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Abstract Evaluation of pest abundance is an important task of integrated pest man-
agement. It has recently been shown that evaluation of pest population size from
discrete sampling data can be done by using the ideas of numerical integration. Nu-
merical integration of the pest population density function is a computational tech-
nique that readily gives us an estimate of the pest population size, where the accuracy
of the estimate depends on the number of traps installed in the agricultural field to
collect the data. However, in a standard mathematical problem of numerical integra-
tion, it is assumed that the data are precise, so that the random error is zero when
the data are collected. This assumption does not hold in ecological applications. An
inherent random error is often present in field measurements, and therefore it may
strongly affect the accuracy of evaluation. In our paper, we offer a novel approach
to evaluate the pest insect population size under the assumption that the data about
the pest population include a random error. The evaluation is not based on statistical
methods but is done using a spatially discrete method of numerical integration where
the data obtained by trapping as in pest insect monitoring are converted to values of
the population density. It will be discussed in the paper how the accuracy of evalua-
tion differs from the case where the same evaluation method is employed to handle
precise data. We also consider how the accuracy of the pest insect abundance eval-
uation can be affected by noise when the data available from trapping are sparse. In
particular, we show that, contrary to intuitive expectations, noise does not have any
considerable impact on the accuracy of evaluation when the number of traps is small
as is conventional in ecological applications.
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1 Introduction

Pest insect management in agriculture has the obvious goal of preventing or minimis-
ing the damage pests cause to crops. In past decades, the integrated pest management
(IPM) approach emerged which incorporates several different tactics that work coop-
eratively together to protect crops from pest attack in a more sustainable way (Kogan
1998). An important part of any IPM programme is the monitoring of the pest insect
abundance in an agricultural field. The decision of whether or not to implement a con-
trol action is then made by comparing the abundance of pests against some threshold
level, i.e. the limit at which intervening becomes worth the effort or expense. Since
the basic principle of IPM is that a control action is only used if and when it is neces-
sary, accurate evaluation of pest insect abundance remains key to the decision process
(Burn et al. 1987; Metcalf and Luckmann 1982).

Trapping is a widely used sampling technique for pest insect abundance evaluation
(Alexander et al. 2005; Ferguson et al. 2000; Holland et al. 1999; Mayor and Davies
1976). Traps are installed in the field, exposed for a certain amount of time, after
which the traps are emptied and the pests are counted. Under the assumption that
trap counts can be converted into the pest population density at the trap locations it
is possible to obtain an estimate of the total pest population size (Byers et al. 1989;
Raworth and Choi 2001). However, optimising the accuracy of such an evaluation
remains a complex and difficult problem where two main aspects must be kept in
mind. First, the accuracy can be affected by how the sampled data are collected. There
has been intensive research on what is the optimal number of sample units required
to achieve a specified precision (e.g. see Binns et al. 2000; Dent 2000; Pedigo and
Rice 2009). The sampling plan, i.e. the prescribed locations at which samples are to
be taken, is also in the focus of ecological research (Ferguson et al. 2000; Holland
et al. 1999), where comparison of various patterns of trap locations in the field has
been made in order to understand how the sampling plan may affect the accuracy
(Alexander et al. 2005).

The second, equally important aspect of the accuracy problem is how the collected
data are processed. A conventional approach is to calculate the arithmetic mean num-
ber of pest insects from trap counts (Davis 1994). From the mean number of pests per
unit area, an estimate of the number of pests in the entire agricultural field is obtained
by scaling to the area of the agricultural field (Snedecor and Cochran 1980). Alter-
natively, the problem of pest abundance evaluation can be considered as a numerical
integration problem and in recent years intensive study of numerical integration meth-
ods for ecological applications has been carried out (Embleton and Petrovskaya 2013;
Petrovskaya and Embleton 2013; Petrovskaya et al. 2012, 2013; Petrovskaya and
Petrovskii 2010; Petrovskaya and Venturino 2011). It was discussed in our recent
paper (Petrovskaya and Embleton 2014) that the application of numerical integra-
tion techniques often results in a more accurate evaluation of pest abundance than
straightforward statistical computation of the mean density. Since numerical integra-
tion methods have been emerging as a promising approach to evaluating pest abun-
dance, in the present paper we focus our attention on them further. Namely, we con-
sider the application of numerical integration techniques to the problem where the
data used for evaluation are not exact values of the pest population density.



720 N. Embleton, N. Petrovskaya

A standard assumption in numerical integration is that the method deals with ex-
act data, i.e. an inherent random error is zero when data are collected. Meanwhile, an
inherent random error is often present in field measurements and, along with evalua-
tion error, contributes to the accuracy issues when the pest abundance is calculated.
An evaluation error, also known as an approximation error in the theory of numeri-
cal integration is the error arising because a continuous density function is replaced
in the evaluation procedure with a discrete function whose values are available at
trap locations only. The approximation error depends on the number of traps used
in monitoring and the theory states that the approximation error will be reduced to
zero if we can hypothetically make the number of traps infinitely large (Davis and
Rabinowitz 1975). At the same time the conventional definition of the approximation
error implies that the data used for its computation are precise.

Inherent random errors are errors caused by unknown and unpredictable changes
in data measurements (BIPM et al. 2008; Topping 1972). In ecological applications
the source of that uncertainty can vary from a simple miscounting of the number of
insects in a trap to some environmental conditions in an agricultural field that are
responsible for generating an error in a trap count (e.g. a trap can undergo occasional
interference from a bigger animal in the field). Trap counts are converted into the
density values at the trap locations, and therefore the density values further used to
evaluate pest abundance are also affected by the random error. Clearly, the impact of
a random error on the accuracy of the evaluation of pest insect abundance should be
taken into account to ensure that a correct pest management decision is made. Thus
in our work we study the accuracy of evaluation of pest insect population size under
the assumption that every trap count has a random error.

It is worth mentioning here that the problem of validation of the measured data
has already received attention in the ecological literature. However, with regard to
the trapping procedure, the mainstream of research has been focused on accurate
conversion of the trap counts into the values of the true population density (Browde
et al. 1992; Evans et al. 1983; Petrovskii et al. 2012). Meanwhile, once such a con-
version has been made, the estimate of the pest abundance is assumed to be based
on exact data and, to the best of our knowledge, no attempt has been made so far to
incorporate the random measurement error into the evaluation procedure. In the dis-
cussion in this paper, we do not consider the problem of converting trap counts into
a discrete population density function. In other words, further in the text we assume
that the number of insects caught in each trap already represents the value of the ab-
solute population density in its catchment area but each trap count has an inherent
random error.

Numerical integration methods are convenient for the study of noisy data because
their formulation allows one to easily control the contribution of the random error
into the approximation of the pest insect abundance. It will be demonstrated in our
paper how random error in collected trap counts can be converted into random error
in a pest abundance estimate. We therefore explain how to calculate the mean as well
as a credible interval of the evaluation error, when the discrete density function is
randomly perturbed.

