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Abstract Estimation of the population size from spatially discreaengling data

is a routing task of ecological monitoring. This task may kuoar become quite
challenging in case the spatial data are sparse. The |&g@ritappens in nationwide
pest monitoring programs where the number of samples per diebrea can be
reduced, due to resource limitation and other reasons staajdiew. In this rather
typical situation, the standard approaches become uhlelielere we develop an
alternative approach to obtain an estimate of the populaie from sparse spatial
data by considering numerical integration of the poputatiensity over a coarse
grid. We first show that the species diffusivity is a conirglparameter that directly
affects the complexity of the density distribution. We thudrtain the conditions on
the grid step size (i.e. the distance between two neighf@amples) allowing for

the integration with a given accuracy at different diffusiates. We consider how
the accuracy of the population size estimate may change isdimpling positions
are spaced non-uniformly. Finally, we discuss the impiaes of our findings for

pest monitoring and control.
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1 Introduction

Theoretical ecologists routinely operate with quantiiiesaverage population den-
sities and/or population sizes, apparently assuming liegt¢an be measured in the
field with sufficient accuracy. Indeed, there is a variety pp@aches to estimate
the population size depending on the species taxonomy aagiBal traits [37].
However, it is almost never measured directly, e.g. by dogrdll the animals in a
given field or forest. Much more typically, an estimate isadied through collect-
ing samples and their subsequent analysis, e.g. by usitigis& methods [32]. The
accuracy of the estimate then depends significantly on thebeuof samples. This
has long been a focus of applied statistical analysis, yaethre some issues that
remain rather poorly understood. The matter is that thedadstatistical methods
have been more on calculating the variance in the samplitag(dad on the relation
between the variance and the mean [38]) rather than on the desesity itself.

The essence of the problem can be readily seen from the fioljpgxample. Let
Up,...,Un_1 are the values of the population density of a given specitsmodd at
the location of the sampleas,...,rn_1, respectively, wherd\ is thus the number
of samples. In order to obtain the average population densind/or the (total)
population sizé in an ared, this information must somehow be ‘integrated’ over
the area. A commonly used statistical approach to estinhet@dpulation size is
based on the arithmetic average [35]:

1N71
| ~ | = Al, where U= N Zoun ~U. (1)
n=

This approach works well wheN is sufficiently large because the theory predicts
that U converges tal whenN tends to infinity. However, il is not large, the ap-
plication of Eq. (1) become questionable, especially whendensity distribution

is not spatially homogeneous but exhibits some form of sgagien. We want to
mention it here that mathematically rigorous criteria assgy the minimum num-
ber of samples required to obtain a robust estimate of thalptipn size are largely
missing, and the decision about the optimum number of sagdications is often
made based on the intuition [3].

The crucial question for approach based on (1) is if the nurabsamples can
always be made large enough to ensure that Eq. (1) is valithrileally, in a partic-
ular scientific study, the number of samples can indeed e [&.g. a few hundreds
per an agricultural field), which seems to provide reliabfeimation about the pop-
ulation size [1, 10]. However, the first observation we magelis that the idea ‘the
more the better’ does not always work in case of samplingbecause excessively
large number of samples in a given area may have a disrugtact en the behavior
of the monitored animals, thus resulting in biased counts.

The second observation is that the situation becomes mucdewchen the in-
formation is required about the abundance of a pest spddiesmatter is that pest
species are usually subject of nationwide or regional nooiniy programs. This im-
plies that the information is collected (i.e. samples akertd simultaneously across
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a large region. Due to resource limitation, it means thahtmaber of samples then
may become as small as just one or a few per unit area or per[fig]JdMore-
over, even under an idealized assumption of unlimited nesmya large number of
samples in an agricultural field would hardly be possiblergay Apart from the un-
predictable potential effect on the monitored populati@ntioned above, sampling
introduces a disturbance to agricultural procedures. Es¢ mponitoring specialists
would not be allowed to make this disturbance large as it @anagje the agricul-
tural product (e.g. crops) significantly, hence making ttodgrtive measures rather
senseless.

Therefore, a challenge of pest monitoring is to obtain bddianformation about
the pest abundance from sparse spatial data, i.e. from arsamaberN of samples.
In other words, we need to be able to obtain a robust estinfidie pest population
size in the range dfl where the application of Eq. (1) is likely to become unrdkab

In our study, we develop an alternative approach to addnésshallenge, basing
on ideas different from that of the statistical analysisré-Hee restrict our consid-
eration to a hypothetical 1D case. (We mention it here thanaing the sample
locations along a line sometimes appear to be more effetttaue arranging them
on a 2D grid; e.g. see [1].) We start with the case when the Bagnpositionsx,
(n=0,...,N—1) are equidistant, i.ex1 = X, + hwhereh > 0 is constant. Equa-
tion (1) can then be written as

N-1 b

I = nZbunh ~ /a u(x)dx = 1, 2)

whereh=L/(N—1), xo =a, xy—1 = bandL = (b—a) is the size of the domain. It
is readily seen that Eq. (2) coincides with the simplest wethf numerical integra-
tion. This coincidence is not just by chance: a closer lodkafproblem shows that
estimation of the population size based on the values of lptipn density at dis-
crete space (i.e. the position of the sampling points; sgelfyiis exactly the same
as the general problem of numerical integration [19]. Wedfoee can make use of
a vast variety of tools and methods of numerical integragiccumulated in the field
of numerical mathematics, e.g. see [7]. In section 1.1 bel@briefly revisit (to the
extent required by the goals of this paper) the main ideasioferical integration
and reveal the problems that arise when we apply these id¢ls population size
estimation from sparse spatial data.

1.1 Numerical integration on coarse grids: The problem outline

A standard problem of numerical integration is to approxarthe integral by a
suml:

b
| :/ u(dx =~ T, ®)
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where the particular expression for the siirdepends on the choice of the inte-
gration rule; one option is given by Eq. (2), some more adedraptions will be
considered in section 2.1. In its turn, the change of intégnao summation im-
plies that, instead of the integran(x) defined on a continuous domdia b|, we
are provided with a discrete set of valuggg), u(xz),...,u(xy—1) (Fig. 1, bottom).
For any method of numerical integration, an essential requent is that the
approximatiori ~ | should be accurate enough to meet the condiigne, where
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Fig. 1 (top) An example of field data collected in a field study on aedhpest [10], the numbers
show the number of insect caught at the corresponding lorati space, the boxed numbers show
the samples along a transect; (bottom) a sketch of the naalentegration problem, the diamonds
show the population density at the positiag) X., Xy_1 of the samples while the actual continuous
density distribution (shown by the dashed curve) remairkaiown.
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¢ is the given tolerance and the integration eeds defined as

e= % (4)

In the below, we refer to the set of pointg n=0,1,...,N— 1 in the domain
[a,b] as a computational gri@. The location of the grid nodes is generally defined
asxn.1 = Xn+ hn, whereh, > 0 is the grid step size. The grid is called uniform if the
grid step size is constarit, = h= (b—a)/(N — 1), and non-uniform otherwise. In
ecological applications, the integrand functiaix) has the meaning of the density
of the pest population, while the grid nodesare the points where the samples are
taken. Hence the densityx) becomes a discrete function available at paiRtsnly
(see Fig. 1).

