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Abstract Estimation of the population size from spatially discrete sampling data
is a routing task of ecological monitoring. This task may however become quite
challenging in case the spatial data are sparse. The latter often happens in nationwide
pest monitoring programs where the number of samples per field or area can be
reduced, due to resource limitation and other reasons, to just a few. In this rather
typical situation, the standard approaches become unreliable. Here we develop an
alternative approach to obtain an estimate of the population size from sparse spatial
data by considering numerical integration of the population density over a coarse
grid. We first show that the species diffusivity is a controlling parameter that directly
affects the complexity of the density distribution. We thenobtain the conditions on
the grid step size (i.e. the distance between two neighboring samples) allowing for
the integration with a given accuracy at different diffusion rates. We consider how
the accuracy of the population size estimate may change if the sampling positions
are spaced non-uniformly. Finally, we discuss the implications of our findings for
pest monitoring and control.
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1 Introduction

Theoretical ecologists routinely operate with quantitieslike average population den-
sities and/or population sizes, apparently assuming that they can be measured in the
field with sufficient accuracy. Indeed, there is a variety of approaches to estimate
the population size depending on the species taxonomy and biological traits [37].
However, it is almost never measured directly, e.g. by counting all the animals in a
given field or forest. Much more typically, an estimate is obtained through collect-
ing samples and their subsequent analysis, e.g. by using statistical methods [32]. The
accuracy of the estimate then depends significantly on the number of samples. This
has long been a focus of applied statistical analysis, yet there are some issues that
remain rather poorly understood. The matter is that the focus of statistical methods
have been more on calculating the variance in the sampling data (and on the relation
between the variance and the mean [38]) rather than on the mean density itself.

The essence of the problem can be readily seen from the following example. Let
u0, . . . ,uN−1 are the values of the population density of a given species obtained at
the location of the samplesr0, . . . ,rN−1, respectively, whereN is thus the number
of samples. In order to obtain the average population density ū and/or the (total)
population sizeI in an areaA, this information must somehow be ‘integrated’ over
the area. A commonly used statistical approach to estimate the population size is
based on the arithmetic average [35]:

I ≈ Ĩ = Aû, where û =
1
N

N−1

∑
n=0

un ≈ ū . (1)

This approach works well whenN is sufficiently large because the theory predicts
that û converges to ¯u whenN tends to infinity. However, ifN is not large, the ap-
plication of Eq. (1) become questionable, especially when the density distribution
is not spatially homogeneous but exhibits some form of aggregation. We want to
mention it here that mathematically rigorous criteria assessing the minimum num-
ber of samples required to obtain a robust estimate of the population size are largely
missing, and the decision about the optimum number of sampling locations is often
made based on the intuition [3].

The crucial question for approach based on (1) is if the number of samples can
always be made large enough to ensure that Eq. (1) is valid. Technically, in a partic-
ular scientific study, the number of samples can indeed be large (e.g. a few hundreds
per an agricultural field), which seems to provide reliable information about the pop-
ulation size [1, 10]. However, the first observation we make here is that the idea ‘the
more the better’ does not always work in case of sampling, e.g. because excessively
large number of samples in a given area may have a disruptive effect on the behavior
of the monitored animals, thus resulting in biased counts.

The second observation is that the situation becomes much worse when the in-
formation is required about the abundance of a pest species.The matter is that pest
species are usually subject of nationwide or regional monitoring programs. This im-
plies that the information is collected (i.e. samples are taken) simultaneously across
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a large region. Due to resource limitation, it means that thenumber of samples then
may become as small as just one or a few per unit area or per field[15]. More-
over, even under an idealized assumption of unlimited resources, a large number of
samples in an agricultural field would hardly be possible anyway. Apart from the un-
predictable potential effect on the monitored population mentioned above, sampling
introduces a disturbance to agricultural procedures. The pest monitoring specialists
would not be allowed to make this disturbance large as it can damage the agricul-
tural product (e.g. crops) significantly, hence making the protective measures rather
senseless.

Therefore, a challenge of pest monitoring is to obtain reliable information about
the pest abundance from sparse spatial data, i.e. from a small numberN of samples.
In other words, we need to be able to obtain a robust estimate of the pest population
size in the range ofN where the application of Eq. (1) is likely to become unreliable.

In our study, we develop an alternative approach to address this challenge, basing
on ideas different from that of the statistical analysis. Here we restrict our consid-
eration to a hypothetical 1D case. (We mention it here that arranging the sample
locations along a line sometimes appear to be more effectivethan arranging them
on a 2D grid; e.g. see [1].) We start with the case when the sampling positionsxn

(n= 0, . . . ,N−1) are equidistant, i.e.xn+1 = xn+h whereh> 0 is constant. Equa-
tion (1) can then be written as

Ĩ =
N−1

∑
n=0

unh ≈
∫ b

a
u(x)dx = I , (2)

whereh= L/(N−1), x0 = a, xN−1 = b andL = (b−a) is the size of the domain. It
is readily seen that Eq. (2) coincides with the simplest method of numerical integra-
tion. This coincidence is not just by chance: a closer look atthe problem shows that
estimation of the population size based on the values of population density at dis-
crete space (i.e. the position of the sampling points; see Fig. 1) is exactly the same
as the general problem of numerical integration [19]. We therefore can make use of
a vast variety of tools and methods of numerical integrationaccumulated in the field
of numerical mathematics, e.g. see [7]. In section 1.1 below, we briefly revisit (to the
extent required by the goals of this paper) the main ideas of numerical integration
and reveal the problems that arise when we apply these ideas to the population size
estimation from sparse spatial data.

1.1 Numerical integration on coarse grids: The problem outline

A standard problem of numerical integration is to approximate the integralI by a
sumĨ :

I =

b
∫

a

u(x)dx ≈ Ĩ , (3)
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where the particular expression for the sumĨ depends on the choice of the inte-
gration rule; one option is given by Eq. (2), some more advanced options will be
considered in section 2.1. In its turn, the change of integration to summation im-
plies that, instead of the integrandu(x) defined on a continuous domain[a,b], we
are provided with a discrete set of valuesu(x0),u(x2), . . . ,u(xN−1) (Fig. 1, bottom).

For any method of numerical integration, an essential requirement is that the
approximatioñI ≈ I should be accurate enough to meet the conditione≤ ε, where
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Fig. 1 (top) An example of field data collected in a field study on an insect pest [10], the numbers
show the number of insect caught at the corresponding location in space, the boxed numbers show
the samples along a transect; (bottom) a sketch of the numerical integration problem, the diamonds
show the population density at the position X0, . . . ,XN−1 of the samples while the actual continuous
density distribution (shown by the dashed curve) remains unknown.
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ε is the given tolerance and the integration errore is defined as

e=
∣I − Ĩ ∣
∣I ∣ . (4)

In the below, we refer to the set of pointsxn, n = 0,1, . . . ,N− 1 in the domain
[a,b] as a computational gridG. The location of the grid nodes is generally defined
asxn+1 = xn+hn, wherehn > 0 is the grid step size. The grid is called uniform if the
grid step size is constant,hn ≡ h= (b−a)/(N−1), and non-uniform otherwise. In
ecological applications, the integrand functionu(x) has the meaning of the density
of the pest population, while the grid nodesxn are the points where the samples are
taken. Hence the densityu(x) becomes a discrete function available at pointsxn only
(see Fig. 1).

