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Ecological monitoring aims to provide estimates of pest species abundance—this information
being then used for making decisions about means of control. For invertebrate species, popu-
lation size estimates are often based on trap counts which provide the value of the population
density at the traps’ location. However, the use of traps in large numbers is problematic as it
is costly and may also be disruptive to agricultural procedures. Therefore, the challenge is to
obtain a reliable population size estimate from sparse spatial data. The approach we develop
in this paper is based on the ideas of numerical integration on a coarse grid. We investigate
several methods of numerical integration in order to understand how badly the lack of spatial
data can affect the accuracy of results. We first test our approach on simulation data mimick-
ing spatial population distributions of different complexity. We show that, rather
counterintuitively, a robust estimate of the population size can be obtained from just a few
traps, even when the population distribution has a highly complicated spatial structure.
We obtain an estimate of the minimum number of traps required to calculate the population
size with good accuracy. We then apply our approach to field data to confirm that the number
of trap/sampling locations can be much fewer than has been used in many monitoring pro-
grammes. We also show that the accuracy of our approach is greater that that of the
statistical method commonly used in field studies. Finally, we discuss the implications of
our findings for ecological monitoring practice and show that the use of trap numbers ‘smaller
than minimum’ may still be possible but it would result in a paradigm shift: the population
size estimates should be treated probabilistically and the arising uncertainty may introduce
additional risk in decision-making.

Keywords: ecological monitoring; pest control; sparse data; coarse grid;
numerical integration
1. INTRODUCTION

Ecosystems are under pressure owing to anthropogenic
impact, which has increased considerably over the last
few decades [1]. This pressure can significantly affect
the structure of ecological communities, often enhancing
population outbreaks of harmful species (e.g. as a result
of a collapsed top-down control, cf. [2]). In particular,
biological invasions have been identified as one of the
main reasons of ecosystem degradation and biodiversity
loss around the world [3]. The situation is exacerbated
by the ongoing environmental/climatic changes that
mayaffect areals as well as abundances. A comprehensive
ecological monitoring is therefore necessary in order to
provide sufficiently detailed and timely information
about species that can potentially cause problems, such
as, for instance, alien species that may become dangerous
pests. Well-known examples of the latter are given by
orrespondence (n.b.petrovskaya@bham.ac.uk).
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invasion of the gypsy moth in the USA [4], invasion of
Japanese knotweed in the UK [5,6] and invasion of
Mnemiopsis leidyi in the Black and Caspian Seas [7,8].

In terrestrial ecosystems, especially in agri-ecosystems,
ecological monitoring is usually a part of the integrated
pest management programme [9,10], which recommends
application of pesticides once the pest abundance exceeds
a certain threshold [11]. Use of chemical pesticides has its
obvious drawbacks in additional costs, including wheel-
ing damage to the crop and operator costs (sometimes
substantial) added to the agricultural product, and in
potential damage caused to the environment [12].
Although it does not seem possible to fully avoid the
use of pesticides at the current state of agricultural
science and technology, it is certainly possible to further
optimize their use. One way to achieve this goal is to pro-
vide robust information about the abundance of a given
target species. In a somewhat different ecological con-
text, accurate information about population abundance
is required to trace the spread of harmful invading
This journal is q 2011 The Royal Society
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Figure 1. A typical study area with the traps (seen as grey spots in the grass) installed at the nodes of a rectangular 12 � 12 grid with
2 m spacing. This experimental layout has been used to collect data on flatworm abundance (see §5). (Online version in colour.)

2 Challenges of ecological monitoring N. Petrovskaya et al.

 on September 8, 2011rsif.royalsocietypublishing.orgDownloaded from 
species: control measures are much more effective when
applied at the right time and in the right place.

There are several methods to collect information
about species abundance depending on their biological
traits. In this paper, we mostly focus on the problems
associated with invertebrates. For invertebrates such
as insects or planarians, a common method to collect
field data regarding the species’ abundance is trapping.
A number of traps are installed across the monitored
area (figure 1), e.g. in a field or grassland, they are emp-
tied on a regular basis (e.g. daily or weekly), their
content is analysed, different species identified and
counted. The trap counts are then used to estimate
the population density of the problematic species at
the position of traps, e.g. by dividing the trap counts
by the effective catchment area (cf. [13,14]).