Another topic discussed in our paper is the impact of the error induced by noise
on the accuracy of evaluation when the data are sparse. The problem of sparse data
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remains extremely important in IPM programmes, as a widespread situation is that
financial, ecological and other restrictions do not allow for a large number of traps
to be installed in an agricultural field. In routine pest monitoring programmes, the
number of traps rarely exceeds 20 (Mayor and Davies 1976), while in some cases it
can be as small as one or a few traps per field (Northing 2009). It has been discussed
in Petrovskaya and Embleton (2013) and Petrovskaya and Petrovskii (2010) that an
estimate of pest abundance can be very inaccurate on a coarse grid of traps, especially
when pest abundance is evaluated from a heterogeneous density pattern. Hence the
intuitive expectation is that an estimate of pest abundance based on noisy data will be
even worse. However, it will be shown in the paper that, perhaps counter-intuitively,
noise does not have a lot of impact on the accuracy of a pest abundance estimate
when the number of traps is small.

2 Quantifying the Uncertainty in the Pest Abundance Evaluation Problem

In this section, we briefly recall a numerical integration technique for the problem
of pest abundance evaluation. We consider a trapping procedure in an agricultural
field and assume first that the trap counts are precise. We explain how exact infor-
mation about the pest population density at trap locations can be transformed into
a numerical integration problem. We then assume uncertainty in field measurements
and incorporate a random error into the numerical integration problem.

2.1 Computation of Pest Abundance by Numerical Integration

For the sake of convenience, we focus the discussion in this paper on the one-
dimensional case.1 Let the domain D where the traps are installed be represented
by the interval [a, b]. Since an obvious linear transformation maps the domain D

onto the interval [0,1], below we consider a total number N of traps installed across
the unit interval. The location xi of a trap is represented by the index i, thus fi corre-
sponds to the pest population density at that trap location.

Methods of numerical integration are applied when an integrand f (x) defined
over the interval [0,1] is only available at points xi , i = 1, . . . ,N . If we knew the
pest insect spatial density distribution f (x) at any point of the domain [0,1], then
the pest abundance I in the field would be computed as the integral of the continuous
density function f (x),

I =
1∫

0

f (x)dx.

However, the pest population density function is only given to us as a discrete set
of data, that is, f (x) ≡ fi , where i = 1, . . . ,N . Consequently, the above integral

1A detailed explanation of numerical integration techniques for two-dimensional problems with precise
data can be found in Petrovskaya and Embleton (2014) and Petrovskaya et al. (2012).
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cannot be evaluated exactly and must instead be approximated by means of numerical
integration.

For the rest of Sect. 2.1, we assume that we know precise (i.e. unperturbed) values
of the population density f (x) at trap locations xi , i = 1, . . . ,N . A general numerical
integration formula is then written as (e.g. see Davis and Rabinowitz 1975)

I ≈ Ia =
N∑

i=1

wifi, (1)

where Ia is an approximation of the exact integral I , and wi , i = 1, . . . ,N , represent
weight coefficients that define a particular method of integration. The values of the
weights wi are dependent on the number N of traps and on their location. In the case
that the traps are located arbitrarily, there is no ready-to use formulas for the weight
coefficients and they must be calculated in advance in order to employ the formula (1)
(e.g. see Petrovskaya and Venturino 2011). When a systematic sampling plan is used
whereby the traps have an equal distance between them, the problem of numerical
integration is reduced to using a chosen method from the Newton–Cotes family of
numerical integration methods and the weight coefficients are readily available in
the literature. The trapezoidal rule is, perhaps, the most well-known member of the
Newton–Cotes family with the weights defined as

wi = h/2 for i = 1 and i = N and wi = h for i = 2, . . . ,N − 1, (2)

where h > 0 is the fixed distance between traps.
For any chosen method of numerical integration and any fixed number N of traps

used to collect the data, the accuracy of an approximation Ia is assessed by analysing
the approximation error. The relative approximation error Erel is defined as

Erel(N) = |I − Ia|
|I | , (3)

where clearly a lower relative error means a more accurate estimation Ia of the pest
abundance I . To ensure the correct pest management decision is made, e.g. whether
or not to apply pesticides, the estimate should be sufficiently accurate. We therefore
require the estimated pest abundance to be within a specified estimate tolerance τ of
the true pest abundance, i.e. we require the relative error Erel to satisfy the following
condition:

Erel(N) ≤ τ. (4)

Clearly, the approximation error (3) depends on the number N of traps where
the values fi are available. In ecological applications, the number N is usually
small and that may result in a big approximation error Erel(N) (Petrovskaya and
Embleton 2013, 2014). Hence an estimate tolerance of τ ∼ 0.2–0.5 is already
considered acceptable in many ecological problems (Pascual and Kareiva 1996;
Sherratt and Smith 2008). Furthermore, it has been shown in Petrovskaya and Petro-
vskii (2010), Petrovskaya and Embleton (2014) and Petrovskaya et al. (2012) that for
any fixed N the error Erel(N) depends on the spatial pattern of the density function.
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It is important to note here that in ecological problems an estimate of the pest
abundance is very often obtained using the sample mean pest population density
(Davis 1994) which we denote by f̄ . This is defined as follows (e.g. see Snedecor
and Cochran 1980)

f̄ = 1

N

N∑
i=1

fi.

An estimate Ia to the true number of pests I in the field is then given by

I ≈ Ia = Af̄ , (5)

where A is the area of the agricultural field.
Clearly, the method (5) can be incorporated into the general framework of nu-

merical integration (1) with the weights given by wi = 1/N for i = 1, . . . ,N , if the
integration is done over the unit interval (i.e. A = 1). Identification of (5) within the
framework (1) allows us to compare it with other methods of numerical integration.
While the statistical approach (5) provides a straightforward and convenient way to
evaluate the pest abundance, it has been demonstrated in Embleton and Petrovskaya
(2013), Petrovskaya and Embleton (2014) and Petrovskaya et al. (2012) that a dif-
ferent choice of weight coefficients in (1) gives us better accuracy than using the
method (5) for the same number of traps. Meanwhile, we shall see later in the pa-
per that considering the problem of pest abundance evaluation as one of numerical
integration has another advantage. Namely, representation of the estimate Ia in the
form (1) is extremely convenient when the evaluation of the pest population size is
required based on perturbed data fi . In the next section, we introduce the uncertainty
of an approximation Ia generated by the uncertainty in the data fi , i = 1, . . . ,N . The
weight coefficients in a method of numerical integration given to us are then used
in order to relate the uncertainty in the estimate Ia , and consequently in the error
Erel(N) to the uncertainty in trap counts.