The accuracy of ecological data is usually not very high and hence the error
toleranceε ∼ 0.25−0.3 is regarded as acceptable [17, 34]. However, even this rela-
tively undemanding level of required accuracy cannot always be provided when the
function{un ≡ u(xn), n = 0, . . . ,N− 1} is integrated on acoarse grid, i.e. where
the numberN of nodes is small. The lack of information about the integrand func-
tion u(x) may lead to an inaccurate evaluation of the integral (3) and the numerical
integration of sparse data may result in a large integrationerror.

Meanwhile, it has been shown in [19, 20] that an integral estimateĨ computed
on coarse grids does not necessarily lie beyond the range of accuracy required in
real-life ecological problems. The results obtained in [19, 20] show that the accu-
racy of integration on coarse grids is defined by the spatial heterogeneity of the
integrand function. For instance, the examples consideredin [19, 21] demonstrate
that, when coarse grids are considered, numerical integration of a monotone func-
tion gives a considerably better accuracy than the integration of a function that has
several ‘humps’ or oscillates rapidly. In its turn, the spatial structure of the popu-
lation densityu(x) (i.e. the integrand) is determined by several physical/biological
parameters, in particular, by diffusion. In the next section, we consider the effect of
diffusion in more detail.

1.2 Spatial heterogeneity and the effect of diffusion

We begin with a simple yet illuminating example when the population density distri-
bution is described by the scalar diffusion equation, thus neglecting for the moment
the impact of population multiplication and the interspecific interactions:

∂u(x, t)
∂ t

= D
∂ 2u
∂x2 , (5)

whereD is the diffusion coefficient due to the self-movement of individuals [16].
For the purposes of this section, we consider a population inthe unbounded do-

main,−∞ < x< ∞. The population density distribution over space, i.e. the solution
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of Eq. (5), depends on the initial conditions. In case of a point-source release at a
positionx0, it is well known that

u(x, t) =
I√

4πDt
exp

(

− (x− x0)
2

4Dt

)

. (6)

It is readily seen that the characteristic width of the distribution (6), i.e. the charac-
teristic length of the spatial heterogeneity, is given as

∆ ∼
√

Dt , (7)

where the sign∼ means ‘up to a constant coefficient’. The solutions of the diffusion
equation obtained for some other ecologically sensible initial conditions, e.g. for
a release over a finite domain, possess similar properties (see [23], section 9.3),
i.e. the characteristic size of the arising spatial heterogeneity is given by (7). A more
general approach based on the analysis of dimensions shows that this is, in fact, a
generic property of the diffusion equation. Briefly, the matter is that the diffusion
equation contains a single parameter, the diffusion coefficientD, and its dimension
is distance2 ⋅ time−1. Therefore, for any given timet, the only quantity with the
dimension of length is

√
Dt; see [2] for more details.

The next level of complexity is a single-species model with multiplication, i.e. a
diffusion-reaction equation. Consider a particular case when reproduction is de-
scribed by the logistic function:

∂u(x, t)
∂ t

= D
∂ 2u
∂x2 +αu

(

1− u
K

)

, (8)

whereα is the per capita growth rate andK is the carrying capacity. The dimension
of α is time−1 and hence the only way to create a quantity with the dimensionof
length from the parameters of Eq. (8) is

∆ f r ∼
√

D/α. (9)

For a wide class of initial conditions, in the large-time limit Eq. (8) describes a
travelling front [14] and then∆ f r gives the characteristic length of the system’s
spatial heterogeneity, i.e. the width of the front.

In case of multi-species systems, e.g. as described by a system of diffusion-
reaction equations, application of the dimensions analysis is less instructive as such
systems contain more than one parameter with the dimension of time or inverse
time, and more than one diffusion coefficient. However, there are some alternative
approaches. Let us assume that all diffusion coefficients have the same valueD.
Consider the case when the corresponding non-spatial system has a unique posi-
tive state and this state is as an unstable focus. In this case, the system is known to
develop complex, chaotic spatiotemporal pattern sometimes referred to as the “bio-
logical turbulence.” [13]. The characteristic length∆g of the emerging multi-hump
spatiotemporal pattern, i.e. the width of a single hump, is then given as [24]
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∆g = 2πc∗
(

D
maxRe(λ )

)1/2

, (10)

where maxRe(λ ) is the maximum real part of the eigenvalues of the linearized
system andc∗ is a numerical coefficient of the order of unity. Note that, since
maxRe(λ ) has the dimension of time, Eq. (10) is in a good agreement withthe
dimensions analysis; in fact, it can be regarded as a generalization of Eq. (9).

An observation important for our analysis is that, in all three cases (7), (9) and
(10) the characteristic length of the spatial heterogeneity is proportional to

√
D, i.e.

∆g = ω
√

D, (11)

whereω is a factor that can depend on the parameters of the intra- andinterspecific
interactions, but not on the diffusion coefficient.

1.3 Goals and the road map

The main goal of this study is to evaluate the effectiveness of the methods of numer-
ical integration as a possible tool to obtain a reliable estimate of the population size
from spatially discrete sampling data. We are especially interested in the case when
the values of the population density are only available on a coarse grid, i.e. when the
samples are taken only at a few spatial locations. This is a typical situation in pest
monitoring programs.

A straightforward approach to increase the integration accuracy is to make the
number of nodes in the computational grid sufficiently largein order to resolve the
spatial heterogeneity. However, simulations show that, inpractice, an acceptable
accuracy can be obtained with a much smaller number of nodes,even in case of
an ‘extreme aggregation’ when a peak of the population density may fall almost
completely in between of two subsequent nodes. In this paper, we make a more
quantitative insight into this problem. In particular, we relate this issue to the species
diffusivity. Since the theory predicts that the hump width depends on the diffusivity,
we can evaluate the grid step size required to accurately integrate a complex spatial
pattern in terms of the diffusion coefficient, assuming thatthe latter is known as a
biological trait of the given pest species.

The second issue is the impact of the spatial structure of thegrid itself. The
previous analysis was done under condition that the grid is uniform. However, this
situation is hardly realistic as a certain variation in the samples location is inevitable,
even in a very carefully designed field study. An important question therefore is how
the accuracy of integration may be affected by the effects ofnon-uniformness.

