use in the following sections.

With O being the origin, we say that a vertex v lies above some edge uw

when v is inside the (hyperbolic) triangle Ouw, where uw is the geodesic

path in DR that joins u with w. Similarly, v lies below the edge uw, if v

does not lie above uw but some radial projection of v towards O lies above

uw.

Fact 2.4. If the vertex w lies above the edge u′u′′, then w is adjacent to u′

and to w′. Moreover, the geodesic segments connecting w to u′ and u′′ lie

entirely in the triangle Ou′u′′.

Proof. The hyperbolic triangle Ou′u′′ has only sides of length at most R.

The vertex w lies inside this triangle, so it has distance at most R from

O, u′ and u′′. This is the case for any point v in the triangle Ou′u′′. The

geodesic from v to u′ is entirely in the triangle, since otherwise it would have

to cross one of the sides. A crossing point would therefore have two paths

of minimum length to u′, which is a contradiction. The same argument also

works for the geodesic segment between v and u′′.

The following lemma provides a useful (almost) characterization of the

fact that two vertices are within hyperbolic distance R, given their types.
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Recall first that for any two points/vertices u, v on DR, their relative angle

θu,v is defined as min{ ˆuOv, 2π − ˆuOv}. Note that θu,v ≤ π always. The

lemma reduces a statement about hyperbolic distances to a statement about

the relative angle between two points. Its proof can be found in [16] and

[3]. For two points p, v, let

θ̂p,v := min
{

2(1 + ε)e
tp+tv−R

2 , π
}

= min
{

2(1 + ε)
ν

N
e
tp+tv

2 , π
}

, and

θ̌p,v := min
{

2(1− ε)e
tp+tv−R

2 , π
}

= min
{

2(1− ε) ν
N
e
tp+tv

2 , π
}

.

For c0 = c0(ε), that depends on ε as in the following lemma, we call the set

T+
ε (v) :=

{
p ∈ DR : tp + tv −R < −c0, θp,v ≤ θ̂p,v

}
the outer tube of v. Similarly, we call the set

T−ε (v) :=
{
p ∈ DR : tp + tv −R < −c0, θp,v ≤ θ̌p,v

}
the inner tube of v.

Lemma 2.5. For any ε > 0 there exists an N0 > 0 and a c0 > 0 such that

for any N > N0 and u, v ∈ DR with tu + tv < R− c0 the following hold.

• If u ∈ T−ε (v), then d(u, v) < R.

• If u 6∈ T+
ε (v), then d(u, v) > R.

2.3 Properties of G(N ;α, ν)

We state some general results about the graphs, the proofs of which can be

found in [3].

Lemma 2.6. Let ρ̄(t) be the distribution of the types. For any ε ∈ (0, 1),

uniformly for 0 ≤ t < (1− ε)R we have

ρ̄(t) = ρ(R− t) = (1 + o(1))αe−αt. (2.1)

The following fact is an immediate consequence of the above.

Corollary 2.7. Let ω : N→ N be an increasing function such that ω(N)→
∞ as N → ∞. The expected number of vertices of type at least R/(2α) +
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ω(N) in G(N ;α, ν) is o(1). Hence, with probability 1 − o(1) all vertices in

VN have type at most 1
2αR+ ω(N).

3 Proof of Theorem 1.1: upper bound

In this section we assume 1/2 < α < 1.

Definition 3.1. For G ∈ P(N ;α, ν) or G ∈ G(N ;α, ν), let Core(G) = {v ∈
V (G) : tv ≥ R/2} be the core of G.

Note that for every pair of vertices u, v ∈ Core(G), by the triangle

inequality the distance between u and v is at most R, so uv ∈ E(G). In

other words, the subgraph that is induced by the vertices in Core(G) is

complete.

Lemma 3.2. Let ω(N) be such that ω(N) → ∞ as N → ∞ but ω(N) =

o(R). Let x be a vertex such that tx < log logR and U ⊂ DR an open

subset of DR which does not contain any points of type at least log logR

and has Areaα(U) = o(Areaα(DR)). Let G ∈ Px,U (N ;α, ν). A.a.s. there

is a vertex u ∈ Core(G) such that uv ∈ E(G) for every vertex v with tv ≥
2α−1

2α R+ ω(N).

Proof. By the triangle inequality, any such vertex v is adjacent to any vertex

of radius at most R(2α − 1)/(2α) + ω(N), so it is sufficient to show that

a.a.s. the disc Dr of radius r := 2α−1
2α R + ω(N) is non-empty. Note that

r < R/2, for any N large enough, as ω(N) = o(R) and α < 1, so any vertex

in Dr belongs to the core. Let Nr be the number of vertices in Dr.

Note first that 2α−1
2α − 1 = − 1

2α . Thus r − R = − R
2α + ω(N), whereby

α(r −R) = −R/2 + αω(N). As Dr ∩ U = ∅, these identities imply that

E [Nr ] = (N − 2)
cosh(αr)− 1

Areaα(DR)−Areaα(U)
= (N − 2)

cosh(αr)− 1

cosh(αR)(1− o(1))

∼ Neα(r−R) = Ne−R/2+ω(N) N=νeR/2
= νeαω(N).

Using this and Fact 2.3 we get

P(Nr 6= 0) = 1− e−(1+o(1))νeαω(N)
= 1− o(1).
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In fact, the only component we consider is the one containing the vertices

in the core. We show that most pairs of vertices that are connected have a

short path into the core. These paths naturally give short paths connecting

all the vertices in the component. We are interested in the following paths

in which the type of the vertices increases exponentially along the path.

Definition 3.3. For δ > 0, we call a path P = v1, v2, . . . , vm in G a δ-

exploding path if vm ∈ Core(G) and tvi+1 ≥ (1 + δ)tvi for 1 ≤ i ≤ m− 2.