2.2 The Uncertainty of Pest Abundance Evaluation from Noisy Measurements

As could be seen in the previous section, when the pest abundance is evalu-
ated from trap counts, the evaluation error (3) is always present in the problem.
This happens because we replace a continuous density function with a discrete
set of function values fi , i = 1,2, . . . ,N . Our previous studies of estimating pest
abundance by means of numerical integration (Petrovskaya and Embleton 2014;
Petrovskaya et al. 2012) have been focused on how the error (3) can be controlled
based on the assumption that the pest population densities provided by the trap counts
are indeed equal to the true densities. However, this assumption is not entirely realis-
tic, as measurements of the pest population density are subject to measurement error.

Let the measured pest population density at trap location xi be denoted by f̃i .
Let also fi refer to the exact density f (x) at the point xi , as discussed in Sect. 2.1.
Applying a method of numerical integration (1) to the measured pest densities f̃i , i =
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1, . . . ,N gives the following estimate of the pest abundance:

Ĩ =
N∑

i=1

wif̃i . (6)

The relative error of an approximation based on measured data which we denote by
Ẽrel is then given by

Ẽrel = |I − Ĩ |
|I | . (7)

The focus of our investigation is to establish how the introduction of noise to the data
set {fi} affects the accuracy of the estimation, that is, to determine how Ẽrel differs
from Erel.

The exact value of the pest density fi at any location i is not known, hence the need
to install traps. Nor can the exact value of the random measurement error be known.
There is thus an uncertainty associated with the measured value f̃i . In our work,
we simulate the uncertainty by considering any measured value of the pest density
f̃i to be a realisation of a normally distributed random variable Fi with mean μi ,
and standard deviation σi . The probability density function is (e.g. see Grimmett and
Stirzaker 2001)

p(f̃i) = 1

σi

√
2π

exp

{
−1

2

(
f̃i − μi

σi

)2}
, (8)

where we assume that the mean is equal to the true pest density, that is, μi = fi .
The uncertainty in the measured value f̃i , which we denote by u(f̃i) can be then
quantified by the standard deviation σi of the random variable Fi ,

u(f̃i) = σi. (9)

If a random variable has the normal distribution, then any single measurement f̃i , i.e.
a single realisation of the random variable Fi , lies in the range

f̃i ∈ [fi − zσi, fi + zσi] (10)

with probability

P(z) = erf

(
z√
2

)
, (11)

where the error function erf(z) is given by

erf(z) = 2√
π

∫ z

0
exp

(−t2)dt.

Let us assume that with the same probability, the pest population density obtained
via a trap count is within a fixed percentage of the true density at the trap location.
In other words, with probability P(z) each measured pest population density fi lies
somewhere within the range,

f̃i ∈ [fi − νmfi, fi + νmfi],
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where we refer to νm ∈ [νm1, νm2] ⊂ (0,1) as the measurement tolerance. Equating
the interval above to that given by (10) gives the following relation between the stan-
dard deviation σi and the measurement tolerance νm:

σi = νmfi

z
. (12)

It is worth noting here that our definition of noise does not depend on the length
of the time interval when traps are exposed in the field. Generally, a longer time of
exposition can be thought of as collecting a bigger number of samples that, in turn,
results in smaller uncertainty in data (i.e. a smaller value of the standard deviation
σi in the normal distribution) (Steel and Torrie 1960). However, the measurement
tolerance νm we use in the problem is always expressed as a percentage of the true
value fi at the trap location xi . Hence a longer (shorter) time of traps exposition is
already taken into account by considering larger (smaller) values fi of the density
function.

An example of the uncertainty associated with the function values is depicted in
Fig. 1a. The ecologically relevant (i.e. non-negative) function f (x) has been defined
as

f (x) = 1

3
sin

(
3πx

2

)
+ 2

3
, x ∈ [0,1],

hence the pest abundance is I = 0.737402. The exact pest population densities fi

correspond to the function f (x) evaluated at the trap locations xi, i = 1, . . . ,N which
are regularly distributed on the interval [0,1]. In the example shown in Fig. 1a, the
number of traps has been fixed as N = 3 hence the traps are located at x1 = 0, x2 =
0.5 and x3 = 1. The estimate Ia formulated by numerically integrating the exact data
fi , i = 1,2,3 via the trapezoidal rule (2) is Ia = 0.701184, while the error is Erel =
0.049115 which is much lower than the required tolerance τ .

We then consider the perturbed data as shown in Fig. 1a. Sets of measured data
values f̃i are generated by perturbing the function values fi at each point xi , i =
1,2,3, according to the transformation

f̃i = fi + γ σi, (13)

where γ is a random variable taken from the standard normal distribution, and σi is
defined according to (12). The measurement tolerance is set as νm = 0.3. We also fix
z = 3, therefore, the probability that each realisation f̃i lies within the range (10) is
P(z = 3) ≈ 0.9973. The transformation is applied nr = 100 times to each value fi

to generate nr sets of measured data for i = 1,2,3. These data sets are integrated
for any fixed nr using the same trapezoidal rule (2) to yield estimates of the pest
abundance Ĩ .

The distribution of the estimate Ĩ of pest abundance computed from the perturbed
data f̃i on a grid of N = 3 traps is shown in Fig. 1b. It is clear from the figure that the
introduction of noise can cause the estimate Ĩ based on measured data to be further
away from the true abundance I making the accuracy of evaluation very poor for
some realisations of Ĩ . Hence we want to control a range of the error Ẽrel induced by
the noise in the data fi , and in the next section we quantify the resulting uncertainty
in the accuracy Ẽrel of the approximated pest abundance.
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Fig. 1 Evaluation of pest
abundance from noisy data.
(a) An example of the pest
population density function
f (x). Three equidistant traps are
installed over the unit interval to
measure the density f (x). The
density value f̃i , i = 1,2,3
measured at the position xi of
the trap lies within the range
(10) with probability P(z) as
defined by (11). The lower and
upper limits of this range are
denoted f̃ min

i
and f̃ max

i
,

respectively. The measurement
tolerance has been set as
νm = 0.3 and we have fixed
z = 3. (b) The distribution of the
estimate Ĩ of pest abundance
computed from the measured
data f̃i on a grid of N = 3 traps.
Each realisation is presented as
a skewed cross in the figure,
where nr = 100 realisations of
the estimate Ĩ are shown. The
values Ĩ are compared with the
exact value I of the pest
abundance (solid line) and the
estimate Ia computed from the
exact data fi (dashed line)

2.3 Calculation of the Evaluation Error Ẽrel from Noisy Data

Consider random perturbation (8) of the density function f (x). It can be seen from
(6) that an estimate Ĩ of pest abundance is a linear combination of the measured
pest densities f̃i . Hence Ĩ can in turn be considered as a realisation of a normally
distributed random variable which we shall denote ĨF where

ĨF =
N∑

i=1

wiFi. (14)

The random variable ĨF has mean μ
Ĩ

= Ia , where Ia is the estimated abun-
dance based on the exact pest densities. Furthermore, the standard deviation σ

Ĩ
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is

σ
Ĩ
=

√√√√ N∑
i=1

w2
i u

2(f̃i) (15)

(e.g. see Cox 2007).
We now determine the probability density function of the random variable Ẽrel.