The paper is organized as follows. In the next section, we introduce a popula-
tion dynamics model that we use to generate ecologically meaningful population
distributions for various diffusion rates. We then describe the numerical integration
method designed to evaluate the population size and apply itto spatial population
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distributions of different complexity. In section 3, we perform a detailed mathe-
matical analysis of the impact of the diffusion rates on the accuracy of numerical
integration on a coarse grid. In section 4, we investigate the effect of the grid’s non-
uniformness on the population size estimation. Finally, insection 5 we summarize
our findings and discuss their implications for the pest monitoring practices.

2 The insight from the ecological model

In order to assess the effectiveness of our approach to integrate discrete sampling
data, we now need data. Note that, to make a sensible assessment, we need to know
not only the values of the population density arranged alonga line (e.g. see Fig. 1,
top) but also the actual population size to compare our estimate to. However, field
data satisfying this requirement are rarely available. Moreover, to study the effect
of the grid step size (i.e. the effect of different sample spacing) on the accuracy of
the estimate, we need to compare the results obtained on different grids, which is
almost impossible to obtain in the field.

For the above reasons, instead of field data, here we use the population density
distribution generated by an ecological model. Specifically, we use the spatially
explicit Rosenzweig–MacArthur model which, in dimensionless variables, has the
following form [14]:

∂u(x, t)
∂ t

= d
∂ 2u
∂x2 +u(1−u)− uv

u+h
, (12)

∂v(x, t)
∂ t

= d
∂ 2v
∂x2 + k

uv
u+h

−mv. (13)

Hereu andv are the dimensionless densities of prey and predator, respectively, at
time t and positionx wheret > 0 and 0< x< 1. The distances are therefore mea-
sured in fractions of the original domain lengthL. (See [13, 19] for more details with
regard to the choice of the dimensionless variables and parameters.) The dimension-
less diffusion coefficientd quantifies the species diffusivity due to the movement of
the individuals. For the sake of simplicity, we assume it to be the same for both
species.

It is readily seen that the relation between the diffusion coefficient and the char-
acteristic length of the system’s spatial heterogeneity remains exactly the same as it
was in the dimensional units, i.e.

δg =
∆g

L
= ω

√
d . (14)

Here the coefficientω depends on the system’s parameters, cf. Eq. (10). However,
an extensive numerical study performed in [24, 25] revealedthat, in the predator-
prey system (12–13), its value is relatively robust to changes in the parameter values,
typically being about 25.
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An important feature of the Eqs. (12–13) is that interactionbetween reaction and
diffusion is known [13] to result in pattern formation, e.g.see Fig. 2, where the
properties of the pattern1 depend on the value of dimensionless diffusivityd. In par-
ticular, ford being on the order of 1 or larger, the solutionu(x, t) will be a monotone
function of x, which means that the local population oscillations are almost syn-
chronized over the entire domain. However, oscillations atdifferent positions can
become de-synchronized ford ≪ 1 (see [24]). In the latter case the initial condi-
tionsu(x,0), v(x,0) evolve to an ensemble of irregular humps and hollows. For an
intermediate value ofd, the pattern can consist of just one or a few peaks only (see
Fig. 2a), while the number of humps increases for smaller values ofd resulting in
oscillations shown in Fig. 2b. From an ecological perspective, it means that in a do-
main of a given length a slowly diffusing population is more likely to form a spatial
pattern than a fast one.
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Fig. 2 Ecological test cases. Typical spatial distribution of thepest population density in the model
(12–13) for the values of the dimensionless diffusivity d= 10−4 (a) and d= 10−5 (b). The contin-
uous functions u1(x) and u2(x) are presented by solid lines, while the function values available for
integration on a coarse grid are shown as black filled circles.

From a numerical viewpoint, the above conclusion means thatone may expect
lower accuracy of integration when the size of slowly diffusing pest population is
evaluated. On the contrary, the complex spatial structure of the population density
of a fast diffusing pest may be not well resolved on coarse grids because we have
to deal with an oscillating integrand functionu(x). Thus our next step is to compute
the integration error for the functions shown in Fig. 2 to establish the link between
spatial heterogeneity of the integrand function and the accuracy of numerical inte-
gration when the number of grid nodes is small.

1 At least, for anyt not too small, in order to avoid the effect of the initial conditions.
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2.1 The method of numerical integration

In this subsection we briefly discuss a method that we use for numerical integration
of a discrete functionun, n= 0, . . . ,N−1. The numerical integration technique we
employ in order to compute the integral (3) requires a user toreplace the integrand
function u(x) at each grid subintervalcn = [xn,xn+1], n = 0, . . . ,N− 2, by a local
polynomial of degreeK,

pn
K(x) =

K

∑
k=0

aknx
k,

where the expansion coefficientsakn are reconstructed independently at each subin-
tervalcn (as it is indicated by the subscriptn in their notation). The integral (3) is
then evaluated as

I =

b
∫

a

u(x)dx≈
N−2

∑
n=0

In, (15)

where the integralIn is readily computed over the grid cellcn asIn =

xn+1
∫

xn

pn
K(x)dx.

The details of the implementation of the composite integration rule (15) can be
found in [19, 21]. Let us note here that the numerical technique we use in the prob-
lem is the same as the Newton-Cotes family of methods of numerical integration
[7] if uniform grids (hn ≡ h = (b− a)/(N− 1)) are considered. In particular, the
polynomial degreesK = 0, K = 1 andK = 2 correspond to the well-known meth-
ods of numerical integration such as the midpoint rule, the trapezoidal rule and the
Simpson rule, respectively. These are the first three methods from the Newton-Cotes
family. However, our approach is more flexible as it allows one to deal with non-
uniform grids where the grid step sizehn ∕= const.

One important observation about the integral evaluation isthat asymptotic error
estimates for the approximation (15) will depend on the polynomial degreeK. It has
been shown in [19, 21] that the integration error (4) can be evaluated on uniform
grids as

e=ChK+1, (16)

whereC = const. The estimate (16), however, only holds on fine grids where the
grid step sizeh is very small (ultimately, tends to zero). Meanwhile, we have demon-
strated in our previous work [19, 20] that the asymptotic error estimates do not hold
on coarse grids where, generally speaking, we cannot reducethe integration error
by using higher order polynomials. Hence, other ways of controlling the accuracy
of integration have to be established when one has to deal with coarse grids, where
N is small, and in the following subsection we discuss this problem.
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2.2 Estimating the pest population size when the number of traps is
small: numerical test cases

The discussion of the accuracy of numerical integration requires us to understand
how to actually compute the integration error for the ecological distributions of
Fig. 2. The problem is that the computation of the integration error (4) is based
on the knowledge of the exact answer. However, the analytical solution of the sys-
tem (12–13) is not known and we cannot compute the integralI as required by the
definition (4). Therefore, we have to define the ‘exact’ valueof the integral when the
pest population density represented by the functionu(x) is integrated. For this pur-
pose we compute a numerical solution to the system (12–13) ona very fine uniform
grid Gf of Nf = 215+1≡ 32769 nodes, and we consider the result as the ‘exact’
solution to the problem. The corresponding value of the solution integralI is then
considered as the exact integral that is compared with the value of the integral on a
given coarse gridGc.