The accuracy of ecological data is usually not very high aedck the error
tolerances ~ 0.25— 0.3 is regarded as acceptable [17, 34]. However, even this rela
tively undemanding level of required accuracy cannot asnas/ provided when the
function {un = u(xy), n=10,...,N — 1} is integrated on &oarse grid i.e. where
the numbeN of nodes is small. The lack of information about the integrumc-
tion u(x) may lead to an inaccurate evaluation of the integral (3) Aectimerical
integration of sparse data may result in a large integragioaor.

Meanwhile, it has been shown in [19, 20] that an integrahestei computed
on coarse grids does not necessarily lie beyond the rangecafacy required in
real-life ecological problems. The results obtained in, [29] show that the accu-
racy of integration on coarse grids is defined by the spatétrogeneity of the
integrand function. For instance, the examples considier§td, 21] demonstrate
that, when coarse grids are considered, numerical iniegrat a monotone func-
tion gives a considerably better accuracy than the integratf a function that has
several ‘humps’ or oscillates rapidly. In its turn, the splastructure of the popu-
lation densityu(x) (i.e. the integrand) is determined by several physicdbgical
parameters, in particular, by diffusion. In the next settiwe consider the effect of
diffusion in more detail.

1.2 Spatial heterogeneity and the effect of diffusion

We begin with a simple yet illuminating example when the dapan density distri-
bution is described by the scalar diffusion equation, tregiecting for the moment
the impact of population multiplication and the intersfiiednteractions:

au(x,t) d%u
s~ Coe ®)

whereD is the diffusion coefficient due to the self-movement of indiials [16].
For the purposes of this section, we consider a populatidindrunbounded do-
main,—o < X < . The population density distribution over space, i.e. thlaton
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of Eqg. (5), depends on the initial conditions. In case of apeource release at a
positionxp, it is well known that
x)2

4Dt

I
u(x,t) =
Oot) V4nDt
It is readily seen that the characteristic width of the disition (6), i.e. the charac-
teristic length of the spatial heterogeneity, is given as

A~ /Dt 7)

where the sign- means ‘up to a constant coefficient’. The solutions of thiudibn
equation obtained for some other ecologically sensiblgaintonditions, e.g. for
a release over a finite domain, possess similar propertees[&3], section 9.3),
i.e. the characteristic size of the arising spatial hetenedy is given by (7). A more
general approach based on the analysis of dimensions shawthis is, in fact, a
generic property of the diffusion equation. Briefly, the taais that the diffusion
equation contains a single parameter, the diffusion coeffi®©, and its dimension
is distancé - time 1. Therefore, for any given timg the only quantity with the
dimension of length is/Dt; see [2] for more details.

The next level of complexity is a single-species model withitiplication, i.e. a
diffusion-reaction equation. Consider a particular casenvreproduction is de-
scribed by the logistic function:

du(x,t)  _0d%u u
a ~Paetou(l-g) ®)

wherea is the per capita growth rate aKdis the carrying capacity. The dimension
of a is time~! and hence the only way to create a quantity with the dimension
length from the parameters of Eq. (8) is

Mg ~ /D] ©)

For a wide class of initial conditions, in the large-time ilirkq. (8) describes a
travelling front [14] and themd¢, gives the characteristic length of the system'’s
spatial heterogeneity, i.e. the width of the front.

In case of multi-species systems, e.g. as described by ansyst diffusion-
reaction equations, application of the dimensions amalgdess instructive as such
systems contain more than one parameter with the dimengitime or inverse
time, and more than one diffusion coefficient. However, ¢reme some alternative
approaches. Let us assume that all diffusion coefficiente iae same valu®.
Consider the case when the corresponding non-spatialnsysts a unique posi-
tive state and this state is as an unstable focus. In this tassystem is known to
develop complex, chaotic spatiotemporal pattern sometierred to as the “bio-
logical turbulence.” [13]. The characteristic lengif of the emerging multi-hump
spatiotemporal pattern, i.e. the width of a single humphéntgiven as [24]
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) D 1/2
Ag = 2711C (m) s (10)

where maxRe\) is the maximum real part of the eigenvalues of the linearized
system andc* is a numerical coefficient of the order of unity. Note thahcsi
maxR€A) has the dimension of time, Eqg. (10) is in a good agreement thuith
dimensions analysis; in fact, it can be regarded as a géregiah of Eq. (9).

An observation important for our analysis is that, in allethicases (7), (9) and
(10) the characteristic length of the spatial heteroggiigjproportional toy/D, i.e.

Ay = wVD, (11)

wherew is a factor that can depend on the parameters of the intrainterdpecific
interactions, but not on the diffusion coefficient.

1.3 Goals and the road map

The main goal of this study is to evaluate the effectivenédssomethods of numer-
ical integration as a possible tool to obtain a reliablenestée of the population size
from spatially discrete sampling data. We are especiatbrasted in the case when
the values of the population density are only available oveaise grid, i.e. when the
samples are taken only at a few spatial locations. This ipigay situation in pest
monitoring programs.

A straightforward approach to increase the integrationugsty is to make the
number of nodes in the computational grid sufficiently lairgerder to resolve the
spatial heterogeneity. However, simulations show thapractice, an acceptable
accuracy can be obtained with a much smaller number of n@des, in case of
an ‘extreme aggregation’ when a peak of the population tensay fall almost
completely in between of two subsequent nodes. In this papemake a more
quantitative insight into this problem. In particular, vetate this issue to the species
diffusivity. Since the theory predicts that the hump widépdnds on the diffusivity,
we can evaluate the grid step size required to accuratalgiiate a complex spatial
pattern in terms of the diffusion coefficient, assuming thatlatter is known as a
biological trait of the given pest species.

The second issue is the impact of the spatial structure ofjthikitself. The
previous analysis was done under condition that the grigisotm. However, this
situation is hardly realistic as a certain variation in tamgles location is inevitable,
even in a very carefully designed field study. An importargstion therefore is how
the accuracy of integration may be affected by the effect®ofuniformness.