For the sake of convenience, let us first consider the following auxiliary quantity

E = I − Ĩ

I
. (16)

Since E is a linear function of Ĩ which is a realisation of a normally distributed ran-
dom variable, it can be considered as a realisation of a normally distributed random
variable with mean μE = 1 − Ia/I and standard deviation σE = σ

Ĩ
/I . We note that

in ecological applications the true pest abundance I is always I > 0. The probability
density function is described by

p(E) = 1

σE

√
2π

exp

{
−1

2

(
E − μE

σE

)2}
, (17)

and the quantity E belongs to the range

E ∈ [μE − zσE,μE + zσE] (18)

with probability P(z) given by (11). Examples of the probability density function of
E are shown in Fig. 2.

We have

Ẽrel = |E|,
and Ẽrel becomes a realisation of a random variable with a folded normal distribution
(e.g. see Leone et al. 1961). The probability density function of Ẽrel is then formed
from that of E by reflecting the negative contributions in the y-axis and is given by
the following expression

p(Ẽrel) = 1

σE

√
2π

[
exp

{
−1

2

(
Ẽrel − μE

σE

)2}
+ exp

{
−1

2

(
Ẽrel + μE

σE

)2}]

= I

σ
Ĩ

√
2π

[
exp

{
−1

2

(
I (1 − Ẽrel) − Ia

σ
Ĩ

)2}

+ exp

{
−1

2

(
I (1 + Ẽrel) − Ia

σ
Ĩ

)2}]
, (19)

where the mean value is

μ
Ẽrel

=
(

1 − Ia

I

)[
1 − 2Φ

(
Ia − I

σ
Ĩ

)]
+ σ

Ĩ

I

√
2

π
exp

{
−1

2

(
Ia − I

σ
Ĩ

)2}
, (20)
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Fig. 2 The probability density
function of the quantity E as
described by (17). Reflecting the
negative contributions in the
y-axis yields the folded normal
distribution of Ẽrel. The upper
and lower limits of the interval
[Ẽmin, Ẽmax] to which Ẽrel
belongs with probability P(z)

are defined differently
depending on the distance
between the true pest abundance
I and the estimate formulated
on exact data Ia : (a) when
|I − Ia | ≤ zσ

Ĩ
and (b) when

|I − Ia | > zσ
Ĩ

. See the
Appendix for the details of how
Ẽmin and Ẽmax are calculated

and the standard deviation is

σ
Ẽrel

=
√

μ2
E + σ 2

E − μ2
Ẽrel

. (21)

We now seek a range [Ẽmin, Ẽmax] to which Ẽrel belongs with probability P(z).
It can be seen from (17) (see also Fig. 2) that the range of the error Ẽrel depends
on the quality of approximation Ia obtained from the exact values fi of the pest
population density. Two separate cases depending on the nature of the probability
density function (17) should be considered.

The first case is when the mass to be reflected in the y-axis in order to obtain the
folded normal distribution (19) contains part but not all of the range (18). That occurs
when the distance between the true pest abundance I and the estimate Ia formed
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from exact data satisfies the condition |I − Ia| ≤ zσ
Ĩ

(see Fig. 2a). This condition
requires a certain level of accuracy of the approximation formed from exact data (i.e.
the approximation Ia is required to be sufficiently close to I ).

We then consider the scenario when |I − Ia| > zσ
Ĩ
, i.e. a poor approximation is

obtained on integrating exact data. The mass to the left of the y-axis is either entirely
exclusive of the interval (18) in the case that μE is positive (see Fig. 2b) or, when μE

is negative, is entirely inclusive.
Combining the two cases above and making the calculations explained in the

Appendix, we find that Ẽrel ∈ [Ẽmin, Ẽmax] with probability P(z) when the lower
limit is defined as

Ẽmin =
{

0 for |I − Ia| ≤ zσ
Ĩ
,

Erel − zσ
Ĩ

I
for |I − Ia| > zσ

Ĩ
,

(22)

and the upper limit is given by

Ẽmax =

⎧⎪⎨
⎪⎩

|μE | + σEΦ−1[2Φ(z) − Φ(z + 2 |μE |
σE

)], for |I − Ia| ≤ zσ
Ĩ
,

|μE | + σEΦ−1[Φ(z) − Φ(z − 2|μE |
σE

) − Φ(z + 2|μE |
σE

) + 1],
for |I − Ia| > zσ

Ĩ
,

(23)

where Φ and Φ−1 are the standard normal cumulative distribution function and its
inverse, respectively. We have thus constructed an α percent credible interval (e.g. see
Bolstad 2007), where α = 100P(z), for the error Ẽrel of an estimate based on mea-
sured data. The quantities Ẽmin, Ẽmax are the lower and upper limits of this credible
interval, respectively.

It immediately follows from (22) and (23) that the impact noise in data makes on
the approximation error is defined by the accuracy of the evaluation of pest abundance
obtained from exact values of the pest population density, which in turn depends on
the number N of traps where the data are available. In the next section, we illustrate
this conclusion by various numerical examples.

3 Calculating the Pest Insect Abundance from the Noisy Density Function:
Examples and Discussion

In this section, we perform some conventional numerical test cases to verify our ap-
proach. We then further investigate how introducing noise to the density function
values affects the accuracy of the estimated pest abundance, and in particular we fo-
cus on the instance when the grid of traps is coarse. We follow the same methodology
as used in (Petrovskaya and Petrovskii 2010) and begin by considering some continu-
ous functions with various level of spatial complexity where we require that the exact
pest abundance I is available in closed form. For each test case we generate a regu-
larly spaced set of traps, and unless otherwise stated we take the unit interval [0,1]
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Fig. 3 The test cases to validate the evaluation error Ẽrel. (a), (b), and (c) are defined over the unit interval
[0,1] by the functions given in (25), (29), and (30), respectively

to represent the agricultural field. Therefore, the traps are located as follows:

x1 = 0, xi = xi−1 + h, for i = 2, . . . ,N − 1, xN = 1, (24)

where h = (xN − x1)/(N − 1) is the fixed distance between traps. The exact pest
population densities are then given by fi ≡ f (xi), i = 1, . . . ,N .