For the purpose of our study, we are going to compute the integration error as
a function of the number of grid nodes,e= e(N), as we want to understand what
happens to the approximationĨ when we increase or decrease the number of grid
nodes. A usual technique to generate a finer uniform grid froma coarser one is to
halve each grid subinterval by inserting a new node at the subinterval midpoint.
Let us denote the number of grid subintervals asN̂, where we havêN = N−1. We
generate a sequence of uniform grids, where the number of subintervals on each
grid is defined aŝN = sN̂0. The number̂N0 of grid subintervals on the initial grid is
takenN̂0 = 8 and the scaling coefficients varies ass= 2m,m= 0,1,2, . . . ,12. The
integrand functionu(x) is then readily available at nodes of each grid generated as
above, as we simply project it from the fine gridGf where it has originally been
computed. Hence the integration error (4) can be easily defined on any grid in the
sequence to obtain the convergence ratee(N) of our numerical method.

Let us refer to the density distributions shown in Fig. 2a andFig. 2b asu1(x) and
u2(x) respectively. We integrateu1(x) andu2(x) and compute the error (4) on each
uniform grid generated as above. The integration error as a function of the number
N of grid nodes for the integrand functionu1(x) is shown in Fig. 3a, while the
error for the functionu2(x) is displayed in Fig. 3b. The integration error is shown
on a logarithmic scale. In both cases the error is computed for approximation by
polynomials of degreeK = 3 andK = 5.

It is readily seen from the figure that the behavior of the error curve depends on
the integrand function. For the functionu1(x) the convergence results are in a good
agreement with the error estimate (16). Namely, the polynomial approximation with
K = 5 provides better accuracy if we compare it with theK = 3 approximation on
each grid in the sequence; see Fig. 3a. The integration erroris always within the
required rangee< 0.25, as we already havee≈ 0.1 on the initial grid ofN0 = 9
nodes. Hence the coarse initial grid has a sufficient number of nodes to provide an
accurate estimate of the integral in case that the distribution u1(x) is considered.
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Meanwhile, for the functionu2(x), the use of higher order polynomials to ap-
proximate the integrand does not always result in a more accurate approximation on
coarse grids. It can be seen from Fig. 3b that the integrationerror of a higher order
polynomial approximation (K = 5) remains about the same as the error ofK = 3 ap-
proximation. Moreover, the erroreK=5 can even be greater thaneK=3 as it is shown
in Fig. 3b for a grid ofN = 65 nodes. As we have already discussed, the complex
multi-peak spatial patternu2(x) may require a finer grid to resolve function’s spatial
oscillations. Also, despite the initial grid ofN0 = 9 nodes still providing the accu-
racy acceptable for ecological applications, the errore≈ 0.25 is essentially bigger
in comparison with the integration error obtained on the same grid for the integrand
functionu1(x).
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Fig. 3 The integration error (4) as a function of the number of grid nodes for ecological test cases
shown in Fig. 2. (a) The density distribution u1(x). The error eK=3 of the approximation by polyno-
mials of degree K= 3 remains always bigger than the error eK=5 computed for the approximation
by polynomials of degree K= 5. (b) The density distribution u2(x). The approximation by high
order polynomials (K= 5) cannot always provide better accuracy.

The above examples demonstrate that, while it is sufficient to have a grid of
several nodes in order to provide accurate integration results for a simple spatial
distribution, the same number of grid nodes may give the accuracy beyond the ac-
ceptable range if a more complex spatial pattern is considered. The error behavior,
when the convergence rate does not follow its asymptotic value (16), is called “a
coarse grid problem” [19, 21]. Since the error cannot be controlled based on the
estimate (16), it becomes extremely important to understand what factors determine
the error on coarse grids where the spatial structure of the integrand function is not
well resolved. That will be done in the next section.
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3 The impact of the diffusion rates on the accuracy of numerical
integration

In this section we derive the functional relationship between the diffusion coefficient
and the grid step size required to provide a good integrationaccuracy. Our previous
discussion revealed that using higher order polynomials toapproximate the inte-
grand function does not necessarily result in a more accurate estimate of the integral
on coarse grids. Hence we now reduce our attention to a technically simple yet il-
luminating case when the integrand function is approximated by linear polynomials
(K = 1).

Let a nonnegative functionu(x) have a ‘hump’ (i.e., a local maximum) at the
interval [0,1]. The first assumption we make for our analysis is that the humpcan
be handled as a quadratic function. Namely, let us introducethe subinterval[x0,x2]
of the length 2h in the vicinity of the hump2 (see Fig. 4). We then assume that in the
vicinity of the hump the integrandu(x) can be considered as

u(x)≈ g(x) = B−A(x− x1)
2, x∈ [x0,x2],

whereA> 0, B> 0 and the functiong(x) has the maximum at the interval midpoint
x1 = x0 + h. We also requireg(x) to be a nonnegative function over the interval
[x0,x2], that isg(x0) = g(x2) = B−Ah2 > 0. That gives us the following condition
relatingA, B andh:

h2 <
B
A
. (17)

The examples of the approximation of a hump by a quadratic function for the
pest population densityu1(x) are shown in Fig. 4, where various choice of pointsx0,
x1 andx2 in the vicinity of the hump is illustrated. The details of such approximation
can be found in the Appendix.

It is obvious that we introduce an additional error to the integration problem when
we tackle a hump as a quadratic function (see the discussion in Appendix). However,
as we will see below, such approximation enable us to make correct conclusions
about a grid step size that should be recommended for accurate integration of the
functionu(x). Thus our next step is to investigate what happens when we replace the
quadratic functiong(x) (and, therefore, the original functionu(x)) with two linear
polynomials in the vicinity of the hump, as our method of numerical integration
requires us to do. We first consider a uniform grid where one ofgrid nodes is located
at the maximum point. We then study the case of an arbitrary location of a maximum
point on a coarse uniform grid. Finally, we discuss non-uniform grids to understand
what impact the grid distortion will make on the integrationerror.

2 Note that the notationx0, x1, x2 we use to discuss the hump approximation is not the same as the
numeration of grid nodes we introduced in the previous section. In other words, the ‘endpoints’x0
andx2 are arbitrarily located interior points of the interval[0,1].
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Fig. 4 Hump approximation for the population density distribution u1(x). (a) Quadratic approxi-
mation withh= 0.125. (b) Quadratic approximation withh= 0.0625.

3.1 Uniform grid

Let the quadratic functiong(x) be integrated at the interval[x0,x2] where we con-
sider a local grid of two subintervalsc0 = [x0,x1] andc1 = [x1,x2], the node location

beingx1 = x0 + h and x2 = x1 + h. We use linear polynomialspn
1(x) =

1
∑

k=0
aknxk

at each grid cellcn, n = 0,1, where we reconstruct polynomial coefficients from
the conditionpn

1(xk) = g(xk), k = 0,1,2, asp0
1(x) = B+Ah(x1 − x) and p1

1(x) =
B−Ah(x− x1). The approximation of a quadratic function by linear polynomials
over a grid of the two subintervals is illustrated in Fig. 5.