Exhaustive information about species’ presence in a
given area is given by its population size, i.e. by the
total number of its individuals. In order to get reliable
estimates of the population size, the information
about population abundance obtained at some particu-
lar locations must somehow be ‘extended’ over the
whole monitored area. This is routinely performed by
statistical analysis of the samples [15]. Indeed, appli-
cation of statistical methods in ecology has a long and
successful history [16–18]. Estimation of the popula-
tion size is usually based on the arithmetic mean: let
u1, u2, . . . , uN be the population densities at N different
positions in space (i.e. position of the traps), then
the average density �u is estimated as [16]
�u � 1
N

XN
i¼1

ui; so that M � A�u; ð1:1Þ
J. R. Soc. Interface
where M is the population size and A is the total
monitored area.

There are, however, a few problems in implementing
of equation (1.1). The probability theory predicts that
equation (1.1) gives the exact value of the population
size when N becomes infinitely large. In practical appli-
cations, N is of course finite, which means that the
theoretical results obtained in the large-N limit may
not be valid. While in a particular scientific study, the
number N of traps per given area can be quite large,
e.g. of the order of hundreds, in routine pest monitoring
programmes N rarely exceeds 20 (cf. [19]) and, in
some cases, it can be as small as one or a few traps per
field [20]. There are several reasons why the number
of traps cannot be larger, for instance:

— handling a large number of traps is labour- and
resource-consuming and hence is often not pos-
sible, especially in nationwide or regional
ecological monitoring programmes where traps
may be operated simultaneously in many fields;

— traps introduce a disturbance into the field (cf.
figure 1). Installing a large number of them
can damage the corresponding agricultural product
considerably, thus making the subsequent
protective measures rather senseless;

— large number of traps may also have a disruptive
effect on the behaviour of the monitored animals
and hence result in a biased estimate of the
population size.

Application of equation (1.1) in the case of small N
increases the level of error of the population estimate
and hence remains disputable. In particular, the ques-
tion arises as to what can be the minimum number of
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traps required to provide a robust estimate of the popu-
lation size. While equation (1.1) may work well for a
small N when the population spatial distribution is
random or homogeneous, its application is problematic
when the population distribution exhibits a consider-
able degree of aggregation. However, the latter is a
much more common case in ecology than the former
[21], e.g. either owing to the heterogeneity of environ-
ment [22] or owing to the self-organized animal
grouping and pattern formation [23,24]. Several
methods have therefore been developed to estimate
the required number of traps for a pest sampling pro-
gramme where the trap catches display aggregated
spatial distribution. Most often these are based on the
negative binomial distribution or Taylor’s power law,
which provide indexes of aggregation [25]. However,
these techniques still require an initial intensive
sampling phase to determine the expected parameters
of the frequency distribution.

The second and even more important problem is that
equation (1.1) and the existing statistical methods for
estimating the required number of traps do not take
space into account. That is, they do not use the spatial
information available to its fullest extent (cf. [26,27]).
In particular, they do not contain any information
about the distance between the traps. Meanwhile, the
area associated with each trap as well as the way how
this area is accounted for (e.g. by ascribing a larger
‘weight’ to the trap counts collected from a bigger
area) are likely to be of crucial importance, especially
with attractive traps such as colour traps, light traps,
pheromone-baited traps, etc., which are most com-
monly used in pest monitoring programmes as they
provide a selective catch.

In practice, the conclusion about the optimum
number of traps is often compromised by cost and agro-
nomic considerations, and can be based solely on the
intuition of the grower or crop adviser. Although the
importance of intuition is widely recognized, so that
‘one should not underestimate the processing power of
the human brain’ [28], yet it can hardly be accepted as
an adequate substitute for a rigorous quantitative analy-
sis. One of the continuing problems of pest management
is getting scientific principles of ecological monitoring
implemented at commercial production. Correspond-
ingly, there is a strong need for conceptually simple and
yet scientifically sound and effective methods to extract
higher quality information from sparse spatial data.

