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Chapter 8
Computational Methods for Accurate
Evaluation of Pest Insect Population Size

Natalia Petrovskaya and Nina Embleton

Abstract Ecological monitoring aims to provide estimates of pest insect abun-
dance, where the information obtained as a result of monitoring is then used
for making decisions about means of control. In our paper we discuss the basic
mathematics behind evaluating the pest insect abundance when a trapping procedure
is used to collect information about pest insect species in an agricultural field.
It will be shown that a standard approach based on calculating the arithmetic
average of local densities is often not the most efficient method of pest population
size evaluation and more accurate alternatives, known as methods of numerical
integration, can be applied in the problem. A mathematical background for methods
of numerical integration on regular grids of traps will be provided and examples of
their implementation in ecological problems will be demonstrated. We then focus
our attention on the issue of pest abundance evaluation accuracy when data available
in the problem are sparse and consider the extreme case when the uncertainty
of evaluation is so big, that an estimate becomes a random value. We complete
our discussion with the consideration of irregular grids of traps where numerical
integration techniques can also be applied.

Keywords Ecological monitoring • Numerical integration • Pest control •
Coarse grid

8.1 Introduction

Pests are a sustained and significant problem in the production of food across the
globe. The term ‘pest’ can be used to describe any organism which is deemed to
cause harm to mankind in some manner; in crop production this label is given to
those which damage or destroy potential produce to an unacceptable extent. In many
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ecologically important cases the definition above implies that an agglomeration of
organisms is considered: for example, while one or two occasional insects do not
make any significant harm to the crop in an agricultural field, the damage to the crop
can become dramatic if the number of insects exceeds a certain threshold. Hence, in
many ecological situations the definition of the term pest also requires the definition
of the pest abundance or the pest density distribution in the spatial domain under
consideration.

Crops are vulnerable to attack from pests both during the growing process and
after they have been harvested. When pests of crops prior to harvest are considered,
the focus is often predominantly on arthropods, plant pathogens and weeds (e.g.
Louws et al. 2010; Ruberson 1999). Estimates of the annual worldwide loss due to
pests at this stage in the production process lie between 35 and 42 % (Oerke 2006;
Pimentel 1997). In particular, the pre-harvest loss of 14–15 % of the world’s crops
has been attributed to insect pests (Pimentel 2009; Pimentel and Pimentel 2008).
Further losses are incurred after the crops have been harvested. This can be due to
infestation of stored crops by pests such as insects, rodents, birds, as well as micro-
organisms which cause damage both quantitative and qualitative in nature (Gwinner
et al. 1996). Such losses have been estimated to range from 10 to 25 % (Pimentel
and Pimentel 2008).

8.1.1 Basic Principles of Integrated Pest Management

Pest management has the obvious goal of preventing or minimising the damage
pests cause to crops and various approaches have been used to achieve this goal.
Measures of so-called ‘preventative pest management’ can be put into practise;
the idea being to try to stop the pest population from becoming a problem in the
first place. Age-old examples of such a tactics are crop rotation and intercropping.
In a crop rotation, instead of an agricultural field consistently being used to grow
the same crop, different crops which critically host different pests, are grown
sequentially. Intercropping is the planting of different crops within the same field
at the same time. Variety can also be introduced by planting several genotypes
of the same crop species within a field. Introducing heterogeneity in such ways,
either spatially, temporally, or genotypically, can destabilise the life cycle of a pest
and has been documented to help to control pest populations (Liebman and Dyck
1993; Shoffner and Tooker 2013). A pest’s preference for a certain plant can be
exploited to the farmer’s advantage using a technique called trap cropping. Here,
crops are interspersed with plants that are more attractive to the pest and thus
act as sacrificial decoys. This diversionary ploy can be sufficient to protect the
crop in itself, otherwise, it reduces the area of the field to be subjected to further
management tactics should they be needed since the pests are then located in some
field sub-domain (Hokkanen 1991). Another precautionary measure is to grow crops
which have been cultivated to be resistant to pest attack. Grafting has been used for
centuries to manage certain pathogens and it has also been deemed to be useful in
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the control of arthropod pests and weeds (Louws et al. 2010). A more scientifically
advanced means of pest resistant plant cultivation is genetic modification. This is a
relatively recent initiative of which the risks are not yet fully understood, however,
its potential to become the dominant pest management strategy has certainly been
recognised and consequently it has become the focus of much research (e.g. Bates
et al. 2005; Christou et al. 2006; Gatehouse et al. 2011; Smigocki et al. 2013).

Another way of managing pests is to implement a control action, that is, to
employ a means of killing the pest organisms. The most widely used control action
is the application of pesticides. It has been estimated that around 3�109 kg are used
across the globe per year (Pimentel 2009). Biological control actions, e.g. releasing
a natural enemy of the targeted pest into the agroecosystem, provide an alternative
to the use of chemicals. However, the indiscriminate use of control actions or
using them as a preventative measure can have serious negative consequences. For
instance, the regular use of pesticides often leads to the pest becoming resistant
making future management a more difficult task (Alyokhin et al. 2008). Another
unwanted side effect can be that the pesticide has lethal or sub-lethal effects on
natural enemies (Sohrabi et al. 2013) which can cause a resurgence in the pest
population or a secondary pest to emerge.

Recognition that precautionary tactics are rarely sufficient to manage pests alone
and that relying entirely on control action is not a durable approach led to the
emergence of the concept of integrated pest management (IPM) (Kogan 1998). IPM
is the incorporation of several different tactics which work cooperatively together
to protect crops from pest attack in a more sustainable way. It consists of the
three phases. Firstly, preventative measures of pest management are put into place.
Subsequently, the pest abundance is monitored. The decision of whether or not
to implement a control action is then made by comparing the abundance of pests
against some threshold level, i.e. the limit at which intervening becomes worth the
effort or expense. Such threshold values can be decided upon by taking a variety of
factors into consideration. The most often used are economic thresholds (Stern et al.
1959) as usually the overriding concern is that the pest management programme is
financially viable (e.g. see Higley and Pedigo 1996). The basic principle of IPM
is therefore that a control action is only used if and when it is necessary. Thus
monitoring is key to the decision process and is considered an essential part of any
integrated pest control and management programme (Burn et al. 1987; Metcalf and
Luckmann 1982).

8.1.2 Monitoring Methodologies in IPM

A correct choice of a monitoring methodology is very important for the success
of an IPM programme. Since different pest types have different behaviours, the
monitoring methodologies in IPM programmes vary accordingly. We thus limit
our scope to the consideration of insect pests; henceforth in the text the generic
term ‘pest’ is used synonymously with ‘insect pest’ unless otherwise stated. The
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procedure also depends on the environment to be monitored. In our paper we
consider pest management of crops prior to harvest, where we take the spatial
scale of the monitoring procedure to be that of an agricultural field. A complete
census in this case is hardly practical or indeed possible, therefore the population
abundance must instead be estimated. The data to form such an estimate is
collected by sampling the pest population for which there exists a multitude of
techniques (Ausden 1996; Blackshaw 1983; Hutchins 1994; Mayor and Davies
1976; Southwood and Henderson 2000).

A direct, in-situ count can be made of the number of pests in a sample unit e.g.
a plant or a unit area of habitat. For the more inconspicuous species, the counting
process can be made easier by dislodging the pests from the plant using a practise
known as ‘knockdown’. In some instances a sample of the habitat itself may be
carefully removed and taken to a laboratory where the count can then be made.

Once the data has been collected the arithmetic mean number of pests M per
sample unit is calculated as follows:

M D 1

K

KX
kD1

fk; (8.1)

where fk are the individual sample counts, and K is the number of sample counts
taken (Davis 1994). From the mean number of pests per unit area, an estimate of the
number of pests in the entire agricultural field is obtained by multiplying by the area
of the field (Snedecor and Cochran 1980). A mean number of pests per plant can be
converted to the mean per unit area by multiplying by the mean number of plants
in such an area. Such an estimate of pest abundance is considered an ‘absolute’
estimate since the sample counts directly reflect the number of pests in the sample
unit.

Alternatively samples can be taken via netting. For example, a net can be swung
into the crops for a prescribed time or number of sweeps. The number of pest
insects caught inside is then counted (e.g. see Pedigo and Rice 2009; Southwood
and Henderson 2000). Netting is often used to sample insects on large agricultural
fields, because it is quicker and more cost effective than inspection of individual
plants.

Another widely used sampling technique is trapping. Traps are installed in the
field, exposed for a certain amount of time (e.g. for a week), after which the traps
are emptied and the pests counted. The position of the traps can be arbitrary;
some ecologists opt for random grids of traps or choose appropriate sampling
patterns (Alexander et al. 2005; Mayor and Davies 1976), but in many cases they
are placed at the nodes of a rectangular grid (Ferguson et al. 2000; Holland et al.
1999). The traps can either be active, whereby an attractant is used to draw the pests
into the traps e.g. bait or a pheromone, or they can be passive where capture relies
on the activity of the pest species. The trap counts provide information about the
pest population density at the position of the traps (Byers et al. 1989; Raworth and
Choi 2001) and the sample mean density can then be calculated by scaling (8.1)
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with relation to the area of the agricultural field, where fk are now the pest densities
at the sample locations.

The above techniques yield a relative estimate of the mean pest density rather
than an absolute estimate. The counts are not a direct measure of pest abundance but
are relative to the efficiency of the netting or trapping technique and the conditions
at the time of sampling. Therefore only relative estimates which have been obtained
via the same sampling technique and in the same conditions can be compared.
It is possible to convert an estimate that is relative to an absolute estimate using
regression analysis (Browde et al. 1992) or through calibration using experimental
data (Evans et al. 1983). Steps to achieve this via mathematical modelling have also
been made (Petrovskii et al. 2012).

An estimate of the population abundance can also be achieved using mark-
release-recapture methods. Initial sampling is performed and the catch is counted
and marked in some way (Hagler and Jackson 2001). The marked population is then
released back into the agroecosystem and another round of sampling is conducted.
An estimate of the population size can then be formulated using the condition that
the proportion of marked insects in the field is equal to the proportion of marked
insects found in the second sample. That is, the following can be rearranged to
solve for I

IM

I
D I QM

QI ; (8.2)

where IM is the total number of marked insects, I is the number of insects in the
entire population, QI is the number of insects caught in the second sample and I QM is
the number of those which are marked. This method works well in scientific studies
but can hardly be afforded in nation-wide monitoring programmes as it requires
considerable additional effort (such as insect marking and recapture).

8.1.3 The Problem of Accurate Estimation of Pest Abundance

Once an estimate of the pest population size or the mean pest density in an
agricultural field has been acquired, a decision is made by comparing it to some
threshold value(s). Let us consider the simplest case where a single threshold value
is used. If the estimate falls below the threshold the decision is to take no action,
whereas if it exceeds the threshold the decision is to intervene and implement a
control action (e.g. see Binns et al. 2000, Chapter 1). Such action can, for instance,
be the application of pesticides (Ester and van Rozen 2005; Stern 1973). Clearly
the accuracy of the estimate is important in ensuring the correct decision is made,
with the accuracy becoming particularly vital when it is close to the threshold value.
An underestimate could mean action is not taken when it is needed leading to the
loss of crops. Even with the use of pesticides the value of crops lost in the field to

n.b.petrovskaya@bham.ac.uk



176 N. Petrovskaya and N. Embleton

pests has been estimated to be $2,000 billion per year (Pimentel 2009).1 Obtaining
a more accurate estimate of the pest abundance could lead to the more timely use of
a control action and ultimately reduce crop loss.

On the other hand an overestimate could lead to a control action being used
unnecessarily. Application of pesticides is costly and brings considerable damage
to the environment (Jepson and Thacker 1990). Pesticides are known to contribute
to air, soil and water pollution whilst there is growing evidence linking their use
to human illnesses (Alavanja et al. 2013; Pimentel and Greiner 1997). It has been
estimated that less than 0.1 % of pesticides used reach their targeted pest, the
remaining 99.9 % is absorbed by some means into the environment (Pimentel 1995).
Some of the loss occurs during application with the spray drifting outside of the
intended area, however once applied to a crop, pesticides can then vaporise into the
air, end up in surface or groundwater, be absorbed by plants or ingested by non-
target species, or indeed remain in the soil. Furthermore, unnecessary application of
pesticides is undesirable from an economic perspective; around $40 billion is spent
per year applying pesticides (Pimentel 2009).

It is obvious from the above that there is a significant need for reliable methods to
accurately evaluate the pest population size in order to avoid making an unjustified
decision about control action. It is worth noting here that the accuracy required by
pest monitoring is not always very demanding as it differs according to the purpose.
In routine monitoring an error range can be 20–100 % (Pascual and Kareiva 1996;
Sherratt and Smith 2008), whereas monitoring for research purposes can demand a
higher degree of accuracy of 10 % (e.g. see Pedigo and Rice 2009, p. 245).