We then compute the approximate integralĨ as

Ĩ =

x1
∫

x0

p0
1(x)dx+

x2
∫

x1

p1
1(x)dx = 2Bh−Ah3,
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Fig. 5 Approximation of a quadratic function by linear polynomials over a uniform grid of 3 nodes.

while the exact integral is

I =

x2
∫

x0

g(x)dx= 2Bh− 2Ah3

3
. (18)

Consider the error of integration (4) and let us require thate< 0.25. Correspond-

ingly, we have∣I − Ĩ ∣= Ah3

3
. Therefore, we obtain:

Ah3

3
<

1
4

∣

∣

∣

∣

2Bh− 2Ah3

3

∣

∣

∣

∣

. (19)

Solving (17) and (19) together and taking also into account thatI > 0 (asB> 0 and
g(x)≥ 0 for anyx∈ [x0,x2]), we obtainh< h0 =

√

B/A.
In order to reveal the impact of diffusion, we now define the ‘hump width’ δg of

the quadratic functiong(x) as the distance between its roots, so thatδg = 2
√

B/A.
Correspondingly, we obtain that the required accuracye < 0.25 is ensured for
h < h0 = δg/2. Finally, recalling that the characteristic length of the spatial het-
erogeneity is given by Eq. (14) and substituting it into the expression above, we
arrive at

h< h0 =
ω
√

d
2

. (20)

Whatever is the value of the diffusion coefficientd, condition (20) is sufficient to
integrate the ‘hump’ with the desirable accuracye< 0.25. The limiting valuee=
0.25 is reached forh0.
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3.2 The analysis of the grid step size for ecological distributions

In this subsection we validate our findings – in particular, condition (20) – by con-
sidering the density distributions shown in Fig. 2. We first study the functionu1(x)
that has a single hump. The aim of our numerical test is to find the numberN∗ of
grid nodes sufficient for accurate integration of the pest population densityu1(x). In
other words, we integrate the functionu1(x) over the domain[0,1] on a sequence
of uniform grids and compute the corresponding integrationerror (4). We then look
for the grid step sizeh∗ whose value provides us with the integration errore< 0.25.
That should give us the numberN∗ ≈ 1/h∗ of grid nodes (or the number of sam-
ples in the pest monitoring problem) required to resolve thespatial heterogeneity.
The numberN∗ (or the grid step sizeh∗) obtained in this straightforward integration
procedure is then compared with the estimate (20).

Let us note it again that the hump itself is not, of course, a quadratic function
and the integration error obtained for the integrandu1(x) is not the same as the
integration error derived for the quadratic function. However, since a single hump
can be approximated by a quadratic function with good accuracy (see Appendix), we
expect that the results of our numerical experiment will be in reasonable agreement
with the estimate (20) that can be obtained from the information about the diffusion
coefficient only.

The estimate (20) gives us the valueh∗ ∼ 0.12 for the diffusion coefficientd =
10−4 used to generate the density distributionu1(x). The integration error when
the functionu1(x) is approximated by linear polynomials over a uniform grid of
N nodes is shown in Table 2. We compute the error (4) on a very coarse grid of 2
subintervals, we then refine the grid by halving each grid subinterval, compute the
integral error again and repeat the refinement procedure until the error is smaller
than the threshold valuee= 0.25. It can be see from the table that the results of
numerical integration are in good agreement with our estimate (20). While a very
coarse grid does not provide the accuracye≤ 0.25, the grid ofN = 9 nodes (h=
0.125) gives the integration error much smaller than the required limit e= 0.25.
Hence the number of grid nodes can be evaluated asN∗ ≈ 9.

N 3 5 9 17
h 0.5 0.25 0.125 0.0625

e 0.6948 0.5459 0.0823 0.0036

Table 1 The integration error (4) for the density distributionu1(x) on a sequence of uniformly
refined grids with grid step sizeh. The integrand functionu1(x) is approximated by piecewise
linear polynomials (K = 1) on each grid in the sequence.

Consider now the density distributionu2(x) shown in Fig. 2b. The diffusion co-
efficient used to generate the distributionu2(x) is d= 10−5. Hence the estimate (20)
of the grid step size ish∼ 0.03. In other words, a uniform grid should contain about
30 nodes in order to guarantee the integration errore< 0.25.
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Fig. 6 Piecewise linear approximation for the population densitydistributionu2(x). (a) Approxi-
mation usingN = 17 grid nodes (b) Approximation usingN = 33 nodes.

The values of the integration error (4) are shown in Table 3. Asubstantial jump
in accuracy is evident when the grid is refined fromN = 17 toN = 33 nodes. This is
further illustrated by Fig. 6 where it can be seen that for 16 subintervals, the majority
of the humps inu2(x) are approximated by a single polynomial and the spatial het-
erogeneity is not well resolved. When the grid is refined to 32subintervals, all but
the two of the humps are approximated by two or more linear polynomials. Approx-
imating a hump with a single linear polynomial is equivalentto the approximation
of a quadratic by linear polynomials over a local grid of two nodes instead of con-
sidering three nodes for the approximation. That extreme case will be discussed in
more detail in the next section.

At the same time it is worth noting here that for the density distributionu2(x)
the integration error is not entirely the same as expected from our analysis, as the
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integration error actually remains within the required range e< 0.25 on any grid
that we use in our computations. We believe that this may happen because of the
‘cancelation effect’ that may arise when underestimated contribution of the humps
is balanced by overestimated contribution of the hollows. However, we would like to
emphasize that the error value cannot be predicted on coarsegrids. In other words,
while the estimate (20) guarantees the errore< 0.25 on a grid ofN = 33 nodes, it
cannot be said a priori what the error is on coarse grids withN < 33.

N 3 5 9 17 33
h 0.5 0.25 0.125 0.0625 0.03125

e 0.1579 0.1567 0.2193 0.1304 0.0001

Table 2 The integration error for the density distributionu2(x) on a sequence of uniformly refined
grids. The integrand functionu2(x) is approximated by piecewise linear polynomials, see Fig.6.

3.3 Arbitrary location of the peak on a uniform coarse grid

In the previous subsection we assumed that there are three grid nodes in the region
of the hump and the position of the central node coincides with the position of the
maximum. Especially the last assumption is not entirely realistic because in appli-
cations to pest monitoring the position of the population density would usually be
unknown. Hence, two practically important questions that arise from our analysis
above are (i) how the integration error changes when the maximum is not at the
position of the node (see Fig. 7) and (ii) whether we can make the grid even coarser,
e.g. what will be the integration accuracy if just one grid node is used in the sub-
domain where the hump is located. In other words, we are now interested in the
situation given byN = 3 andN = 5 in Table 3.2 when the entire hump is located
in between two grid nodes. The error shown in Table 3.2 is quite large, but can we
possibly make it any smaller with the same number of nodes?