In this paper, we develop a new method that is based
on ideas different from statistical analysis and hence
may provide an alternative to the existing approaches.
Moreover, we will show that, in many cases, it actually
appears to be significantly more accurate and/or more
effective than the commonly used statistical methods,
in particular than those based on equation (1.1).

It has been recently shown that the situation when
the population density is only known at certain
locations can be interpreted as a numerical integration
problem [29,30]. The conventional problem of numeri-
cal integration is well known and well studied, and
many efficient methods have been developed to com-
pute the integral of a given function with a required
accuracy (e.g. [31]).
J. R. Soc. Interface
However, while we can benefit from using the
numerical integration techniques, their application in
ecological monitoring is not at all straightforward.
Contrary to the standard problem of numerical
integration where a computational grid can be refined
to ensure required accuracy of the integration, the
grid of traps in a routine monitoring procedure cannot
be refined for the reasons listed above. Calculation of
the population size therefore requires numerical inte-
gration of the population density defined on a very
coarse grid. Integration on a coarse grid is a challenging
mathematical problem that has been poorly studied in
the literature. Most of the results of the numerical inte-
gration theory, such as, for instance, estimates of the
convergency rate which make it possible to compare
the accuracy of different methods, simply do not
apply to the coarse grid integration. Since the grid
cannot be refined, the whole concept of convergency
appears to be irrelevant.

In this paper, we consider the problem of integration
of sparse data in the context of calculation of the
population size as required by the goals of ecological
monitoring. In §2, we revisit a few of the most commonly
used methods of numerical integration. We then apply
these methods to different types of spatial population
distribution either obtained from a population dynamics
model or generated straightforwardly and show that a
reasonably accurate population size estimate (with inte-
gration error consistently less than 25%) can be
obtained on a coarse grid of 25 nodes (e.g. 5 � 5 traps
in a square domain). Moreover, we show that a reason-
able estimate of the population size can often be
obtained even on a coarser grid of just nine nodes (i.e.
3 � 3 traps). We then apply the methods of numerical
integration to some available field data and show that,
apart from some cases of extreme spatial aggregation,
an estimate of the population size with accuracy less or
about 20–30% can indeed be obtained on a grid of
nine traps. Finally, we discuss the implications of our
findings for ecological monitoring practices and show
that they may lead to a paradigm shift and a new
concept of ecological monitoring.
2. METHODS OF NUMERICAL
INTEGRATION

2.1. The problem statement

Let a function f(x,y) be the density of a pest population
in a given two-dimensional domain ~D. We assume that
the information about the pest population density is
collected through trapping where traps are placed at
the nodes of a rectangular grid. From a computational
viewpoint, the trapping procedure means that the
function f(x,y) is not available at an arbitrary point
P ¼ ðx; yÞ [ ~D. Instead, we have to deal with a discrete
function fij ; f(xi,yj), i ¼ 1, . . . , Nx, j ¼ 1, . . . , Ny

defined on a Cartesian grid consisting of the total
number N2 ¼ Nx � Ny nodes.

For the sake of simplicity, in this paper, we restrict
our study by considering a rectangular domain ~D. For
convenience, we transform (using a linear mapping)
domain ~D into the unit square D ¼ [0,1] � [0,1], where

http://rsif.royalsocietypublishing.org/
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a Cartesian grid can easily be generated. Namely, let us
consider a set of points xi, i ¼ 1, . . . , Nx at the interval
[0,1], where we require that x1 ¼ 0, xiþ1 ¼ xi þ hx, i ¼ 1,
. . . , Nx 2 1 and the grid step size hx is defined as hx ¼
1/(Nx 2 1). Consider now a set of points yj, j ¼ 1, . . . ,
Ny in the domain [0,1] and generate a one-dimensional
grid in the y-direction as y1 ¼ 0, yjþ1 ¼ yj þ hy, j ¼ 1,
. . . , Ny 2 1, hy ¼ 1/(Ny 2 1). The grid node position is
then given as (xi, yj).