Not every vertex in the giant component has an exploding path into the

core. However, the vertices that do not have such a path are more likely to

have a very low type. In particular, we prove that any vertex of type at least

log logR has an exploding path into the core with probability 1− o(1). We

actually show this lemma for the Poisson model. The result does transfer

to G(N ;α, ν), due to its monotonicity, but we are going to use it later in

this form.

Lemma 3.4. Let δ = 2 1−α
2α−1 and ζ < δ be a positive real number. Assume

that v and x are vertices such that tv ≥ log logR ≥ tx and U ⊂ DR an

open subset which does not contain any points of type at least tv so that U

is contained in a sector of DR that spans a o(1) angle. With probability (in

the space P{v,x},U (N ;α, ν)) 1− e−Θ(log(α− 1
2 )ζ R), there is a (δ − ζ)-exploding

path starting at v.

Proof. Take any ε < 1
4 and assume that N > N0, where N0 is as in

Lemma 2.5.

By Lemma 3.2, if v satisfies tv ≥ 2α−1
2α R + ω(N), then a.a.s. there

is a vertex u ∈ G with tu ≥ R/2 and vu ∈ E(G). In other words, if

tv ≥ 2α−1
2α R+ ω(N), then we are done.

Assume now that tv <
2α−1

2α R + ω(N). As 1 + δ = 1
2α−1 , it follows that

(1 + δ)tv <
1

2αR + ω(N)
2α−1 . Note that by Corollary 2.7, it suffices to consider

only points of type no larger than 1
2αR+ ω(N)

2α−1 .

Let v1 = v. We will construct inductively a series of (random) sets

Ti ⊂ DR, for i ≥ 2, in each of which we find a vertex vi, which will be the

ith vertex in the exploding path.

For two points p, p′, let ϑp,p′ = θp,p′ if p′ is in the anti-clockwise direction

from p, but ϑp,p′ = −θp,p′ , otherwise.

Assume that we have exposed vi. For any point p ∈ DR we let

14



T̂−ε (p) :=

{
p′ ∈ DR : |tp′ − (1 + δ)tp| < ζtp,

εν

N
e
tp+tp′

2 ≤ ϑp′,p ≤
2(1− ε)ν

N
e
tp′+tp

2

}
.

We take Ti := T̂−ε (vi). Let A be the set of vertices that are located in T̂−ε (vi).

Note that, as the angle covered by U is o(1), we have that Areaα(U) =

o(Areaα(DR)). Hence, the area of a set in DR \U is within a 1− o(1) factor

from the area in DR (both on the hyperbolic plane of curvature −α2).

So, for any ε ∈ (0, 1/4) and for N large enough we have

E [ |A| ] ≥ 2(1− 3

2
ε)
N − 2

2π

∫ (1+δ+ζ)tvi

(1+δ−ζ)tvi
e

1
2

(tvi+t−R)(1− o(1))e−αtdt

≥ 2(1− 3

2
ε)(1− o(1))

N

2π

ν

N
e
tvi
2

∫ (1+δ+ζ)tvi

(1+δ−ζ)tvi
e( 1

2
−α)tdt

ε<1/4

≥ ν

2π
e

1
2
tvi

1

2α− 1

(
e( 1

2
−α)(1+δ−ζ)tvi − e( 1

2
−α)(1+δ+ζ)tvi

)
.

But (1 + δ + ζ)tvi − (1 + δ)tvi + ζtvi > 2ζtvi → ∞, whereby the above

becomes:

E [ |A| ] ≥ ν

2π

1

2α− 1
e

1
2
tvi−(α− 1

2
)(1+δ−ζ)tvi (1− o(1)).

Furthermore, (α− 1
2)(1 + δ) = 2α−1

2
1

2α−1 = 1
2 and finally, we have

E [ |A| ] ≥ ν

2π

1

2α− 1
e(α− 1

2
)ζtvi (1− o(1))

2α−1<1
≥ ν

2π
e(α− 1

2
)ζtvi ,

for N large enough. Hence, by Fact 2.3 we have

P(|A| > 0) = 1− P(|A| = 0)

≥ 1− exp
(
− ν

2π
e(α− 1

2
)ζtvi

)
.

As tvi ≥ log logR, we have P(|A| = 0) ≤ exp
(
− ν
π (logR)(α− 1

2
)ζ
)

. If |A| > 0,

then there are vertices that are located inside Ti and we let vi+1 be one of

them – the choice is arbitrary. The following claim guarantees that Ti+1 =

T̂−ε (vi+1) is disjoint from Ti and when we repeat the argument there is no

danger to expose again area which we have already exposed.
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Claim 3.5. For all N large enough and for all i ≥ 1 the following holds.

For all p ∈ T̂−ε (vi) we have T+
ε (vi) ∩ T̂−ε (p) = ∅.

Proof of Claim 3.5. Consider a point p ∈ T̂−ε (vi) and let p′ ∈ T̂−ε (p). We

will show that

ϑp′,vi � 2(1 + ε)
ν

N
e
tv+tp′

2 .

We write ϑp′,vi = ϑp′,p + ϑp,vi . Since p′ ∈ T̂−ε (p) and p ∈ T̂−ε (vi) we have

ϑp′,p ≥ ε
ν

N
e
tp′+tp

2 and ϑp,vi ≥ ε
ν

N
e
tp+tvi

2 .

Hence

ϑp′,p + ϑp,vi ≥ ε
ν

N

(
e
tp′+tp

2 + e
tp+tvi

2

)
= ε

ν

N
e
tp′+tvi

2

(
e
tp−tvi

2 + e
tp−tp′

2

)
> ε

ν

N
e
tp′+tvi

2 e
tp−tvi

2

≥ ε ν
N
e
tp′+tvi

2 e(δ−ζ)tvi
(δ−ζ)tvi→∞� 2(1 + ε)

ν

N
e
tp′+tvi

2 .

In fact, (δ − ζ)tvi ≥ (δ − ζ) log logR, and therefore the inequality holds

uniformly for all N that are large enough.