Several means of optimising the accuracy of an estimate have been considered
in the ecological literature. One way is to ensure that the size of the data set is
large enough i.e. that enough sample units are taken. It follows from Eq. (8.1) that
the exact value of the population size will be obtained for infinitely large number
K . Hence we can expect better accuracy of the estimate when K gets larger. A
pre-sample (or series of them) can be used to obtain a sample mean and sample
variance from which an estimate of the number of sample units needed to achieve
a specified precision can be calculated (e.g. see Binns et al. 2000; Dent 2000;
Pedigo and Rice 2009). However there is a trade-off between the number of sample
units needed to achieve sufficient accuracy and the number that can be practically
afforded. For instance, if a trapping procedure is applied in ecological research,
the number K of traps per given area can be made quite large, e.g. in the order of
hundreds. Meanwhile in routine pest monitoring programmes K rarely exceeds 20
(Mayor and Davies 1976) per a typical agricultural field with a linear size of several
hundred meters and, in some cases, it can be as small as one or a few traps per field
(Northing 2009). There are several practical reasons why the number of traps cannot
be made large. An increase in the number of sample units equates to an increase
in the amount of labour and hence finances required. In any real-world scenario

1The work Pimentel (2009) refers to pests in the generic sense of the term, i.e. insects, plant
pathogens and weeds.
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there is a limit to such resources. Also, traps introduce a disturbance into the field
and installing a large number of them can damage the corresponding agricultural
product. Furthermore, trapping imposes a disturbance on the pests which can in
turn affect the results of the trapping technique, therefore from this perspective the
number of traps should be minimised.

The efficacy of a sampling technique is also important to the accuracy of an
estimate of the pest abundance. Means of sampling a pest population are constantly
being reviewed leading to sampling equipment being developed and improved
(Birmingham et al. 2011; Taboada et al. 2012). Another key consideration is the
sampling plan, that is, the prescribed locations at which samples are to be taken.
For an estimate to be accurate the sample must capture sufficient information
to adequately represent the true pest presence. If conditions are homogeneous
across the field, insects can be randomly distributed, however they often exhibit
an aggregated spatial distribution (Ferguson et al. 2000; Holland et al. 1999).
The sampling plan thus becomes crucial; it is important to avoid bias stemming
from samples being placed entirely in areas where the pests are clustered, or
likewise, entirely in areas of zero density. Comparisons of various patterns e.g.
random, transects, quadrats, etc. have been made in order to make recommendations
(Alexander et al. 2005).

8.1.4 Goals and the Road Map

As the accuracy of evaluation of the pest abundance remains a crucial issue in IPM
programmes, any new method that can increase the accuracy must be carefully
studied and its advantages and disadvantages must be documented in order to
decide whether or not the method can be used in routine monitoring. Although
ensuring a sufficiently accurate estimate has been considered in the ecological
literature as discussed above, to our best knowledge the focus has predominantly
been on how the data is collected. In our paper we instead look at the way in
which the data is processed and discuss numerical integration techniques that
present an alternative approach to the existing statistical methods. In recent years
intensive study of numerical integration methods for ecological applications has
been carried out (Embleton and Petrovskaya 2013, 2014; Petrovskaya and Embleton
2013; Petrovskaya et al. 2013; Petrovskaya and Petrovskii 2010; Petrovskaya et al.
2012) and in this book chapter we summarize our experience with the application of
numerical integration methods to ecological problems. We will focus our attention
on a trapping procedure made in a single agricultural field and on the evaluation of
the total pest population size from the information provided by trap counts, but the
results of our discussion can be extended to other sampling techniques.

The main goal of the book chapter is twofold. Firstly, we would like to draw
the attention of our readers to methods of numerical integration as a reliable
alternative to a standard statistical method (8.1). We therefore explain a mathemat-
ical background for numerical integration techniques, elaborate on how to apply
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them in ecological problems and demonstrate that advanced numerical integration
methods can often be more effective in the evaluation of pest abundance than the
method (8.1).

Secondly, we want to discuss the issues of accuracy for various methods of
numerical integration and to identify the main factors that may affect the accuracy. It
will be shown that the accuracy of numerical integration depends on the number of
traps available in the problem and we therefore often have to deal with a numerical
integration problem where the data are sparse (see Sect. 8.1.3). Meanwhile, if the
number of traps is fixed in the problem, a spatial pattern of the pest density
distribution remains the most crucial factor that affects the accuracy of numerical
integration and this is another key topic that we discuss in this book chapter.

While most of our study with regard to the issues above will be done for regular
grids of traps, we are also interested in the study of accuracy on quasi-irregular
and random grids, as sampling patterns that result in such grids are backed by
ecologists as mentioned in Sect. 8.1.3. It is worth noting that, although the spatial
pattern of the sample units is considered important when collecting the data, an
estimate of pest abundance based on the sample mean does not use this information
directly. It can readily be seen that the expression for the sample mean (8.1) has
no spatial dependence. Alternatively, an estimate formulated by means of numerical
integration uses the spatial distribution information and we will see the implications
of this approach.

The chapter is organised as follows. In the next section, we briefly explain basic
information about the theory of numerical integration. In Sect. 8.3 we introduce
a coarse grid problem that may hamper the use of numerical integration methods
in ecological applications. In Sects. 8.2 and 8.3 we consider standard examples
that have no ecological meaning but serve the purpose of illustrating numerical
integration techniques well. We then demonstrate in Sect. 8.4 how to use methods
of numerical integration in order to evaluate the total population size from discrete
spatial data on regular grids. We also check the accuracy of various numerical
integration methods by applying them to spatial population distributions of different
complexity and conclude that knowledge of a spatial pattern is the most important
requirement when accuracy of numerical integration is concerned. In Sect. 8.5,
we discuss highly aggregated density distributions that present the most difficult
case for numerical integration methods. In Sect. 8.6, we investigate the effect of a
grid’s irregularity on the population size estimation. Finally, in section “Concluding
Remarks” we summarise our experience with the numerical integration problem in
pest insect monitoring and control.

8.2 Theory of Numerical Integration

In this section we provide a brief discussion of methods of numerical integration and
explain basic concepts related to this technique. We introduce a generic problem of
numerical integration and elaborate on the accuracy of integration when various
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methods are considered. For the sake of simplicity our discussion will mainly
be focused on the one-dimensional case, but it can be readily extended to multi-
dimensional problems.

8.2.1 Basic Concepts of Numerical Integration

Methods of numerical integration have to be applied when an integrand f .x/

defined over the interval Œa; b� is only given to us at a discrete set of points. This
is a common situation when we make experimental measurements of the function
f .x/ or when f .x/ is obtained as a result of computer simulation. If we consider
the points xi , i D 1; : : : ; N C1 where the function values fi � f .xi / are available,
then computation of the integral

I D
bZ

a

f .x/dx; (8.3)

is reduced to computation of a weighted sum of the values fi ,

I � QI .N / D
N C1X
iD1

!i fi : (8.4)

The basic problem of numerical integration is therefore to find weight coefficients !i

such that the sum QI .N / will approximate the integral I with appropriate accuracy.
The theory of numerical integration states that the weights !i in (8.4) depend on
the number N C 1 of points xi where the function values fi are available. Thus the
accuracy requirement can be formulated for any numerical integration problem as

QI .N / ! I; asN ! 1; (8.5)

and every time that the integration weights !i are defined in a new method of
numerical integration, the condition (8.5) must be verified.

The condition (8.5) tells us that the weighted sum of function values (8.4) gets
closer to the precise integral I when the number of points we use for integration
increases. However, in order to come up with an efficient method of numerical
integration we also want to know how fast the approximation QI .N / will approach
the precise integral I when we increase N in (8.5). We have to introduce the
concept of integration error in order to answer this question. Let us assume that
the value I of the integral (8.3) is known to us. The integration error E.N / is then
defined as

E.N / D jI � QI .N /j: (8.6)
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In many cases it is also convenient to consider the relative integration error,

e.N / D jI � QI .N /j
jI j : (8.7)

Consider now the unit interval Œ0; 1�. Let x1 D 0 and equidistant points xi , i D
1; : : : ; N C 1 be located over the interval, so that the distance between any two
neighbouring points xi and xiC1 is h D 1=N D const < 1. We refer to the set of
points xi , i D 1; : : : ; N C 1 as a regular (or uniform) computational grid of points.
The points xi are often called grid nodes and the distance h is referred to as the grid
step size.

Once a computational grid has been generated, the integration error can be
rewritten in terms of the distance h between neighbouring points as E D E.h/.
We have h ! 0 as N ! 1 and the condition (8.5) becomes

E.h/ ! 0; as h ! 0; (8.8)

where E.h/ is given by (8.6) after substituting N D 1=h. The formula (8.6) gives us
a rigorous definition of the integration error, but it still remains unclear from (8.6)
how we can check and control the condition (8.8), as the integral I is, of course,
not available in real-life computations. Thus, instead of computing the exact value
of E.h/ based on the exact value of the integral I , we make an estimate of the
integration error in order to be able to check the condition (8.8). In the theory
of numerical integration an integration error estimate is often considered in the
following form Davis and Rabinowitz (1975)

E.h/ D Chp; (8.9)

where the constant C and the power p depend on a specific method of numerical
integration used in the problem. The representation (8.9) of the integration error
allows us to conclude about the convergence rate, i.e. to conclude how fast the
error will decrease if we increase N . In other words, the formula (8.9) gives us
the information on how fast E.h/ ! 0, as h ! 0, and it is very important for our
further discussion to emphasise here that h in the expression (8.9) is assumed to be
small.

Let the integral be evaluated on a regular grid of N0 C 1 points. The expres-
sion (8.9) reads that if we increase the original number N0 as N1 D 2N0 then
h1 D 1=N1 D .1=2/h0 will be two times smaller, and the new error E.h1/ will be
2p times smaller. Obviously, the relative error (8.7) will exhibit similar behaviour.
It is also obvious that the discussion above is true for any interval Œa; b� where the
integrand f .x/ is considered. Indeed, any interval Œa; b� can be mapped onto the
unit interval Œ0; 1� by a linear transformation x D . Ox � a/=.b � a/, where x 2 Œ0; 1�

and Ox 2 Œa; b�.
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Fig. 8.1 The results of numerical integration of the function (8.10). (a) The convergence curve for
the Simpson method of numerical integration. The relative integration error e D e.N / is shown on
the logarithmic scale. (b) Comparison of the convergence rate for the trapezoidal rule (solid line,
open circle) and the Simpson rule (solid line, closed square)

From a practical viewpoint the concept of convergence means that we can control
the accuracy of integral evaluation. This statement is illustrated in Fig. 8.1a, where
the integral

I D
	Z

0

sin xdx (8.10)

is evaluated by a selected method of numerical integration (composite Simpson’s
rule.2) Again, we assume that the function values are only available on a regular grid
of N C 1 equidistant points. We start from the fixed number N D 8, and compute
the approximate integral QI D QI .N /. As the precise integral I D 2 is known to
us, we can compute the relative integration error (8.7). We then double the number
N and repeat our computation of the error e.N /. After making this computation
several times we obtain the error (8.7) as a function of N .

The graph e.N / is shown in Fig. 8.1a on the logarithmic scale. It can be seen from
the slope of the graph that the error decreases as h4, where h D 1=N . The graph
also gives us information about the threshold number N � for which the following
condition holds

e � �; (8.11)

2The detailed description of this method is not important for our present discussion and will be
provided later in the text.

n.b.petrovskaya@bham.ac.uk



182 N. Petrovskaya and N. Embleton

where � is a prescribed tolerance. If, for example, we choose � D 10�5, then
the accuracy (8.11) will be achieved for any N � N �, where N � D 32 (see
Fig. 8.1a). Better accuracy requires a bigger number of points where function values
are available, while larger � (e.g., � D 10�3) means that we can use a smaller
number of points to evaluate the integral.

The convergence rate (8.9) of a particular method of numerical integration
depends on the definition of the weight coefficients !i in the formula (8.4), and
two different methods may therefore have different convergence rates. One example
illustrating this statement is shown in Fig. 8.1b. In the figure we repeat the procedure
previously explained for the graph in Fig. 8.1a, when another method of numerical
integration (composite trapezoidal rule) is applied in the same problem. While we
do not discuss here the definition of weight coefficients !i in each method, it can be
readily concluded from Fig. 8.1b that the convergence rate of the trapezoidal rule is
much slower than the convergence of the Simpson rule. The error in the composite
trapezoidal rule decreases as h2, while for the composite Simpson rule it decreases
as h4. Hence a much bigger number of points is required to achieve the accuracy
� D 10�5, if the composite trapezoidal rule is employed in the same problem of
numerical evaluation of the integral (8.10).