Let us begin with a test case with simple behaviour whereby the function f (x) has
several wide peaks, as can be seen in Fig. 3a:

f (x) = exp (x) sin (3πx)2 + cos (πx)2. (25)

We fix the number N of traps and generate measured values of the pest density by
perturbing each exact pest density fi a total of nr = 100,000 times according to the
transformation (13). We therefore have nr sets of measured values {f̃i}. For each set
of data an estimate of the pest abundance is obtained by implementing the compound
trapezoidal rule (2) and the relative error is then calculated. To confirm that these
nr = 100,000 estimates of Ẽrel are indeed realisations of a random variable with a
folded normal distribution with mean μ

Ẽrel
and standard deviation σ

Ẽrel
, we calculate

the sample mean

μ̄
Ẽrel

= 1

N

nr∑
i=1

Ẽreli , (26)
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Table 1 Comparison between the theoretical mean and standard deviation of the quantity Ẽrel as defined
by (20) and (21), and their numerical counterparts (26) and (27) over several grids of N traps. The the-
oretical means and standard deviations are shown in the columns labelled μ

Ẽrel
and σ

Ẽrel
, respectively,

and the sample mean and standard deviations are labelled μ̄
Ẽrel

and s
Ẽrel

. The relative difference between

the theoretical quantity and its numerical counterpart is calculated in the last column of the table. Good
agreement can be seen thus providing verification of our approach

N μ
Ẽrel

μ̄
Ẽrel

|μ
Ẽrel

−μ̄
Ẽrel

|
|μ

Ẽ
| σ

Ẽrel
s
Ẽrel

|σ
Ẽrel

−s
Ẽrel

|
|σ

Ẽrel
|

3 5.614872e–02 5.607518e–02 1.309661e–03 4.227882e–02 4.239840e–02 2.828365e–03

5 4.043406e–02 4.034606e–02 2.176191e–03 3.050063e–02 3.041125e–02 2.828365e–03

9 3.203438e–02 3.204198e–02 2.372352e–04 2.420232e–02 2.419244e–02 4.078940e–04

17 2.277488e–02 2.283417e–02 2.603297e–03 1.720666e–02 1.727488e–02 3.964279e–03

33 1.615665e–02 1.618614e–02 1.825433e–03 1.220652e–02 1.226183e–02 4.531462e–03

65 1.144294e–02 1.149041e–02 4.148032e–03 8.645263e–03 8.672099e–03 3.104113e–03

and the sample standard deviation

s
Ẽrel

=
√√√√ 1

N − 1

nr∑
i=1

(Ẽreli − μ̄
Ẽrel

)2, (27)

and make a comparison with the theoretical quantities given by (20) and (21), respec-
tively.

We then establish the following proportion

Pnum = ñr

nr

, (28)

where ñr is the number of the relative errors Ẽrel which fall within the range
[Ẽmin, Ẽmax] as defined by (22) and (23) in order to make a comparison with the
theoretical probability P(z). The number of traps is then increased as 2N − 1 and the
quantities (26)–(28) are recalculated.

We apply the above procedure to the test case (25), where the number of traps
is subsequently increased to be N = 3,5, . . . ,65. We select the measurement toler-
ance as νm = 0.3. As can be seen in Table 1, for each value of N we have good
agreement between the sample mean μ̄

Ẽrel
and the theoretical mean μ

Ẽrel
, and like-

wise between the sample and theoretical standard deviations s
Ẽrel

and σ
Ẽrel

. We fix

z = 3. Therefore, we have the theoretical probability that Ẽrel lies within the range
[Ẽmin, Ẽmax] as P(z) ≈ 0.9973. It can be seen from Table 2 that the corresponding
numerical probability Pnum as given by (28) is indeed approximately 0.9973. We are
therefore satisfied that the range given by (22) and (23) can be used to make reliable
conclusions about the error Ẽrel of an estimated pest abundance based on measured
data Ĩ .

We now directly compare the quantities Erel and Ẽrel in order to understand how
using noisy data rather than exact pest population densities impacts the accuracy of
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Table 2 Comparison between
the theoretical probability P(z)

as defined by (11) that Ẽrel lies
within the range [Ẽmin, Ẽmax]
and the numerical probability
Pnum computed according to
(28) over a series of grids with
N traps. We fix z = 3, thus
P(z) = P(3) ≈ 0.9973. The
relative error between the two
quantities is shown in the last
column

N Pnum
|P(3)−Pnum|

|P(3)|

3 0.99732 1.984965e–05

5 0.99745 1.502016e–04

9 0.99722 8.042106e–05

17 0.99716 1.405835e–04

33 0.99739 9.003915e–05

65 0.99722 8.042106e–05

a pest abundance estimate. Let us introduce further test cases with an increased level
of spatial complexity to consider alongside that prescribed by the function (25). The
density is either concentrated in a narrow layer as defined by the following function
(see Fig. 3b):

f (x) = (x + 0.1)−3, (29)

or is located within a small sub-domain of the unit interval and also exhibits oscilla-
tory behaviour (see Fig. 3c):

f (x) = exp (−20x) sin (20πx)2. (30)

For an increasing number N of traps spaced regularly according to (24), the rela-
tive error Erel(N) of an approximation based on exact data is calculated. The mean
value μ

Ẽrel
of the error of an approximation based on measured values as well as the

upper and lower bounds of the interval [Ẽmin, Ẽmax] are found from (20) and (22),
(23), respectively, for the same set of values of N . The measurement tolerance is fixed
as νm = 0.3 throughout, and we set z = 3.

The corresponding graphs of the error as a function of the number N of traps
(convergence curves) for each of the test cases are displayed in Fig. 4. An estimate of
the integral I is considered to be accurate if it satisfies the condition (4). We select the
tolerance τ = 0.25 which lies within the acceptable range for ecological applications
given in Sect. 2, and which has been recommended for routine monitoring (Robson
and Regier 1964). The line τ = 0.25 is therefore also plotted so as to determine when
the estimates become sufficiently accurate.

It can be seen in Fig. 4a that for the spatially simpler test case (25), the estimates
based on exact data are sufficiently accurate for the entire range of the number N of
traps considered in the problem. The curve Erel always lies below the line τ = 0.25.
It is also evident from the figure that the addition of noise to the data significantly
slows the convergence of the pest abundance estimate to the exact value when we
increase the number of traps. Clearly, the curve for the mean error based on per-
turbed data μ

Ẽrel
(N) has a less steep gradient than its Erel(N) counterpart. This is

because whilst the uncertainty associated with the estimate based on measured val-
ues decreases as the number of traps N increases, the contribution to the mean error
μ

Ẽrel
from the noise is more dominant than that of the integration error Erel.