If we start at type at least log logR, it takes O(logR) steps to reach type
2α−1

2α R+ω(N); at that point we can complete the exploding path using the

vertex whose existence is guaranteed by Lemma 3.2. Thus for any given

vertex v with tv > log logR we have

P(∃ sequence of vertices v2, . . .) =
(

1− exp
(
−ν
π

(logR)(α− 1
2

)ζ
))O(logR)

= 1−O(logR) exp
(
−ν
π

(logR)(α− 1
2

)ζ
)

= 1− exp
(
−Θ

(
log(α− 1

2
)ζ R

))
,

as xe−ax
b

= o(1) for 0 < a, b and x→∞.

Remark 3.6. In fact, if the type of v is O(1), that is, v is a typical ver-

tex, then the probability that there is a (δ − ζ)-exploding path starting at

v is bounded away from 0. With slightly more work, one can show that
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two vertices u and v have both an exploding path with probability that is

asymptotically bounded away from 0. Thus, dG(u, v) < ∞ with probability

that is asymptotically bounded away from 0. Alternatively, this follows from

the main theorem in [3], according to which G(N ;α, ν) has giant component

a.a.s. if 1/2 < α < 1.

We are now ready to proceed with the upper bound in Theorem 1.1

Proof of Theorem 1.1: upper bound. Let u, v be two vertices. We will show

that the event dG(u, v) < ∞ but dG(u, v) ≥ (2τ + ζ1/2) logR occurs with

probability o(1). Note that this is in the G(N ;α, ν) space. Also, for conve-

nience, we have taken the ζ that appears in the statement of Theorem 1.1

as ζ1/2. We denote this event by EN (τ, ζ). Also, let AN denote the event

that the relative angle between u and v is greater than ν 2ζε logR
N , where

ζε := ζ(1− ε), for some ε ∈ (0, 1). Of course, the probability of AN is o(1)

and therefore it suffices to prove that P [ EN (τ, ζ) ∩ AN ] = o(1).

If EN (τ, ζ) is realised, then there must be a minimal path between ver-

tices u and v. In this context, a minimal path is meant to be an induced

path. Let Pmin denote such a path. Assume, in addition, that AN is si-

multaneously realised, that is, θu,v > ν 2ζε logR
N . With this assumption, let

Pmin(u) denote the sub-path of Pmin starting at u and ending at the first

vertex whose relative angle with u exceeds ν ζε logR
N . Similarly, let Pmin(v)

denote the sub-path of Pmin starting at v and ending at the first vertex

whose relative angle with v exceeds ν ζε logR
N . Clearly, as AN is realized, the

two paths may overlap, but they have at most one edge in common.

Assume without loss of generality that v is at angle θu,v ≤ π in the

anti-clockwise direction from u. Consider the sectors consisting of points of

relative angle at most ν ζε logR
N from a point x:

S+
h (x) :=

{
p ∈ DR : tp > log logR, 0 < ϑx,p < ν

ζε logR

N

}
and

S−h (x) :=

{
p ∈ DR : tp > log logR, −ν ζε logR

N
< ϑx,p < 0

}
.

There are two cases:

1. either each one of S+
h (u), S−h (u), S+

h (v), S−h (v) contains a vertex that
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u

u−

u+

u′
u′′

S+
h (u)S−h (u)

Pmin(u)

Figure 1: Creating a short path into the core under S.

is the starting vertex of a (δ − ζ)-exploding path,

2. or at least one of them is either empty or all of its vertices are not the

endpoints of a (δ − ζ)-exploding path.

Let S denote the former and let S denote the latter. We will show that

P(S) = o(1). First consider, without loss of generality, the set S+
h (u). The

probability that this set is empty is o(1). Indeed, let NS+
h (u) be the number

of vertices that appear into this sector. Then

E
[
NS+

h (u)

]
= N

cosh(α(R− log logR))− 1

cosh(αR)− 1

1

2π
ν
ζε logR

N
≈ log1−αR→∞.

The distribution of NS+
h (u) is binomial and the application of a standard

Chernoff bound implies that P
[
NS+

h (u) = 0
]

= o(1).

If S+
h (u) is not empty and all of its vertices are not the beginnings of a

(δ− ζ)- exploding path, then the vertex with lowest type in S+
h (u) does not

have a (δ − ζ)-exploding path starting at it as well. We call this vertex the

first vertex in S+
h (u).
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Claim 3.7. The probability that the first vertex in S+
h (u) does not have a

(δ − ζ)-exploding path starting at it is o(1).

Proof of Claim 3.7. Conditional on having at least one vertex in S+
h (u), let

u′ be the first vertex (with probability 1 there will be exactly one such

vertex) which we expose and assume that the area in S+
h (u) that consists

of points with type greater than tu′ has not been exposed. Let us switch

temporarily to PX,U (N ;α, ν), where X = u, u′ and U the subset of S+
h (u)

below u′. Then by Lemma 3.4, there is a (δ− ζ)-exploding path starting at

u′ with probability 1− o(1) uniformly over tu′ ≥ log logR. This lemma can

be applied as the area above u′ has not been exposed in the corresponding

Poisson process and the proof of Lemma 3.4 deals only only with that area.

The result transfers to G(N ;α, ν) (conditional on U being empty and on

the realisations of u and u′), through Lemma 2.2, due to the fact that this

property is non-decreasing.

Then, since the probability that S+
h (u) is empty is o(1), the union bound

implies that P
[
S
]

= o(1).

We will show that P [ EN (τ, ζ) ∩ AN ∩ S ] = 0. Observe that any vertex

which belongs to S+
h (u)∪ S−h (u) (or to S+

h (v)∪ S−h (v), respectively) will be

adjacent to a vertex in Pmin(u) (Pmin(v), resp.). Indeed, if Pmin(u) contains

a vertex in S+
h (u) ∪ S−h (u), then this must be adjacent to any other vertex

in S+
h (u) ∪ S−h (u). This is the case as S+

h (u) ∪ S−h (u) ⊆ T−ε (u′) for any

u′ ∈ S+
h (u) ∪ S−h (u), provided that ζ < 1. To see this, note that any two

points in S+
h (u) ∪ S−h (u) have relative angle at most 2ζε

ν
N . However, for

any point in S+
h (u) ∪ S−h (u), its inner tube consists of all points of relative

angle at most 2(1− ε)νelog logR

N from it. Thus, if ζε < 1− ε (that is, ζ < 1),

then the containment follows. In this case, some vertex of Pmin(u) will be

connected to the first vertex in S+
h (u) ∪ S−h (u).