The above discussion leads us to the conclusion that if we have several methods
of numerical integration then the method that has the fastest convergence rate (8.9)
must be employed in the problem and all other methods should be dismissed. Unfor-
tunately, things are not so straightforward. Firstly, a fast convergence rate always
comes at the price of the method’s complexity, and methods that converge faster
usually have more restrictions upon their implementation than the methods that
converge slowly. The Simpson rule in the example above has a faster convergence
rate, but it cannot be applied for an arbitrary number N and we should instead
require that N is an even number in order to define weight coefficients for the
Simpson rule. On the other hand, the trapezoidal rule has a slower convergence rate
but it is more flexible and can be applied for arbitrary N . In practical applications
the restrictions upon implementation of a specific method of numerical integration
must be taken into account and that often results in the choice of a slower convergent
method in the problem. Secondly, when we choose a method of numerical integra-
tion for the problem we solve, we need to understand how laborious the method
is. In other words, it may happen that the desired accuracy will be achieved for a
smaller number N but at the price of a very big number of computations, especially
in multi-dimensional problems. In the latter case we should ask ourselves if we can
come up with an alternative method of integral evaluation that may have a slower
convergence rate but is easier to implement. Finally, and this is the most serious and
difficult problem in numerical integration, the formula (8.9) may become invalid
when the number N C 1 of points we have at our disposal is small. Other criteria
should then be employed to compare two methods of numerical integration.

The above issues will be further discussed in the following sections. Their
understanding will require us to give an explicit definition of the weight coefficients
in numerical integration formulas. Below we consider the computation of weights
!i in the integral approximation (8.4).
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8.2.2 Definition of Weight Coefficients in Various Methods
of Numerical Integration

Consider a regular computational grid of N sub-intervals in the domain Œa; b�, i.e.
consider points x1 D a, xiC1 D xi C h, h D .b � a/=N . As in the previous
section we assume that the function values fi D f .xi / are available at points xi ,
i D 1; : : : ; N C 1. Numerical integration on regular grids with h D const can
be done by the application of well-known methods from the Newton-Cotes family
of integration rules, the trapezoidal rule and the Simpson rule being, perhaps, the
most famous. In this subsection we briefly review several methods of numerical
integration that stem from various choices of weight coefficients !i in a generic
formula (8.4) when regular grids are considered.

The problem of numerical integration is often thought of as a problem of finding
the area under the curve f .x/. Thus the most straightforward and intuitively clear
method is to take the function values fi � f .xi / at equidistantly spaced points xi

and to construct a rectangle with the sides h D xiC1 � xi and fi . The area

ai D hf i ; (8.12)

gives us an approximation of the integral Ii D
xiC1Z
xi

f .x/dx. Once the area ai has

been computed for each i D 1; 2; : : : ; N , the sum S D
NP

iD1

ai is considered as

an approximation of the integral I D
bZ

a

f .x/dx. Such consideration is based on

precise definition of a definite integral (8.3) as the limit of Riemann sums and the
proof exists that the sum S will converge to the integral I as N ! 1 (e.g. see
Apostol 1974). It immediately follows from (8.4) and (8.12) that the weights are
given by !i D h for any i D 1; 2; : : : ; N .

The approximation (8.12) is shown in Fig. 8.2a, where the function f .x/ is
replaced by a constant fi � f .xi / on each subinterval Œxi ; xiC1�. It is clear that the
approximation of the function by a constant is not very accurate, and we can improve
it if we consider a straight line connecting points xi and xiC1 (see Fig. 8.2b). The
area ai of each sub-interval is now given by

ai D 1

2
h.fi C fiC1/; (8.13)

and again we compute the approximation to the integral as

I � S D
NX

iD1

ai : (8.14)
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Fig. 8.2 Approximation of the function f .x/ by a polynomial of degree k. (a) Approximation by
a constant (k D 0) over a subinterval Œxi ; xiC1�, (b) approximation by a straight line (k D 1),
(c) three points xi , xiC1 and xiC2 are required to approximate the function by a parabola (k D 2)

Substituting (8.13) into the sum (8.14) and re-arranging the terms, we arrive at the
composite trapezoidal rule of integration,

I � S D h

2

"
f1 C 2

NX
iD2

fi C fN C1

#
: (8.15)

The weight coefficients are now given by !1 D !N C1 D h=2 and !i D h, i D
2; : : : ; N .

Approximation of a function f .x/ by a straight line can be considered as
replacing f .x/ by a linear polynomial on each subinterval Œxi ; xiC1�. If we go on
with the idea of approximating the function by a polynomial of degree k, where
k D 0; 1; 2; 3; : : :, then our next step will be to consider k D 2 and to replace the
integrand f .x/ by a quadratic polynomial. From a geometric viewpoint, this means
drawing a parabola through three consecutive points where the function is defined.
Clearly, we can use points xi , xiC1, xiC2 to define our quadratic polynomial as
shown in Fig. 8.2c. The area under the curve is now approximated as the area ai

under the parabola passing through xi , xiC1, xiC2 and it is computed as

Ii D
xiC2Z
xi

f .x/dx � ai D 1

3
h.fi C 4fiC1 C fiC2/: (8.16)

The approximation (8.16) presents us with the well-known Simpson’s rule of
integration on the subinterval Œxi ; xiC2�.

Once the area ai has been computed by the Simpson rule, the integral

I D
bZ

a

f .x/dx is approximated as the sum of all integrals ai ,
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bZ
a

f .x/dx � h

3

24f1 C 2

N=2�1X
iD1

f2iC1 C 4

N=2X
iD1

f2i C fN C1

35 ; (8.17)

and we arrive at the composite Simpson’s rule. It can immediately be seen from the
formula (8.17) that the number N of grid sub-intervals must be even in order to
apply the Simpson rule in the problem.

The above results can be further generalised as follows. Consider a polynomial
pk.x/ of degree k, where we require that pk.xn/ D f .xn/ for n D i; iC1; : : : ; iCk.
In other words, we consider a polynomial passing through k C 1 consecutive points
where the function values are available. The area under the graph of the function
f .x/ over a sub-interval Œxi ; xiCk� is then approximated as

xiCkZ
xi

f .x/dx � ai D
xiCkZ
xi

pk.x/dx;

and the resulting integral I is approximated by summation of all areas ai .
Using local polynomials at each sub-interval Œxi ; xiCk� with consecutive sum-

mation is known as the composite Newton-Cotes rules of numerical integration on
regular grids (Davis and Rabinowitz 1975). The idea of interpolating the integrand
function f .x/ by a polynomial pk.x/ of degree k was pivotal in the development of
the Newton-Cotes rules. The trapezoidal rule (k D 1) and the Simpson rule (k D 2)
discussed above represent the first two rules in the Newton-Cotes family. They are,
probably, the most well-known integration rules used in practical computations. The
reason for their extensive use is twofold. Firstly, Newton-Cotes methods with k > 2

do not necessarily provide the most accurate estimate of the integral. For example,
in the numerical integration problem considered in Davis and Rabinowitz (1975)
increasing the polynomial degree k from k D 2 up to k D 21 resulted in a larger
integration error in the latter case. Secondly, it is often difficult to apply a composite
Newton-Cotes rule with k > 2 on a grid with an arbitrary number of grid sub-
intervals, as the total number N of sub-intervals is required to be a multiple of k.
That is why in many experimental applications the integral evaluation is restricted by
the use of the composite trapezoidal rule (8.15) or the composite Simpson rule (8.17)
and further in the text we consider the trapezoidal and Simpson rules only.

8.2.3 Two-Dimensional Newton-Cotes Formulas

Once the integration techniques have been understood in the one-dimensional (1�d )
case, they can be easily expanded to the two-dimensional (2 � d ) case. Consider the
unit square D D Œ0; 1� � Œ0; 1�, where a regular grid is generated. Namely, let us
consider a set of points xi , i D 1; : : : ; N C1 on the interval Œ0; 1�, where we require
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that x1 D 0, xiC1 D xi C h, i D 1; : : : ; N , and the grid step size h is defined
as h D 1=N . Similarly, we consider points yj , j D 1; : : : ; N C 1 on the interval
Œ0; 1� and generate a one-dimensional grid in the y-direction as y1 D 0; yj C1 D
yj C h; j D 1; : : : ; N . The grid node position in the unit square is then given by
.xi ; yj / and we have a grid of square elements cij D Œxi ; xiC1� � Œyj ; yj C1�.

A composite rule of integration in the 2 � d case exploits the same idea as in the
1 � d case. We have

I D
1Z

0

1Z
0

f .x; y/dxdy D
X
i;j

Iij; (8.18)

where

Iij D
xiC1Z
xi

yj C1Z
yj

f .x; y/dxdy: (8.19)

Hence, the integration problem is reduced to the integral evaluation in each sub-
domain cij. Integration on square elements can, in turn, be further reduced to
consecutive application of the one-dimensional formulas. In other words, the
integral (8.19) can be re-written as

Iij D
yj C1Z
yj

F .y/dy; (8.20)

where

F.y/ D
xiC1Z
xi

f .x; y/dx:

We then employ 1�d Newton-Cotes formulas discussed in Sect. 8.2.2 in order to
evaluate the function F.y/ in the square cell cij. Once the values of F.y/ have been
computed, the same integration rule is applied to approximate the integral (8.20).

Different integration rules use different local approximation of the integrand
f .x; y/ on a single grid cell cij (e.g., see Davis and Rabinowitz 1975). The simplest
evaluation of the integral (8.19) can be done under the assumption that the function
f .x; y/ is approximated by a constant on each grid cell. Such approximation results
in the midpoint rule of integration:

Iij � Aijf .xiC1=2; yj C1=2/; (8.21)

where Aij D h2 and the node .xiC1=2; yj C1=2/ D .xi C h=2; yj C h=2/ is the
midpoint of the cell cij.
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The trapezoidal rule of integration implies the approximation of f .x; y/ by a lin-
ear function on each sub-domain cij. Correspondingly, the integral Iij is evaluated as

Iij � h2

4



f .xi ; yj / C f .xiC1; yj / C f .xi ; yj C1/ C f .xiC1; yj C1/

�
: (8.22)

The Simpson rule of integration is a result of approximation of the integrand
f .x; y/ by a quadratic polynomial in the square cell cij. The application of this rule
in the cell cij requires that the data f .x; y/ are available at points .xiCq; yj Cr /,
where q D 0; 1; 2 and r D 0; 1; 2. The function f .x; y/ is then integrated in the cell
cij by the Simpson rule as

Iij � h2

36



f .xi ; yj / C f .xi ; yj C2/ C f .xiC2; yj / C f .xiC2; yj C2/

C 4
�
f .xi ; yj C1/ C f .xiC1; yj / C f .xiC2; yj C1/ C f .xiC1; yj C2/

�
C16f .xiC1; yj C1/

�
: (8.23)

Note that, like in the 1�d case, integration by the Simpson rule requires an even
number N of grid sub-intervals in each direction x and y of a 2 � d regular grid.

8.3 The Coarse Grid Problem

In this section we review a so called ‘coarse grid’ problem that was previously
studied in detail in Petrovskaya and Petrovskii (2010), Petrovskaya et al. (2012),
and Petrovskaya and Venturino (2011) because of its importance in ecological
applications. For the sake of simplicity, the problem in this section is illustrated
by 1 � d examples, but the conclusions made in the 1 � d case are also true for
2 � d problems considered later in the text.

The coarse grid problem is closely related to the concept of the convergence rate
discussed in Sect. 8.2. We know that, given the distance h between neighbouring
points on a regular grid, the integration error (8.7) is controlled by the expres-
sion (8.9). However, we can only rely upon the error estimate (8.9) if the grid step
size h is sufficiently small, i.e. if we deal with fine grids. Meanwhile if the distance
h between grid nodes is not very small, it may happen that the error estimate (8.9)
does not hold. In the latter case we cannot tell which integration method is better
when we compare two integration methods based on their convergence rate (8.9).
Correspondingly, a coarse grid is defined as a grid where one cannot apply the error
estimate (8.9) to evaluate the integration error.