In other words, the uncertainty decreases at a slower rate than the integration er-
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Fig. 4 (a)–(c) The error for the approximation based on exact data Erel is compared with the mean error
μ

Ẽrel
of an approximation based on noisy data alongside the limits of the interval [Ẽmin, Ẽmax] for the

test cases (25), (29) and (30), respectively, as shown in Fig. 3a–3c. The measurement tolerance is fixed as
νm = 0.3 and z = 3 in each case. The legend for each figure is as shown in (a). (d) Mean error μ

Ẽrel
of an

approximation based on noisy data and the upper limit of the interval [Ẽmin, Ẽmax] for the test case (25)
as shown in Fig. 3a where values νm = 0.05,0.1,0.3 of the measurement tolerance have been selected.
We fix z = 3 as before

ror decreases. Meanwhile, it is important to note the mean error μ
Ẽrel

does converge
to zero in the theoretical limit of an infinite number of traps (e.g. see Cox 2007).

For the test case above, the Ẽmax curve entirely lies below the upper threshold
τ = 0.25 of the desired accuracy. The lower bound of the interval [Ẽmin, Ẽmax] is
Ẽmin ≡ 0 as the estimate based on exact values Ĩ is within zσ

Ĩ
of the exact pest

abundance I right from the initial estimate, where we have chosen z = 3. The value
Ẽmin = 0 is not displayed since the plots are given on a logarithmic scale.

Meanwhile, for the more spatially complex density distributions (29) and (30),
the number of traps N has to be sufficiently increased before the desired level of
accuracy E ≤ τ = 0.25 is obtained (see Figs. 4b and 4c). Similarly, there needs to
be some level of grid refinement before the lower limit becomes Ẽmin = 0. Prior to
this occurring, the mean error μ

Ẽrel
lies close to the error for the unperturbed data

set Erel as indeed does Ẽmax. After the lower limit of the credible interval for Ẽrel

becomes Ẽmin = 0, a difference in the convergence rates becomes evident with the
convergence of the perturbed data becoming much slower.
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One feature of the graph in Fig. 4c has to be mentioned here. In the case of the
initial estimates formulated from N = 3 and N = 5 trap counts, it can be seen that
the upper and lower limits of the interval [Ẽmin, Ẽmax] lie extremely close to the error
based on exact data Erel. This is an artefact of the way in which each measured value
of pest density f̃i is considered to be related to the true value fi ; each measured
value is considered to be within some percentage of the true value. The function
values at the initial N = 3 trap locations, which we recall are regularly distributed
across the interval [0,1], are extremely small in magnitude meaning the resulting
uncertainty is also very small. This is also the case on the subsequent grid of N = 5
traps, whereas, when the number of traps is increased to N = 9, some function values
with a larger magnitude are detected and hence the uncertainty is larger in comparison
to that associated with the previous estimate.

So far we have looked at how noise impacts the accuracy of an estimate of the pest
abundance for a fixed measurement tolerance of νm. We now investigate the impact of
noise on an estimate’s accuracy as the quantity νm is varied. Let us again consider the
simpler test case (25) as shown in Fig. 3a. Figure 4d shows the convergence curves
for different values of the measurement tolerance: νm = 0.05,0.1 and 0.3 where z

is fixed as z = 3. It can be seen that increasing the measurement tolerance causes
the convergence curve to shift upwards; greater uncertainty associated with the set
of measured values {f̃i} gives rise to greater uncertainty associated with the estimate
formulated from this data set as one would expect. Obviously, the point at which the
error becomes acceptable, that is, it falls below the upper threshold of τ = 0.25, oc-
curs later meaning a larger number of traps would be needed to acquire a sufficiently
accurate estimate.

3.1 Ecological Test Cases

Although informative, the test cases above were chosen for their mathematically in-
teresting characteristics rather than their direct relevance to the pest monitoring prob-
lem. Therefore, we now turn our attention to some ecologically meaningful test cases.
We require the ability to repeat estimates of the pest abundance for the same density
function for an increased number of traps. It is difficult to find field data in a one-
dimensional domain which would be suitable for our purpose, so we simulate data
using the spatially explicit form of what we consider the predator–prey model with
the Allee effect (Murray 1989; Turchin 2003). The dimensionless form of the model
is given by the following system of equations:

∂f (x, t)

∂t
= d

∂2f

∂x2
+ f (1 − f ) − fg

f + p
,

∂g(x, t)

∂t
= d

∂2g

∂x2
+ k

fg

f + p
− mg,

(31)

where f (x, t) is the density of the prey which we consider to be the pest insect and
g(x, t) is that of some predatory species at position x and time t > 0, d is the dif-
fusion coefficient, p is the half-saturation prey density, k is the food assimilation
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Fig. 5 Ecologically meaningful test cases as generated by the model (31) at different times t and for
various choices of the dimensionless diffusion coefficient d : (a) t = 5, d = 10−4 (b) t = 50, d = 10−4

(c) t = 100, d = 10−5 (d) t = 400, d = 10−5. The reader is referred to Petrovskaya and Petrovskii (2010)
for the choices of initial and boundary conditions

efficiency coefficient and m is the predator mortality. We fix the time as t = t̃ > 0
and numerically solve the system of equations (31) to obtain the pest population den-
sity f (x, t̃). Since t̃ is fixed we shall henceforth denote this as simply f (x). This is
done for different values of the parameters in the model to generate four ecologically
meaningful test cases which are shown in Fig. 5. The monotone test case as shown in
Fig. 5a and the single peak test case (see Fig. 5b) are fairly simple in terms of spatial
complexity. The pest density function shown in Fig. 5c, which we will refer to as the
three peak test case, and the multi-peak test case (see Fig. 5d) are examples of more
complex spatial heterogeneity. These test cases are the same as those discussed in
Petrovskaya and Petrovskii (2010), therefore the interested reader is referred to this
paper for the initial and boundary conditions that were used in their generation and
for further details of the numerical solution.

The density f (x) is found by numerically solving (31) at the positions of a large
number Nf of regularly distributed traps; we take Nf = 215 + 1. Since the pest den-
sity function for each of the ecological test cases is obtained as a result of numerical
solution, the exact pest abundance I is not available. The ‘exact’ pest abundance I

is then computed using the compound trapezoidal rule (2) from the exact data fi ob-
tained on a very fine grid of Nf traps. Once we have found the values of the pest
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Fig. 6 The error for the approximation based on exact data Erel is compared with the mean error μ
Ẽrel

of

an approximation based on noisy data and the limits of the range [Ẽmin, Ẽmax] for the ecologically mean-
ingful (a) monotone, (b) single peak, (c) three-peak and (d) multi-peak test cases as shown in Figs. 5a–5d,
respectively. The measurement tolerance is fixed as νm = 0.3 and z = 3 in each case. The legend for all
figures is as shown in (a)

density function f (x) at the trap locations xi, i = 1, . . . ,Nf , we can find estimates
Ia(N) of the pest abundance for any smaller number N of traps by extracting the rel-
evant pest density function values from this data set and applying the same evaluation
rule (2).