Suppose now that all vertices of Pmin(u) do not belong to S+
h (u)∪S−h (u).

Let u+, u− be vertices in S+
h (u) and S−h (u) respectively, which are the start-

ing vertices of (δ− ζ)-exploding paths Pu+ and Pu− . There are two consec-

utive vertices in Pmin(u) say u′, u′′ such that either ϑu′′,u+ > 0 > ϑu′,u+

or ϑu′′,u− > 0 > ϑu′,u− . Thus, either u+ or u− is “above” the edge

u′u′′ and therefore by Fact 2.4 either u+ or u− is adjacent to both u′u′′.

The length of any exploding path is at most logR/ log(1 + δ − ζ). Thus,

|Pu+ |, |Pu− | ≤ logR/ log(1 + δ − ζ). The following bounds the length of

Pmin(u), Pmin(v):
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Claim 3.8. Both Pmin(u) and Pmin(v) have length at most ζ logR.

Proof of Claim 3.8. Consider Pmin(u) (the proof for Pmin(v) is identical).

Since Pmin(u) is part of a minimal path, it follows that if we take the set

of vertices of Pmin that are at even distance from u, then there cannot be

an edge between any two of them, for this would contradict the minimality

of Pmin. Let P emin(u) be this set of vertices. For any vertex u′ ∈ P emin(u)

consider the sector T (u′) := {p ∈ DR : θu′,p < (1− ε) νN }. There cannot be

distinct u′, u′′ ∈ P emin(u) such that T (u′) ∩ T (u′′) 6= ∅. If this were the case,

then their relative angle would be at most 2(1−ε) νN and by Lemma 2.5 they

would be adjacent. But there are at most ν ζε logR
N /

(
2(1− ε) νN

)
= ζ

2 logR

such sectors inside the sector of angle ν ζε logR
N in the anti-clockwise direction

from u. Thus |P emin(u)| ≤ ζ
2 logR, whereby the length of Pmin is at most

ζ logR.

Thus

dG(u, v) ≤ |Pmin(u)|+ |Pu+ |+ 1 + |Pu− |+ |Pmin(v)|

≤ 2

(
1

log(1 + δ − ζ)
+ ζ + o(1)

)
logR

Hence, there exists a ζ such that for all N large enough 1
log(1+δ−ζ) +ζ+o(1) <

τ + ζ1/2. This implies that EN (τ, ζ) is not realised.

Remark 3.9. If we replace the angles that determine the domains S+
h and

S−h by a quantity that is proportional to R
1

1−α /N and the lower bound on the

type by 1
2(1−α) logR, then the probabilities that appear above become o(N−2).

Thus, the analogous of the above bound on dG(u, v) holds for all pairs of

vertices, and implies that the diameter is proportional to R
1

1−α a.a.s. This

upper bound is worse than the one obtained in [17].

4 Proof of Theorem 1.1: lower bound

For given vertices u, v ∈ VN , let Lζ,N (u, v) be the event that dG(u, v) <

(2τ − ζ) logR =: L, for some ζ > 0. Assume that tu, tv < log logR - by

Lemma 2.6 this event occurs with probability 1− o(1). Let Tu,v denote this

event. By Lemma 2.5, for any T ≤ R/2−2 log logR, if u and v are connected
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through a path of length at most `u where the intermediate vertices have

type at most T , then

θu,v ≤ 4ν
eT

N
L ≤ 4ν

eR/2

N

L

log2R
= 4

L

log2R
.

Conditional on Tu,v, the probability of this event is O(L/ log2R) = o(1).

Now, if there is a path of length at most L that joins u to v that contains

an intermediate vertex of type at least R/2−2 log logR, then there must be

a path of length at most L/2 either from u or from v to this vertex. Denote

by dG(u, core) the graph distance of the vertex u to a vertex of type at least

R/2− 2 log logR. The following lemma proves that almost all vertices are,

in some sense, far away from vertices this type, immediately proving the

lower bound.

Lemma 4.1. Assume that tu ≤ log logR. For ζ > 0, we have

P(dG(u, core) ≤ (τ − ζ1/2) logR) = o(1).

We appeal to Lemma 2.2 on the event {d(u, core) ≤ (τ − ζ1/2) logR}.
Clearly, this is a non-decreasing event in the sense that is used in that

lemma. So, it suffices to prove Lemma 4.1 in the P{u},∅(N ;α, ν) space.

To prove this statement, we keep track of the highest type in the neigh-

bourhood of the vertex u. Let N (0)(u) = {u}, θ(0)
r = θ

(0)
` = 0. For i ≥ 0,

define N (i)(u) as the neighbours of vertices in N (i−1)(u) that are in clock-

wise direction of u and have relative angle greater than θ
(i−1)
` with u or that

are in anticlockwise direction of u and have relative angle with u greater

than θ
(i−1)
r . Define θ

(i)
r as the maximum relative angle between u and any

vertex in N (i)(u) that is in anticlockwise direction of u, setting it to θ
(i−1)
r

if there is no such vertex. Similarly, define θ
(i)
` as the maximum relative

angle between u and any vertex in N (i)(u) that is in clockwise direction of

u, setting it to θ
(i−1)
` if there is no such vertex. This is the simultaneous

breadth exploration process that will be defined in more detail in the next

section.