The above statement is illustrated in Fig. 8.3. We first consider the integrand

f .x/ D ex � 1

e � 1
; x 2 Œ0; 1�; (8.24)
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Fig. 8.3 The coarse grid problem: the comparison of the convergence rate for the trapezoidal
rule (solid line, open circle) and the Simpson rule (solid line, closed square). (a) The integrand
function (8.24) for x 2 Œ0; 1�. (d) The convergence rate for the integrand (8.24) is as predicted by
the error estimate (8.9). (b) The integrand function (8.25) over the interval x 2 Œ0:1; 1�. (e) The
convergence rate for the integrand (8.25). The error estimate (8.9) becomes true when the number
N of grid sub-intervals is N > N � � 64. (c) The integrand function (8.26). The function is shown
at the sub-interval Œ0; 0:2� for the sake of visualisation, while the integral is taken for x 2 Œ0; 1�.
(f) The convergence rate for the integrand (8.26). The error estimate (8.9) does not hold on coarse
grids, unless at least one grid node is placed in the sub-region of the steep gradient

shown in Fig. 8.3a. The error graphs for the integrand (8.24) are shown in Fig. 8.3d,
where the relative integration error (8.7) is computed for integration by the
trapezoidal rule and the Simpson rule. It has been discussed in Sect. 8.2 that
the convergence rate of the Simpson rule is much better than the convergence of the
trapezoidal rule. Decreasing the grid step size from h0 to h1 D h0=2 results in the
error reduction e.h1/ D .1=16/e.h0/ for the Simpson rule, while for the trapezoidal
rule we have e.h1/ D .1=4/e.h0/. It can be seen from Fig. 8.3d that in the case of
the integrand function (8.24) this conclusion is true for any N � 2 considered in the
problem.

Meanwhile, the above conclusion about the convergence rate does not hold for
an arbitrary integrand function f .x/. Consider now a rapidly oscillating function

f .x/ D sin.100	x/

	x
; x 2 Œ0:1; 1�; (8.25)

shown in Fig. 8.3b. The convergence of numerical integration methods, when the
function (8.25) is integrated, is presented in Fig. 8.3e. The integration error on grids
with N � 64 is very large for the both trapezoidal and Simpson’s rule of integration.
However, the most essential feature of the integration is that we cannot tell if the
Simpson method is more accurate, unless we have the number of grid sub-intervals
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N > 64, i.e. unless the grid step size becomes h � 0:015. The integration error
of the Simpson rule remains approximately the same as the error of the trapezoidal
rule on coarse grids with N < N � � 64.

The coarse grid problem is further illustrated by consideration of the function

f .x/ D 1

x C 0:0001
; x 2 Œ0; 1�; (8.26)

shown in Fig. 8.3c. It can be seen from the figure that the function (8.26) has a
very narrow domain where the gradient is very steep. For the sake of illustration the
function is shown on the sub-interval x 2 Œ0; 0:2�, while the integration is carried out
over the unit interval x 2 Œ0; 1�. Our previous experience with the integrand (8.25) of
Fig. 8.3b tells us that we can expect a big integration error when the number of grid
nodes is not sufficient to resolve the domain of a steep gradient. This conclusion is
confirmed by the convergence curve shown in Fig. 8.3f. The initial coarse grid with
grid step size h D 0:5 cannot capture the sub-region of the steep gradient that has
the width w 	 0:01. Even when we make the grid step size smaller by halving each
grid sub-interval, the whole sub-domain of the steep gradient remains ‘invisible’
to the integration method, as it is still located between two grid nodes where the
function values are available. Hence both the trapezoidal and Simpson rules provide
similar (and very inaccurate) results, unless we insert at least one grid node in the
sub-region of the steep gradient. That happens when we have an unrealistically big
number N � 5;000 of grid sub-intervals on a regular grid. Any grid with N < N �
is a coarse grid where the error estimate (8.9) does not hold. Accordingly, any grid
with N > N � is a fine grid where we can rely upon (8.9).

It was discussed in Petrovskaya and Petrovskii (2010) that the number N � of
grid subintervals when the grid becomes ‘sufficiently refined’, i.e.when we can rely
upon the error estimate (8.9), can be evaluated from the knowledge of the shape of
the integrand function. Let �x be a characteristic width of a spatial heterogeneity
described by a given integrand, e.g. the width of a single peak in (8.25). Then
integration on a regular grid will give an inaccurate answer until at least one grid
point falls into the heterogeneity region. We therefore have

N � D s
1

�x
; (8.27)

where 1 in the numerator stands for the length of the domain of integration and
s � 1 is a numerical coefficient depending on the type of the heterogeneity. If f .x/

is a monotone function on the interval Œx1; x2�, then we consider the function values
at two points, e.g., x1 C ı and x2 � ı, where 0 < ı < 0:5.x1 C x2/, as the minimum
‘amount of information’ required to reconstruct f .x/ over Œx1; x2� as these data are
sufficient for linear polynomial approximation of f .x/. Consequently, a sub-region
of a steep gradient in (8.26) can be resolved by inserting into it just one grid point.
Meanwhile, we need at least three grid points e.g., x1 C ı, x2, and x3 � ı, to resolve
a peak which spans the interval Œx1; x3�, as that will result in linear approximation
at each of subintervals Œx1; x2� and Œx2; x3� where f .x/ is a monotone function.
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The most important conclusion that follows from the above consideration is that
the grid coarseness should be evaluated in terms of the integration error rather than
by the number of grid nodes. Hence the definition of a coarse grid depends strongly
on the spatial pattern of the integrand function. It can immediately be seen from
Fig. 8.3 that a grid considered as coarse for one integrand function can be a fine
grid for another integrand. One way to improve very poor accuracy of integration on
coarse grids would therefore be to use an irregular grid where most of the grid nodes
would be concentrated in sub-regions that present difficulties in their numerical
integration (i.e. peaks or sub-regions with a steep function gradient). Integration
techniques on irregular grids are discussed in Sect. 8.6. However, in ecological
applications it often is not possible to use irregular grids adapted to a spatial pattern
of the density distribution because that pattern is usually not known a priori. On
the other hand, coarse grids are widespread in ecological monitoring, as there are
usually financial, ecological and other restrictions that do not allow for a big number
of measurements and the data available in the problem are sparse. Thus the problem
of accuracy control on coarse grids remains one of the most difficult problems
in ecological monitoring and it is still far from being solved. We will discuss
several particular examples of coarse grids in ecological applications further in
the text.

8.4 Numerical Integration in Ecological Problems

In this section we consider the application of the methods reviewed in Sect. 8.2 to
ecological monitoring and control. As we have already discussed in the introduction,
one key problem of ecological monitoring is to obtain an accurate estimate QI .N /

of the pest population size I in a given area under conditions when the population
density is only known at N C 1 locations. It follows immediately from our study
in Sect. 8.2 that the problem of evaluating the pest population size from discrete
data can be considered as a problem of numerical integration. Indeed, installing
traps in a domain where sampled data are collected and processing trap counts
means that the discrete integrand function is defined at the nodes of a computational
grid and methods (8.15) and (8.17) can be applied. However, several underlying
assumptions should be made before we implement numerical integration rules in
ecological problems.

8.4.1 Problem Statement and Underlying Assumptions

In our work we consider collecting information about a pest insect via trapping and
we assume that a trapping procedure is done as described in the introduction. In
this section we also assume that the traps are installed at the nodes of a regular
grid, which is a common situation in ecological applications (Ferguson et al. 2000;
Holland et al. 1999). Irregular grids will be discussed in Sect. 8.6.
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As we already mentioned in the previous section, numerical integration tech-
niques are essentially based on the underlying assumption that the integrand
function is continuous. Meanwhile, if we consider an agricultural field, where pest
insects are monitored, the distribution of the insects over the field is, of course,
discrete. Hence, in order to apply numerical integration techniques in the problem
we have to transform the discrete population distribution into a continuous function
that we will refer to as “the population density”. The population density can be
obtained from the discrete distribution of the pest insects by allocating a certain
area to each insect and assuming that only one insect can be found within that area
at the fixed time t .

Another important underlying assumption is that the number of insects caught
in each trap is an accurate representation of the absolute population density in its
catchment area. The transformation techniques that allow one to link trap counts to
the absolute density have been briefly discussed in the introduction. We also assume
that the information about the population density at a given time and location can
indeed be adequately obtained from trap counts, as depending on the biological and
behavioural traits of the monitored species, the population density distribution can
possibly change over the time of the traps’ exposure. The spatial scale of variations
in the population density distribution for walking insects usually sampled with
pitfall traps is known to be 30–40 m (Holland et al. 1999). Meanwhile, typical
dispersal distances for walking insects are estimated to be 1 m or less per day
(Vinatier et al. 2010), which obviously corresponds to the spread area of the order
of 1 m2 per day. Hence the distance insects can move over 1 week (i.e. an average
time of trap exposure) is

p
7 � 2:6 m, which is about one order of magnitude less

than the spatial scale of inherent variation. We conclude from the above that the
spatial density distribution reconstructed from traps counts can approximately be
relied upon as being static and methods of numerical integration can be applied.

Once the trap counts have been acquired, we can obtain the values of the
population density at the nodes of a regular grid, i.e. at the trap locations, and we
therefore can approximate the integral I , i.e. the total number of insects in the field,
by a selected method of numerical integration. However, application of numerical
integration in ecological monitoring and control is more difficult than a conventional
integration problem. The standard numerical integration technique usually implies
that a computational grid can be made sufficiently fine to provide the required
accuracy. This requirement is not realistic in an ecological monitoring routine where
the number of traps installed in a field cannot be made large. For example, a typical
agricultural field in the United Kingdom has a characteristic size of the order of
a few hundred meters. The number of traps installed over such a field very rarely
exceed a few dozen (Blackshaw 1983; Ferguson et al. 2000; Holland et al. 1999).
Moreover, we cannot increase the number of traps and repeat the trapping procedure
if we are not happy with the accuracy of our original estimate, as a repeated trapping
will inevitably be done under different conditions. Hence every time we compare the
accuracy of several methods of numerical integration, we should keep in mind that
in many ecological applications we may deal with numerical integration on coarse
grids where the error estimate (8.9) cannot be applied. Further examples will be
provided in the next sub-section.
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8.4.2 Numerical Integration of Data Obtained
from a Mathematical Model

Despite plenty of experimental data being available in the pest insect monitoring
problem, we first apply our numerical integration techniques to the data obtained
as a result of computer simulation. We use computer simulation for generating
ecologically meaningful data because we want to subsequently increase the number
of traps (i.e. the number of grid nodes) in order to investigate the integration error
e.N / for each integration method we employ in the problem. Thus we take our data
from an ecologically sound mathematical model of population dynamics in order
to be able to compute the function e.N / for various N of our choice. Namely, we
consider the spatially explicit predator-prey model with the Allee effect (Murray
1989; Turchin 2003). In dimensionless form the system is as follows:

@u.x; y; t/

@t
D d

�
@2u

@x2
C @2u

@y2

�
C ˇu.u � b/.1 � u/ � uv

1 C ƒu
; (8.28)

@v.x; y; t/

@t
D d

�
@2v

@x2
C @2v

@y2

�
C uv

1 C ƒu
� mv ; (8.29)

where x 2 Œ0; 1�, y 2 Œ0; 1�, the functions u.x; y; t/ and v.x; y; t/ are the densities of
prey and predator, respectively, at time t > 0 and position .x; y/, d is the diffusion
coefficient, and the other parameters have evident meaning (Murray 1989).

In order to obtain the population density distributions, the system (8.28–8.29)
is solved numerically for a range of parameters, and the function u.x; y; t/ is
then considered as the density of the pest insect in the problem. Solving the
system (8.28–8.29) requires us to generate a regular spatial grid as described in
Sect. 8.2. A discussion of the numerical solution along with the choice of the initial
and boundary conditions has been provided in the paper Petrovskaya et al. (2012)
where similar computer simulations have been done.

We begin our consideration from the simplest computational case where the
pest insect population density is generated from the 1 � d counterpart of the
system (8.28–8.29). The parameters of the 1 � d system of equations as well as
the initial and boundary conditions required for its numerical solution are given
in the paper Petrovskaya and Petrovskii (2010). The solution u.x; t/ of the 1 � d

system of equations is considered at fixed time Ot of our choice. We therefore have
a 1 � d spatial density distribution u.x; Ot / � u.x/ of the pest insect over the unit
interval x 2 Œ0; 1�. This spatial density distribution is available to us at grid nodes
xi , i D 1; 2; : : : ; N C 1 only, but we can control the number N C 1 of grid nodes
in our computations by adding new nodes to a coarse grid or by removing them
from a fine grid. Thus we first solve the 1 � d system (8.28–8.29) on a grid with
a very big number N C 1 D Nf C 1 D 215 C 1 of nodes. Once the density
distribution u.x/ has been obtained at fixed time Ot on an extremely fine grid of
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Nf C 1 nodes, the integral I D
1Z

0

u.x/dx is evaluated on that grid. The result

QI .Nf / of that evaluation then is considered as the true integral I and is stored for
further computations along with the spatial density u.x/ computed on a grid of
Nf C 1 nodes. We then decrease the number of grid nodes and consider several
approximations QI .N / for values N 
 Nf . Let us note that we do not re-compute
the density function u.xi /; i D 1; : : : ; N C 1 every time that a new number N is
chosen. The values of u.x/ are always taken from the ‘exact solution’ computed
on a grid of Nf C 1 nodes at time Ot , where we make a projection of the function
u.xi /; i D 1; : : : ; Nf C 1 obtained on the fine grid to a coarse grid every time that
we take a new, smaller number N C 1 of nodes. The details of this computational
technique are provided in our previous work (Petrovskaya and Petrovskii 2010).

