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Natalia Petrovskaya and Nina Embleton

School of Mathematics, University of Birmingham,
Birmingham B15 2TT, UK

Integration of sampled data arises in many practical
applications, where the integrand function is available
from experimental measurements only. One extensive
field of research is the problem of pest monitoring
and control where an accurate evaluation of the
population size from the spatial density distribution
is required for a given pest species. High aggregation
population density distributions (peak functions)
are an important class of data that often appear
in this problem. The main difficulty associated
with the integration of such functions is that the
function values are usually only available at a few
locations; therefore, new techniques are required to
evaluate the accuracy of integration as the standard
approach based on convergence analysis does not
work when the data are sparse. Thus, in this
paper, we introduce the new concept of ultra-coarse
grids for high aggregation density distributions.
Integration of the density function on ultra-coarse
grids cannot provide the prescribed accuracy because
of insufficient information (uncertainty) about the
integrand function. Instead, the results of the integra-
tion should be treated probabilistically by considering
the integration error as a random variable, and
we show how the corresponding probabilities can
be calculated. Handling the integration error as a
random variable allows us to evaluate the accuracy
of integration on very coarse grids where asymptotic
error estimates cannot be applied.

1. Introduction
Integration of sampled data arises in a wide class
of problems, as in many practical applications, the
integrand function is available from experimental
measurements only and is therefore given by a discrete
set of function values. Numerous examples include
acoustics and signal processing [1,2], image recon-
struction [3], microbiology [4], ecological applications [5],
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etc. A general problem of numerical integration has a long and successful history, and many
accurate and efficient methods for integration of sampled data have been designed and
documented in the literature [6–9]. Meanwhile the increasing complexity of practical problems
has resulted in the recent need to revise existing algorithms as new problems have emerged. One
such problem is that of insect pest monitoring, where an accurate evaluation of the population
size from the spatial density distribution is required for a given biological species [10].

Let us consider a particular problem of pest insect monitoring in a single agricultural field as an
instructive example. An accurate estimate of the total number of pest insects is crucial for making
a reliable decision about the use of pesticides in the area where the crop is grown [11]. The data for
evaluation of the pest population size is usually collected by trapping. Insect traps are installed at
the nodes of a uniform Cartesian grid in the agricultural field, they are exposed for a certain time,
and then the traps are emptied and the insects caught are counted [12]. Under the assumption
that the number of insects in each trap gives us the true value of the population density obtained
at the location of the trap [13], the methods of numerical integration on uniform grids can be
employed to estimate the total number of pest insects from the discrete density distribution [14].
However, as we show below, the application of well-known methods, such as the Newton–Cotes
integration rules on a uniform grid, is not straightforward at all.

The main difficulty associated with the estimation of the total number of pest insects from trap
counts is that the number N of traps cannot be made large enough to ensure that the integral
estimate is accurate. Installment of many traps per unit agricultural area would, in itself, bring
considerable damage to the agricultural product. Also, trapping is costly and labour consuming,
and it introduces a disturbance to agricultural procedures. Hence, the problem of numerical
integration has to be solved for a small number N of traps.

From a computational viewpoint, the evaluation of the population size when the number N of
traps is small presents the problem of numerical integration of the integrand function on a very
coarse uniform Cartesian grid. Moreover, grid adaptation is not possible in the problem as the
grid should be generated only once, and N cannot be further increased. This restriction appears
because a repeated trapping with an increased number of traps is not available in ecological
applications due to the impossibility of reproducing the initial conditions.

Under the restrictions outlined above, the two following questions arise.

— What is the minimum number Nt of traps required to achieve desirable accuracy?
— What can be an alternative measure of accuracy on a coarse grid of traps where N < Nt?

Although the processing of sparse data has intensively been studied in various problems from
physics and engineering [15–18], to the best of our knowledge, numerical integration of sparse
data has not been discussed in the literature. An attempt to address the questions above has been
made in our recent work [14,19,20]. In particular, it has been demonstrated in [14] that the answers
to those questions depend strongly on the integrand function under consideration. Namely, the
accuracy of integration remains acceptable, even on very coarse grids, if the pest population is
distributed more or less over the whole area, no matter whether this distribution is close to
homogeneous or has a complex heterogeneous structure. On the contrary, the accuracy is very
poor when one has to integrate a high aggregation density distribution (i.e. the density function
with a single maximum whose support subdomain is small in comparison with the domain area)
on a coarse grid.

The high aggregation density distributions are an important class of data that may appear in
ecosystems under various conditions. For instance, one common scenario of biological invasion
is that the pest species starts spreading from a small localized area and invades the entire domain
as time progresses [10]. As the entire pest population is confined to a single subregion within
an agricultural field, and the pest population is zero outside that subregion at the beginning of
the invasion process, the population density is described as a peak function from a mathematical
viewpoint. Obviously the decision about the application of pesticides is best made before the
patch of high density spreads over the whole agricultural field. Hence, timely and accurate
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evaluation of the total number of pest insects at earlier stages of biological invasion is very
beneficial for the cultivation of the agricultural product. At the same time, the application of
numerical integration methods is significantly hampered by the fact that the exact location of the
peak is not known in the problem. Thus, instead of installing the traps locally (i.e. in the initially
infested area) to increase the accuracy of integration, a uniform grid of traps has to be generated
over the entire domain. That makes numerical integration of peak functions a very difficult task,
as the information about the density function on such a sparse grid may be insufficient for
reasonably accurate integration. Namely, it was discussed in [14,20] that the whole peak may
be located between nodes of a sparse grid and will therefore be completely missed. This can
in turn severely affect the accuracy of the pest population size evaluation. Hence, the questions
highlighted above require careful attention when peak functions are considered on coarse grids,
and in this paper, we develop a novel probabilistic approach to work with sparse data.

The paper is organized as follows. In §2, we briefly revisit the problem of numerical integration
and introduce the concept of ultra-coarse grids for peak functions. An ultra-coarse grid is defined
as a grid where the desirable accuracy of integration can only be achieved with probability
smaller than 1. It will be shown that integration on ultra-coarse grids cannot guarantee the
prescribed accuracy because of the insufficient information (uncertainty) about the integrand
function. Instead, the results of the integration should be treated probabilistically by considering
the integration error as a random variable with a high magnitude. We calculate the probability
of an accurate integral estimate in §3, while in §4 we consider the transition from ultra-coarse
grids to coarse grids where the desirable accuracy can be achieved with the probability equal
to 1. Numerical examples are considered in §5. A discussion of our results is provided in §6. Our
research of ultra-coarse grids will be focused on the one-dimensional case, but the approach we
present in the paper can be extended to two-dimensional density distributions.