Note that any vertex in N (i)(u) has graph distance i to u, but not every

vertex of distance i is in N (i)(u). However, we claim that the process cannot

leave a vertex that has type larger than the maximum type of any vertex in

Ni(u) :=
⋃i
j=0N

(j)(u) and is within the sectors exposed undiscovered. For

the sake of contradiction, assume that v is a vertex whose type is larger than
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the types of all vertices discovered in Ni(u), but its angle with u satisfies

θ
(k−1)
r < ϑu,v ≤ θ

(k)
r , for some 1 ≤ k ≤ i. Then there are two vertices

vk−1 ∈ N (k−1)(u) and vk ∈ N (k) such that v is between them; that is,

ϑv,vk−1
< 0 ≤ ϑv,vk . But the following holds (the second part will be used

in the next section).

Claim 4.2. Consider three vertices z, y and w, on DR (in the hyperbolic

plane with curvature −1), such that dH(z, w) < R and w is at the anti-

clockwise direction of z whereas y is between z and w. If ty > tw, then

dH(y, z) < R. Also, if ty > tz, then dH(y, w) < R.

Proof of Claim 4.2. This is the case as the point y′ of type equal to that

of y with θy′w = 0 is still at distance less than R from z. If we move this

clockwise towards z, the distance will remain smaller than R, as w will be

at the anticlockwise side of y′. An analogous argument shows the second

statement.

The first part of the above claim with vk−1, v, vk playing the role of

z, y, w implies that v is adjacent to vk−1 and therefore should have been

discovered and become a member of N (k)(u).

The above claim has also the following consequence. Denote by t(i−1)

the maximum type of a vertex in Ni−1(u). As every vertex in N (i−1)(u)

is further in the anticlockwise or in the clockwise direction, in terms of

relative angle from u, than all the vertices in Ni−2(u), all vertices in N (i)(u)

are either within (hyperbolic) distance R and in the clockwise direction of

the point p
(i−1)
` of type t(i−1) and of clockwise relative angle θ

(i−1)
` to u,

or within (hyperbolic) distance R and in the anticlockwise direction of the

point p
(i−1)
r of type t(i−1) and of clockwise relative angle θ

(i−1)
r to u. Thus

the highest type of a vertex in N (i)(u) is stochastically dominated from

above by the highest type among all vertices that have hyperbolic distance

at most R from a certain point of type t(i−1) (namely p
(i−1)
r or p

(i−1)
` ).

Due to this we can bound the distribution function of t(i) from below using

Fact 2.3. Let t̂(i) := (1 + δ + ζ)itu, for any integer i ≥ 0.

Claim 4.3. For i ≥ 1, assuming that t̂(i−1) < R/2−2 log logR
1+δ+ζ , we have

P(t(i) < (1+δ+ζ)t̂(i−1) | t(i−1) < t̂(i−1)) ≥ exp

(
− 2ν

(α− 1/2)π
e−(α−1/2)ζt̂(i−1)

)
.
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Proof. By the assumption of the claim, if t(i−1) < t̂(i−1), then t(i−1) <

(1/(1+δ+ζ))(R/2−2 log logR) < (2α−1)R/2. Lemma 2.5 works for types t

such that t+t(i−1) < R−c0 for a given constant c0, so t < R−(1/(1+δ))R/2

will do. Recall that 1/(1 + δ) = 2α− 1, so t < R(3/2−α) is sufficient. But

3/2−α > 1/(2α), and so if we take t̂ = R/(2α)+ω(N), for some sufficiently

slowly growing function ω(N), we are able to use Lemma 2.5 for points of

type at most t̂. The first part of Corollary 2.7 implies that the expected

number of vertices of type at least t̂ in G{u},∅(N ;α, ν) is o(1).

As discussed above, the event where t(i) ≤ (1+δ+ζ)t̂(i−1) has no smaller

probability than the event that a vertex of type t̂(i−1) has no neighbour of

type at least t̂(i). Thus by Fact 2.3 and Lemma 2.5, for ε > 0 small enough

so that (1 + 2ε)α < 1 we have

P
(
t(i) < (1 + δ + ζ)t̂(i−1) | t(i−1) < t̂(i−1)

)
≥ exp

(
−N

∫ t̂

(1+δ+ζ)t̂(i−1)

4(1 + ε)

2π
e1/2(t+t̂(i−1)−R)αe−αtdt+ o(1)

)

≥ exp

(
−2(1 + 2ε)αν

π
e
t̂(i−1)

2

∫ ∞
(1+δ+ζ)t̂(i−1)

e(1/2−α)tdt

)

≥ exp

(
−2(1 + 2ε)αν

π
e
t̂(i−1)

2
1

α− 1/2
e(1/2−α)(1+δ+ζ)t̂(i−1)

)
≥ exp

(
−2(1 + 2ε)αν

π
e
t̂(i−1)

2
1

α− 1/2
e(−1/2+(1/2−α)ζ)t̂(i−1)

)
≥ exp

(
− 2ν

(α− 1/2)π
e−(α−1/2)ζt̂(i−1)

)
,

as (α− 1/2)(1 + δ) = 1/2.

We repeatedly apply this bound to bound the distance from the core.

Assume that tu = log logR. Denote by U the event that if we explore as

above the neighbours u for every i < (τ − ζ1/2) logR we have t(i) < t̂(i).

Claim 4.4. Assume that tu = log logR. For ζ > 0 small enough (depending

on α), the event U has probability 1−o(1) and after the steps are completed

the maximum type reached is less than R/2− 2 log logR, if N is sufficiently

large.

Proof. On this event, after executing the (τ − ζ1/2) logR steps we have
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reached type less than

(1 + δ + ζ)(τ−ζ1/2) logR log logR = elog(1+δ+ζ)(τ−ζ) logR log logR

≤ R(log(1+δ)+ζ)(τ−ζ1/2) log logR

= R(τ−1+ζ)(τ−ζ1/2) log logR

= R1−τ−1ζ1/2+τζ−ζ3/2 log logR = o(R/2− 2 log logR).