Let us fix the number of traps as N = N1. As before an estimate Ia based on exact
data is formed by employing the trapezoidal rule (2) and the relative error Erel is
calculated from (3). The mean error μ

Ẽrel
of an estimate formed from noisy data is

found from (20) and the limits of the interval [Ẽmin, Ẽmax] are calculated from (22)
and (23). The number of traps is then increased as 2N1 − 1 and the above is repeated.
This is done several times and the corresponding convergence curves are shown in
Fig. 6. The measurement tolerance is fixed as νm = 0.3 and we also set z = 3.

The results of the ecological test cases reconfirm our earlier findings. If the number
N of traps installed can resolve the spatial pattern of the density function f (x) and
can therefore provide good accuracy of evaluation, then noise makes visible impact
on the evaluation error. In other words, if for a given N the distance between the
estimate based on exact data Ia and the exact abundance I remains within z multiples
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of the standard deviation σ
Ĩ
, then the convergence curve for the error of the estimate

based on exact data Erel differs significantly from the mean error μ
Ẽrel

of the estimate
based on perturbed data. That can been seen in Fig. 6a where the results for the
monotone density distribution of Fig. 5a are presented. For the monotone function the
accuracy of evaluation is already good on coarse grids (e.g. see N = 5 in the graph)
and the error Erel obtained from exact data is several orders of magnitude smaller
than the mean error μ

Ẽrel
when N increases. However, it is important to emphasize

here that (a) the mean error is already below the required tolerance even on very
coarse grids and (b) as we already mentioned in our previous discussion, the mean
error converges to zero as the number N of traps grows infinitely large.

On the other hand, if the estimate based on unperturbed data Ia is already poor,
then the introduction of noise makes little difference to the accuracy of evaluation.
This behaviour is shown in Figs. 6b–6d where the complex spatial density distribu-
tions are not well resolved on initial grids with a small number N of traps. As a result,
the curves Erel and μ

Ẽrel
lie close to each other.

It should be mentioned that, as shown in Figs. 6c and 6d for both the three peak and
multi-peak test cases, the quantity Ẽmin on the initial grid of N = 3 traps is Ẽmin = 0
whereas for a number of subsequent grids it becomes nonzero before eventually re-
turning to zero. It is by chance only that for these test cases the initial estimate on a
grid of N = 3 nodes is sufficiently accurate to satisfy the condition |I − Ia| ≤ zσ

Ĩ
;

see also our discussion of the test case (30). However, the distance between the esti-
mate based on exact data Ia and the exact abundance I does not decrease fast enough
to remain within z multiples of the standard deviation σ

Ĩ
until the grid of traps is

sufficiently refined.
A generic behaviour of the approximation error is that the accuracy of ap-

proximation Ia worsens when the spatial complexity of the density function
increases (Petrovskaya and Embleton 2014; Petrovskaya and Petrovskii 2010;
Petrovskaya et al. 2012). Consequently the number of traps for which the error falls
solidly below the required tolerance increases when the spatial density evolves from
a monotone function to a multi-peak density distribution. It can be seen from Fig. 6d
that for a multi-peak density function (i.e. the function that presents an ecologically
important case of a patchy population density) the impact of noise is negligible when
the number of traps is within the range N ∼ 10 used in ecological applications.
While this result should be further validated for two-dimensional density distribu-
tions, it may help ecologists to make a correct decision about accuracy of evaluation
on coarse grids of traps.

4 Concluding Remarks

In our paper, the problem of pest insect abundance evaluation has been discussed. We
have considered a trapping procedure where information about the pest population
density f (x) at trap locations is then used in a numerical integration problem in order
to calculate an estimate of the total pest population size. Since a continuous density
function f (x) is replaced with a discrete set of function values fi , i = 1,2, . . . ,N ,
exact computation of the pest abundance is impossible and an evaluation (approxi-
mation) error is inevitably present in the problem.
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The approximation error is the main indicator of the accuracy of an evaluation,
and correct estimation of this error is extremely important in ecological problems.
Accurate evaluation of the total pest population size remains a crucial requirement
in any IPM programme, as it allows one to avoid making an unjustified decision
about control action (e.g. application of pesticides). Generally, the approximation
error depends on the number N of trap locations where the values fi of the density
function are available. Also, for any fixed N the approximation error depends on the
spatial pattern of the density function.

The standard definition of the approximation error implies that an approximation
of the pest abundance is based on exact data fi , i = 1,2, . . . ,N . However, random
error (noise) should be expected when the information about the density function is
collected. Thus in this paper the aim of our research was to incorporate noise into the
evaluation procedure and further investigate the approximation error when the pest
population density function is randomly perturbed at any trap location.

The main results of the paper are as follows:

1. We have suggested a novel approach to handling the approximation error when
the pest abundance evaluation is based on randomly perturbed data. Evaluation is
not based on statistical methods but is done using a numerical integration tech-
nique. An advantage of numerical integration methods over a standard statistical
approach is that they offer better accuracy of evaluation for a wide range of spatial
density distributions and are therefore considered as a promising alternative to the
existing statistical methods of evaluation.

2. In the paper, we have first explained a numerical integration procedure under the
assumption that the data used for evaluation are exact. We then incorporated noise
in density measurements into the numerical integration formulation of the pest
abundance problem. The mean approximation error has been obtained along with
the range to which Ẽrel belongs with probability P(z). In other words, we have
constructed an α percent credible interval [Ẽmin, Ẽmax] for the error Ẽrel of an
estimate based on measured data, where α = 100P(z). The theoretical results ob-
tained in the paper have been verified for various one-dimensional density distri-
butions when a selected method of integration (the composite trapezoidal rule) is
applied in the problem.

3. We have demonstrated that the error induced by noise in the pest population den-
sity data depends on the accuracy of evaluation obtained when exact density val-
ues are considered. In particular, the credible interval we have established for Ẽrel

contains zero if the estimate of pest abundance Ia formed in the absence of noise
is sufficiently accurate. Otherwise the lower bound of this interval Emin will be
greater than zero.

4. One ecologically important case studied in the paper is approximation on coarse
grids where the number N of traps is small. It has been shown, perhaps contrary
to intuitive thinking, that the impact of noise is negligible when the data available
are sparse. In other words, the accuracy of evaluation on coarse grids can already
be so poor that noise in field measurements of the pest population density does not
make any significant contribution. This result has been numerically confirmed for
ecologically meaningful data.
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5. Numerical experiments also revealed that, when we increase the number of traps,
noise becomes a dominant feature of the approximation and the mean error may
differ from the approximation error obtained on exact values of the density func-
tion by several orders of magnitude. Our results confirm that the mean error con-
verges to zero for an infinitely large number of traps. However, the convergence
rate of the mean error is much slower than the convergence rate of the approxima-
tion error obtained when exact data are used for approximation. Some theoretical
justification of this phenomenon has been provided in the literature (Cox 2007),
but this issue requires further study with regard to ecological applications and
should become the focus of our future research. In particular, we intend to com-
pare the results obtained for uncorrelated noise (as discussed in this paper) with
the case when the noise in neighbouring traps is correlated.