2. Numerical integration of sparse data
The invasion regime when a spreading pest population forms a strongly heterogeneous
spatial distribution, has its one-dimensional counterpart when a peak density function appears
somewhere at the unit interval D = [0, 1] [19]. Thus, in the one-dimensional case, a high
aggregation density distribution u(x) can be modelled by the following peak function with the
support Du = [xI, xII] on the unit interval

u(x) =
{

f (x) > 0, x ∈ (xI, xII),

0, otherwise,
(2.1)

where we assume that the function f (x) has a single maximum at point x∗ = 0.5(xI + xII). At
this stage, we are not interested in a more detailed definition of the function f (x), as particular
examples of u(x) will be considered further in the text.

One computational problem related to the study of ecologically meaningful density
distributions is that the integral is not available in closed form. Hence, before moving to the
discussion of a more general case, we consider several examples where the exact value of the
integral is available and the integration error can therefore be computed. A convenient example
of a peak function is given by the normal distribution

u(x) = 1

σ
√

2π
exp

(
−1

2
(x − x∗)2

σ 2

)
, (2.2)

shown in figure 1a for the peak width δ = 6σ = 0.25. Let us numerically integrate (2.2) over the
unit interval D = [0, 1]. Consider a uniform grid generated in the domain D as xi+1 = xi + h,
i = 1, . . . , N − 1, where the grid step size is h = 1/(N − 1). We employ the midpoint rule of
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Figure 1. Numerical integration of a peak function. (a) The peak function (2.2), where the peakwidth is δ = 0.25 and the peak
is located at x∗ = 0.38. (b) The integration error (2.5) computed for the peak function of figure 1a on a sequence of uniformly
refined grids. The uniform refinement of the original coarse grid of N = 3 nodes does not decrease the integration error, unless
the domain of the non-zero density is resolved. (c) The integration error computed when the peak (2.2) is randomly located
on the uniform grid of N = 5 nodes. The error (2.5) is shown for the 10 realizations nr of the random variable x∗. (b,c) solid
line with filled circle, midpoint rule; solid line with open square, Simpson rule and solid line with open right triangle, statistical
rule (2.4).

integration [21] as a baseline integration method in our problem. Once a computational grid has
been generated, the integral I is computed by the compound midpoint rule as

I =
∫ 1

0
u(x) dx ≈ Ĩ =

∑
i

wiu(xi), (2.3)

where wi = h for the interior nodes i = 2, . . . , N − 1 and wi = h/2 at boundary points i = 1, N.
In our discussion of the accuracy of numerical integration on coarse grids, we will also

compute the integral by the compound Simpson method where the number N is required to
be an odd number, N = 2m + 1, and the weights in (2.3) are given by wi = 4h/3, i = 2, 4, . . . , 2m,
wi = 2h/3, i = 3, 5, . . . , 2m − 1 and wi = h/3, i = 1, i = N. Finally, the third method we employ for
numerical integration is a so-called ‘statistical method’ widely used in ecological applications [22].
The method evaluates the integral as

I ≈ Aū = A
N

N∑
i=1

u(xi), (2.4)

where A is the given area. Since A = 1, when we integrate over the unit interval, the method (2.4)
is reduced to the evaluation of the mean density of the pest population.

We define the integration error as

e = |I − Ĩ|
|I| , (2.5)

where I is the exact integral and Ĩ is the approximate integral computed by the chosen method of
numerical integration. The accuracy of integration should be

e ≤ τ , (2.6)

where τ is a specified tolerance. It is important to note here that in ecological applications,
the accuracy requirements on coarse grids are essentially different from those arising in the
conventional problem of numerical integration, as the tolerance 0.2 < τ < 0.5 is considered as
acceptable [23,24]. However, we will see further in the text that even such relatively low accuracy
of computations is not always achievable when the number of grid nodes is small.
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Let us compute the integration error (2.5) for the density distribution (2.2). Consider first the
midpoint rule (2.3) of integration. The error (2.5) of the midpoint rule is shown as a function of
the number N of grid nodes in figure 1b. It can be seen from the figure that the integration error
of the midpoint rule is not controlled by uniform grid refinement on very coarse grids that are
in the focus of ecological research. Namely, the error e ∼ 1 remains beyond the acceptable range
e ∼ 0.2–0.5 on grids with N < Ñ, where Ñ ∼ 10 is the upper bound for the realistic number of traps
to be considered in ecological applications [25,26].

As the uniform refinement does not decrease the error on coarse grids (see figure 1b), the
obvious decision would be to apply a more accurate method of numerical integration (i.e. the
Simpson method; see [21]) in order to improve the accuracy of integration on grids with small
N. However, it can be seen from figure 1b, where the error of the Simpson method is shown on
a sequence of uniformly refined grids, that the Simpson method is not more accurate than the
midpoint rule on coarse grids. On the other hand, the method (2.4) is theoretically less accurate
than (2.3) [21], but it cannot be said from figure 1b that the method (2.3) is better than (2.4) when
coarse grids are considered.

Let us recall that the exact location of the ‘peak subdomain’ Du is unknown to us. Meanwhile,
the value of the approximate integral depends obviously on how many grid nodes are stationed
inside the subdomain Du on a coarse grid. In order to better understand how the integration error
(2.5) depends on the location of the peak with respect to the position of the grid nodes, we now
consider the peak location x∗ in the function (2.2) as a uniformly distributed random variable. Let
us fix the number of grid nodes as N = 5 and randomly move the peak (2.2) over the domain D
10 times. We integrate the function (2.2) every time that we move the peak, i.e. for each of the
10 realizations nr of the random variable x∗. The results of numerical integration are shown in
figure 1c, where the integration error (2.5) is computed for each of the 10 locations of the peak on
the coarse grid of five nodes. For instance, when nr = 3 the peak’s location is x∗ = 0.7013, while
for nr = 7 the same peak is located at x∗ = 0.4188, etc. It is readily seen from the graph of figure 1c
that for the midpoint rule of integration, the error (2.5) depends essentially on the peak location
as the error varies as 0.0173 ≤ e ≤ 1.379 on the grid with the fixed number of nodes. The same
observation with regard to the integration error is true for the Simpson rule and the integration
rule (2.4), where it can be seen from the figure that the error’s magnitude varies significantly as
we vary the peak location.