Moreover, we are able to apply Claim 4.3 repeatedly for this number of

steps and deduce that U has probability

P(U) ≥
(τ−ζ1/2) logR∏

i=0

exp

(
− 2ν

(α− 1/2)π
e−(α−1/2)ζ(1+δ+ζ)i log logR

)

≥
(τ−ζ1/2) logR∏

i=0

(
1− 2ν

(α− 1/2)π
e−(α−1/2)ζ(1+δ+ζ)i log logR

)

≥ 1−
(τ−ζ1/2) logR∑

i=0

2ν

(α− 1/2)π
e−(α−1/2)ζ(1+δ+ζ)i log logR

≥ 1− 4ν

(α− 1/2)π
e−(α−1/2)ζ log logR = 1− o(1).

Proof of Lemma 4.1. Fact 2.4 implies that increasing the type of a vertex

will keep all edges intact, so any path will stay a path if we increase the

type of one of its vertices. Thus by a simple coupling argument we have

that P(d(u, core) ≤ d|tu) ≤ P(d(u, core) ≤ d|t′u) for tu ≤ t′u. We can thus

assume that tu = log logR. By Claim 4.4, a.a.s. executing (τ − ζ1/2) logR

steps yields maximum type that is less than R/2− 2 log logR, so

P(d(u, core) ≤ (τ − ζ1/2) logR) = o(1).

5 Proof of Theorem 1.2

Here, we consider the case where α > 1. In this case, the main result

in [3] implies that all components contain at most sublinear number of
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Figure 2: Example of an umbrella.

vertices. More precisely, we show that a.a.s. all components contain at most

N1/α vertices (up to a poly-logarithmic factor). In fact, there are many

components of polynomial size (as there are many vertices of polynomial

degree which do not belong to the same component).

To prove Theorem 1.2, for any given vertex we explore a path that in

some sense traverses its component. We show that almost all vertices are

close to such a spanning path, which itself is short. This results in short

distances for most pairs of vertices which belong to the same component.

Note that since α > 1, a.a.s. there is no component whose convex hull

contains the origin. In fact, components are included in a section of the disc

spanning o(1) of all angles. Due to this, it creates no ambiguity to talk of

clockwise and anticlockwise directions in a component.

Definition 5.1. We call a path P = v1, . . . , v` in a component C a spanning

path of C if v1 is the vertex of C that is farthest in clockwise and v` is the

vertex of C that is farthest in anticlockwise direction.

An umbrella U with root vertex v is a spanning path P of the component

of v together with a path connecting v to P . The size of the umbrella U is the

maximum among the distances of v from the two endpoints of the associated

spanning path.

Note that any vertex in C that is above a spanning path P of C is

directly connected to one of the vertices of P by Fact 2.4. Since there is no

restriction on the length of the paths, if v is on some spanning path P , then

P is an umbrella with root v.

The following follows immediately as the vertices of a component that

are to the farthest in clockwise and anticlockwise direction are always in a

25



spanning path:

Corollary 5.2. If P and P ′ are spanning paths of the same component,

then P ∩ P ′ 6= ∅.

This fact allows us to do the following: Given any pair of vertices u and

v in the same component, construct a u-v-path by traversing the umbrella

Uu of u until the first vertex z that is on the umbrella Uv of v is reached.

Then uUuzUvv is a path connecting u and v. Thus the following lemma is

key to the proof of Theorem 1.2.

Lemma 5.3. Let ε > 0. For a vertex v of G(N ;α, ν), a.a.s. there is an

umbrella for v of size at most log1+ε logN .

For the proof of this lemma we define the simultaneous breadth explo-

ration process starting at a vertex v similar to the one that we introduced

in [3]. Here, we keep track of two sets of vertices V` and Vr, which both start

out as {v}. Roughly speaking, we update the two sets adding the neigh-

bours of the current sets that are located in the clockwise and anticlockwise

direction from the “current” vertices, respectively. If there are no neigh-

bours that are farther in the clockwise direction of Vr and no neighbours

that are farther in the anticlockwise direction of V`, then the process stops.

We define the process starting at vertex v as the following steps:

(i) Let V
(0)
` = V

(0)
r = {v} and let i := 1.

(ii) Let V
(i)
` be the set of vertices not in V

(i−1)
` ∪V (i−1)

r that are neighbours

of some vertex in V
(i−1)
` ∪ V (i−1)

r and are in the clockwise direction of

every vertex in
⋃i−1
j=0{V

(j)
` ∪ V (j)

r }. We define similarly the set V
(i)
r as

the set of vertices not in V
(i−1)
` ∪ V (i−1)

r that are neighbours of some

vertex in V
(i−1)
` ∪V (i−1)

r and are in the anticlockwise direction of every

vertex in
⋃i−1
j=0{V

(j)
` ∪ V (j)

r }.

(iii) If V
(i)
` = ∅ = V

(i)
r , then stop. Otherwise, let i := i+ 1 and go to step

(ii).

We call a repetition of steps (ii) and (iii) a round. To prove Lemma 5.3, we

show that this process yields an umbrella and bound the number of steps

needed until completion.
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Lemma 5.4. If the simultaneous breadth exploration process starting at a

vertex v stops after k rounds, then there is an umbrella for v that has size

at most k.

Proof. Let C(v) denote the connected component that v belongs to. Let

V ′i =
⋃i
j=0{V

(j)
` ∪ V (j)

r }, that is, the set of vertices discovered up to round

i. We denote by v′` the vertex in V ′i with the largest relative angle with v

in the clockwise direction. We let θ
(i)
` be this angle and let t

(i)
` be the type

of this vertex. Similarly, let v′r be the vertex of V ′i that is the farthest in

the anticlockwise direction, and let θ
(i)
r and t

(i)
r denote its angle and type.

Note that there is an edge between some vertex v` in V ′i−1 to the vertex v′`
in V

(i)
` and also an edge between some vertex vr ∈ V ′i−1 and the vertex v′r.