It is well-known (e.g., see Malchow et al. 2008; Petrovskii et al. 2003) that
the properties of the spatial distribution u.x/ considered at a given time Ot are
determined by the diffusion d . The density distribution can evolve into a monotone
function if the diffusion d is of the order of 1 or larger. An example of a monotone
density distribution is shown in Fig. 8.4a. For smaller values of d 
 1 the initial
conditions u.x; 0/; v.x; 0/ evolve into an ensemble of irregular humps and hollows
(see Fig. 8.4b), where the number of peaks gets bigger for smaller values of d . The
density distributions from Fig. 8.4 present us with two somewhat extreme cases of
ecologically meaningful integrand functions, while there can be one or two peaks
in the domain for intermediate values of the diffusion coefficient d . Thus it is
interesting to compare the accuracy of numerical integration for the two spatial
patterns shown in the figure. Namely, we compare the results of the trapezoidal
rule (8.15), the Simpson rule (8.17) and the results of the total population size
evaluation by a statistical method.
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Fig. 8.4 Ecological test cases. (a) The spatial distribution of the pest population density u.x/ for
the diffusivity d D 10�4 . Other parameters along with the initial and boundary conditions used to
generate one-dimensional density distributions are discussed in Petrovskaya and Petrovskii (2010).
(b) A ‘multi-peak’ density distribution obtained for the diffusion coefficient d D 10�5
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The statistical method commonly used in the evaluation of pest abundance is
based on the computation of the sample mean pest population density (Davis 1994).
The sample mean value M.N / is given by a generic formula (8.1) where we have
K D N C 1 in our problem. The expression (8.1) acts as an approximation to the
true mean value. An approximation QI .N / to the actual pest population size I can
then be found by multiplying the sample mean by the area of the field A, that is

I � QI .N / D AM.N /: (8.30)

Consider the evaluation technique (8.30) in the 1 � d case, so that the area A is
given by the length L D b � a of the interval Œa; b� where traps are installed. If the
sampling positions xi , i D 1; : : : ; N C 1, are equidistant, i.e. xiC1 D xi C h where
h > 0 is constant, Eq. (8.30) can be written as

QI .N / D L

N C 1

N C1X
iD1

ui D Oh
N C1X
iD1

ui D
N C1X
iD1

Ohui �
Z b

a

u.x/dx; (8.31)

where ui D u.xi /, Oh D L=.N C 1/. It is readily seen that Eq. (8.31) coincides with
the simplest method of numerical integration with weights !i D Oh. The convergence
rate (8.9) of the integration rule (8.31) is e D C h, where C is a constant (Davis and
Rabinowitz 1975). Hence if the number of traps is big enough to resolve all features
of the integrand function u.x/, the rule (8.31) should be inferior to more accurate
integration methods such as the trapezoidal and Simpson rule.

The results of numerical integration of the density distributions shown in Fig. 8.4
are given in Table 8.1. It can be seen from the table that for the function u.x/

presented in Fig. 8.4a integration by the Simpson rule gives very accurate results
even on a grid with a very small number of grid nodes. If we install three traps over
the unit interval where the density measurements are made, evaluation of the total
population size by the Simpson rule can be done with the error of 0:2 %, while the
statistical rule provides us with an error over one hundred times bigger. Moreover,
generally the error on each consecutive grid is smaller in comparison with the error
on a previous grid.

Table 8.1 The relative integration error (8.7) for the 1 � d density distributions of Fig. 8.4. The
errors computed for the density distributions shown in Fig. 8.4a, b are marked with superscript (a)
and (b), respectively. The first column gives the number N C 1 of the grid nodes. The error for
each distribution (a) and (b) is computed by the statistical rule (8.31) (the column marked as estat),
by the trapezoidal rule (8.15) (the column eTR), and by the Simpson rule (8.17) (the column eSR)

N C 1 e
.a/
stat e

.a/
TR e

.a/
SR e

.b/
stat e

.b/
TR e

.b/
SR

3 0.283845 0.140895 0.002056 0.220479 0.056794 0.334066

5 0.132744 0.023493 0.015641 0.041373 0.245472 0.308365

9 0.064319 0.001141 0.006310 0.036879 0.138367 0.102665

17 0.033164 0.000373 0.000877 0.021570 0.025521 0.012094
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Meanwhile, the situation is very different when we consider the density function
shown in Fig. 8.4b. The application of the Simpson rule on grids with 3, 5 and 9

nodes does not have any advantage in comparison with the statistical rule. Clearly,
in the case of the ‘multi-peak’ density distribution of Fig. 8.4b we have to deal with
a ‘coarse grid problem’ where the density u.x/ is not well approximated on a grid
with a small number of nodes. One important indicator of the coarse grid problem
is that the error can oscillate between two grids, so that adding new nodes to the
grid does not consistently make the error smaller until the integrand function is well
resolved. An example is given by the error e

.b/
TR of the trapezoidal rule on grids with

N D 3 and N D 5 nodes.
It also is worth noting here that the statistical rule gives a more accurate answer

on a grid of five nodes, while the error of the trapezoidal and the Simpson rule
remains big on this grid. However, below we will see that even accurate results
obtained on coarse grids are not reliable, as a slight change in the spatial pattern of
the density function may result in a big jump in the integration error when the same
numerical integration method is used in the problem.

8.4.3 Numerical Integration of 2 � d Data

We now generate a 2 � d density distribution u.x; y/ from numerical solution of
the system of Eqs. (8.28–8.29). Let us fix the time t as t D Ot > 0 and consider a
snapshot u.x; y/ � u.x; y; Ot / of a temporal-spatial density distribution u.x; y; t/.
Numerical solution of (8.28–8.29) at any fixed time Ot provides us with the discrete
density distribution ui � u.xi ; yj /, i D 1; : : : ; N C1, j D 1; : : : ; N C1, where grid
nodes .xi ; yj / are the points where traps are located. Similarly to the 1 � d case we
consider two density distributions whose spatial pattern is strongly different from
each other. The density distribution shown in Fig. 8.5a presents a continuous front,
while the density distribution of Fig. 8.5b is an example of a late stage of the patchy
invasion (Petrovskii et al. 2005, 2002).

The computation carried out in the 1 � d problem is repeated for the 2 �
d density distributions of Fig. 8.5. The results of numerical integration by the
methods (8.30), (8.22) and (8.23) are shown in Table 8.2. It is readily seen from
the table that the accuracy of integration depends again on the spatial pattern of the
density function. Integration of the continuous front shown in Fig. 8.5a already gives
a small integration error on grids with a small number of traps, the Simpson method
being the most accurate method of integration. Let us recall that, in many ecological
studies, a relative error of 100 % (i.e. e.N / 	 1) is still regarded as acceptable,
while the error 0:2 < e.N / < 0:5 is considered as being good accuracy (Pascual
and Kareiva 1996; Sherratt and Smith 2008). Hence numerical integration of the
continuous front provides us with an accurate answer even on a grid with three grid
nodes in each direction.
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Fig. 8.5 Density function u.x; y/ as predicted by the population dynamics model (8.28–8.29) for
different parameter values. (a) A snapshot of a continuous front. (b) A snapshot of the population
density at a late stage of the patchy invasion

Table 8.2 The relative integration error (8.7) for the 2 � d density distributions of Fig. 8.5. The
errors computed for the density distribution shown in Fig. 8.5a, b are marked with superscript (a)
and (b), respectively. The first column gives the number N C 1 of the grid nodes in the direction x

and y of a regular grid in the unit square. The error for each distribution (a) and (b) is computed by
the statistical rule (8.31) (the column marked as estat), by the trapezoidal rule (8.22) (the column
eTR), and by the Simpson rule (8.23) (the column eSR)

N C 1 e
.a/
stat e

.a/
TR e

.a/
SR e

.b/
stat e

.b/
TR e

.b/
SR

3 0.1383 0.0506536 0.0255829 0.421591 0.496434 0.492878

5 0.064104 0.0142134 0.0221032 0.179808 0.263172 0.179825

9 0.032304 6.51693e-004 0.00389531 0.112412 0.111526 0.067423

17 0.017627 2.86861e-004 9.55669e-005 0.086713 0.064729 0.053797

Meanwhile, the more complex spatial structure of the density distribution of
Fig. 8.5b requires a bigger number of grid nodes to provide the same level of
accuracy. Moreover, on analysing the performance of the Simpson rule (8.23) on
grids with N C 1 < 9, we see that it is not more accurate than the other methods
on coarse grids. On grids where the spatial pattern of the density function u.x; y/ is
not well resolved it is hard to say which method is more accurate. This conclusion
is further confirmed by numerous computations of approximate integrals made for
various spatial distributions in the paper Petrovskaya et al. (2012).

8.4.4 Examples of Numerical Integration of Field Data

In this section we apply numerical integration techniques to field data of ecological
monitoring. The aim of this study is to check what can be the smallest number
of grid nodes (i.e. the number of traps in the agricultural field) used for accurate
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evaluation of the pest insect population size, given the spatial distribution of the pest
insect density. Obviously, density measurements made under real-life conditions
cannot provide us with the data on a very fine grid. However, some experimental
data contain information sufficient to extract a sequence of grids with a smaller
number of nodes from the original grid and to compare the results of numerical
integration on grids with various numbers of nodes.

We first illustrate our approach by considering data that have already been used in
our earlier paper (Petrovskaya et al. 2012) where numerical integration techniques
have been applied to experimental data collected for a New Zealand flatworm
population (Arthurdendyus triangulatus) by Murchie and Harrison (2004). The data
on flatworm abundance at different locations were collected by means of trapping
where the traps were positioned at the nodes of a 12 � 12 regular grid. Spacing
between two traps was 2 m in each direction. The traps were examined every week
and the numbers of flatworms caught were counted. The various 12 � 12 grid trap
systems caught 465–748 flatworms per sampling period (Murchie and Harrison
2004). Other details of the trapping procedure can be found in Murchie and Harrison
(2004) and Petrovskaya et al. (2012).

Two examples of the density distributions obtained from trap counts are shown
in Fig. 8.6. The trap counts have been linked to the local population density u.x; y/

by dividing the trap counts at each location by 4 m2 (i.e. by the area of the grid cell)
(Byers et al. 1989; Raworth and Choi 2001). For the sake of numerical integration,
we have then extracted a sub-grid with N C 1 D 11 traps in each direction from the
trap data originally collected in the field. This has been done because integration by
the Simpson rule requires an odd number N C1 of grid nodes. Having integrated the
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Fig. 8.6 Numerical integration of field data on a coarse grid of nine nodes. The nodes of a regular
grid are shown as closed circles in the figure. The field data present flatworm spatial distributions
over the study area (see Murchie and Harrison 2004; Petrovskaya et al. 2012 for more details).(a)
Numerical integration of the density distribution gives good accuracy even on a grid with a very
small number of nodes. (b) Two grid nodes (node I and node II in the figure) fall into small
patches of different density on a coarse grid. Since the density values at those locations are not
representative, numerical integration on a coarse grid results in a big integration error
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Table 8.3 The approximation of the total population size and the integration error on a regular grid
of 3 � 3 nodes for the field data taken from the paper Petrovskaya et al. (2012). The approximate
integral is computed by the statistical rule (8.30) (the column Istat), by the trapezoidal rule (8.22)
(the column ITR) and by the Simpson rule (8.23) (the column ISR). The rows marked .a/ and .b/

in the table correspond to the density distributions shown in Fig. 8.6a, b, respectively

case I Istat estat ITR eTR ISR eSR

.a/ 611 411 0.327 488 0.202 561 0.082

.b/ 544 289 0.469 269 0.506 247 0.545

population density over the fine grid of 11 � 11 D 121 nodes, we have reproduced
the total number I of collected insects. This number is further considered as the
exact value of the population size.

Let us now compute the population size on a regular grid of 3 � 3 D 9 nodes and
compare the population size obtained by numerical integration over this grid with
the value I obtained for the density distributions shown in Fig. 8.6a and Fig. 8.6b on
the original grid of 11�11 nodes. The 9 traps on a coarse grid are stationed as shown
in Fig. 8.6 and we take the density values at those locations from the original grid.

The results of numerical integration on a grid of nine nodes are presented in
Table 8.3. We compute the integral by the statistical rule (8.30) (the column Istat),
by the trapezoidal rule (8.22) (the column ITR) and by the Simpson rule (8.23) (the
column ISR). We also compute the relative integration error (8.7) for each of the rules
above (the columns marked as estat, eTR, eSR, respectively). The exact population
size (i.e. the integral computed on a grid of 121 nodes) is I .a/ D 611 for the density
distribution shown in Fig. 8.6a and I .b/ D 544 for the density distribution shown in
Fig. 8.6b.