It follows from the results of the test case (2.2) that the accuracy of computation cannot be
determined when the high aggregation density distributions are considered on grids with a
small number of nodes. Since the integration error depends on a random location of the point
x∗, the error itself becomes a random variable and a probabilistic approach should be used to
evaluate the accuracy. We will refer to the grids, where the accuracy of numerical integration
cannot be determined, as ultra-coarse grids. Correspondingly, the questions formulated in §1 are
reformulated on ultra-coarse grids as follows.

— Given the number N of grid nodes on a uniform grid (the grid step size h = const.), what
is the probability of the event e ≤ τ0, where the integration error e is given by (2.5) and τ0
is the chosen tolerance?

— What is the threshold number Nt of grid nodes when the probability p of achieving an
integration error (2.5) smaller than the given tolerance τ0 becomes p = 1?

In the next two sections of our paper, we answer the questions above when peak functions are
integrated using the general midpoint rule (2.3).

3. Ultra-coarse grids
Let us expand the density function u(x) given by (2.1) at the maximum point x∗ as

u(x) = u(x∗) + 1
2

d2u(x∗)
dx2 (x − x∗)2 + R(x).

http://rspa.royalsocietypublishing.org/
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(a) (b)
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Figure2. Themidpoint integration rule for the peak function. (a) Onegrid node is locatedwithin the subdomain [xI, xII]. (b) Two
grid nodes belong to the peak subdomain.

We assume that the remainder R(x) can be neglected in the vicinity of the peak, so that the
integrand u(x) becomes

u(x) ≈ g(x) = B − A(x − x∗)2, x ∈ [xI, xII],

and u(x) = 0, otherwise,

}
(3.1)

where A = − 1
2 (d2u(x∗)/dx2) > 0, B = u(x∗) > 0. The integral I is then given by

I =
∫ 1

0
u(x) dx ≈

∫ xII

xI

g(x) dx = 2
3

Bδ, (3.2)

where the peak width δ is defined as

δ ≡ xII − xI = 2

√
B
A

. (3.3)

Consider a uniform grid of N nodes generated in the domain [0, 1] as xi+1 = xi + h,
i = 1, . . . , N − 1, where the grid step size is h = 1/(N − 1). We begin our study of ultra-coarse grids
with the case when the grid step size h > δ. In other words, we require that the grid is so coarse
that either no grid nodes or one grid node fall within the peak subdomain. Since the absence of
grid nodes within the peak support is a degenerate case, below we consider one grid node xi
located in the subdomain [xI, xII] (see figure 2a).

Let the grid step size be
h = αδ, (3.4)

where the parameter α > 1. Since a quadratic function is symmetric, it is sufficient to consider the
subinterval [x∗, xII]. The location of the grid node xi relative to the location of the peak x∗ is then
given by

xi = x∗ + γ h, γ ∈ [0, 1
2 ]. (3.5)

The midpoint rule approximation of the integral for the geometry α > 1 is shown in figure 2a.
The integral Ĩ computed by the midpoint rule when we use the approximation (3.1) for u(x) is
as follows:

Ĩ = (B − Aγ 2 h2)h. (3.6)

Hence, the integration error (2.5) is

e = |(2/3)Bδ + Aγ 2h3 − Bh|
(2/3)Bδ

≤ τ0.
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Figure 3. The set of parametric curves defining the admissible range of node locations γ = γ (α) for which the integration
error is e≤ τ0. (a) The grid step size is h> δ where δ is the peak width. (b) The grid step size is δ/2≤ h≤ δ.

Without loss of generality, let us choose the tolerance as τ0 = 1
4 . Taking into account (3.3) and

(3.4) and solving the inequalities
3
4 I ≤ Ĩ ≤ 5

4 I (3.7)

for the node location γ , we obtain the following condition:

γI(α) ≤ γ (α) ≤ γII(α), (3.8)

where

γI(α) = 1
2α

√
1 − 5

6α
and γII(α) = 1

2α

√
1 − 1

2α
, (3.9)

for the tolerance τ0 = 1
4 .

For the sake of the discussion in §4, it is worth noting here that the inequality γI(α) ≤ γ (α)

implies that α ≥ αI = 5
6 . If α < αI, then Ĩ ≤ 5

4 I always holds, and the inequalities (3.8) should be
replaced as

0 ≤ γ (α) ≤ γII(α). (3.10)

Similarly, the inequality γ (α) ≤ γII(α) requires α ≥ αII = 1
2 , the condition that always holds under

our previous assumption α > 1.
The curves γI(α) and γII(α) are shown in figure 3a. The conditions (3.9) define the parameter

range where the integral is computed with the required accuracy τ0. Consider a peak of width δ

and let us fix α = α̂ > 1, so that the grid step size becomes fixed as h = ĥ = α̂δ. Compute γ̂I = γI(α̂)

and γ̂II = γII(α̂) on the grid of size ĥ. The inequalities (3.8) provide the error e ≤ τ0 for any γ̂I ≤ γ ≤
γ̂II (see figure 3a).

Let us assume that the location x∗ of the peak maximum can be found at any point of the
domain [0, 1] with equal probability, that is the random variable x∗ is uniformly distributed.
It then readily follows from the above consideration that for the peak width δ, the probability
p(e ≤ τ0, α) of achieving the desired accuracy e ≤ τ0 on a uniform grid with grid step size h is
computed as

p(e ≤ τ0, α) = (γII(α) − γI(α))

(γmax − γmin)
= 2(γII(α) − γI(α)),

where the entire range of γ is given by γmin = 0, γmax = 1
2 . Since the tolerance τ0 is always fixed as

τ0 = 1
4 , we further omit it in the definition of the probability function and consider the probability

http://rspa.royalsocietypublishing.org/
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p = p(α). Straightforward analysis of expressions (3.9) shows that the probability p(α) of achieving
the integration error e ≤ τ0 remains p(α) < 1 on any ultra-coarse grid where the condition α > 1
(i.e. h > δ) holds.

We summarize the findings of this section as follows.

— We have shown that the integration error should be handled as a random variable on
ultra-coarse grids where the data available for integration are sparse.