We now claim that if the process stops at round k, then the vertices v̂r
and v̂` that are the farthest to the anticlockwise and clockwise direction of

C(v) belong to V ′k−1. Note that V
(k)
` = V

(k)
r = ∅, so V ′k−1 = V ′k. Assume this

is not the case, so without loss of generality v̂r /∈ V ′k−1. As v and v̂r are in the

same component, there is a path P from v to v̂r. Let w be the first vertex

on P that is outside the range of angles from θ
(k−1)
` to θ

(k−1)
r . Since v̂r is the

vertex that is farthest in the anticlockwise direction and v̂r /∈ V ′k this vertex

must exist. Let u be the predecessor of w on P . We cannot have u ∈ V ′k as

otherwise w, being farther in the clockwise or anticlockwise direction than

any other vertex in V ′k, must also be in V ′k by the choice made in step (ii).

There exists an i < k and two adjacent vertices x and y such that x has

been discovered at round i−1 and y has been discovered at round i and u is

between x and y. Now, if tu ≥ ty, then by Claim 4.2 (x, u, y playing the role

of w, y, z) it follows that u is adjacent to x as well. If tu < ty, then again

Claim 4.2 implies that y is adjacent to w. Hence, in either case w would

have been discovered by round i + 1, whereby w ∈ V (i+1)
r ∪ V i+1

` ⊆ V ′k; a

contradiction.

So both v̂` and v̂r are in V ′k. Note that every vertex in V
(i)
` ∪ V (i)

r has

a neighbour in V
(i−1)
` ∪ V (i−1)

r , so we can find a paths P` and Pr of length

at most k from v̂` to v and from v̂r to v, respectively. Together, possibly

deleting redundant subpaths in v`P`vPrvr, we have an umbrella for v of size

at most k.

We are now ready to prove Lemma 5.3

Proof of Lemma 5.3. We aim to bound the number of rounds it takes for
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the simultaneous breadth exploration process started at some vertex v to

stop. By Corollary 2.7, it would be sufficient to consider a variation of

the simultaneous breadth exploration process where we expose only those

vertices that have type at most R/(2α) + ω(N), for some slowly growing

function ω(N) → ∞. We will use the same notation for the parameters of

the process as in the unmodified process.

Let T denote the stopping time of this process. Without loss of gener-

ality, assume that V
(i)
` , V

(i)
r 6= ∅ for i = 1, . . . , T − 1. Define V ′i , θ

(i)
` and

θ
(i)
r as in the previous proof (but for the modified process). Unlike the last

proof, let t
(i)
` and t

(i)
r be the maximum types of vertices in V

(i)
` and V

(i)
r ,

respectively, and they are set to 0, if the corresponding set contains no ver-

tices. Let ti = max{t(i)` , t
(i)
r }. Let p

(i)
` be the point of type ti and angle θ

(i)
`

in the clockwise direction from v. Similarly, let p
(i)
r be the point of type ti

and angle θ
(i)
r in the anticlockwise direction from v.

Claim 5.5. We have V
(i+1)
` ⊂ T+

ε (p
(i)
` ) and V

(i+1)
r ⊂ T+

ε (p
(i)
r ).

Proof of Claim 5.5. Let p be a point that is within hyperbolic distance R

from u ∈ V (i)
` ∪V

(i)
r and satisfies ϑp,v > θ

(i)
` . Let u′ be the point of type t

(i)
` ,

which has θu,u′ = 0.

Note that ϑ
p,p

(i)
`

≤ ϑp,u. Since p ∈ T+
ε (u), we have ϑp,u ≤ 2(1 +

ε) νN e
tp+tu

2 . As tu ≤ tu′ = t
(i)
` , it follows that ϑp,u ≤ 2(1 + ε) νN e

tp+t
(i)
`

2 .

In other words, p ∈ T+
ε (p

(i)
` ). Thereby, V

(i+1)
` ⊂ T+

ε (p
(i)
` ).

The proof that V
(i+1)
r ⊂ T+

ε (p
(i)
r ) is analogous.

The above claim implies that the highest type of a vertex in V
(i+1)
` ,

which we denoted by t
(i)
` , is stochastically dominated by the highest type

among the vertices in
{
p ∈ T+

ε (p
(i)
` ) : ϑ

p,p
(i)
`

> 0, tp < R/(2α) + ω(N)
}

.

Similarly, the highest type of a vertex in V
(i+1)
r , which we denoted by

t
(i)
r is stochastically dominated by the highest type among the vertices in{
p ∈ T+

ε (p
(i)
r ) : ϑ

p,p
(i)
r
< 0, tp < R/(2α) + ω(N)

}
. Let T`(p

(i)
` ) and Tr(p

(i)
r )

denote these two sets.

Thus, ti+1 is stochastically bounded from above by the largest type in

T`(p
(i)
` ) ∪ Tr(p(i)

r ). In turn, this is stochastically bounded from above by

the maximum type of a vertex in T`(p
(i)) ∪ Tr(p(i)) for a point p(i) of type

ti = max{t(i)` , t
(i)
r }. We shall proceed with the estimation of the cdf of the

latter random variable.
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Observe first that Claim 5.5 implies that for all 0 < i ≤ T we have

V ′i ⊂
⋃i−1
j=0{T+

ε (p
(j)
` )∪T+

ε (p
(j)
r )}, assuming that p

(0)
` , p

(0)
r are both set to the

point of DR where v is located. Let Ni be the set of vertices that belong to

V ′i . For a vertex u ∈ VN \V ′i , the distribution on DR is uniform (within the

plane of curvature −α2) on the subset of DR that excludes the union of the

balls of radius R around each vertex in V ′i . Recall that Areaα(·) denotes the

area of a measurable subset of DR on the hyperbolic plane of curvature −α2.