The paper is organized as follows. In the next section, wdluice a popula-
tion dynamics model that we use to generate ecologicallynmgéul population
distributions for various diffusion rates. We then desetiibe numerical integration
method designed to evaluate the population size and appysipatial population
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distributions of different complexity. In section 3, we fiem a detailed mathe-
matical analysis of the impact of the diffusion rates on tbeuaacy of numerical
integration on a coarse grid. In section 4, we investigagestfect of the grid’s non-
uniformness on the population size estimation. Finallyséotion 5 we summarize
our findings and discuss their implications for the pest rmwimig practices.

2 Theinsight from the ecological model

In order to assess the effectiveness of our approach torattediscrete sampling
data, we now need data. Note that, to make a sensible asse¢sara@eed to know
not only the values of the population density arranged alotige (e.g. see Fig. 1,
top) but also the actual population size to compare our estirto. However, field
data satisfying this requirement are rarely available. &dwer, to study the effect
of the grid step size (i.e. the effect of different samplecépg) on the accuracy of
the estimate, we need to compare the results obtained aratiff grids, which is
almost impossible to obtain in the field.

For the above reasons, instead of field data, here we use fhdation density
distribution generated by an ecological model. Specificalle use the spatially
explicit Rosenzweig—MacArthur model which, in dimensissd variables, has the
following form [14]:

du(x,t 0%u uv

;t ) :d—0x2+u(1—u)——u+h, (12)
ov(x,t) 0%v uv

o~ ee ko™ 13)

Hereu andv are the dimensionless densities of prey and predator, cigplg, at
timet and positionx wheret > 0 and O< x < 1. The distances are therefore mea-
sured in fractions of the original domain lendgth(See [13, 19] for more details with
regard to the choice of the dimensionless variables andhteas.) The dimension-
less diffusion coefficiend quantifies the species diffusivity due to the movement of
the individuals. For the sake of simplicity, we assume it éothe same for both
species.

It is readily seen that the relation between the diffusioafficient and the char-
acteristic length of the system’s spatial heterogeneityaias exactly the same as it
was in the dimensional units, i.e.

%:%zwa. (14)

Here the coefficientv depends on the system’s parameters, cf. Eq. (10). However,
an extensive numerical study performed in [24, 25] revethet] in the predator-
prey system (12-13), its value is relatively robust to clesrig the parameter values,
typically being about 25.
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An important feature of the Eqgs. (12—-13) is that interachietween reaction and
diffusion is known [13] to result in pattern formation, egpe Fig. 2, where the
properties of the pattetrdepend on the value of dimensionless diffusidtyn par-
ticular, ford being on the order of 1 or larger, the solutia(x, t) will be a monotone
function of x, which means that the local population oscillations arecainsyn-
chronized over the entire domain. However, oscillationdiéiérent positions can
become de-synchronized fdr< 1 (see [24]). In the latter case the initial condi-
tionsu(x,0), v(x,0) evolve to an ensemble of irregular humps and hollows. For an
intermediate value a, the pattern can consist of just one or a few peaks only (see
Fig. 2a), while the number of humps increases for smallaresabfd resulting in
oscillations shown in Fig. 2b. From an ecological perspecit means that in a do-
main of a given length a slowly diffusing population is matkely to form a spatial
pattern than a fast one.

Fig. 2 Ecological test cases. Typical spatial distribution of ffesst population density in the model
(12-13) for the values of the dimensionless diffusivity 50~ (a) and d= 10~ (b). The contin-
uous functions 4(x) and w(x) are presented by solid lines, while the function valueslatée for
integration on a coarse grid are shown as black filled circles

From a numerical viewpoint, the above conclusion meansahatmay expect
lower accuracy of integration when the size of slowly diffigspest population is
evaluated. On the contrary, the complex spatial structfiteeopopulation density
of a fast diffusing pest may be not well resolved on coarsésgoecause we have
to deal with an oscillating integrand functioix). Thus our next step is to compute
the integration error for the functions shown in Fig. 2 taaé$ish the link between
spatial heterogeneity of the integrand function and thei@y of numerical inte-
gration when the number of grid nodes is small.

1 At least, for anyt not too small, in order to avoid the effect of the initial citrmhs.
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2.1 The method of numerical integration

In this subsection we briefly discuss a method that we useuiorenical integration
of a discrete functiom,, n=0,...,N — 1. The numerical integration technique we
employ in order to compute the integral (3) requires a usegptace the integrand
functionu(x) at each grid subinterval, = [Xy,%n+1], N=0,...,N—2, by a local
polynomial of degre,

K
p& (X) = Z aknxka
k=0

where the expansion coefficieralg, are reconstructed independently at each subin-
tervalc, (as it is indicated by the subscriptin their notation). The integral (3) is
then evaluated as

| = /bu(x)dxx NZ:In, (15)

Xn41
where the integrdk, is readily computed over the grid cel| asl, = / PR (X)dx.
Xn
The details of the implementation of the composite intégnatule (15) can be
found in [19, 21]. Let us note here that the numerical tech@ige use in the prob-
lem is the same as the Newton-Cotes family of methods of nigaléntegration
[7] if uniform grids (hh = h = (b—a)/(N — 1)) are considered. In particular, the
polynomial degreeK = 0, K =1 andK = 2 correspond to the well-known meth-
ods of numerical integration such as the midpoint rule, tapdzoidal rule and the
Simpson rule, respectively. These are the first three mstfioth the Newton-Cotes
family. However, our approach is more flexible as it allow® @a deal with non-
uniform grids where the grid step sikg # const
One important observation about the integral evaluatidhas asymptotic error
estimates for the approximation (15) will depend on the poiyial degre&. It has
been shown in [19, 21] that the integration error (4) can tEuated on uniform
grids as
e=Ch¢+, (16)

whereC = const The estimate (16), however, only holds on fine grids wheee th
grid step sizdn is very small (ultimately, tends to zero). Meanwhile, weéddemon-
strated in our previous work [19, 20] that the asymptotioeestimates do not hold
on coarse grids where, generally speaking, we cannot retiecategration error
by using higher order polynomials. Hence, other ways of radlitig the accuracy
of integration have to be established when one has to dealoedrse grids, where
N is small, and in the following subsection we discuss thibfam.
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2.2 Estimating the pest population size when the number of trapsis
small: numerical test cases

The discussion of the accuracy of numerical integratiowireg us to understand
how to actually compute the integration error for the ecmalgdistributions of
Fig. 2. The problem is that the computation of the integraoror (4) is based
on the knowledge of the exact answer. However, the analatation of the sys-
tem (12-13) is not known and we cannot compute the intdgaalrequired by the
definition (4). Therefore, we have to define the ‘exact’ valtihe integral when the
pest population density represented by the funatioa) is integrated. For this pur-
pose we compute a numerical solution to the system (12—18Meny fine uniform
grid G¢ of Ny = 215+ 1 = 32769 nodes, and we consider the result as the ‘exact’
solution to the problem. The corresponding value of thetamiuntegrall is then
considered as the exact integral that is compared with thue vd the integral on a
given coarse grichc.