— We have considered a quadratic approximation of the integrand function and found
the probability p of an accurate answer when a quadratic polynomial is integrated on
an ultra-coarse grid. The relative position of a grid node to the peak function was
parametrized by the ratio α of the grid step size h and the width of the peak function
δ. It was shown that the probability p of achieving the prescribed accuracy is p < 1 for all
α > 1 (i.e. when either zero or one grid node lie within the support of the peak function).

Meanwhile, the important question that still remains is: if we gradually increase the number
of grid nodes N, what is the threshold number Nt for which we have the probability p = 1 of the
accurate answer (2.6)? The answer to this question will be given in §4.

4. Transition from ultra-coarse grids to coarse grids
In this section, we investigate the transition from grids where the integration error is a random
variable to grids where the condition e ≤ τ0 always holds for the given tolerance τ0. Let us increase
the number N of grid nodes in order to decrease the grid step size h as

δ

2
≤ h ≤ δ, (4.1)

where δ again is the peak width (3.3). In other words, we now require that 1
2 ≤ α ≤ 1 when the

parametrization (3.4) is used. If the condition (4.1) holds, then either one or two grid nodes belong
to the subdomain [xI, xII] (see figure 2b).

Consider the location (3.5) of grid node xi. The minimum value γ0 that provides the location of
two grid nodes xi−1 and xi in the subdomain [xI, xII] is defined from the conditions xi−1 = x∗ − δ/2
and xi−1 = xi − h. We have

γ0 = 1 − δ

2h
= 1 − 1

2α
, (4.2)

where the parametrization (3.4) is taken into account.
For γ ∈ [0, γ0), only one grid point belongs to the interval [xI, xII], and we can use the result (3.9)

to compute the probability of accurate integration. Hence, we now focus on the range γ ∈ [γ0, 1
2 ]

when two grid points are captured by the peak, as shown in figure 2b.
Let us use again the quadratic approximation (3.1) of the integrand function. Since g(xi−1) =

−A((γ − 1)h)2 + B and g(xi) = −A(γ h)2 + B, the integral Ĩ is computed by the midpoint rule
as follows:

Ĩ = (g(xi−1) + g(xi))h = −A((γ − 1)2 + γ 2)h3 + 2Bh.

For the sake of simplicity, we require again the tolerance τ0 = 1
4 to arrive at the inequalities

(3.7). Consider first the inequality Ĩ ≥ 3
4 I. Simple algebraic transformation results in

γ 2(α) − γ (α) + C(α) ≤ 0,

where C(α) = 1
2 − (1/16α3)(4α − 1).

Consider the roots γIII = (1 − √
1 − 4C(α))/2 and γIV = (1 + √

1 − 4C(α))/2 of the equation
γ 2 − γ + C = 0. The non-empty range γ ∈ [γIII, γIV] exists, if the inequality 4C(α) ≤ 1 holds.
Substituting the above expression for C(α) into this inequality, we obtain

4α3 − 4α + 1 ≤ 0. (4.3)

http://rspa.royalsocietypublishing.org/
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Numerical solution of equation (4.3) gives us the roots α1 ≈ −1.1072, α2 ≈ 0.2696 and α3 ≈ 0.8376.
Hence, if α ∈ [ 1

2 , α3], the range γ ∈ [γIII, γIV] will provide us with the integration error e ≤ τ0 = 1
4 ,

where we should also take into account the restriction γ ∈ [γ0, 1
2 ]. It readily follows from the above

computation that γIII(α) < 1
2 and γIV(α) > 1

2 for any α ∈ [ 1
2 , α3).

Consider now the lower boundary γ0. The curve γIII(α) intersects the curve γ0(α) at the point
αt (see figure 3b). We require γ0(αt) = γIII(αt) to obtain the equation

8α3
t − 8α2

t + 1 = 0. (4.4)

The roots of (4.4) in the subinterval [ 1
2 , 1] are α = 1

2 and αt ≈ 0.8090. Hence, the curve γIII(α)

lies under the curve γ0(α) for α ∈ ( 1
2 , αt), and it is above the curve γ0(α) when α ∈ (αt, α3] (see

figure 3b). Let us also note that αt < αI < α3.
Finally, we consider the inequality Ĩ ≤ 5

4 I where after some algebraic transformations we
arrive at

γ 2(α) − γ (α) + D(α) ≥ 0, (4.5)

with D(α) given by D(α) = 1
2 − (1/48α3)(12α − 5). The requirement 4D(α) ≤ 1 results in

the inequality

4α3 − 4α + 5
3 ≤ 0,

which does not have any real roots for α > 0. Hence, the inequality (4.5) holds for any value of γ .
Let us now compute the probability p = p(α)theor of the event that the error is e ≤ τ0 on a grid

with fixed grid step size h = αδ, where α ≥ 1
2 . The entire domain α ≥ 1

2 is shown in figure 4a, where
the curves γ (α) of figure 3a, b are now ‘glued’ together. In all cases considered below, it is possible
that either one node (when γ < γ0) or two nodes (when γ ≥ γ0) fall within the peak subdomain
depending on the value of the parameter γ . The probability p of accurate approximation is then
p = p1 + p2, where p1 is the probability of an accurate estimate when one node is located in the
peak subdomain, and p2 is the probability of an accurate estimate computed when two nodes
belong to the peak subdomain. The whole range of γ is γmax − γmin = 1

2 , and the following cases
should be considered for the length of the interval where numerical approximation is accurate.

— α ∈ [ 1
2 , αt], where αt ≈ 0.8090 has been obtained as a solution to equation (4.4) derived

under the condition that the tolerance τ0 = 1
4 . Since γIII(α) ≤ γ0(α) and γIV(α) > 1

2 , then
for any γ ∈ [γ0, 1

2 ] the conditions (3.7) hold. In other words, if there are two grid points
in the subdomain [xI, xII], then the integration error is e ≤ τ0, no matter how those grid
points are located with respect to the maximum point x∗. The probability of the accurate
answer is p2(α) = ( 1

2 − γ0(α))/(γmax − γmin) = 1 − 2γ0(α).
Consider now γ ∈ [0, γ0), so that just one grid point is located in the peak subdomain. The
admissible range of γ is then given by the inequality (3.8). Let us investigate the position
of the curve γII(α) with respect to the curve γ0(α). Simplifying the equation γ0(α) = γII(α),
we obtain the same cubic equation for α as equation (4.4). Hence, the three curves γ0(α),
γII(α) and γIII(α) intersect in a single point αt, if we consider the semi-open subinterval
( 1