Consider a regular grid consisting of three nodes,x0, x1 = x0+h andx2 = x0+2h.
Let a population density distribution have a hump within theinterval [x0,x2]. We
approximate the hump by a quadratic function. Let us define the approximation
g(x) of the hump as

g(x) =

{

B−A(x− x∗)2, if x∈ [xI ,xII ],
0, otherwise.

In the approximation abovex∗ is the location of the maximum point, which is now
different from the nodex1, and the valuesxI andxII are the roots ofg(x). We can
expressx∗ in terms of the grid nodes as
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x∗ = x1+ γ h= x0+h(γ +1),

whereγ ∈ [0,1]. The rootsxI andxII are then given by

xI = x0+h(γ +1)−
√

B/A and xII = x0+h(γ +1)+
√

B/A.

g(x)

p1
1(x)p1

0(x)

h
x*

x0
x2x1 h xII

xI

Fig. 7 Piecewise linear approximation ofg(x).

The exact integral ofg(x) in the vicinity of the hump is thus

I =
∫ x2

x0

g(x) dx≡
∫ xII

xI

g(x) dx=
2
3

Bδg, (21)

whereδg is the hump width as above. We now approximateg(x) by two piecewise
linear polynomials as follows (see Fig. 7)

g(x)≈

⎧

⎨

⎩

p0
1(x), if x∈ [x0,x1],

p1
1(x), if x∈ [x1,x2].

An approximated valuẽI of the integral (22) is then obtained by integrating the
piecewise linear approximation of the functiong(x):

Ĩ =
k=1

∑
k=0

(

∫ xk+1

xk

pk
1 dx

)

= h
(

B−Aγ2h2) . (22)

We now require the integration error (4) to bee≤ 0.25, which means that

0.75I ≤ Ĩ ≤ 1.25I , (23)

whereI > 0. Consider the lower bound of the inequality (23) and find thevaluesγII

of parameterγ for which the equatioñI = 0.75I holds. SubstitutingI and Ĩ in the
above we obtain
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Bh−Aγ2h3 =
1
2

Bδg.

Hence

γII (h,δg) =
δg

2h

√

2h− δg

2h
, (24)

where we should require the grid step sizeh> δg/2 to getγII as a real number for
any fixedδg. That also makes our analysis consistent with our previous assumption
that the grid is very coarse; see item (ii) at the beginning ofthis section.
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Fig. 8 The functionγ(h) for various values of the dimensionless diffusivity d. The part of the(h,γ)
plane between the two solid curves gives the parameter rangewhere the integration is done with
the required accuracy e≤ 0.25.

We then consider the upper bound of (23) and find the valuesγI that satisfy the
equationĨ = 1.25I . The parameterγI as a function of the grid step sizeh and the
hump widthδg is given by

γI (h,δg) =
δg

2h

√

6h−5δg

6h
, h>

5δg

6
. (25)

The hump widthδg is defined by the diffusion coefficientd, so thatγ in expres-
sions (24) and (25) becomes a function ofh only for a given value ofd. The curves
γI (h) andγII (h) are shown in Fig. 8a and Fig. 8b for the dimensionless diffusiv-
ity d = 10−4 andd = 10−5 respectively. The range ofh is chosen in both cases as
h∈ [δg,1], whereδg is calculated from the estimate (14).

For any given value ofd, the conditions (24) and (25) define the parameter range
where integral is computed with the required accuracy. Indeed, let us fix the grid
step size at a certain hypotheticalh= h∗ (see Fig. 8) and computeγ∗I = γI (h∗) and
γ∗II = γII (h∗). It then follows from the inequality (23) that for anyγ∗I ≤ γ ≤ γ∗II the
error ise≤ 0.25. Also, let us mention that, for any fixedh, there exists the value of
γ for which Ĩ = I ; its value is readily obtained from (21) and (22):
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γ(h) =
δg

2h

√

3h−2δg

3h
, h>

2δg

3
. (26)

One straightforward yet important observation that can be made from Fig. 8 is
that the domain where the error ise≤ 0.25 is getting smaller when we decrease the
diffusivity d. In other words, a narrow hump (δg → 0) is getting ‘lost’ on a very
coarse grid with the grid step sizeh ≫ δg. Another interesting observation is that
installing a grid node at the location of the maximum point (which corresponds to
γ = 0) does not at all result in the smallest possible integration error as Eq. (26)
clearly gives the valueγ(h)> 0 (see the dashed curve in Fig. 8 whereĨ = I ).

4 Nonuniform grid

Our next task is to evaluate the integration error on a non-uniform grid, where we
want to find the condition on the grid step sizeh that ensures the required accuracy
e< 0.25 for a given hump widthδg.

In order to make an insight into this issue, we use the same approach as in Sec-
tion 3.1. We consider a single-hump distribution which we approximate with the
quadratic functionq(x). However, the functiong(x) is now integrated on a grid of
three nodes{x0, x̃1,x2}, where the central nodex1 is now moved to the position
x̃ while the maximum of the integrand remains at the midpointx1 of the domain
[x0,x2]; see Fig.9. In other words, the new grid is obtained from a uniform grid
{x0,x1,x2} of Section 3.1 by the following mapping:

x1 → x̃1 = x1+βh, (27)

whereβ is a parameter quantifying the degree of the non-uniformness, 0< β < 1/2.
The lower limitβ = 0 thus corresponds to the original uniform grid. The upper limit
β = 1/2 corresponds to the case when ˜x1 is the midpoint of the subinterval[x1,x2]
(see Fig. 9).

From the ecological viewpoint the transformation (27) with0< β < 1/2 means
that for some practical reason one cannot provide equidistant location of samples
in the area where the measurements are made. In other words, we cannot provide
sampling at the midpointx1 of the interval[x0,x2] (for example, because of a natural
obstacle, such as a tree) and have to install a sample somewhere in the neighborhood
but still close to the pointx1. It is important to note that a hump in the density
distribution still remains well resolved, as we are still allowed to use three grid
points to integrate it.

We now apply the technique described previously in Section 3.1 on the non-
uniform grid. The exact integralI is still given by (18). The approximate valueĨ of
the integral is computed as
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Fig. 9 Approximation of a quadratic function by linear polynomials over a non-uniform grid of 3
nodes.

Ĩ =

x1+β h
∫

x0

p0
1(x)dx+

x2
∫

x1+β h

p1
1(x)dx .

The linear polynomials are now given byp0
1(x) = B−Ah(x1−βx0)−Ah(β −1)x

and p1
1(x) = B−Ah(x1 + βx2)−Ah(1+ β )x. Substitutingp0

1(x) and p1
1(x) in the

integrals above, we obtain

Ĩ = 2Bh−Ah3−Aβ 2h3.