For the purpose of our study, we are going to compute the riatieg error as
a function of the number of grid nodes= e(N), as we want to understand what
happens to the approximatidrwhen we increase or decrease the number of grid
nodes. A usual technique to generate a finer uniform grid faccoarser one is to
halve each grid subinterval by inserting a new node at théngerival midpoint.
Let us denote the number of grid subintervaldlasvhere we havél = N — 1. We
generate a sequence of uniform grids, where the number d@fitemals on each
grid is defined adl = sNg. The numbeR, of grid subintervals on the initial grid is
takenNg = 8 and the scaling coefficiestvaries as = 2™, m=0,1,2,...,12. The
integrand functionu(x) is then readily available at nodes of each grid generated as
above, as we simply project it from the fine g} where it has originally been
computed. Hence the integration error (4) can be easily e@fim any grid in the
sequence to obtain the convergence e@¢) of our numerical method.

Let us refer to the density distributions shown in Fig. 2a Bigd 2b asu; (x) and
uy(x) respectively. We integraig (x) anduy(x) and compute the error (4) on each
uniform grid generated as above. The integration error asietibn of the number
N of grid nodes for the integrand functian(x) is shown in Fig. 3a, while the
error for the functioruy(x) is displayed in Fig. 3b. The integration error is shown
on a logarithmic scale. In both cases the error is computedgproximation by
polynomials of degre& = 3 andK = 5.

It is readily seen from the figure that the behavior of the rectove depends on
the integrand function. For the functien(x) the convergence results are in a good
agreement with the error estimate (16). Namely, the polyiabapproximation with
K = 5 provides better accuracy if we compare it with #e- 3 approximation on
each grid in the sequence; see Fig. 3a. The integration isradways within the
required range < 0.25, as we already have~ 0.1 on the initial grid ofNg = 9
nodes. Hence the coarse initial grid has a sufficient numbeodes to provide an
accurate estimate of the integral in case that the distoibug (x) is considered.
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Meanwhile, for the function;(x), the use of higher order polynomials to ap-
proximate the integrand does not always result in a moreratzapproximation on
coarse grids. It can be seen from Fig. 3b that the integratioor of a higher order
polynomial approximation = 5) remains about the same as the errdf ef 3 ap-
proximation. Moreover, the err@k_s can even be greater thag_s as it is shown
in Fig. 3b for a grid ofN = 65 nodes. As we have already discussed, the complex
multi-peak spatial patterm(x) may require a finer grid to resolve function’s spatial
oscillations. Also, despite the initial grid &f = 9 nodes still providing the accu-
racy acceptable for ecological applications, the eerer0.25 is essentially bigger
in comparison with the integration error obtained on theesgnid for the integrand
functionuy(x).

£=0.25

1 1 1 1 1 Lo aahy 1 1 1 1 111
10 20 30 40 50 60 70 N 10 20 40 6 80 00120 N
N=65 N=65

Fig. 3 The integration error (4) as a function of the number of graties for ecological test cases
shown in Fig. 2. (a) The density distribution(). The error & _3 of the approximation by polyno-

mials of degree K= 3 remains always bigger than the errog.es computed for the approximation
by polynomials of degree K 5. (b) The density distributionaix). The approximation by high

order polynomials (K= 5) cannot always provide better accuracy.

The above examples demonstrate that, while it is sufficierttave a grid of
several nodes in order to provide accurate integrationteefur a simple spatial
distribution, the same number of grid nodes may give the raoyubeyond the ac-
ceptable range if a more complex spatial pattern is consildrhe error behavior,
when the convergence rate does not follow its asymptoticevél 6), is called “a
coarse grid problem” [19, 21]. Since the error cannot berodietd based on the
estimate (16), it becomes extremely important to undedstdrat factors determine
the error on coarse grids where the spatial structure ofiiegiand function is not
well resolved. That will be done in the next section.
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3 Theimpact of the diffusion rates on the accuracy of numerical
integration

In this section we derive the functional relationship betwthe diffusion coefficient
and the grid step size required to provide a good integraooaracy. Our previous
discussion revealed that using higher order polynomiakspioroximate the inte-
grand function does not necessarily result in a more aceesdimate of the integral
on coarse grids. Hence we now reduce our attention to a temhnsimple yet il-
luminating case when the integrand function is approxichbielinear polynomials
(K=1).

Let a nonnegative function(x) have a ‘hump’ (i.e., a local maximum) at the
interval [0, 1]. The first assumption we make for our analysis is that the hcamp
be handled as a quadratic function. Namely, let us introdluesubintervalxg, x»]
of the length R in the vicinity of the hump (see Fig. 4). We then assume that in the
vicinity of the hump the integrand(x) can be considered as

u(x) =~ g(x) = B—A(x—x1)%, X€ [xo,%2],

whereA > 0, B > 0 and the functiog(x) has the maximum at the interval midpoint
X1 = Xp + h. We also requirgy(x) to be a nonnegative function over the interval
[X0,X2], that isg(xo) = g(x2) = B— AR > 0. That gives us the following condition

relatingA, B andh:
B

2
h* < A a7)

The examples of the approximation of a hump by a quadratictiom for the
pest population density (x) are shown in Fig. 4, where various choice of poigs
X1 andxz in the vicinity of the hump is illustrated. The details of kuapproximation
can be found in the Appendix.

Itis obvious that we introduce an additional error to thegmation problem when
we tackle a hump as a quadratic function (see the discussigpgendix). However,
as we will see below, such approximation enable us to makectoconclusions
about a grid step size that should be recommended for aecintagration of the
functionu(x). Thus our next step is to investigate what happens when viecefhe
quadratic functiorg(x) (and, therefore, the original functiar{x)) with two linear
polynomials in the vicinity of the hump, as our method of nuiced integration
requires us to do. We first consider a uniform grid where orgidfnodes is located
at the maximum point. We then study the case of an arbitrastion of a maximum
point on a coarse uniform grid. Finally, we discuss non-omif grids to understand
what impact the grid distortion will make on the integratemnor.

2 Note that the notatiory, X1, Xo We use to discuss the hump approximation is not the same as the
numeration of grid nodes we introduced in the previous sactn other words, the ‘endpointg)
andx, are arbitrarily located interior points of the interyal 1].
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Fig. 4 Hump approximation for the population density distribatig (x). (a) Quadratic approxi-
mation withh = 0.125. (b) Quadratic approximation with= 0.0625.