2 , 1] (see figure 4b).
As γ0(α) ≤ γII(α) for α ∈ [ 1

2 , αt], the upper bound in the inequality (3.8) should be replaced
with γI(α) ≤ γ (α) ≤ γ0(α). At the same time, the lower bound in (3.8) requires the
restriction α ≥ αI, which does not hold for α ∈ [ 1

2 , αt], and therefore the condition (3.10)
should be considered. Hence, the inequality (3.8) is transformed as 0 ≤ γ (α) ≤ γ0(α), if
there is one grid point in the subdomain [xI, xII]. This means the integration error is
e ≤ τ0 for the grid step size h < αtδ. As the admissible range becomes 0 ≤ γ (α) ≤ γ0(α),
the probability is p1(α) = 2γ0(α). The resulting probability is p(α)theor = p1(α) + p2(α) = 1,
and the condition e ≤ τ0 holds for any γ if the grid step size is h = αδ, where α ∈ [ 1

2 , αt] for
the fixed peak width δ.

— α ∈ (αt, αI], where αI = 5
6 ≈ 0.8333 for τ0 = 1

4 (see §3). From condition (3.10), we now have
p1(α) = 2γII(α) for γ ∈ [0, γ0) (one node within the peak subdomain) and p2(α) = 1 −

http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
ProcRSocA469:20120665

..................................................

 on February 28, 2013rspa.royalsocietypublishing.orgDownloaded from 
g(
a)

gI

at

at

a
a

gII

gIII

g0

0.2

0.4

0.6

0.8

1.0

p(
a)

th
eo

r

1/2 21

D1 D2

1/2

(a) (b)

Figure 4. (a) Transition from the probability p< 1 to p= 1 in the parametric plane (α, γ ). In the domain D1 : α ∈ [ 12 ,αt],
the condition e≤ τ0 holds for any γ and the probability p(α) = 1, while in the domain D2 : α > αt (the shaded area in the
figure), the integration error becomes a random variable and the probability p(α) < 1. (b) The probability p(α) of having the
integration error e≤ τ0 for a peak of the width δ integrated on a grid with the grid step size h= αδ.

2γIII(α) if γ ∈ [γ0(α), 1
2 ] (two nodes within the peak subdomain). The resulting probability

is p(α)theor = p1(α) + p2(α) < 1.
— α ∈ (αI, α3], where we have α3 ≈ 0.8376 from (4.3) for τ0 = 1

4 . For this range of α, we have
p1(α) = 2(γII(α) − γI(α)), as the inequality (3.8) now holds for any γ ∈ [0, γ0) (one node
within the peak subdomain). We also have p2(α) = 1 − 2γIII(α), γ ∈ [γ0, 1

2 ], if two nodes
fall within the peak. The probability p(α)theor = p1(α) + p2(α) < 1.

— α > α3. We compute the probability p as p(α)theor = p1(α) = 2(γII(α) − γI(α)) (see also §3).
The probability p2 = 0 because of the restriction α ∈ [ 1

2 , α3] required for the inequality
Ĩ ≥ 3

4 I when γ ∈ [γ0, 1
2 ].

The function p(α)theor is shown in figure 4b. For the fixed width δ of the peak, the parameter αt

is the threshold value of the grid step size that provides the transition from ultra-coarse grids to
coarse grids. On any grid with α ≤ αt (domain D1 in figure 4a), the error (2.5) is deterministic in
the sense that the condition e ≤ τ0 always holds. On ultra-coarse grids where α > αt (domain D2
in figure 4a), the error (2.5) is a random variable as the probability of getting the accurate answer
is p < 1.

Below, we summarize the main results of §4.

— We have increased the number of nodes on a uniform grid, so that either one or two
grid nodes are available for approximating the peak function. For the parametrization
introduced in §3, this means the consideration of the case α ∈ [ 1

2 , 1]. We have then found
the threshold number Nt of grid nodes such that the integration error e is always e ≤ τ ,
if the number of grid nodes N ≥ Nt. In other words, the probability of obtaining the
desirable accuracy of integration is always p = 1 when we approach the threshold Nt.

— It has been shown that the grid step size ht that corresponds to the threshold number
Nt on a uniform grid is a linear function of the peak width δ, that is, ht = αtδ, where αt

depends on the chosen tolerance τ only. The coefficient αt has been computed for the
tolerance τ0 = 0.25 as αt ≈ 0.8090.

Let us note that the introduction of ultra-coarse grids extends the existing grid classification.
Namely, we consider fine grids as grids where one can rely upon asymptotic error estimates
(usually in the form e = O(hk), e.g. [21]). We can now refer to coarse grids as grids where
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Figure 5. (a) A quadratic function (3.1). The peak width is δ = 0.06 and the parameters are A= 1000 and B= 0.9. (b) The
probability p(h)num obtained by direct computation agrees with the theoretical results p(h)theor for the function (3.1) of (a).
(c) The integration error for the function (3.1) on an ultra-coarse grid and a coarse grid with a fixed number of nodes. The error
(2.5) is shown for the 10 realizations nr of the randomvariable x∗, where x∗ is uniformly distributed. The probability of achieving
anaccurate answer (2.6) isp≈ 0.3 onanultra-coarse grid ofN = 18 nodes (dashed line),whilep= 1 on a coarse grid ofN = 25
nodes (solid line).

the asymptotic error estimates may not be applied, but where the probability of obtaining the
accuracy goal is p = 1. Finally, ultra-coarse grids are grids where the error is a random variable
with high magnitude and the probability of obtaining the desirable accuracy is p < 1.

The results above have been obtained under the assumption of a quadratic approximation of
the integrand function. Hence, numerical investigation of the problem is required when a peak
function has a shape different from quadratic in order to verify our findings. This will be carried
out in §5.

5. Numerical examples
In this section, we first consider several standard test cases to illustrate our approach to numerical
integration on ultra-coarse grids. We then turn our attention to ecologically meaningful density
distributions and discuss how the theoretical predictions of §4 work for them.

