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Algorithms of Solution Reconstruction
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at the Boeing Company

Natalia Petrovskaya

Abstract We describe work that demonstrated the benefits achieved when themath-
ematical and computational aspects of a fluid dynamics problem were brought
together to work on real-world aerodynamic applications. The research into solu-
tion reconstruction on adaptive grids was required by The Boeing Company in order
to help them to design an efficient and accurate discretization of the governing equa-
tions that have to be solved numerically for the generation of aerodynamic data for
various flow regimes. While earlier insight into the solution reconstruction problem
was purely based on empirical intuition, research conducted by the author under
a contract with Boeing has resulted in the development of the necessary synthetic
judgement in which the importance of accurate reconstruction on unstructured grids
has been fully recognised by the CFD researchers at Boeing and has helped them
to make an informed decision on the choice of a discretization method in their CFD
code. Efficient use of CFD in the design of new aircraft has allowed The Boeing
Company to further strengthen their core operations, improve their execution and
competitiveness and leverage their international advantage.

Introduction

The overall significance of computational fluid dynamics (CFD) in the aircraft design
process is nowwell-established. Among other commercial companies CFD is widely
used at Boeing where its application has “revolutionised the process of aerodynamic
design” [1], joining the wind tunnel and flight test as primary tools. The resulting
financial savings to the Boeing Company were estimated in [1] as “tens of millions
of dollars” over a twenty year period. CFD also provided added value by achieving
design solutions that would not otherwise be achievable, as well as shortening the
design development process by reducing or eliminating the need to build successive
prototypes.
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Project engineers at Boeing (and elsewhere) use commercial codes to undertake
CFD analyses. These codes take many years to design and validate, are applied to
various real-life engineering tasks where appropriate during their development phase
and are then released allowing decades of use across Boeing and a wider aerodynam-
ics community. For instance, developmentwork on theTRANAIRcomputational tool
began in 1984 with useful results published in 1989 and on-going development in
the 1990s. The CFD codes are used very extensively; TRANAIR was run more than
70,000 times between 1989 and 2004, with about 90 users in Boeing only [1]. The
code was heavily applied in the design of aircraft such as the Boeing 777, one of the
company’s best-selling products. Following the success of TRANAIR, Boeing began
the process of developing their next-generation computational code in 1998 to meet
the needs of modern aircraft design process. The ultimate purpose of the new code
has been formulated as to allow the generation of aerodynamic data for various flow
regimes about realistic complex geometries in a timely and affordable manner. This
highly challenging and ambitious goal has placed substantially increased demands
on the solution methodology and resources required for the design of a reliable and
accurate CFD toolkit.

One of key requirements in the design of a modern computational aerodynamics
code is the use of adaptive grids whenever it is possible in computation. Adaptive
computational grids are opposite to grids with the fixed number of grid points, as
the adaptive grid has to be refined several times along with the numerical solution to
provide accurate simulation of aerodynamic flow. Grid refinement allows for better
accuracy on a final grid and adaptive grid techniques also offer great potential in
computational savings. However, adaptive grids have not seen widespread use in
computational aerodynamics due to various computational issues, inadequate solu-
tion accuracy estimation on initial grids being one of them.

One difficulty arisingwhen adaptive grids are employed in the problem is that they
have highly anisotropic geometry in the boundary layer close to an airfoil and solu-
tion discretization can degrade to unacceptable accuracy on highly stretched meshes
at the beginning of grid adaptation process when a computational grid is not perfectly
fitted to the solution. In particular, least-squares (LS) technique intensively exploited
in computational aerodynamics gives very inaccurate results when it is used for solu-
tion reconstruction on anisotropic grids. Solution reconstruction is an essential part
of many discretization methods and when Boeing engineers and researchers started
working on a new CFD code it became clear to them that a detailed investigation
of a solution reconstruction procedure on anisotropic grids was required. Based on
her earlier work as a research consultant for Boeing, the author was asked by the
CFD research team to investigate the reconstruction problem in depth. In the present
chapterwe briefly discuss implementation of the LSmethod for aerodynamical appli-
cations and explain the findings of the LS study made by the author for The Boeing
Company.
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Least-Squares Reconstruction on Anisotropic Grids

Let a computational grid G be generated in a two-dimensional domain. The grid G
can be considered as a collection of points Pi = (xi , yi ), i = 1, 2, . . . , NG, selected
according to some computational rule and supported with a data structure specified
in the problem (i.e., grid edges, grid cells, boundary edges and so on). An example
of an irregular computational grid generated around an airfoil is shown in Fig. 1a.
The number NG of grid nodes on an adaptive computational grid typically used in
aerodynamical applications is NG ∼ 107.