3.1 Uniform grid

Let the quadratic functiog(x) be integrated at the intervidy, xo] where we con-
sider a local grid of two subintervatg = [xp,X1] andcy = [x1, X2], the node location

1
beingx; = Xo+h andx, = x; + h. We use linear polynomialpf(x) = 5 A&
at each grid celt,, n = 0,1, where we reconstruct polynomial coefficients from
the conditionp} (x) = g(%), k= 0,1,2, aspd(x) = B+ Ah(x; — x) and p}(x) =
B — Ah(x—x1). The approximation of a quadratic function by linear polgnals

over a grid of the two subintervals is illustrated in Fig. 5.
We then compute the approximate intedrab

X1 X2
I~:/IEJ?(X)dXJr/p}(x)dx = 2Bh— AR,
X0 X1
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Fig.5 Approximation of a quadratic function by linear polynonsialver a uniform grid of 3 nodes.

while the exact integral is

X2
| = /g(x)dx:zsh—%hg. (18)
X0
Consider the error of integration (4) and let us require ¢ra0.25. Correspond-
ingly, we havell —i| = AT Therefore, we obtain:
AR 1 2AR3
T<Z‘28h_7" (29)

Solving (17) and (19) together and taking also into accduattit> 0 (asB > 0 and
g(x) > 0 for anyx € [Xo, X2]), we obtainh < hg = /B/A.

In order to reveal the impact of diffusion, we now define therfip width’ & of
the quadratic functiog(x) as the distance between its roots, so that 2./B/A.
Correspondingly, we obtain that the required accurasy 0.25 is ensured for
h < hg = &/2. Finally, recalling that the characteristic length of thetial het-
erogeneity is given by Eq. (14) and substituting it into thxeression above, we

arrive at
h< hy— “’%ﬂ. (20)

Whatever is the value of the diffusion coefficiahtcondition (20) is sufficient to

integrate the ‘hump’ with the desirable accuracy 0.25. The limiting valuee =
0.25 is reached fohg.
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3.2 Theanalysis of the grid step size for ecological distributions

In this subsection we validate our findings — in particulandition (20) — by con-
sidering the density distributions shown in Fig. 2. We fitsidy the functioruy (x)
that has a single hump. The aim of our numerical test is to fiedniumbeN* of
grid nodes sufficient for accurate integration of the pegietion density; (x). In
other words, we integrate the function(x) over the domair0, 1] on a sequence
of uniform grids and compute the corresponding integragioor (4). We then look
for the grid step sizé* whose value provides us with the integration eger 0.25.
That should give us the numbb* ~ 1/h* of grid nodes (or the number of sam-
ples in the pest monitoring problem) required to resolvesbatial heterogeneity.
The numbeN* (or the grid step sizh*) obtained in this straightforward integration
procedure is then compared with the estimate (20).

Let us note it again that the hump itself is not, of course, adgatic function
and the integration error obtained for the integrandx) is not the same as the
integration error derived for the quadratic function. Hoes since a single hump
can be approximated by a quadratic function with good aoyu(see Appendix), we
expect that the results of our numerical experiment willlbeeiasonable agreement
with the estimate (20) that can be obtained from the infoimnabout the diffusion
coefficient only.

The estimate (20) gives us the valoie~ 0.12 for the diffusion coefficiend =
104 used to generate the density distributioi{x). The integration error when
the functionuy(x) is approximated by linear polynomials over a uniform grid of
N nodes is shown in Table 2. We compute the error (4) on a verseagid of 2
subintervals, we then refine the grid by halving each gridrgabval, compute the
integral error again and repeat the refinement proceduikthaterror is smaller
than the threshold value= 0.25. It can be see from the table that the results of
numerical integration are in good agreement with our egéni20). While a very
coarse grid does not provide the accuracy 0.25, the grid ofN = 9 nodes If =
0.125) gives the integration error much smaller than the reguiimit e = 0.25.
Hence the number of grid nodes can be evaluatddi‘as 9.

N 3 5 9 17
h 0.5 0.25 0.125 | 0.0625

[e][ 0.6948] 0.5450] 0.0823] 0.0036]

Table 1 The integration error (4) for the density distributian(x) on a sequence of uniformly
refined grids with grid step size. The integrand functiomi; (x) is approximated by piecewise
linear polynomialsK = 1) on each grid in the sequence.

Consider now the density distributiaa(x) shown in Fig. 2b. The diffusion co-
efficient used to generate the distributiniix) is d = 10~°. Hence the estimate (20)
of the grid step size ik ~ 0.03. In other words, a uniform grid should contain about
30 nodes in order to guarantee the integration exk010.25.



Numerical Study of Pest Population Size at Various Diffasrates 17

1.4

—u2(x)
12t “* i) | -

1.4
—u2(x)
1.20 ~e-plx)| |

Fig. 6 Piecewise linear approximation for the population dendiggributionuy(x). (a) Approxi-
mation using\ = 17 grid nodes (b) Approximation usiig = 33 nodes.

The values of the integration error (4) are shown in Table 3uBstantial jump
in accuracy is evident when the grid is refined frbla= 17 toN = 33 nodes. This is
further illustrated by Fig. 6 where it can be seen that forutirstervals, the majority
of the humps inup(x) are approximated by a single polynomial and the spatial het-
erogeneity is not well resolved. When the grid is refined ts8Rintervals, all but
the two of the humps are approximated by two or more linearmhials. Approx-
imating a hump with a single linear polynomial is equivalenthe approximation
of a quadratic by linear polynomials over a local grid of twades instead of con-
sidering three nodes for the approximation. That extrense wall be discussed in
more detail in the next section.

At the same time it is worth noting here that for the densistrithution uy(x)
the integration error is not entirely the same as expectau fsur analysis, as the
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integration error actually remains within the requiredgae < 0.25 on any grid

that we use in our computations. We believe that this may éajecause of the
‘cancelation effect’ that may arise when underestimatedrdmtion of the humps
is balanced by overestimated contribution of the hollowswEver, we would like to

emphasize that the error value cannot be predicted on cgedse In other words,
while the estimate (20) guarantees the eger0.25 on a grid ofN = 33 nodes, it

cannot be said a priori what the error is on coarse grids With 33.

N 3 5 9 17 33
h 0.5 0.25 0.125 | 0.0625| 0.0312

[e] 0.1579] 0.1567] 0.2193] 0.1304] 0.000]

Table2 The integration error for the density distributiop(x) on a sequence of uniformly refined
grids. The integrand functiom(x) is approximated by piecewise linear polynomials, see Fig.6

3.3 Arbitrary location of the peak on a uniform coarse grid

In the previous subsection we assumed that there are thiceeagtes in the region
of the hump and the position of the central node coincidek thi¢ position of the
maximum. Especially the last assumption is not entireljisga because in appli-
cations to pest monitoring the position of the populationgiy would usually be
unknown. Hence, two practically important questions thiéeafrom our analysis
above are (i) how the integration error changes when the mani is not at the
position of the node (see Fig. 7) and (ii) whether we can mla&@tid even coarser,
e.g. what will be the integration accuracy if just one gridiads used in the sub-
domain where the hump is located. In other words, we are nosvdsted in the
situation given byN = 3 andN = 5 in Table 3.2 when the entire hump is located
in between two grid nodes. The error shown in Table 3.2 isegaiige, but can we
possibly make it any smaller with the same number of nodes?