The results presented in the table confirm our previous conclusion that the
accuracy of evaluation depends heavily on the spatial pattern of the density function
u.x; y/. It is seen from the table that the integration of the density distribution shown
in Fig. 8.6a gives good accuracy even on a grid with the number of nodes as small
as nine nodes. This result lead us to the conclusion that robust information about the
population size of pest insect population can be obtained using far fewer traps per
unit area, provided that the spatial density pattern is not very patchy.

In the case of the density distribution in Fig. 8.6b some information about the
density function u.x; y/ has been lost, as two grid nodes have fallen into small
sub-regions (patches) where the density is strongly different from the density in
the surrounding domain; see nodes I and II in the figure. The density values at
those nodes made a misleading contribution to the sum (8.4) and that resulted
in a big integration error. Meanwhile it is worth noting that even in the case (b)
the relative error of the population size estimate still remains smaller than 55 %
and such accuracy can still be considered as acceptable for large scale monitoring
programmes (Northing 2009).

Let us also note that we had to transform the grid of 12 � 12 traps to conduct our
computational study, as application of the Simpson method was not possible on a
grid with an even number of nodes in each direction. Meanwhile, we would like to
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Table 8.4 An example of trap count data for Pterostichus melanarius obtained by trapping with
pitfall traps (The data are taken from the paper Alexander et al. (2005))

5 0 1 2 4 1 1 38 5 4 3 3 1 13 5 6

7 13 1 0 1 0 0 12 2 0 1 8 12 10 1 0

6 3 0 0 4 2 1 1 2 3 5 11 12 11 3 0

2 5 1 7 8 6 15 0 3 1 0 6 2 8 1 0

7 5 1 2 0 2 0 0 4 3 3 0 9 7 4 1

3 7 6 0 0 1 6 0 5 2 0 2 16 13 6 2

4 6 3 0 5 8 1 4 3 6 2 26 11 1 5 2

2 2 2 7 9 5 13 5 3 14 26 42 9 15 1 4

1 0 3 2 11 0 3 7 8 11 14 22 24 5 5 0

6 1 4 16 15 11 0 11 12 13 16 20 12 7 5 4

1 0 4 1 11 2 11 7 6 6 0 3 4 6 0 0

9 6 3 2 7 7 6 8 11 25 18 9 2 1 2 1

3 2 6 15 5 18 24 4 8 16 6 11 6 1 0 0

3 7 3 22 27 34 0 41 21 37 16 10 3 7 2 3

12 12 30 25 23 15 19 12 6 9 9 4 10 6 3 6

11 7 11 26 38 19 16 19 11 13 13 0 5 4 2 10

emphasise that application of so called higher order numerical integration methods
can be made on grids with an arbitrary number of grid nodes in each direction.
A numerical integration method that would have the same convergence rate as the
Simpson method could be designed for the original grid of 12 � 12 nodes. The
application of such a method, however, would be a much more difficult technical
task and it is beyond the scope of our paper. Thus we only provide a brief discussion
of more general methods of numerical integration in Sect. 8.6.

Our conclusion about the accuracy of numerical integration is further illustrated
by another set of field data taken from the paper Alexander et al. (2005). The trap
counts for beetles Pterostichus melanarius obtained by trapping with pitfall traps
are presented in Table 8.4. Field sampling for data in the table was performed on
a 16 � 16 regular grid of traps installed in a conventionally managed 4 ha winter
wheat field in Devon, UK; see Alexander et al. (2005) for more details. The density
distribution obtained from Table 8.4 is shown in Fig. 8.7a. Again, for the purpose
of our study we have to transform the original grid of 16 � 16 nodes into a grid
where the Simpson method of integration can be applied. In the case of Table 8.4
we found it more convenient to augment the table rather than extract a grid with a
smaller number of nodes. Generating a 17�17 computational grid from the original
data should allow us to compute the integration error on a sequence of regular grids
of 3 � 3, 5 � 5 and 9 � 9 nodes and to compare the accuracy of integration on those
grids. Thus we added another row and column to the original grid. Hypothetical data
for that addition were generated under the requirement to keep the same structure
of the spatial pattern as in the original density distribution (see Fig. 8.7b). The value
of the integral (i.e. using the total number of trap counts) on the new grid of 17 � 17

nodes is I D 1;980.
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Fig. 8.7 The spatial density distribution obtained from the trap counts in Table 8.4. (a) The density
function u.x; y/ based on the original data in Alexander et al. (2005). (b) Hypothetical data have
been added to the original table in order to generate a 17 � 17 regular grid. The data have been
generated to preserve the spatial structure of the original density distribution. An example of a
regular grid (5 � 5 nodes) on which integral is computed is shown as a set of closed circles in the
figure

It can be seen from Fig. 8.7b that the spatial pattern of the density distribution
is similar to the spatial pattern of the 1 � d function (8.26) studied in Sect. 8.3.
The density distribution is mostly homogeneous (cf. the function (8.26) on the
interval x 2 Œ0:01; 1�) with several small patches where the density is very high
(cf. the function (8.26) for x 2 Œ0; 0:01�). From the study of the convergence
graph for the function (8.26) we predict that grids with 3 � 3, 5 � 5 and 9 � 9

nodes should be considered as coarse grids for the density distribution u.x; y/ of
Fig. 8.7b, as small patches of the high density are not resolved on those grids. Hence
the Simpson method will not have a visible advantage over the other integration
methods employed in the problem. On the other hand, a big sub-domain where
the density is almost homogeneous will be already well-resolved on coarse grids
and integration over that sub-domain should give us an accurate contribution to the
integral over the whole domain. Meanwhile, the number of patches with high density
is not big and the density localised there is only approximately 30 times bigger
than the density in the homogeneous sub-domain, while this ratio is approximately
5;000 for the function (8.26). Thus we expect a reasonably small integration error
on coarse grids.

An example of a regular computational grid (a grid of 5 � 5 nodes) used in our
computation is shown in Fig. 8.7b. The location of the nodes on a this grid confirms
our analysis in the previous paragraph. Namely, all small patches of high density
fall in between the grid nodes, but the density values on grid nodes are already
representative enough to give accurate information about the density function in sub-
domains where the density is an almost homogeneous function (see also Table 8.4).
The results of numerical integration are shown in Table 8.5. The relative error
is within 35 % even on a grid with three traps in each direction. However, as
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Table 8.5 The approximate integral and the relative integration error (8.7) for the density
distribution of Fig. 8.7b on a sequence of regular grids. The first column gives the number N C 1

of the grid nodes in the direction x and y of a regular grid. The approximate integral and the error
is computed on each grid by the statistical rule (8.30) (the columns marked as Istat and estat in the
table), by the trapezoidal rule (8.22) (the columns ITR and eTR), and by the Simpson rule (8.23)
(the columns ISR and eSR)

N C 1 Istat estat ITR eTR ISR eSR

3 1,507 0.239 1,344 0.321 2,332 0.178

5 1,679 0.152 1,632 0.175 1,561 0.212

9 1,659 0.162 1,692 0.145 1,748 0.117

predicted, increasing the number of traps from three to nine in each direction does
not significantly increase the accuracy of integration methods because small patches
are still not resolved. Also, the Simpson method is not definitively superior to the
statistical method and the trapezoidal rule, as the convergence rate (8.9) does not
hold on coarse grids.

One important conclusion drawn from our consideration of 1 � d and 2 � d

ecological distributions is that the accuracy of an estimation depends strongly on
how the pest insects are dispersed across the agricultural field. The question of
accuracy has been the focus of ecological research for a long time (Dent 2000;
Vlug and Paul 1986; Ward et al. 1985). Reliable recommendations have been
provided on the minimum number of traps required for obtaining an accurate
estimate of a particular pest insect species based on the assumption that the pest
insect density distribution is close to homogeneous (Binns et al. 2000; Karandinos
1976; Southwood and Henderson 2000). This assumption is true for many species,
but as we could see in this section there also exist many ecologically important cases
where the pest density is heterogeneous and can be aggregated into several patches
(see also Barclay 1992; Ferguson et al. 2003). In the latter case we can anticipate
an inaccurate estimate of the total pest population size, as a relatively small number
of traps normally used in the trapping procedure may not be sufficient to resolve
highly localised sub-domains of non-zero density. In the next section we discuss an
extreme case of a single density patch in order to demonstrate that a conceptually
different approach should be applied to evaluate the total population size for such
spatial patterns.

8.5 Highly Aggregated Density Distributions

In this section we consider highly aggregated density distributions that we also
refer to as peak functions. Namely, we discuss spatial patterns where the entire
pest population is confined to a single sub-region (patch) within an agricultural
field and the pest population is zero outside that patch. Such distributions have
ecological significance as they present at an early stage of the biological invasion
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Fig. 8.8 (a) The pest population density distribution u.x; y/ at an early stage of patchy invasion.
The highly aggregated density function u.x; y/ has been obtained from numerical solution of
Eqs. (8.28–8.29). The traps used to measure the density u.x; y/ are installed at the nodes of
a regular coarse grid as shown in the figure. (b) A one-dimensional counterpart of the density
distribution of Fig. 8.9a

(Shigesada and Kawasaki 1997). It is clear that timely and accurate evaluation of
the total number of pest insects at the beginning of biological invasion is beneficial
for the cultivation of the agricultural product. At the same time the application of
numerical integration methods to highly aggregated density distributions is a very
difficult task, as the exact location of the high density sub-domain is normally not
known in the problem. Thus, instead of installing the traps locally in the patch of
the non-zero density in order to increase the accuracy of integration, traps have to
be stationed at the nodes of a regular grid over the entire domain where monitoring
is made. That, in turn, may result in the most unfavourable situation when the entire
patch of non-zero density falls in between grid nodes.

Examples of highly aggregated density distributions are depicted in Fig. 8.8
where the density function was modelled by solving Eqs. (8.28–8.29) in the 2 � d

case (see Fig. 8.8a) and in the 1�d case (see Fig. 8.8b). It can be seen from Fig. 8.8a
that the sub-region of non-zero density is entirely missed on a coarse grid of 5 � 5

nodes and we should significantly increase the number of nodes in order to resolve
that sub-region. Given natural limitations on the number of traps that present in
ecological applications, two basic questions arise. The first question is: What is the
minimum number Nt C 1 of traps required to achieve desirable accuracy if a highly
aggregated density distribution is numerically integrated? Also, we have to answer
the related question: What can be an alternative measure of accuracy on a regular
grid of traps where N < Nt?

The answer to the questions above were offered in the paper Petrovskaya and
Embleton (2013). It has been shown there that a standard methodology does not
work when the density of a highly aggregated pest population is measured by a
trapping procedure with a small number N C 1 of traps installed. The uncertainty
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Fig. 8.9 Numerical integration of a highly aggregated density distribution. The accuracy of
integration depends on the peak location x� with respect to the nodes of a regular grid. (a) The peak
sub-domain contains only one grid node. (b) The same peak is now located in a different region,
so that two grid nodes lie within the peak sub-domain when the same regular grid is generated

in measurements made on coarse grids is so strong that an estimate QI .N / of the
integral I becomes a random variable. As a result, the integration error also becomes
a random variable with a high magnitude and we cannot control the accuracy
of evaluation. In other words, we cannot consider the condition (8.11) for peak
functions on grids with small N , as, depending on the peak location, we sometimes
will obtain a very accurate answer and sometimes our answer on the same regular
grid will be well beyond the accuracy range. An example illustrating this statement
is shown in Fig. 8.9, where we have one grid node within the peak sub-domain in
Fig. 8.9a. If we move the peak on the same grid, so that the location of the maximum
x� becomes different, two grid nodes will fall into the peak region (see Fig. 8.9b). As
a result, the peak function will be better resolved and we will have a more accurate
estimate of the integral.

Since the integration error is considered as a random variable on coarse grids
where a location of the density patch is not known to us, it was therefore suggested
in Petrovskaya and Embleton (2013) that we have to compute the probability of
achieving an integration error within a certain accuracy range instead of computing
the error itself. Namely, we compute the probability p.h/ (or p.N / in some
cases) that the condition (8.11) holds. The probability p.h/ is then considered
an alternative measure of accuracy when we integrate a high aggregation density
distribution on a regular grid with a small number of nodes.

Grids, where the integration error becomes a random variable because of the
insufficient information about the integrand function and where we have to compute
the probability of an accurate evaluation of the integral are referred to as ultra-
coarse grids (Embleton and Petrovskaya 2013; Petrovskaya and Embleton 2013;
Petrovskaya et al. 2012). It is clear that if we keep increasing the number of
nodes on a regular grid, then sooner or later we are able to integrate the peak
function with very good accuracy. We therefore have the threshold number Nt of
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grid sub-intervals, where the desirable accuracy of pest population size evaluation
cannot be guaranteed for any N < Nt . An immediate consequence of this result is
that an estimate of the pest population size per se becomes unreliable if the number
N of traps in the field is N < Nt .