We assume that a function U (x, y) (the solution function) is available at any
grid node Pi . Given the values U1, U2, . . . , UNG at grid nodes, the solution function
U (x, y) has to be reconstructed at edge midpoints with reasonable accuracy. For
this purpose a reconstruction stencil is defined and local LS approximation of the
function U (x, y) is done over the stencil points. An example of the reconstruction
stencil at edge midpoint p is shown in Fig. 1b.

In the LS problem local numbering of stencil points is used. The edge midpoint
p is re-denoted as P0 and is called a central reconstruction node. The other stencil
points are numbered as Pi , i = 1, . . . , N . Clearly the number N of stencil points
can be different for two different central nodes as N depends on the geometry of
a computational grid. Similarly the values of the solution function at stencil points
are re-numbered as (U1, U2, . . . , UN ). The number N of points belonging to a local
reconstruction stencil is N ∼ 10 − 20.

A weighted LS approximation requires that the data U = (U1, U2, . . . , UN )

should be fitted to the function
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Fig. 1 a An unstructured computational grid generated about an airfoil. b A reconstruction stencil
for LS approximation at a given edge midpoint. Grid points used to reconstruct the solution at point
p shown as an open circle in the figure are shown as closed black circles. Note a different length
scale along the x and y-axes
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uL S(x, y) =
M∑

k=0

ukφk(x, y), M < N , (1)

where u = (u0, u1, u2, . . . , uM) are fitting parameters, and φk(x, y), k = 0, . . . , M,

are polynomial basis functions. The unknown parameters {uk} are determined by
seeking the minimum of the merit function,

F2 =
N∑

i=1

w(P0, Pi ) [U (Pi ) − uL S(Pi )]
2 ,

where w(P0, Pi ) is the weight function that should be specified in the problem. The
solution of the aboveminimization problem is defined by the designmatrixA : Ai j =
φ j (Pi ), i = 1, . . . , N , j = 0, . . . , M and can formally be written as u = A−1

wlsbwls,

whereAwls = AT WA, bwls = AT WU, and a diagonalweightmatrixW is given by

Wi j =
{

w(P0, Pi ), i = j,
0, otherwise,

i, j = 1, 2, . . . , N . (2)

Once a function uL S(x, y) has been reconstructed, we can define its value at the point
P0 from (1). The next edge midpoint is then taken and the reconstruction procedure
is repeated.

Earlier insight into the reconstruction problem, made by researchers at Boeing
and NASA, attributed poor accuracy of the LS method on irregular stretched grids
to the impact of distant points on the results of LS reconstruction (see Fig. 1b). Thus
the following weight function widely employed in aerodynamic applications was
selected for reconstruction (1)–(2):

w(P0, Pi ) ≡ w(r0i ) = r−q
0i , q = 0, 1, 2, . . . , (3)

where r0i is the Euclidian distance between P0 and Pi , i = 1, 2 . . . , N , and q is an
integer polynomial degree. Any q > 0 provides inverse distance weighting used to
mitigate the impact of remote stencil points on the results of LS approximation.

In many applied problems weighting (3) allows users to improve the accuracy of
reconstruction. However, the studymade in [3] revealed that inverse distance weight-

Table 1 The reconstruction error (4) for LS approximation with various degrees q of polynomial
weight function (3)

q 0 1 2 4 8

e f
max 1.27282 ×

10−3
1.09508 ×
10−3

1.08304 ×
10−3

1.14044 ×
10−3

1.38461 ×
10−3

eb
max 1.38595 1.52966 1.72857 2.18609 198.303

The maximum error e f
max is computed in a far field and the maximum error eb

max is computed in a
‘boundary layer’ sub-domain near the airfoil
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ingof stencil pointswas not efficient in practical aerodynamic computations onhighly
anisotropic adaptive grids. The first findings of the study of solution reconstruction
on stretched grids are summarised in Table1. The validation of the accuracy of a
LS approximation has been made from comparison of the accurate solution U (x, y)

available in the test cases and a reconstructed solution uL S(x, y) taken at the same
point (x, y). The maximum error has been computed as

eb
max = max

(x,y)∈Db

e(x, y), e f
max = max

(x,y)∈D f

e(x, y), (4)

where e(x, y) = |U (x, y) − uL S(x, y)|. A ‘boundary layer’ region Db in (4) is
defined as a computational sub-domain near the airfoil where a highly anisotropic
grid is generated, while a ‘far field’ region D f is a computational sub-domain far
away from the airfoil where the grid is almost isotropic.