(a) Standard test cases
We begin our consideration with a quadratic function (3.1), as our first test case is to verify the
probability estimate p(h)theor derived in §4. Let us fix the peak width δ and consider the peak
location x∗ as a random variable that is uniformly distributed over the interval [δ, 1 − δ], as we
require that the entire peak is stationed within the unit interval [0, 1]. In our test, we provide
nr = 104 realizations of the random variable x∗ on a grid with the fixed number Nl of nodes and
compute the integral error (2.5) where we integrate the function (3.1) by the midpoint rule for
each realization of x∗. The probability p(hl)num of accurate numerical integration is computed as

p(hl)num = n̂r

nr
, (5.1)

where hl = 1/(Nl − 1) is the grid step size on a grid of Nl nodes and n̂r is the number of realizations
for which the integration error is e ≤ τ0, τ0 = 1

4 . We then increase the number of grid nodes as
Nl+1 = Nl + 1 and repeat computation (5.1). We stop when the number NL of grid nodes results
in a grid with the grid step size hL ≤ δ/2.

The quadratic function (3.1) is shown in figure 5a for the peak width δ = 0.06. The probability
p(h)num of accurate numerical integration (2.6) of the function (3.1) is shown in figure 5b. We start
from the grid of N1 = 5 nodes and end our computations on the grid of N18 = 22 nodes where the
condition (4.1) still holds. It can be seen from the figure that all values of the probability p(hl),
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Figure 6. Numerical test cases: (a) the cubic function (5.2) and (c) the normal distribution (2.2). For the functions (a) and (c),
the peak width is chosen as δ = 0.06. The probability (5.1) of an accurate answer (2.6) and its comparison with the theoretical
curve p(h)theor obtained for the quadratic function: (b) the probability graph p(h)num computed for the cubic function
(5.2) and (d) the probability p(h)num for the normal distribution (2.2). (b,d) Dashed line, p(h)theor and solid line with filled
dots, p(h)num.

l = 1, . . . , 18, computed by direct evaluation (5.1) lie very close to the theoretical curve p(h)theor,
shown as a dashed curve in the figure.

The results of §§3 and 4 are further illustrated in figure 5c where the integration error (2.5)
is computed for the function (3.1) on an ultra-coarse grid and a coarse grid. The computation
resulting in the graphs shown in figure 5c is similar to the test case discussed in §2 (cf. figure 1c).
Namely, we randomly move the peak (3.1) 10 times (nr = 10) on a grid with a fixed number of
nodes and compute the integration error every time the peak is moved. It can be seen from the
figure the error (2.5) depends on the peak location when we integrate the function (3.1) on an
ultra-coarse grid with the number of grid nodes N = 18 (i.e. the grid step size is h = 1

17 ). The
probability of achieving an accurate answer (2.6) is p ≈ 0.3 (see the graph in figure 5b). Meanwhile,
the error is deterministic on a grid of N = 25 nodes (h = 1

24 ) and the error is e ≤ τ0, no matter where
the peak is located.

We now consider several peak functions different from the quadratic function (3.1) in order to
understand how the probability estimate obtained for (3.1) will work for them.

A cubic function

u(x) =

⎧⎪⎨
⎪⎩

A
(

x − x∗ +
(

δ

3

))(
x − x∗ −

(
2δ

3

))2
, x ∈

[
x∗ − δ

3
, x∗ + 2

δ

3

]
,

0, otherwise,

⎫⎪⎬
⎪⎭ (5.2)

presents an interesting test case because the peak is now asymmetric. The function (5.2) is shown
in figure 6a, where we still keep the peak width δ = 0.06 for A = 3 × 104. The probability graph
for the function (5.2) is shown in figure 6b. The graph p(h)num is in a good agreement with the
curve p(h)theor on very coarse grids (α > α3) where the probability of accurate integration is small.
At the same time, the actual probability in the transition layer is smaller than the probability
estimate based on the quadratic approximation. One important observation about the graph
p(h)num of figure 6b is that the grid step size hnum

t for which the error (2.5) becomes deterministic
(i.e. p(hnum

t ) = 1 and p(h) < 1 for any h > hnum
t ) is smaller than the theoretical estimate

ht = αtδ, (5.3)

obtained for the quadratic approximation of the integrand function.
The normal distribution (2.2) already discussed in §2 gives us an example of a peak function

that is different from zero everywhere in the domain x ∈ [0, 1] (see figure 6c). However, when
we integrate the density function (2.2), 99.7 per cent of the mass will be concentrated within
the peak of width δ = 6σ , and we can therefore expect a random integration error when we
integrate the normal distribution on ultra-coarse grids. The graph p(h)num computed for the
function (2.2) with peak width δ = 0.06 is shown in figure 6d. It can be seen from the figure that the
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Figure 7. Numerical test cases: (a) the probability graphs p(h)num computed for the function (5.4) when the peak width
δ varies. δ = 0.06: solid line, closed right triangle δ = 0.1: solid line, closed square; δ = 0.01: solid line, open circle. The
computed probability p(h)num is compared with the theoretical estimate p(h)theor made for a quadratic function. δ = 0.06:
dash-dot-dotted line; δ = 0.1: solid line; δ = 0.01: dashed line. (b) The ‘tail’ of the probability graphs of figure 7a. The legend
is the same as in figure 7a. (c) The threshold values hnumt , computed for the function (5.4) when the peak width δ varies, are
compared with the theoretical curve (5.3) (dashed line) obtained for a quadratic function.

entire probability graph p(h)num is now shifted with respect to the curve p(h)theor. The maximum
deviation is dp = 0.8129, and the threshold value of the grid step size is hnum

t ≈ 0.5δ instead of
ht ≈ 0.8δ obtained for the quadratic function.

A smaller threshold grid step size hnum
t is a consequence of the interpolation error eint = O(δ3)

that we introduce when we approximate the integrand function by a quadratic polynomial. As
the interpolation error depends on the peak width δ, our probability estimate p(h)theor should be
accurate enough when δ is small (a narrow peak), and it will differ from the actual probability
p(h)num when we increase the peak width δ. Below, we study this dependence in more detail by
considering the Lorentz distribution—another peak function that often appears in various fields
of physics and interdisciplinary research [27],

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

δ2

4
1

4(x − x∗)2 + δ2/4
, x ∈

[
x∗ − δ

2
, x∗ + δ

2

]
,

0, otherwise,

⎫⎪⎪⎬
⎪⎪⎭ (5.4)

Let us vary the peak width in (5.4) and compute the probability graph p(h)num for each fixed
value δ by employing the procedure (5.1). A family of probability curves is shown in figure 7 for
the function (5.4) with the peak width δ = 0.06 (a baseline peak), the peak width δ = 0.1 (a wide
peak) and the peak width δ = 0.01 (a narrow peak). For the sake of convenience, we show the
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‘transition layer’ in figure 7a, while the ‘tails’ of the probability curves are shown in figure 7b.
It can be seen from the figure that the computed probability curve p(h)num gets closer to the
probability graph p(h)theor

1 when we decrease the peak width δ. From the ecological viewpoint,
the most important conclusion we derive from the consideration of the probability graphs shown
in figure 7 is that the difference between the predicted value (5.3) and the actual threshold value
hnum

t obtained by direct computation decreases when we decrease δ. In other words, we can rely
upon the estimate (5.3) to determine how many grid nodes are required to guarantee the accuracy
(2.6) when a narrow peak is integrated. Thus, our next test is to compute the function hnum

t (δ) and
to compare it with the theoretical estimate (5.3).