It is worth noting here that the approach developed in the paper is general enough
and can be readily extended to multi-dimensional problems. As soon as the weight
coefficients in the numerical integration method (1) are defined, our computation
of the mean error along with the credible interval for Ẽrel does not rely upon the
dimension of the physical space. Hence, our future work will be focused on two-
dimensional problems where field data are available from real-life measurements.
Another important direction of future work is to study the impact of noise when
different methods are employed to evaluate the pest abundance. In our paper, we
have only used the trapezoidal rule (2), while applying other methods of numerical
integration (e.g. Simpson’s rule) may give an estimate of pest abundance that is more
accurate on coarse grids of traps. It has been shown in the paper that the accuracy
of approximation on exact data is crucial when the ecologically relevant situation
of sparse data is considered. Hence our research will be focused on further careful
investigation of evaluation methods that can provide good accuracy on coarse grids
of traps.

Appendix: Finding a Credible Interval for the Relative Error in the Presence
of Noise

We seek the upper and lower limit of the interval [Ẽmin, Ẽmax] to which the quantity
Ẽrel belongs with probability P(z) given by (11) as discussed in Sect. 2.3. We recall
that the estimate of pest abundance Ĩ calculated from measured data is a realisation of
a normally distributed random variable with mean μ

Ĩ
= Ia and standard deviation σ

Ĩ

as defined by (15). Thus any realisation Ĩ lies within the interval [Ia − zσ
Ĩ
, Ia + zσ

Ĩ
]

with probability P(z). We use this credible interval for Ĩ to construct a credible in-
terval for Ẽrel. We consider two cases based on the distance between the approximate
integral formed from exact data Ia and the exact value of the integral I . Let us begin
by finding the lower limit of the interval, Ẽmin.

Case 1. |I − Ia| ≤ zσ
Ĩ
. In this case, as can be seen from Fig. 7a, an estimate based

on measured data Ĩ which belongs to the range [Ia −zσ
Ĩ
, Ia +zσ

Ĩ
] can coincide with

the exact value of the integral. Therefore, the lower limit of the range [Ẽmin, Ẽmax] is

Ẽmin = 0. (32)
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Fig. 7 Finding the interval [Ẽrel, Ẽmax] to which Ẽrel belongs with probability P(z). (a) Case 1.
|I − Ia | ≤ zσ

Ĩ
. In this case, the exact value of the integral I lies within the credible interval for Ĩ thus the

lower limit of the credible interval for Ẽrel is Ẽmin = 0. (b) Case 2. |I − Ia | > zσ
Ĩ

. The exact value of the

integral I lies outside, thus the interval [Ẽmin, Ẽmax] does not include the zero value

Case 2. |I − Ia| > zσ
Ĩ
. In this instance, from Fig. 7b we can see that the range

[Ia − zσ
Ĩ
, Ia + zσ

Ĩ
] does not include the exact value of the integral I . Either we have

Ia ≤ I in which case we can see that

Ẽmin = |I − Ia − zσ
Ĩ
|

|I | ,

or we have Ia > I ; therefore,

Ẽmin = |I − Ia + zσ
Ĩ
|

|I | .

In both cases,

Ẽmin = Erel − zσ
Ĩ

I
, (33)

which is a strictly positive quantity as the condition |I − Ia| > zσ
Ĩ
, of course, means

that Erel > zσ
Ĩ
/I , where we recall that I > 0.

It should be mentioned that a zero relative error is still possible in the second case,
when the distance between the approximation based on exact data and the true value
of the integral exceeds z multiples of the standard deviation σ

Ĩ
, however, we choose

to fix Ẽrel as

Ẽmin =
{

min{E ≥ 0 : E ∈ [μE − zσE,μE + zσE]}, for μE ≥ 0,

|max{E ≤ 0 : E ∈ [μE − zσE,μE + zσE]}|, for μE < 0,

where E is defined by (16). In other words, we find the value of the quantity E closest
to zero which lies within the range (18) and then take the absolute value as Ẽmin (see
Fig. 2).

Let us now consider the upper limit Ẽmax of the credible interval of Ẽrel. To
find Ẽmax, we use the condition that any single value of Ẽ lies within the range
[Ẽmin, Ẽmax] with fixed probability P(z) as defined by (11). As mentioned above,
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Ẽrel is a realisation of a random variable with a folded normal distribution. This dis-
tribution is formed by reflecting the negative quantities of the distribution (17) of the
auxiliary error E in the y-axis. Unless the mean value of this underlying normal dis-
tribution is μE = 0, if we take Ẽmax = μE + zσE then the probability P̂ that Ẽrel lies
within the above range will exceed P(z). We shall denote the additional contribution
as P ∗; therefore,

P̂ = P(z) + P ∗.

We now seek the appropriate value of the upper limit Ẽmax in order to satisfy the
condition that P̂ = P(z). Let us temporarily impose the restriction μE ≥ 0. As when
constructing the lower limit Ẽmin, we consider the cases when the distance between
the approximation based on exact data Ia and the true value of the integral I exceeds
or is within z multiples of the standard deviation σ

Ĩ
separately.

Case 1. |I − Ia| ≤ zσ
Ĩ
. As shown in Fig. 2a, the probability P ∗ is given by

P ∗ =
∫ μE−zσE

−μE−zσE

p(E)dE. (34)

In order to satisfy the condition P̂ = P(z), we must then find Ẽmax such that

∫ μE+zσE

Ẽmax

p(E)dE = P ∗. (35)

Using the transformation

E → E − μE

σE

from (34) and (35), we obtain the following in terms of the standard normal distribu-
tion function Φ:

Φ(−z) − Φ

(−2μE

σE

− z

)
= Φ(z) − Φ

(
Ẽmax − μE

σE

)
.

Rearranging gives

Ẽmax = μE + σEΦ−1
[

2Φ(z) − Φ

(
z + 2

μE

σE

)]
. (36)

Case 2. |I − Ia| > zσ
Ĩ
. Similar calculations for this case as illustrated in Fig. 2b

yield

Ẽmax = μE + σEΦ−1
[
Φ(z) − Φ

(
z − 2μE

σE

)
− Φ

(
z + 2μE

σE

)
+ 1

]
. (37)

Earlier we assumed μE ≥ 0. Since the probability density function (19) for the
folded normal distribution is the same for mean μE as it is for −μE , we can replace
the term μE for |μE | in Eqs. (36) and (37) so that they hold for arbitrary μE .
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