Consider a regular grid consisting of three nodgss: = Xg+handxy = xg+ 2h.
Let a population density distribution have a hump within ihierval [xo, x]. We
approximate the hump by a quadratic function. Let us defieeatproximation
g(x) of the hump as

[ B—AXx—x)?, if x& [x,x1],
909 = { 0, otherwise
In the approximation abowe is the location of the maximum point, which is now
different from the node;, and the valueg, andx; are the roots o§(x). We can
expressct in terms of the grid nodes as
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X'=x1+yh=x+h(y+1),

wherey € [0,1]. The rootsq andx are then given by

x =X +h(y+1)—/B/A and xi =X +h(y+1)++/B/A

Fig. 7 Piecewise linear approximation gfx).

The exact integral of(x) in the vicinity of the hump is thus
X2 Rl 2
| = / g dx= | g(x) dx= 2B, 1)
X0 JX| 3

wheredy is the hump width as above. We now approximgite) by two piecewise
linear polynomials as follows (see Fig. 7)

{ p{(x), if X € [Xo,X1],

pi(X), if X € [x1,%z].

g(x) ~

An approximated valué of the integral (22) is then obtained by integrating the
piecewise linear approximation of the functigfx):

k1

= tz: </Xk p‘{dx) — h(B—Ayh?). 22)

We now require the integration error (4) to && 0.25, which means that

0.75 <[ < 1.25l, (23)

wherel > 0. Consider the lower bound of the inequality (23) and findvdleiesy
of parametely for which the equatiom = 0.75| holds. Substituting andl in the
above we obtain
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Bh— Ay’h® = %Bag.

Hence

& [
where we should require the grid step size Jy/2 to gety; as a real number for
any fixeddy. That also makes our analysis consistent with our previessraption
that the grid is very coarse; see item (ii) at the beginnintisf section.

d=0.00001

021

01 L

= 012 : 0.4 * 0.6 0.8 h
Og h

Fig. 8 The functiory(h) for various values of the dimensionless diffusivity d. Téue pf the(h, y)
plane between the two solid curves gives the parameter raungege the integration is done with
the required accuracy € 0.25.

We then consider the upper bound of (23) and find the vajutisat satisfy the
equationl = 1.251. The parametey as a function of the grid step siteand the
hump widthdy is given by

Oy /6h—5d 50
yi(h,ég)_Zh a6 h> 5 (25)

The hump widthd, is defined by the diffusion coefficiedt so thaty in expres-
sions (24) and (25) becomes a functiorhainly for a given value ofl. The curves
vi (h) and y; (h) are shown in Fig. 8a and Fig. 8b for the dimensionless diffusi
ity d =10 % andd = 10~° respectively. The range dfis chosen in both cases as
h € [&y,1], wheredy is calculated from the estimate (14).

For any given value of,, the conditions (24) and (25) define the parameter range
where integral is computed with the required accuracy. éddéet us fix the grid
step size at a certain hypothetitak h* (see Fig. 8) and computg = y(h*) and
vii = i (h*). It then follows from the inequality (23) that for any < y <y the
errorise < 0.25. Also, let us mention that, for any fixédthere exists the value of
y for which i = I; its value is readily obtained from (21) and (22):
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& [h-28 25
y(h)—% TR h>?. (26)

One straightforward yet important observation that can beerfrom Fig. 8 is
that the domain where the errorés< 0.25 is getting smaller when we decrease the
diffusivity d. In other words, a narrow hum@{ — 0) is getting ‘lost’ on a very
coarse grid with the grid step site> d;. Another interesting observation is that
installing a grid node at the location of the maximum poinhigt corresponds to
y = 0) does not at all result in the smallest possible integnagioor as Eq. (26)
clearly gives the valug(h) > 0 (see the dashed curve in Fig. 8 whirel).

4 Nonuniform grid

Our next task is to evaluate the integration error on a nafeum grid, where we
want to find the condition on the grid step sizéhat ensures the required accuracy
e < 0.25 for a given hump widtldy.

In order to make an insight into this issue, we use the sammapp as in Sec-
tion 3.1. We consider a single-hump distribution which weragimate with the
quadratic functiorg(x). However, the functiomg(x) is now integrated on a grid of
three nodeqxp,%X1,%2}, where the central node is now moved to the position
X while the maximum of the integrand remains at the midp&intf the domain
[%0,%2]; see Fig.9. In other words, the new grid is obtained from doumi grid
{Xo,X1,%2} of Section 3.1 by the following mapping:

X1 — X=X+ Bh, (27)

wheref is a parameter quantifying the degree of the non-uniforsytes 8 < 1/2.
The lower limit3 = 0 thus corresponds to the original uniform grid. The uppeitli
B =1/2 corresponds to the case whanis'the midpoint of the subintervay, x»]
(see Fig. 9).

From the ecological viewpoint the transformation (27) vtk 3 < 1/2 means
that for some practical reason one cannot provide equidigtaation of samples
in the area where the measurements are made. In other wagdsarwmot provide
sampling at the midpoing of the intervalxg, x| (for example, because of a natural
obstacle, such as a tree) and have to install a sample someinliee neighborhood
but still close to the poink;. It is important to note that a hump in the density
distribution still remains well resolved, as we are stilloaled to use three grid
points to integrate it.

We now apply the technique described previously in Sectidna® the non-
uniform grid. The exact integralis still given by (18). The approximate vallief
the integral is computed as
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X, X, x+ph X+h/2 X,

Fig. 9 Approximation of a quadratic function by linear polynonsi@ver a non-uniform grid of 3
nodes.

x1+Bh Xo
M= / pO(x)dx+ / pL(x)dx.
X0 x1+Bh

The linear polynomials are now given tpﬁ(x) =B — Ah(x; — BXo) — Ah(B — 1)x
and p}(x) = B— Ah(x; + BXz) — Ah(1+ B)x. Substitutingpd(x) and p}(x) in the
integrals above, we obtain

I = 2Bh— Ah®— AB2h3.

Again we require that the error (4) shouldée 0.25. Substituting the expressions

for | andi'in the conditionl — r| < 0.25 and taking into account the condition (17),
we arrive at
2 B
<—.
A(1+2pB2?)