The results of the computation of hnum
t for the function (5.4) where the peak width δ varies are

shown in figure 7c. The value hnum
t is computed for each fixed peak width δ from the condition

that p(hnum
t ) = 1 and p(h) < 1 if h > hnum

t . The computed threshold grid step size is in very good
agreement with the estimate (5.3) for narrow peaks (δ < 0.1). At the same time, the theoretical
curve (5.3) lies above the actual values when wide peaks are considered and therefore the estimate
(5.3) can be used in ecological problems as the upper bound for the threshold value ht.

The standard numerical test cases discussed in this section confirmed the following.

— Replacing the integrand function by a quadratic polynomial can be considered a reliable
approximation when the probability of accurate integration is computed.

— The formula (5.3) gives us a good estimate of the threshold grid step size ht when a narrow
peak is integrated.

— The same formula (5.3) can be used as the upper bound for ht if a wide peak is considered.

Once the estimate (5.3) of the threshold grid step size ht has been verified for standard
numerical test cases, our next goal is to check how formula (5.3) will work when ecologically
meaningful peak functions are considered. This will be carried out in §5b.

(b) Ecological test cases
We use the pest density distributions u(x) generated from the spatially explicit predator–prey
model describing spatiotemporal dynamics of a pest insect population [28,29],

∂u(x, t)
∂t

= d
∂2u
∂x2 + u(1 − u) − uv

u + p

and
∂v(x, t)

∂t
= d

∂2v

∂x2 + k
uv

u + p
− mv.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.5)

The model (5.5) presents a system of coupled diffusion–reaction equations written in
dimensionless variables. The functions u(x, t) and v(x, t) are the densities of the pest insect
(considered as the prey) and its consumer (the predator), respectively, at time t > 0 and position
x. Coefficient d describes species diffusivity due to the movement of the individuals, p is
the half-saturation prey density, k is the food assimilation efficiency coefficient and m is the
predator mortality.

Ideally, our results on the accuracy of integration on ultra-coarse grids should be checked
against appropriate ecological data. However, one serious obstacle in the problem is that our
further discussion will require the handling of data on a sequence of refined grids, and it is
not possible to fulfil this requirement when field data are considered. Meanwhile the model
(5.5) and its two-dimensional counterpart [28] have been validated against experimental data
to demonstrate that the model is in good agreement with the results of field measurements [5].
Hence, we believe the model (5.5) can be used for the generation of ecologically realistic data.

Equations (5.5) provide a rich variety of spatiotemporal distributions of the pest density
function u(x, t). In particular, it is well known [5] that the properties of the spatial distribution u(x)

1We consider the theoretical curves p(h)theor instead of a single curve p(α)theor in order to be able to compare them with the
results of direct computation for each value of δ.
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Figure 8. Ecological test cases. The spatial distribution of the pest population density u(x) as predicted by the model (5.5) for
different values of the diffusivity d: (a) the density distribution u1(x) has been obtained for d = 10−4, (b) the pest population
density u2(x) obtained for d = 10−5, (c) the density u3(x) for d = 10−6. An example of the system’s parameters (the density
distribution u2(x)): t = 50, k = 0.5, p= 2.0,m= 0.42. The initial conditions are u(x, 0) = u0, 0< x < xu, v(x, 0) = v0,
0≤ x ≤ xv , where u0 = 0.8, v0 = 0.5, xu = 0.6, xv = 0.55 and u(x, 0) = 0, x > xu, v(x, 0) = 0, x > xv .

Table 1. The integration error (2.5) for the density distribution u1(x) on a sequence of refined grids with grid step size h. N is
the number of grid nodes on a uniform grid.

N 3 4 5 6 7 8 9 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h 0.5 0.3333 0.25 0.20 0.1667 0.1429 0.125 0.1111
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e 0.6948 0.1119 0.5459 0.07983 0.1699 0.02305 0.08228 0.001918
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

considered at a given time t are determined by the diffusion d in the problem and that the initial
conditions u(x, 0), v(x, 0) can evolve into the one-peak spatial pattern if the diffusion is d � 1
(see [30] for a more detailed discussion on the pattern formation). Several examples of one-peak
density distributions are shown in figure 8, where the functions u1(x), u2(x) and u3(x) have been
obtained from the numerical solution of equation (5.5) with the boundary conditions du/dx = 0
at x = 0 and x = 1 for the diffusion coefficient d = 10−4, d = 10−5 and d = 10−6, respectively.2

One important observation that can be made from figure 8 is that the peak width δ depends on
the diffusion coefficient d. A simple estimate of the function δ(d) discussed in [20] can be written as

δ = ω
√

d, (5.6)

where the coefficient ω depends on the system’s parameters. An extensive numerical study
performed in [30,31] revealed that, in the predator–prey system (5.5), the value ω is relatively
robust to changes in the parameter values, and can typically be considered as ω ≈ 25. Hence, we
can evaluate the upper bound for the threshold grid step size ht as

ht = αtδ ≈ C
√

d, (5.7)

where the coefficient C = αtω.
Consider the function u1(x) shown in figure 8a. The diffusion coefficient is d = 10−4, hence the

estimate (5.7) gives us the grid step size as ht ≈ 0.2. The corresponding number of grid nodes
is Nt ≈ 6.

Let us compute the integration error (2.5) by the midpoint rule on a sequence of refined
grids, where we add just one node to the grid at each consecutive refinement step. The results
of numerical integration of the function u1(x) are shown in table 1.