By Lemma 2.5 and the above observation, the area of the latter is at most∑i−1
j=0 Areaα(T+

ε (p
(j)
` )∪T+

ε (p
(j)
r )). But for each j, the angle that is spanned

by T+
ε (p

(j)
` ) ∪ T+

ε (p
(j)
r ) is proportional to eR/(2α)−R+ω(N) = o(1). Thus, if

i < R, then we have
∑i−1

j=0 Areaα(T+
ε (p

(j)
` ) ∪ T+

ε (p
(j)
r )) = o(Areaα(DR)).

Using this, we conclude that the conditional probability that a vertex

u ∈ VN \ Ni belongs to T+
ε (p(i)) and has type tu that satisfies t ≤ tu <

R/(2α) + ω(N) is at most∫ R
2α

+ω(N)

t

4(1 + ε)

2π
e
ti+t
′−R
2

α sinh(α(R− t′))
cosh(αR)(1− o(1))

dt′

≤ 2α(1 + 2ε)

π
e
ti−R

2

∫ R
2α

+ω(N)

t
et
′/2 eα(R−t′)

2 cosh(αR)(1− o(1))
dt′

≤ 2α(1 + 3ε)

π
e
ti−R

2

∫ R
2α

+ω(N)

t
e(

1
2
−α)t′dt′

=
2αν(1 + 3ε)

π

eti/2

N

∫ R
2α

+ω(N)

t
e(

1
2
−α)t′dt′ <

4αν(1 + 3ε)

π(2α− 1)

eti/2

N
e(

1
2
−α)t,

for N sufficiently large. Therefrom, the conditional probability that none

of the vertices in VN \ Ni satisfies this is at least(
1− 4αν(1 + 3ε)

π(2α− 1)

eti/2

N
e(

1
2
−α)t

)|VN\Ni|
>

(
1− 4αν(1 + 3ε)

π(2α− 1)

eti/2

N
e(

1
2
−α)t

)N
> exp

(
−Dα,ν,εe

ti
2
−(α−1/2)t

)
,

(5.1)

for some Dα,ν,ε > 0 and any N sufficiently large.

Therefore, for i < R the random variable max{t(i+1)
` , t

(i+1)
r } conditional

on the history of the process up to step i is stochastically dominated by a

random variable that follows the Gumbel distribution. The expectation of
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the latter is
ti + 2 ln(2Dα,ν,ε)

2α− 1
+

2γ

2α− 1
,

where γ is Euler’s constant. Therefore, the following inequality holds:

E [ ti+1|Fi ] ≤ ti + 2 ln(2Dα,ν,ε)

2α− 1
+

2γ

2α− 1
,

where Fi denotes the sub-σ-algebra generated by the process up to step i.

There exists a constant Uα,ν,ε > 0 such that when ti > Uα,ν,ε, we have

E [ ti+1|Fi ] ≤ ti + 2 ln(2Dα,ν,ε)

2α− 1
+

2γ

2α− 1
<

α

2α− 1
ti =: λαti < ti. (5.2)

On the other hand, (5.1) implies that if ti ≤ Uα,ν,ε, then

P(ti+1 = 0) ≥ p > 0, (5.3)

for some positive constant p.

With these tools, we can bound the stopping time T of the process.

Let [T
(s)
1 , T

(s)
2 ∧ R] denote the sth interval of indices in which the process

stays above Uα,ν,ε. By (5.2), for T
(s)
1 < i ≤ T

(s)
2 ∧ R the process (ti) is a

supermartingale with decay rate at most λα.

Claim 5.6. For any ε′ > 0

P((T
(s)
2 ∧R)− T (s)

1 ≥ log1+ε′

1/λα
R) = o(1).

Proof of Claim 5.6. Let S := log1+ε′

1/λα
R and let T (s) := T

(s)
2 ∧R. Note that

E
[
ti∧T (s) | F

T
(s)
1

]
≤ λ

i∧T (s)−T (s)
1

α t
T

(s)
1

≤ λ
i∧T (s)−T (s)

1
α R. Let A be the event

{T (s) > S + T
(s)
1 }. If ω ∈ A, then λ

(S+T
(s)
1 (ω))∧T (s)(ω)−T (s)

1
α t

T
(s)
1

(ω) < λSαR =

o(1). By the definition of the conditional expectation, we deduce that

E
[
t
(S+T

(s)
1 )∧T (s)1A

]
= o(1) and since E

[
t
(S+T

(s)
1 )∧T (s)1A

]
> Uα,ν,εP(A),

we finally deduce that P(A) = o(1).

Now, the length of the (discrete) interval (T
(s)
2 , T

(s+1)
1 ∧T ∧R) is stochas-

tically bounded from above by a geometric random variable that has pa-

rameter at least p.

We call the union of these intervals an epoch, that is, we call an epoch
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the interval [T
(s)
1 , T

(s+1)
1 ∧ T ∧ R), for some s > 0. By the above claim, for

any ε′ > 0, with probability 1− o(1), we have (T
(s)
2 ∧R)−T (s)

1 ≤ log1+ε′

1/λα
R.

Additionally, the stochastic upper bound on the interval (T
(s)
2 , T

(s+1)
1 ) im-

plies that this is at most logε
′

1/λα
R with probability 1 − o(1). Hence, with

probability 1 − o(1) an epoch lasts for at most log1+2ε′

1/λα
R steps. Finally,

since every epoch has probability at least p to be the final one, it follows

that the process hits 0 within log1+3ε′

1/λα
R steps with probability 1− o(1). In

other words, a.a.s. we have T ≤ log1+3ε′

1/λα
R.

Using the previous lemmas we prove Theorem 1.2.

Proof of Theorem 1.2. Let 0 < ε′ < ε. Let V ′ be the set of vertices

in G(N ;α, ν) that have an umbrella of size at most log1+ε′ logN . By

Lemma 5.3 we have |V ′| = (1 − o(1))N a.a.s. For any u, v ∈ V ′, if they

are in the same component, by Corollary 5.2 the umbrellas are not disjoint.

Thus there is a u-v-path of length at most |Uu| + |Uv| ≤ 2 log1+ε′ logN <

log1+ε logN for N large enough.
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