Again we require that the error (4) should bee< 0.25. Substituting the expressions
for I andĨ in the condition∣I − Ĩ ∣< 0.25I and taking into account the condition (17),
we arrive at

h2 <
B

A(1+2β 2)
.

Recall thatB/A= δ 2
g/4 whereδg is the hump width. Making use of Eq. (14) that

relates the hump width to the diffusion rate, we obtain:

h<
ω
√

d

2
√

1+2β 2
. (28)

Therefore, the upper bound forh is a monotonously decreasing function ofβ . For
the extreme valueβ = 1/2 we obtain thath=

√

2/3h0, whereh0 is the restriction
(20) on the grid step size obtained for the uniform grid whereβ = 0. Substituting
(20) into Eq. (28), we arrive at

h< ω
√

d/6. (29)

Condition (29) gives us the information on how to choose the grid step size if we
want to have the relative errore< 0.25 on a non-uniform grid.
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We now want to reveal how the integration error depends on thedegree of the
grid distortion in case the restriction (29) is ignored. Letus seth= h0. For the fixed
valueh0, e.g. as defined by the condition (20), the error becomes a function ofβ ,

eq(h0,β ) =
∣I(h0)− Ĩ(h0,β )∣

∣I(h0)∣
=

1+3β 2

4
. (30)

It is readily seen from the expression above that forβ = 0 the integration error is
eq = 0.25, as required. Since the erroreq(h0,β ) is a monotone function ofβ , it
reaches its maximumeq = 7/16≈ 0.44 atβ = 1/2. Hence, moving a node away
from the maximum point on a grid with the fixed grid step sizeh= h0 can increase
the error of integration almost twice.

In conclusion, let us consider the extreme case whenβ → 1 in the transformation
(27), i.e. when ˜x1 closely approachesx2. From the integration viewpoint, the singular
valueβ = 1 means the transition to a coarser grid where we are now allowed to
use only two grid nodes instead of three. Correspondingly, we have a single linear
polynomial in the vicinity of the hump instead of having two of them as considered
in Section 3.1. It then readily follows from the restriction(28) that we should set

h=
h0√

3

in order to obtain a sufficiently accurate estimate of the integral.

5 Discussion and conclusions

Estimation of pest abundance is a key topic in many ecological monitoring and
control programs. Their ultimate goal is to provide robust and timely recommenda-
tions on the application of pesticides, e.g. once the pest abundance exceeds a certain
threshold [36].

Exhaustive information about species presence in a given area is given by its
population size, i.e. by the total number of its individuals. In practice, the infor-
mation about species presence is usually obtained through collecting samples. The
population size, which is an integral of the population density over the area, has to
be evaluated based on the values of the population density that are known only at
the position of samples. This is a conventional problem of numerical integration.
Indeed, integration of sampled data frequently arises in experimental work as well
as in computational applications [8, 12, 40]. However, the situation with pest moni-
toring is essentially different from a standard problem of numerical integration. The
matter is that the number of samples collected over an agricultural field usually can-
not be made large. Evaluating pest population size becomes aproblem of numerical
integration of a discrete function obtained on a very coarsegrid. Thus the issue of
integration accuracy becomes a crucial one, as we only have sparse data to deal
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with. Following the approach developed in our recent work [19, 21], in this paper
we discuss this issue in much detail.

The emphasis of this paper is on identifying the factors thatcan affect the ac-
curacy of integration on coarse grids. We showed that the diffusion determines the
spatial heterogeneity of the integrand function and that, in turn, is a crucial factor for
accurate numerical integration. We demonstrated how the knowledge of the diffu-
sion rate in the problem can be used to obtain an accurate estimate of the pest popu-
lation size. Alternatively, this knowledge can be used to define the minimum number
N of samples sufficient for accurate evaluation of the pest population size. It should
be mentioned here that optimization of the number of samplesrequired to provide
robust estimates is an important issue for pest monitoring programs [3, 4, 18].

The main results of our study are itemized below:

∙ We showed that the problem of obtaining a robust estimate of the population size
from sparse spatial data can, in principle, be solved by applying the methods and
ideas of numerical integration;

∙ We obtained condition (20) for the grid step size (i.e. the distance between the
sampling locations) to ensure that the estimate of the population size is obtained
with a required accuracy (the error being less than 25%) for given diffusion rates.
The analytical prediction (20) is in excellent agreement with simulation results,
see Tables 1 and 2.

We mention it here that the analysis of the simulation results shows that, in case
the population density has a complex multi-hump spatial structure, an accurate es-
timate of the population size can sometimes be obtained on anvery coarse grid
consisting of just 3 nodes; see the second column in Table 2 and the last paragraph
of Section 3.2.

Note that the coefficientω determining the characteristic length of the spatial
pattern (see Eqs. (11) and (14)) may vary depending on the parameters of intra-
and interspecific interactions. Once these parameters are known, its value can be
estimated theoretically, cf. Eqs. (10) and (11). In ecological practice, the value ofω
can be extracted from available field data (e.g. from previous studies on the given
species) by fitting Eq. (11) to the characteristics of the observed spatial pattern.

∙ We obtained the accuracy estimates (23–24) in case the population is aggregated
inside a single narrow hump and the grid is very coarse, so that the hump is
‘resolved’ by just one node. Even in this rather extreme case, there is a param-
eter range where the numerical integration evaluates the population size with a
required accuracy.

A closer look at the integration of a narrow peak on a coarse grid suggests that it
may lead to a paradigm shift [20] when the integration results should be interpreted
probabilistically rather than deterministically. The matter is as follows. There is a
range of the peak’s positions with regard to the grid nodes where the peak can be
integrated with a sufficient accuracy, outside of this rangethe accuracy becomes
unacceptably low. The problem is that, especially in the routine monitoring, the po-
sition of the peak would not be known in advance. Integrationof the sampling data
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would then provide a result that could be accurate in some cases but inaccurate in
other cases. This is a typical problem with uncertainty, anda standard approach to
deal with it is to quantify different possible outcomes withprobability. The condi-
tions (23–24) can then be used to estimate the probability ofaccurate integration.
Indeed, taking into account that 0< γ < 1, the probability of accurate integration
with a given value ofh is determined by the distance between the curvesγI (h) and
γII (h) (see Fig. 8) along the vertical lineh= const. For instance, ford = 0.0001 it
is about 0.18 ifh= 0.25 but less than 0.05 ifh= 0.5.

∙ We considered the effect of the grid non-uniformness, i.e. when a grid node is
moved from its ‘regular’ position, on the accuracy of our approach. This is a
practically important issue because the grid of sampling positions can hardly be
made precisely uniform either as a result of the human factoror because of pe-
culiarities of the landscape structure. We showed that the accuracy of integration
is robust with respect to a small variation in the node’s position. For the case of
a larger variation, we obtained conditions (28–30) describing what should be the
average grid step size to maintain the required accuracy and/or what the accuracy
is going to be should the step size be chosen irrelevantly.