Recall thaB/A= 692/4 wheredy is the hump width. Making use of Eq. (14) that
relates the hump width to the diffusion rate, we obtain:

< 700\/6
2\/1+2p2

Therefore, the upper bound fois a monotonously decreasing functiorofror
the extreme valug = 1/2 we obtain thah = /2/3ho, wherehy is the restriction
(20) on the grid step size obtained for the uniform grid wh@re 0. Substituting
(20) into Eq. (28), we arrive at

(28)

h < w+/d/6. (29)

Condition (29) gives us the information on how to choose thé step size if we
want to have the relative errer< 0.25 on a non-uniform grid.
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We now want to reveal how the integration error depends ordégeee of the
grid distortion in case the restriction (29) is ignored. ustseth = hg. For the fixed
valuehg, e.g. as defined by the condition (20), the error becomesdaitumof 3,

 [I(ho) —(ho,B)]  1+3B2
eq(ho,B) = T(ho)] =

(30)

It is readily seen from the expression above thatce 0 the integration error is
eyg = 0.25, as required. Since the errey(hg, ) is a monotone function of, it
reaches its maximure; = 7/16~ 0.44 at3 = 1/2. Hence, moving a node away
from the maximum point on a grid with the fixed grid step dize hg can increase
the error of integration almost twice.

In conclusion, let us consider the extreme case when1 in the transformation
(27),i.e. wherx{ closely approaches. From the integration viewpoint, the singular
value B = 1 means the transition to a coarser grid where we are now adldw
use only two grid nodes instead of three. Correspondingtyhave a single linear
polynomial in the vicinity of the hump instead of having twitllem as considered
in Section 3.1. It then readily follows from the restricti(#8) that we should set

o
V3

in order to obtain a sufficiently accurate estimate of thegral.

h:

5 Discussion and conclusions

Estimation of pest abundance is a key topic in many ecolbgimmitoring and
control programs. Their ultimate goal is to provide robust mely recommenda-
tions on the application of pesticides, e.g. once the pesigdnce exceeds a certain
threshold [36].

Exhaustive information about species presence in a givea argiven by its
population size, i.e. by the total number of its individudfs practice, the infor-
mation about species presence is usually obtained throolfgtting samples. The
population size, which is an integral of the population dyrsver the area, has to
be evaluated based on the values of the population densityate known only at
the position of samples. This is a conventional problem aherical integration.
Indeed, integration of sampled data frequently arises pegrmental work as well
as in computational applications [8, 12, 40]. However, ihgasion with pest moni-
toring is essentially different from a standard problemwinerical integration. The
matter is that the number of samples collected over an dgrialifield usually can-
not be made large. Evaluating pest population size becommexéem of numerical
integration of a discrete function obtained on a very cogrsg Thus the issue of
integration accuracy becomes a crucial one, as we only haeses data to deal
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with. Following the approach developed in our recent woi¥ [A1], in this paper
we discuss this issue in much detail.

The emphasis of this paper is on identifying the factors taat affect the ac-
curacy of integration on coarse grids. We showed that tifagiiin determines the
spatial heterogeneity of the integrand function and thatyin, is a crucial factor for
accurate numerical integration. We demonstrated how tlovkatige of the diffu-
sion rate in the problem can be used to obtain an accurateatstof the pest popu-
lation size. Alternatively, this knowledge can be used tiingghe minimum number
N of samples sufficient for accurate evaluation of the pestifatjon size. It should
be mentioned here that optimization of the number of samelgsired to provide
robust estimates is an important issue for pest monitoningnams [3, 4, 18].

The main results of our study are itemized below:

e \We showed that the problem of obtaining a robust estimateegpopulation size
from sparse spatial data can, in principle, be solved byyéapgpthe methods and
ideas of numerical integration;

e We obtained condition (20) for the grid step size (i.e. thatadice between the
sampling locations) to ensure that the estimate of the pojpul size is obtained
with a required accuracy (the error being less than 25%)if@ngdiffusion rates.
The analytical prediction (20) is in excellent agreemerihwimulation results,
see Tables 1 and 2.

We mention it here that the analysis of the simulation resitows that, in case
the population density has a complex multi-hump spatiaicstre, an accurate es-
timate of the population size can sometimes be obtained ovegncoarse grid
consisting of just 3 nodes; see the second column in Tablel 2henlast paragraph
of Section 3.2.

Note that the coefficiendy determining the characteristic length of the spatial
pattern (see Egs. (11) and (14)) may vary depending on therders of intra-
and interspecific interactions. Once these parametersranerk its value can be
estimated theoretically, cf. Egs. (10) and (11). In ecaabpractice, the value ab
can be extracted from available field data (e.g. from prevgtudies on the given
species) by fitting Eq. (11) to the characteristics of theeoled spatial pattern.

e \We obtained the accuracy estimates (23—24) in case thegtapuis aggregated
inside a single narrow hump and the grid is very coarse, sbttieahump is
‘resolved’ by just one node. Even in this rather extreme cisre is a param-
eter range where the numerical integration evaluates tpelaton size with a
required accuracy.

A closer look at the integration of a narrow peak on a coargksgilggests that it
may lead to a paradigm shift [20] when the integration rasshibuld be interpreted
probabilistically rather than deterministically. The teatis as follows. There is a
range of the peak’s positions with regard to the grid nodesrevthe peak can be
integrated with a sufficient accuracy, outside of this ratigeaccuracy becomes
unacceptably low. The problem is that, especially in theéineumonitoring, the po-
sition of the peak would not be known in advance. Integratibine sampling data
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would then provide a result that could be accurate in somesdast inaccurate in
other cases. This is a typical problem with uncertainty, astndard approach to
deal with it is to quantify different possible outcomes wjttobability. The condi-
tions (23-24) can then be used to estimate the probabiligcotirate integration.
Indeed, taking into account thatQy < 1, the probability of accurate integration
with a given value of is determined by the distance between the cupv@s and
vii (h) (see Fig. 8) along the vertical lire= const For instance, fod = 0.0001 it
is about 0.18 ih = 0.25 but less than 0.05 i = 0.5.

e We considered the effect of the grid non-uniformness, ileerwa grid node is
moved from its ‘regular’ position, on the accuracy of our |ggeh. This is a
practically important issue because the grid of samplirgjtjpms can hardly be
made precisely uniform either as a result of the human famttwecause of pe-
culiarities of the landscape structure. We showed that¢heracy of integration
is robust with respect to a small variation in the node’s fiasi For the case of
a larger variation, we obtained conditions (28—30) desumgilvhat should be the
average grid step size to maintain the required accuradpeawtiat the accuracy
is going to be should the step size be chosen irrelevantly.

Our study suggests a few directions for future work. Firateatension of our
approach onto a 2D case should be made. The results obtanedite in a good
qualitative agreement with the results of the numericalygtaade in [20] for the 2D
case. However, a modification of the analytical methodswleatised in this paper
will require considerable work before they can be applied &D grid.