It can be seen from the table that theweight function (3) results in accurate solution
approximation when a LS procedure is applied in the far field. However, the choice of
(3) is not efficient in the domain Db, as weighting of stencil points further increases
the maximum error of the reconstruction. In particular, weighting with q = 2, which
appears to be optimal in the far field, does not provide an acceptable reconstruction
error near the wall.

It became clear from the results above that further insight into the problem was
required. The further study of the reconstruction problem revealed that another class
of distant pointsmay appear in the reconstruction stencil. Those points called ‘numer-
ically distant points’ have been defined as stencil points that are remote in the data
space [4]. While recognition of geometrically distant points is a straightforward
task, it is difficult to detect numerically distant points in the stencil, as their defini-
tion depends essentially on the solution functionU (x, y). Such points can be located
close to the point P0, but the function U (x, y) measured at a numerically distant
point still has a big data error that affects the accuracy of reconstruction.

Numerically distant points cannot be eliminated from the stencil by inverse
distance weighting as they are not remote points in a geometric domain. Another
approach is required and the numerically distant points have to be weighted in
the data space in order to remove them from the reconstruction stencil. Thus the
following definition of the weight function w(P0, Pi ) in (3) has been suggested

r̃20i = r T
0i |H|Pi r0i , and w(P0, Pi ) = r̃−q

0i , q = 0, 1, 2, . . . (5)

where the matrix H depends on the solution function U (x, y) (see [4] for more
details). A novel reconstruction algorithm has been designed and a research code has
been written to handle numerically distant points in the reconstruction procedure.
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Conclusions

The research on the LS reconstruction has had impact in the following ways:

1. It was demonstrated that, in two and three dimensions, LS reconstruction on
stencils with irregular geometry can cause severe problems with accuracy of a
numerical solution. This is especially true for unstructured viscous grids with
high aspect ratio grid cells and wide disparities in cell sizes and shapes, as well as
for under-resolved curved boundaries. For grids of 106−107 nodes used in CFD
computations it is unlikely that anomalous reconstructions would not arise and a
disastrous reconstruction can feed on itself yielding worse and worse grids in the
grid adaptation procedure. Hence the Boeing CFD team identified the solution
reconstruction procedure on unstructured grids as one of critical tasks associated
with the design of a solver for computational toolkits in modern CFD [2].

2. Numerous cases have been documented where a higher order LS algorithm orig-
inally considered as a potentially more accurate algorithm in comparison with
interpolation yielded reconstructed values much less accurate than any values
being interpolated. Those cases helped CFD researchers at Boeing to admit that
higher order solution reconstruction can be dangerous on unstructured viscous
grids unless the solution latent features are resolved [2]. That in turn made the
impact on the choice of a baseline discretization scheme used in the Boeing solver.

3. The research on numerically distant points revealed true nature of a large recon-
struction error. It was suggested that a large error is inevitable on coarse grids
where the solution is not well resolved, no matter what the grid cell aspect ratio
is. Hence Boeing researchers admitted the need for a careful choice of the initial
grid when a grid refinement algorithm is concerned. The low accuracy of recon-
struction may affect a solution on the initial coarse grid and this issue must be
taken into account when a solution grid adaptation algorithm is designed [2].

As a result of the LS reconstruction study the importance of the reconstruction
problem has been fully acknowledged by the Boeing CFD team and that issue was
taken into account and implemented while designing a new computational toolkit.
Boeing’s subsequent and current codes have been improved and these benefits are
being extended to cover further aspects of aircraft design.

Finally, it is worth noting here that the work on approximation on coarse grids is
being continued by the author and furthermathematical insight into a general problem
of quantifying uncertainty of approximation has recently been provided [5]. The
problem of accurate solution approximation from sparse data arises inmany practical
applications and the study made for The Boeing Company strongly influenced the
author’s current interest in this difficult yet fascinating research topic.
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