Our study suggests a few directions for future work. First, an extension of our
approach onto a 2D case should be made. The results obtained here are in a good
qualitative agreement with the results of the numerical study made in [20] for the 2D
case. However, a modification of the analytical methods thatwe used in this paper
will require considerable work before they can be applied toa 2D grid.

Second, in this paper we validated our approach using the numerical data ob-
tained from an ecological model. Application of the methodsof numerical integra-
tion to data on invertebrate sampling made in [20] led to an encouraging result.
However, a further validation is necessary by applying our method to field data ob-
tained in different environments, for different species and on different spatial grids.

In conclusion, a more general comment should be made. In order to reveal the
effect of species diffusivity on the accuracy of the population size estimation, we
used the diffusion-based theoretical framework. Correspondingly, the dynamics of
the population density is described by diffusion or diffusion-reaction equations and
the diffusivity is quantified by the diffusion coefficientD with the dimension as
distance2 ⋅ time−1. This description implies that the individual animal movement is
the Brownian motion when the mean squared displacement< r2(t) > grows with
time linearly:

< r2(t)> ∼ Dt. (31)

The corresponding dispersal kernel is then given by a normaldistribution; see
Eq. (6).

That may rise a question about the generality of our results.Indeed, there have
been a growing amount of evidence that some animal species perform a faster dis-
persal (often referred to as the anomalous diffusion or “superdiffusion,” or Lévy
flight) when the mean squared displacement shows growth faster than linear:
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< r2(t)> ∼ Dtν , (32)

whereν > 1 andD is a coefficient similar to the diffusion coefficient in its meaning
but having a different dimension, i.e. distance2 ⋅ time−ν . The dispersal kernel in this
case has a fatter tail, e.g. showing either exponential or power law rate of decay
at large distances. However, the main result of the dimensions analysis still holds,
i.e. there is the only quantity with the dimension of length,although its expression
becomes slightly different:

∆a ∼
√

Dtν , (33)

cf. Eq. (7).
There have been several studies concerned with the relationbetween the spa-

tial heterogeneity and the ‘diffusivity’ in a broader sense. For instance, it has been
shown in [22] that the characteristic length is a power-law function of the coefficient
D (with the exponent larger than12) in the case of a clearly non-Brownian motion
in a turbulent environment. The dependence of the rate of decay in the population
density on the combinationx/(Dtν) rather than onx alone was proved in [9]. These
results point out that the diffusivity rate, considered in asomewhat broader sense,
still is a controlling factor that determines the characteristics of the spatial hetero-
geneity. Therefore, our results and conclusions about its impact on the accuracy of
the population size estimation are not restricted to the case of the standard Fickian
diffusion and the corresponding Brownian motion of individuals, but should remain
valid in a more general case.
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Appendix: Approximation of a hump by a quadratic function

Let u(x) be an integrand function that has a local maximum (a ‘hump’) at point
x1, wherex1 ∈ [0,1]. Consider pointsx0 = x1−h andx2 = x1+h, whereh> 0 is
an arbitrary parameter defining the ‘hump width’. For instance, the valueh can be
defined from the condition thatu(x2) = 0.1u(x1). The examples of the choice ofh
will be given further in the text for a particular problem under consideration.

Once we know the function valuesum ≡ u(xm), m= 0,1,2, we can approximate
u(x) by a quadratic polynomial. That is a well-known interpolation problem (e.g.,
see [6]) and below we give a brief description of this technique.

To find the equation of the quadraticg(x), the function values are generally
needed at three points, so that the coefficients of the function g(x) can be recon-
structed using the conditionsg(xm) = u(xm),m= 0,1,2. However, in our case it is
more convenient to write a quadratic function in the form
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g(x) = B−A(x− x1)
2,

because we requireg(x) to have the same maximum as the hump that it replaces.
The coefficientsA andB are then obtained by using just the two collocation condi-
tionsg(xm) = u(xm),m= 0,1. Thus, the hump is replaced by a quadratic which is
symmetric about the location of the maximumx= x1.

We now introduce the interpolation erroreint(x) in order to evaluate what we
miss when we replace a humpu(x) with the functiong(x). The functioneint(x) is
defined at any pointx of the interval[x0,x2] as

eint(x) = ∣u(x)−g(x)∣.

We then consider the maximum distance between the functionsu(x) andg(x),

emax= max
x∈[x0,x2]

eint(x).

The maximum interpolation erroremaxdepends onh, as it is demonstrated by the
following example. Consider the approximation of a hump by aquadratic function
for the pest population densityu1(x). The coefficientsA and B for the quadratic
functiong(x) are defined from the collocation conditions as

A=
u1(x0)−u1(x1)

h2 , B= u1(x1).

The interpolation erroremax incurred by replacing the hump in the population dis-
tributionu1(x) by a quadratic function is shown in Table 3. Ash decreases, so does
the size of the interpolation error. This is further illustrated by the quadratic approx-
imations shown in Fig. 4.

h 0.125 0.0625 0.0312 0.0156

emax 0.3325 0.0922 0.0123 0.0011

Table 3 The interpolation error for the quadratic functions approximating the hump ofu1(x) for
various values ofh.

Once the integrand functionu(x) has been replaced by a quadratic function in
the vicinity of the hump, we can integrate the functiong(x) by a chosen numerical
method. Let us apply the method outlined in Section 2.1 to both functionsu1(x)
and g(x) to integrate them in the vicinity of the hump. Consider the integration
error local to the hump, i.e. on the interval[x0,x2], where the functionu(x) and
its corresponding quadratic replacementg(x) are approximated by piecewise linear
polynomials. The integration error (4) computed for the function u1(x) and for the
quadratic functionq(x) is denoted in Table 4 aseu andeq, respectively.

It can be seen from Table 4, thateq provides a sufficiently reliable estimate for
the integration error (4). This conclusion is further confirmed by the results of Table
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h 0.125 0.0625 0.0312 0.0156

eu 0.0641 0.0464 0.0279 0.0091
eq 0.1839 0.0961 0.0341 0.0096

Table 4 The integration error (4) when the integral is computed in the vicinity of the hump. The
integration errors are computed for the density distribution u1(x) (the roweu), and its quadratic
approximationg(x) (the roweq). The functions are approximated by piecewise linear polynomials.

5 where we integrate bothu2(x) andg(x) in the vicinity of the first hump in the
multi-peak distributionu2(x) (see Fig. 2b). Thus our assumption that the density
distributionu(x) can be approximated by a quadratic function in the vicinity of a
hump is justified by computation of the interpolation error and the integration error
and such approximation can be used for further theoretical and numerical analysis.

h 0.0312 0.0156 0.0078 0.0039

eu 0.0545 0.0532 0.0267 0.0080
eq 0.1986 0.1024 0.0325 0.0086

Table 5 The integration error for the first hump in density distribution u2(x), and its quadratic
approximationg(x). The functions are approximated by piecewise linear polynomials.
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