Second, in this paper we validated our approach using theericah data ob-
tained from an ecological model. Application of the methotisumerical integra-
tion to data on invertebrate sampling made in [20] led to atparaging result.
However, a further validation is necessary by applying oathuad to field data ob-
tained in different environments, for different specied an different spatial grids.

In conclusion, a more general comment should be made. Iir twdeveal the
effect of species diffusivity on the accuracy of the popolasize estimation, we
used the diffusion-based theoretical framework. Corredpmly, the dynamics of
the population density is described by diffusion or difarsireaction equations and
the diffusivity is quantified by the diffusion coefficielt with the dimension as
distancé - time~1. This description implies that the individual animal moarhis
the Brownian motion when the mean squared displaceraritt) > grows with
time linearly:

<r?(t) >~ Dt. (31)

The corresponding dispersal kernel is then given by a nodistfibution; see
Eq. (6).

That may rise a question about the generality of our restieed, there have
been a growing amount of evidence that some animal specitpea faster dis-
persal (often referred to as the anomalous diffusion or ésdiffusion,” or Lévy
flight) when the mean squared displacement shows growtérftetn linear:
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2 v
<ré(t) >~ gtY, (32)

wherev > 1 and? is a coefficient similar to the diffusion coefficient in its améng
but having a different dimension, i.e. distaheéime™". The dispersal kernel in this
case has a fatter tail, e.g. showing either exponential arepéaw rate of decay
at large distances. However, the main result of the dimessimalysis still holds,
i.e. there is the only quantity with the dimension of lengthhough its expression
becomes slightly different:

Aa ~ 'V @tv 5 (33)

cf. Eq. (7).

There have been several studies concerned with the relagibmeen the spa-
tial heterogeneity and the ‘diffusivity’ in a broader senBer instance, it has been
shown in [22] that the characteristic length is a power-lamction of the coefficient
2 (with the exponent larger tha%]) in the case of a clearly non-Brownian motion
in a turbulent environment. The dependence of the rate afydecthe population
density on the combinatioxy (#t") rather than ox alone was proved in [9]. These
results point out that the diffusivity rate, considered iscenewhat broader sense,
still is a controlling factor that determines the charasters of the spatial hetero-
geneity. Therefore, our results and conclusions aboutrifgct on the accuracy of
the population size estimation are not restricted to the o&she standard Fickian
diffusion and the corresponding Brownian motion of indivads, but should remain
valid in a more general case.
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Appendix: Approximation of a hump by a quadratic function

Let u(x) be an integrand function that has a local maximum (a ‘humppant
x1, wherex; € [0,1]. Consider pointsg = x3 — h andx, = X3 + h, whereh > 0 is
an arbitrary parameter defining the ‘hump width’. For ins&rthe valuén can be
defined from the condition thai(x,) = 0.1u(x;). The examples of the choice bf
will be given further in the text for a particular problem wratonsideration.

Once we know the function values, = u(xm), m=0,1,2, we can approximate
u(x) by a quadratic polynomial. That is a well-known interpadatproblem (e.g.,
see [6]) and below we give a brief description of this techreiq

To find the equation of the quadratigx), the function values are generally
needed at three points, so that the coefficients of the fumgiix) can be recon-
structed using the conditiomggxm) = u(xm),m= 0,1,2. However, in our case it is
more convenient to write a quadratic function in the form
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9(x) =B —A(x—x)?,

because we requimg(x) to have the same maximum as the hump that it replaces.
The coefficient\ andB are then obtained by using just the two collocation condi-
tionsg(Xm) = u(xm),m=0,1. Thus, the hump is replaced by a quadratic which is
symmetric about the location of the maximurs: x;.

We now introduce the interpolation erreg:(x) in order to evaluate what we
miss when we replace a hunygx) with the functiong(x). The functionen: (X) is
defined at any point of the interval[xg, x,] as

@nt (X) = [u(x) —g(x)|.
We then consider the maximum distance between the funaticnsndg(x),

€max=_Max ent(X).
X€ X0, %]

The maximum interpolation err@max depends o, as it is demonstrated by the
following example. Consider the approximation of a hump lguadratic function
for the pest population density; (x). The coefficientsA and B for the quadratic
functiong(x) are defined from the collocation conditions as

Uz (Xo) — Uz (X1)
h?2 ’

The interpolation erroemax incurred by replacing the hump in the population dis-
tribution uy(x) by a quadratic function is shown in Table 3. Aslecreases, so does

the size of the interpolation error. This is further illegtrd by the quadratic approx-

imations shown in Fig. 4.

A= B= Ul(Xl).

[h ][ 0.125 [ 0.0625] 0.0312] 0.0156]
[emax [ 0-3325] 0.0922] 0.0123] 0.0011]

Table 3 The interpolation error for the quadratic functions apjreating the hump ofi; (x) for
various values ofi.

Once the integrand functiomx) has been replaced by a quadratic function in
the vicinity of the hump, we can integrate the functgi{n) by a chosen numerical
method. Let us apply the method outlined in Section 2.1 td fenctionsus (X)
andg(x) to integrate them in the vicinity of the hump. Consider thtegnation
error local to the hump, i.e. on the intervap,x,], where the functioru(x) and
its corresponding quadratic replacemeg(x) are approximated by piecewise linear
polynomials. The integration error (4) computed for thedlion u;(x) and for the
quadratic functiorm(x) is denoted in Table 4 &% andey, respectively.

It can be seen from Table 4, thef provides a sufficiently reliable estimate for
the integration error (4). This conclusion is further camfd by the results of Table
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[h ] 0.125 [ 0.0625] 0.0312] 0.0156]

e, || 0.0641| 0.0464| 0.0279| 0.0091
€ || 0.1839] 0.0961| 0.0341| 0.0096

Table 4 The integration error (4) when the integral is computed attinity of the hump. The
integration errors are computed for the density distriouti; (x) (the rowe,), and its quadratic
approximatiorg(x) (the roweg). The functions are approximated by piecewise linear patyials.

5 where we integrate botlp(x) andg(x) in the vicinity of the first hump in the
multi-peak distributioru,(x) (see Fig. 2b). Thus our assumption that the density
distributionu(x) can be approximated by a quadratic function in the vicinftyp o
hump is justified by computation of the interpolation errodahe integration error
and such approximation can be used for further theoretichhamerical analysis.

[(h [ 0.0312] 0.0156] 0.0078] 0.0039]

e, || 0.0545| 0.0532| 0.0267 | 0.0080
€ || 0.1986| 0.1024| 0.0325| 0.0086

Table 5 The integration error for the first hump in density distribatuy(x), and its quadratic
approximatiorg(x). The functions are approximated by piecewise linear potyiats.
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