It can be seen from the table that our estimate of the threshold grid step size is in surprisingly
good agreement with the results of computation. The actual threshold number obtained in
2The other parameters of the one-dimensional system of equations as well as various initial conditions applied in numerical
solution are discussed in detail in [19].
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Table 2. The integration error (2.5) for the density distribution u2(x) on a sequence of refined grids with grid step size h. N is
the number of grid nodes on a uniform grid.

N 17 18 19 20 21 22 23 24 25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h 0.0625 0.0588 0.0556 0.0526 0.05 0.0476 0.0455 0.0435 0.0416
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e 0.4127 0.5412 0.5101 0.4124 0.1960 0.0028 0.1454 0.2234 0.2137
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

computations is Nt = 6 and, while the integration error keeps oscillating on grids with N > Nt

nodes, the condition (2.6) always holds on those grids.
Let us repeat the previous computational procedure for the function u2(x) shown in figure 8b.

The diffusion coefficient d = 10−5, for which the density distribution u2(x) has been generated,
gives us the lower bound for the threshold number of nodes estimated as Nt ≈ 17. The results
of numerical integration of the function u2(x) are shown in table 2 where the threshold number
obtained in computations is Nt = 21. This number of traps is not realistic in real-life computations,
and other factors should be taken into account when a decision is made on the number of traps
to be installed. One such factor that will be considered in future work is that the integral value
depends obviously on the peak width, and the true value of the integral can be small if a narrow
peak is considered. A small value of the integral (i.e. a small number of pest insects) means, in
turn, that the risk of making a wrong decision about pesticide application is low. Hence, we can
increase the tolerance τ0 in the problem (e.g. τ0 = 0.5 or even τ0 = 1 in some cases) and use the
technique discussed in §§3 and 4 in order to re-compute our estimate of the threshold number Nt

for the new tolerance.
Finally, let us have a look at a very narrow peak u3(x) shown in figure 8c. The diffusion

coefficient d = 10−6 gives us the estimate Nt ≈ 51. Clearly, this number of traps is beyond any
reasonable range and cannot be used in real-life applications. However, as the integral is very
small (for the density distribution u3(x), we have I = ∫1

0 u3(x) dx = 0.007161), our recommendation
to ecologists would probably be not to take any action until the time evolves and the peak function
gets wider. On the other hand, an important conclusion derived from the extreme case of the
distribution u3(x) is that installing a reasonable number of traps (e.g. N ∼ 10) with the aim of
trying to evaluate the total number of insects at a very early stage of the biological invasion is
senseless, as the probability of a correct answer is very small (see the discussion of the case h > δ

in §3).

6. Conclusions
We have considered a problem of numerical integration for high aggregation density distributions
(peak functions) on coarse uniform grids. Our study has originally been prompted by the needs
of ecological monitoring and control where minimization of the number of measurements made
in order to accurately reconstruct a density distribution remains an important problem.

The main results of the paper are as follows.

— We have introduced the concept of ultra-coarse grids. An ultra-coarse grid is defined as
a grid where the integration error is a random variable with high magnitude because of
the insufficient information (uncertainty) about the integrand function.

— The definition of an ultra-coarse grid implies that we have to evaluate the probability p of
achieving an integration error smaller than the given tolerance rather than to evaluate the
error itself. In our paper, we have obtained a probability estimate based on a quadratic
approximation of the integrand function. We then carried out a number of numerical test
cases to demonstrate that our probability estimate gives us a reliable upper bound for
the threshold grid step size ht for which the probability p(ht) = 1. Thus, the approach
suggested in the paper can be used to evaluate the minimum number Nt, such that the
desirable accuracy of integration is guaranteed on a grid of Nt nodes.
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— It has been shown in the paper that conventional methods of error control and
analysis do not work on ultra-coarse grids. It has been discussed in §2 that the
uniform refinement of an ultra-coarse grid does not reduce the integration error, as the
integration error on a refined grid can be even bigger than the error on the original
grid unless the number Nt of nodes is reached. However, increasing the number N
of grid nodes does increase the probability of an accurate integral estimate and is
therefore desirable.

A general remark should be made here with regard to whether the information about the
population density at a given time and location can be adequately obtained from trap counts
at all, so that the approach developed in our paper can be applied. Indeed, as the traps are
emptied only once in a while (e.g. weekly), the question is how much the population density
distribution can possibly change over this time. The answer to this question depends, to a certain
extent, on the biological and behavioural traits of the monitored species. However, we mention
here that the spatial scale of variations in the population density distribution for walking insects,
i.e. those that are usually sampled with pitfall traps, is known to be 30–40 m [32]. Meanwhile,
typical dispersal distances for walking insects are estimated to be 1 m or less per day [33], which
obviously corresponds to a diffusivity of the order of 1 m2 day−1. Over 1 week of trap exposure,
that results in a diffusion length of

√
7 ≈ 2.6 m, which is about one order of magnitude less than

the spatial scale of inherent variation.
One important direction of future research is to investigate the transition from ultra-

coarse to coarse grids for other classes of functions. Peak functions present just one class of
density distributions, and a similar problem of accurate integral evaluation arises when other
spatially heterogeneous functions are considered. In particular, we are interested in rapidly
oscillating functions that often appear in ecological applications. Also, our future work will be
to extend our results to the two-dimensional case, as we want to apply our approach to real-life
problems. Since field measurements are carried out on a regular basis in ecological applications,
heuristic estimates are available for many common pest species distributions and practical
recommendations with regard to the number Nt of traps that have already been obtained based
on these heuristic estimates. We intend to check those recommendations against a theoretical
probability estimate of the threshold number Nt after our evaluation technique is extended to
two-dimensional problems.

The examples of integration of ecologically meaningful distributions we discussed in the
paper can only be considered as the very first steps on our way to design a robust procedure
for risk evaluation in agricultural applications. At the same time, our results demonstrate that
a conventional approach that ecologists use in their problems has to be revisited. A standard
procedure of the risk evaluation in pest management is to compare an estimate of the total
number of pest insects with a certain critical number and to make a decision about the use
of pesticides based on that comparison. Ecologists readily admit that there is uncertainty
surrounding the estimation of the pest abundance, which may become worse as the number of
samples decreases [34]. However, to the best of our knowledge, the error in the pest abundance
estimation has never been considered in the ecological literature as a random variable in order
to take into account the risk factor related to the uncertainty in integral evaluation when the
number N of traps is small. Taking this risk factor into account when designing an appropriate
methodology for decision making in pest insects management should constitute a topic of our
future work.
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