The above results are illustrated by a simple example of a 1 � d peak function.
Consider the following density distribution (the Lorentzian) on the unit interval
x 2 Œ0; 1�,

u.x/ D

8̂̂<̂
:̂

ı2

4

1

4.x � x�/2 C ı2=4
� 1

5
; x 2 Œx� � ı=2; x� C ı=2�;

0; otherwise;

(8.32)

where ı is the peak width and x� is the location of the maximum point. Let us
emphasise again that the location x� is not known to us, so the peak can be located
at any point of the sub-interval Œı=2; 1 � ı=2�. The peak function (8.32) is shown in
Fig. 8.10a for the peak width ı D 0:06.

Consider now numerical integration of the function (8.32) by the trapezoidal
rule (8.15). Let a regular grid of N C 1 nodes be generated in the domain Œ0; 1� as
x1 D 0; xiC1 D xi C h, i D 1; : : : ; N , where the grid step size is h D 1=N . For
the purpose of our study we require that the grid step size is h > ı=2. We start from
h D 0:25 (i.e., five equidistant grid nodes over the unit interval) and decrease h by
adding new nodes to the grid until the grid step size is so small that the condition
h > ı=2 is broken. For each grid step size h we compute the probability p.h/

of getting an accurate estimate of the integral, provided that the peak is arbitrarily
located in the domain. The accuracy we impose in the problem is e.N / � �0 D 0:25,
where e.N / is the relative integration error (8.7). The details of the computation of
p.h/ can be found in Petrovskaya and Embleton (2013).
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Fig. 8.10 (a) The peak function (8.32) with the peak width ı D 0:06 on a regular grid of 9 nodes.
(b) The probability curves p.h/ obtained for the function (8.32) with the peak width ı D 0:06

(solid line, closed right triangle) and ı D 0:1 (solid line, closed square)
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Two probability curves p.h/ are shown in Fig. 8.10b for the function (8.32) with
the peak width ı D 0:06 and ı D 0:1. It can be seen from the figure that for each
probability curve there exists the threshold value ht such that p.h/ D 1 for any
h < ht . It was shown in Petrovskaya and Embleton (2013) that the grid step size ht

for which the error (8.7) becomes deterministic, that is p.ht / D 1 and p.h/ < 1 for
any h > ht , can be evaluated as

ht D ˛t ı; (8.33)

where ı is the peak width and ˛t is constant for any given tolerance � in the accuracy
condition (8.11). The value of ˛t was computed in Petrovskaya and Embleton (2013)
as ˛t � 0:81 for � D 0:25.

Let us, for example, integrate the function (8.32) with the peak width ı D 0:1

on a regular grid with the grid step size h D 0:1 (i.e., a grid of 11 nodes). We have
h > ht � 0:08 and it follows from Fig. 8.10b that our chance p.h/ to evaluate the
integral within the accuracy range e.N / < 0:25 is p.h/ � 0:2 D 20 %. In other
words, there is an 80 % chance that the error of our evaluation will be bigger than
� D 0:25 when we evaluate the pest abundance for the peak function (8.32) on a
regular grid of 11 nodes. Consider now a grid with h D 0:07 (15 grid nodes). Since
the distance between nodes is now h < ht , we will always have the error e.N / of
integral evaluation smaller than 0:25, no matter where the peak is located. The prob-
ability p.h/ of getting the error within the accuracy range e.N / < 0:25 is p.h/ D 1.

In the 1 � d case the grid step size h is given by h D 1=N and we can therefore
evaluate the minimum number Nt D 1=ht , such that the desirable accuracy of
integration is guaranteed on a grid of Nt C 1 nodes. Furthermore, it has been
discussed in Petrovskaya et al. (2013) that in ecological problems the width ı of
the highly aggregated density distribution can be written as

ı D !
p

d; (8.34)

where d is the diffusion coefficient. Another coefficient ! in the expression (8.34)
depends on the system’s parameters. It was shown in Petrovskii and Malchow (2001)
and Petrovskii et al. (2003) that the value ! is relatively robust to changes in the
parameter values and can typically be considered as ! � 25. Hence the threshold
number Nt can be evaluated as

Nt D 1

˛t ı
� 1

˛t !
p

d
: (8.35)

For example, the ecologically meaningful density distribution of Fig. 8.8b was
generated for the diffusion d D 10�4. The estimate (8.35) gives us the grid step
size as ht � 0:2 and the corresponding number of grid nodes is Nt C 1 � 6.

Understanding accuracy requirements for highly aggregated density distributions
is important when a sampling plan is designed for pest insect monitoring and
control. As we already mentioned in the introduction, a standard procedure of the
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risk evaluation in pest management is to compare an estimate of the total number
of pest insects with a certain critical number and to make a decision based on that
comparison. We discussed in the previous sections that the error in the estimation of
pest abundance becomes worse as the number of samples decreases (see also Binns
et al. 2000). However, consideration of the extreme case of a random error brings
into the problem another risk factor related to the uncertainty in integral evaluation
when the number N C 1 of traps is small. Taking this risk factor into account
may constitute an important task in the whole process of designing an appropriate
methodology for decision making in pest insect management.

8.6 Evaluating Pest Abundance on Irregular Grids

So far we have considered using methods of numerical integration to evaluate pest
population abundance when the sampling plan is a regular grid, i.e. the samples
are taken at regular spatial intervals. However, it may be that an irregular grid is
prescribed in a pest monitoring programme. Furthermore, even if a regular grid has
been selected as the intended sampling plan, taking samples at precisely regular
intervals may not be possible in practise. The landscape of an agricultural field may
have natural obstacles (e.g. a bush or a tree) that will make trap installation on the
nodes of a regular grid impossible. One or many of the samples may then have to
be taken at a location shifted from that which was intended due to an obstruction of
some kind, hence the resulting grid of samples is irregular. We thus now investigate
the accuracy of numerical integration methods formulated on an irregular grid. Our
analysis is focused on a 1 � d problem for the sake of simplicity, but, as in previous
sections, our results can be readily extended to a 2 � d problem.

8.6.1 Generation of Irregular Grids

We consider several types of grids with varying degrees of irregularity: a slightly
irregular grid, a quasi-random grid, and a random grid. We use the term ‘slightly
irregular’ to refer to a simple example of an irregular grid, whereby a single
sampling location is shifted from the position prescribed by a regular sampling
plan. We generate such a grid by first constructing a regular grid as was explained
in Sect. 8.2. A single interior node xi , for some i D 2; : : : ; N is then perturbed
according to the following transformation:

x
irreg
i D xi C h

�
r � 1

2

�
; (8.36)

where xi is a node location on a regular grid, and r 2 .0; 1/ is a uniformly distributed
random variable. The transformation (8.36) is further illustrated in Fig. 8.11b.
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xi xi + h
2xi − h

2 xi+1xi−1

xi xi+1xi−1

a

b

Fig. 8.11 (a) An interior grid node xi for some i D 2; : : : ; N is a fixed distance h from its
neighbouring grid nodes in accordance with a regular sampling plan. (b) An interior grid node
x

irreg
i which has been perturbed according to the transformation (8.36) (the superscript is omitted

in the figure to make it consistent with Fig. 8.11a). The shaded region shows the possible locations
for x

irreg
i , where this node is no longer an equal distance from its neighbouring nodes

A quasi-random grid has an increased level of irregularity whilst preserving some
structure. Such grids are generated in a similar way to the method discussed above
for the slightly irregular grids. The difference is that instead of a single interior node
being perturbed, all interior nodes are perturbed. That is, the transformation (8.36)
is applied to all interior nodes xi ; i D 2; : : : N of the regular grid. This form of
grid is closely related to the so called ‘centric systematic’ sampling plan (e.g. see
Milne 1959) whereby the field is divided into sections and a sample is taken from a
random location within each section. Our version differs only in that we have fixed
the boundary points so as to preserve the interval of integration as Œa; b�.

A random sampling plan is often viewed favourably from a theoretical viewpoint
as it is considered to avoid introducing bias into the estimate (Bliss 1941; Legg
and Moon 1994; Reisen and Lothrop 1999; Silver 2008), the concern being that a
systematic distribution of samples will somehow coincide with the distribution of
the pests. We therefore take into consideration such a distribution of samples in our
investigation and generate the points xi ; i D 1; : : : ; N C 1 as follows:

xi D a C r.b � a/; i D 1; : : : ; N C 1; (8.37)

where r 2 .0; 1/ is a uniformly distributed random variable. The points xi ; i D
1 : : : N C 1 are then sorted into ascending order and the endpoints on a random grid
are then replaced as

x1 D a; xN C1 D b: (8.38)

An example of a random grid is shown in Table 8.6. The grid of nine nodes
presented in the table was generated over the interval Œ0; 	� using a standard function
rand./ in Visual C++.
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Table 8.6 An example of random grid over the interval Œ0; 	�

i 1 2 3 4 5 6 7 8 9

xi 0.0 0.816881 1.05838 1.43716 1.489 1.58434 1.70697 1.74214 3.14159

8.6.2 Numerical Integration on Irregular Grids

We now look at the accuracy of pest abundance estimates obtained by methods of
numerical integration on the grids outlined above. We will be using the statistical
rule, the trapezoidal rule and Simpson’s rule to evaluate the pest abundance. Since
the statistical rule (8.31) has no spatial dependence it can be applied to regular and
irregular grids alike.

Meanwhile, we must use different forms of the trapezoidal and Simpson’s rules
to those which have been mentioned above in order to be able to apply them to
irregular grids. The Newton-Cotes formulas can, of course, be applied in the case
that the integrand function f .x/ is defined on the nodes of an irregular grid. The idea
remains the same: replace the integrand by a polynomial function and integrate the
polynomial instead. However, we cannot use formulas (8.15) and (8.17) designed
for regular grids and we have to take into account a grid’s irregularity when the
weight coefficients !i are computed.

The trapezoidal rule on irregular grids is given by

I � QI D
NX

iD1

hi

.fi C fiC1/

2
; (8.39)

where N is the number of grid sub-intervals, and the grid step size hi D xiC1 � xi

is variable rather than fixed as in the formula for regular grids. We use the following
adapted version of Simpson’s rule to handle irregular grids

I � QI D
N
2X

iD1

h2i�1 C h2i

6
.f2i�1 C 4f2i C f2iC1/ ; (8.40)

which also relies on the variable grid step size hi D xiC1 � xi . As with the
conventional Simpson’s rule (8.17), the number of grid nodes N C 1 is required
to be odd.

We illustrate the convergence on irregular grids by considering a sequence of
grids, where each grid is generated according to the relevant procedure outlined
above. The number of grid subintervals is set on the first grid in the sequence as
N D N0, an estimate is obtained by means of a chosen numerical integration
method and the relative error (8.7) is calculated. The number of grid sub-intervals
is then increased to N1 D 2N0, a new grid is generated, and the estimate and
subsequent relative error is recalculated. This process is repeated until the number
of grid sub-intervals reaches some chosen value N D Nfinal. In the case of the
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slightly irregular grids, we want to determine how perturbing a single node affects
the convergence rate of a method of numerical integration, rather than how the
position of the grid node which is perturbed affects the accuracy. As such, in each
generation of the slightly irregular grids, the same interior grid node is perturbed.
We will begin all of our calculations on a grid of three grid nodes which has only
one interior node. The unperturbed position of this node lies at x D .a C b/=2,
therefore, it will always be this central node which is perturbed in the generation
of each slightly irregular grid. For grids with a more significant level of irregularity
i.e. the quasi-regular and random grids, each grid generation is repeated a total of
nr times thus providing nr values of the error for any given grid of N C 1 nodes.
The mean error on a grid of N C 1 nodes is then calculated as

�.e/ D 1

nr

nrX
iD1

ei : (8.41)

We first consider a standard mathematical test case where the integral of the
function (8.10) is evaluated over a sequence of increasingly refined irregular grids
according to the procedure outlined above. For the slightly irregular grids, the
corresponding relative errors are shown in Table 8.7. It can be seen from the table
that very little difference is made to the accuracy by perturbing a single node as the
results for the regular and slightly regular grids are close to each other.

For the random grids, the mean of nr D 104 evaluations of the error have been
plotted in Fig. 8.12. The convergence rate of errors calculated over increasingly
refined regular grids has also been plotted in each graph for comparison purposes
(see dashed line in the figure). Random perturbation of the interior nodes affects
the convergence rate with varying degrees of prominence depending on the method
of numerical integration employed as can be seen in the figure. The behaviour
of the convergence curve for the statistical rule shown in Fig. 8.12a is different
from the convergence for the trapezoidal rule (Fig. 8.12b) and the Simpson rule
(Fig. 8.12c), as the convergence rate of the method (8.31) on irregular grids is
slower in comparison with the convergence on regular grids. Meanwhile the
randomness introduced to the computational grid causes the convergence curves

Table 8.7 The relative integration error (8.7) for the function (8.10) on slightly irregular grids
where the central node is shifted from its position on the original regular grid. The first column
gives the number N C 1 of grid nodes. The error (8.7) is computed on an irregular grid (marked
as the superscript “irreg” in the table) and compared with the corresponding error on a regular grid
(the superscript “reg”). The error is computed for the statistical rule (8.31) (the columns marked
as estat in the table), the trapezoidal rule (8.39) (the columns eTR), and the Simpson rule (8.40) (the
columns eSR)

N C 1 e
reg
stat e

irreg
stat e

reg
TR e

irreg
TR e

reg
SR e

irreg
SR

3 4.764e�001 4.829e�001 2.146e�001 2.163e�001 4.720e�002 4.681e�002

5 2.416e�001 2.423e�001 5.194e�002 5.409e�002 2.280e�003 1.786e�003

9 1.226e�001 1.227e�001 1.288e�002 1.288e�002 1.346e�004 1.342e�004

17 6.185e�002 6.185e�002 3.215e�003 3.222e�003 8.296e�006 8.295e�006
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Fig. 8.12 Numerical integration of the function (8.10) on random grids. (a) The relative integra-
tion error (8.7) for the statistical rule (8.31) (solid line, right open triangle). The convergence
curve is compared with the convergence on regular grids (dashed line, right open triangle). (b)
Convergence curves for the trapezoidal rule (8.39) on random grids (solid line, open circle). The
convergence curve for the method (8.15) on regular grids is shown as a dashed line in the figure.
(c) Convergence curves for the Simpson rule (8.40) on random grids (solid line, closed square) and
for the method (8.17) on regular grids (dashed line, closed square)

of the trapezoidal and Simpson’s rules to be shifted upwards, that is, the resulting
estimates are less accurate although they begin to converge at a similar rate to those
formulated on regular grids as N increases. The higher the degree of the method
applied, the more prominent the effect seems to be, although it should be noted that
on average the accuracy still improves when a higher degree method is used.

8.6.3 Integration of Ecological Data on Irregular Grids

Let us now consider the accuracy of the numerical integration of ecologically
significant data. Since we are required to perform repeated calculations over
increasingly refined grids, we use simulated data as suitable field data is difficult to
obtain. As earlier explained the simulated ecological population density functions
were obtained through numerical solution of the 1 � d system (8.28–8.29) on an
extremely fine, regular grid of Nf C1 D 215C1 nodes on the interval Œa; b� D Œ0; 1�.
Since the density functions are thus discrete rather than continuous, the method for
generating the slightly irregular computational grid is now different to that outlined
above although the fundamental ideas are the same.

We have available a fine grid of points x
f
i ; i D 1; : : : ; Nf C 1 where

x
f
1 D a D 0; x

f
i D xi�1Cb � a

Nf

; i D 2; : : : ; N; x
f
Nf C1 D b D 1:

To generate a slightly irregular grid of N C 1 nodes, a regular grid is first obtained
by extracting the required N C 1 nodes from the available fine grid as

xi D x
f
j ; j D 1 C .i � 1/

�
Nf

N

�
; i D 1; : : : ; N C 1: (8.42)
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A single interior node must then be perturbed, however, it must be perturbed to a
value for which the population density is available. This is achieved by replacing an
interior grid node as

xi D x
f
j Cr ; r 2

�
� Nf

2N
;

Nf

2N


(8.43)

for some i D 2; : : : ; N , where j is as given in (8.42) and r is a uniformly distributed
random integer.

The generation of quasi-random grids for use with simulated ecological data is
as follows. The endpoints are fixed as

x1 D x
f
1 ; xN C1 D x

f
Nf C1; (8.44)

and the interior points are defined as

xi D x
f
j Cr ; r 2

�
� Nf

2N
;

Nf

2N
� 1


; i D 2; : : : ; N: (8.45)

Note that here the upper limit of the interval to which r belongs is one less than that
in (8.43) so as to avoid any nodes coinciding.

To extract a random grid from the available data, the grid nodes of the fine grid
x

f
i ; i D 1; : : : ; Nf C 1 are first permuted randomly. We shall denote the resulting

points as Qxf
i ; i D 1; : : : ; Nf C 1. We begin to form a random grid of N C 1 nodes

by selecting the first N C 1 nodes from the permuted fine grid so we have

xi D Qxf
i ; i D 1; : : : ; N C 1: (8.46)

The nodes xi ; i D 1; : : : ; N C 1 are then sorted into ascending order and the
endpoints are replaced as

x1 D a D 0; xN C1 D b D 1: (8.47)

Let us now consider the three-peak simulated ecological test case as shown in
Fig. 8.4b. As above, we generate a sequence of increasingly refined grids and the
relative errors are calculated according to (8.7). It should be noted that since the
exact value of the integral is not available to us for such discrete data, we have taken
the approximation obtained by applying the trapezoidal rule to the extremely fine,
regular grid of Nf C 1 nodes to be the ‘exact’ value of the pest abundance I . For
the quasi-random and random grids, nr D 104 of each grid are generated and the
mean of the errors is calculated.

Convergence curves for the slightly irregular grids, where one node is randomly
shifted from its original location on a regular grid, are shown in Fig. 8.13. The
integration error (8.7) computed for the statistical rule (8.31) is presented in
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Fig. 8.13 Convergence curves on slightly irregular grids for the ecologically meaningful density
distribution of Fig. 8.4b. Convergence on a sequence of grids where a central grid node is randomly
shifted is compared to the convergence on regular grids. The figure legend is the same as in
Fig. 8.12. (a) The statistical rule (8.31), (b) the trapezoidal rule (8.39), and (c) the Simpson
rule (8.40) is implemented
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Fig. 8.14 Convergence curves on quasi-random grids for the ecologically meaningful density
distribution of Fig. 8.4b. Convergence on a sequence of grids where each interior grid node is
randomly shifted around its position on a regular grid is compared to the convergence on regular
grids. The figure legend is the same as in Fig. 8.12. (a) The statistical rule (8.31), (b) the trapezoidal
rule (8.39), and (c) the Simpson rule (8.40) is implemented

Fig. 8.13a, while the error for the trapezoidal rule (8.39) and the Simpson rule (8.40)
is shown in Fig. 8.13b, c, respectively. The convergence results in the figure confirm
our previous conclusion made for the function (8.10). A slight perturbation of grid
regularity results in a slight perturbation in the integration error.

Let us now make a stronger perturbation of a regular grid and consider numerical
integration on a sequence of quasi-random grids where each interior grid node is ran-
domly shifted around its position on a regular grid. The corresponding convergence
curves are shown in Fig. 8.14, where the figure legend is the same as in Fig. 8.12.
It can be seen from the figure that increasing the degree of grid randomness in the
problem results in a bigger integration error, no matter what integration method
is used. This conclusion is further illustrated by consideration of the integration
error on truly random grids; see Fig. 8.15. Again, the convergence curves shown
in Fig. 8.15 for integration on regular grids always lie below convergence curves
obtained for random grids for any integration rule employed in the problem.
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Fig. 8.15 Convergence curves on regular and random grids for the ecologically meaningful
density distribution of Fig. 8.4b. The figure legend is the same as in Fig. 8.12. (a) The statistical
rule (8.31), (b) the trapezoidal rule (8.39), and (c) the Simpson rule (8.40) is implemented

The results of our study demonstrate that grid randomisation leads to a bigger
integration error on coarse and fine grids alike. Surprisingly, this conclusion is true
even for the statistical method which has no spatial dependence. While further
careful study of this issue is required, our first experience with the problem of
numerical integration on random grids demonstrates that an equidistant distribution
of traps is better than a random distribution.

8.7 Concluding Remarks

We considered the application of methods of numerical integration to the problem
of evaluating pest insect abundance. Methods of numerical integration are well
known and documented in the literature, but, to our best knowledge, they have never
been applied in ecological problems. Meanwhile, employing advanced numerical
integration techniques can be beneficial in the evaluation of total pest population
size, as those techniques can help to improve the accuracy of evaluation. In our
paper we studied a trapping procedure in an agricultural field and discussed how
information about the pest population density at trap locations can be transformed
into a numerical integration problem. However, our conclusions about the appli-
cability of methods of numerical integration in ecological problems are general
enough and therefore remain valid when the information about the local species
density is obtained by another sampling technique.

The key idea behind numerical integration methods considered in the paper
is to locally replace the existing density distribution by an approximated density
distribution described by a polynomial function. The most straightforward way
to apply numerical integration is to install traps at the nodes of a regular grid,
but similar techniques can be designed for a random distribution of traps over an
agricultural field. From a numerical integration viewpoint the method (8.31) widely
used in ecological applications can be loosely interpreted as local approximation
of the density function by a constant. While such approximation provides in some
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cases rather poor accuracy, approximation by higher order polynomials (e.g. by a
quadratic function) should result, according to the theory of numerical integration,
in more accurate evaluation of pest abundance. It has been shown in the paper that
advanced numerical integration techniques (e.g., the Simpson rule on regular grids)
often provide a significantly more accurate estimate of the population size from trap
data than the standard statistical approach (8.31). In many cases methods remain
effective even when the distribution exhibit a complex spatial structure.

At the same time, it was discussed in the paper that the application of numerical
integration methods in ecological problems may be restricted by the poor resolution
of the density distribution on coarse grids. Our study demonstrated that numerical
integration methods may become unreliable when pest abundance is evaluated from
a heterogeneous density pattern on a coarse grid. For example, the accuracy of the
Simpson method (8.17) is superior to the statistical rule (8.31) and the trapezoidal
rule (8.15), but the Simpson method has no visible advantage over less accurate
methods (8.31) and (8.15) when a strongly heterogeneous density distribution is
considered on a coarse grid of traps. In the extreme case when the total population
is localised in a small sub-domain, an estimate of the total population size becomes
a random variable, and we cannot even tell whether or not the estimate is within a
given accuracy range.

The coarse grid problem remains, in our opinion, the main obstacle to the
implementation of numerical integration methods in IPM programmes. It was shown
in the paper that grid coarseness is not defined by the number of traps available
in the problem. For any fixed number of traps, that number can be considered as
a grid with good resolution for one density pattern, while the same grid of traps
can appear as a coarse grid, where the accuracy of evaluation is poor, for another
density distribution. Our study confirmed that grid coarseness is directly related to
the degree of heterogeneity, highly aggregated density distributions being the most
difficult case for numerical integration. Meanwhile, ecologists and farmers often
have to deal with pest insect density distributions that have a considerable degree
of aggregation (Comins et al. 1992; Malchow et al. 2008; Okubo 1986). Thus an
important conclusion that stems from our results is that any information about the
spatial pattern of the pest insect density distribution must be used to its fullest extent
(cf. Perry 1996; Perry and Hewitt 1991) in order to decide whether or not we can
expect to obtain an accurate estimate of pest abundance. This conclusion is true
for any numerical integration technique including the method (8.31), as examples
studied in the paper reveal that an estimate of the mean density on coarse grids can
be very far away from its true value. Let us also note that the unreliability of results
on coarse grids should, in our opinion, be taken into account as another risk factor
when a sampling plan is designed, and results of large-scale ecological monitoring
should be interpreted accordingly.

Summarising the above, the main recommendation from our study is to imple-
ment methods of numerical integration that are based on approximation of the
density distribution by higher order polynomials (e.g. the Simpson method). If
heterogeneity in a spatial pattern is not well resolved, no method of numerical
integration has an advantage over the other methods, as all of them will give equally
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unreliable results. However, as soon as the heterogeneity is resolved, approximation
of the density distribution by higher order polynomials will provide a more accurate
estimate of the total pest population size.

Our study leaves a number of open questions. The most difficult and crucial issue
is, of course, the question of how to get information about a spatial pattern of the
density distribution in order to be able to predict the accuracy of integration. Another
important issue related to the question above is the optimisation of trap locations.
Grid adaptation to the spatial pattern can be made if we have the information about
patches of high density. Numerical integration on an adapted grid should result in
an improvement in accuracy, but its application requires further discussion of the
technical details. Also, numerical integration techniques can be extended to domains
of arbitrary shape, but resolution of a curvilinear boundary remains a topic for future
research.

Finally, we would like to emphasise that numerical integration techniques still
have to be validated for a broad variety of ecological test cases before they can
be routinely used in ecological monitoring and control. However, identification and
clear understanding of all theoretical aspects of numerical integration techniques
can accelerate and simplify further incorporation of those techniques into IPM
programmes and the issues that have been in the focus of this paper are important
milestones along the way.
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