Once a computational grid has been generated and
the data are available at grid nodes, there are several
methods of numerical integration that can be applied
in an ecological monitoring problem. We briefly revisit
them below.

2.2. Composite rules of numerical integration

A conventional approach to integration over a Carte-
sian grid is to consider a composite rule of integration
where the integral over the unit square D is replaced
by the sum of integrals evaluated at each grid
cell (e.g. [31]). Consider the grid cell cij defined as
cij ¼ [xi, xiþ1] � [yj, yjþ1], where i ¼ 1, . . . , Nx 2 1, j ¼
1, . . . , Ny 2 1. A composite rule of integration therefore
reads as

I ¼
ð1

0

ð1

0
f ðx; yÞ dx dy ¼

X
i;j

Iij ; ð2:1Þ

where

Iij ¼
ð ð

cij

f ðx; yÞ dx dy: ð2:2Þ

Hence, the integration problem is reduced to the
integral evaluation at each rectangular subdomain cij .
Different integration rules use different ‘local’ approxi-
mation of the integrand f ðx; yÞ at each grid cell cij .

2.2.1. The midpoint rule. The simplest evaluation of the
integral (2.2) can be performed under the assumption
that the function f ðx; yÞ is approximated by a constant
at each grid cell. Such approximation results in the
following formula:

Iij � Aijf ðxi; yjÞ; ð2:3Þ

where Aij ¼ hx hy for the interior nodes, i.e. for i ¼ 2, . . . ,
Nx 2 1, j ¼ 2, . . . , Ny 2 1. At boundary points, where
one of the conditions i ¼ 1, i ¼ Nx, j ¼ 1 or j ¼ Ny

holds, we have Aij ¼ (1/2)hxhy, and Aij ¼ (1/4)hxhy

at the four corners of the domain.

2.2.2. The trapezoidal rule. The trapezoidal rule of inte-
gration implies the approximation of f(x,y) by a linear
function in each grid cell cij. Correspondingly, the
integral of Iij is evaluated as

Iij �
hxhy

4
½ f ðxi; yjÞ þ f ðxiþ1; yjÞ þ f ðxi; y jþ1Þ

þ f ðxiþ1; y jþ1Þ�: ð2:4Þ

2.2.3. The Simpson rule. The Simpson rule of inte-
gration is another ‘local’ integration rule, where the
J. R. Soc. Interface
integrand f(x,y) is approximated by a quadratic poly-
nomial at each subdomain. The application of this
rule in the cell cij requires that the data f(x,y) are
available at points (xiþq, yjþr), where q ¼ 0,1/2,1 and
r ¼ 0,1/2,1. The notations q ¼ 1/2 and r ¼ 1/2 are
used for the midpoints in the x- and y-directions, that
is xiþ1/2 ¼ 0.5(xi þ xiþ1) and yiþ1/2 ¼ 0.5(yi þ yiþ1).
The function f(x,y) is then integrated in the cell cij by
the Simpson rule as

Iij �
hxhy

36
½ f ðxi; yjÞ þ f ðxi; y jþ1Þ þ f ðxiþ1; yjÞ

þ f ðxiþ1; y jþ1Þ þ 4ð f ðxi; y jþ1=2Þ þ f ðxiþ1=2; yjÞ
þ f ðxiþ1; y jþ1=2Þ þ f ðxiþ1=2; y jþ1ÞÞ
þ 16f ðxiþ1=2; y jþ1=2Þ�:

ð2:5Þ

Note that the straightforward application of the
Simpson rule given by equation (2.5) corresponds to
the case when the grid can be refined by introducing
the new ‘half-integer’ nodes. In the case we consider
in this paper, the number of nodes cannot be increased.
Therefore, in order to apply the Simpson rule, we
have to increase the size of integration cells by considering
hx! 2hx, hy! 2hy; we can then use the even-numbered
nodes instead of the half-integer ones. As an immediate
consequence, it means that the number of grid nodes in
each direction x,y must be odd.
2.3. Least-squares polynomial approximation

One alternative to the composite rules discussed above
is to consider a ‘global’ polynomial approximation,
where the function f(x,y) is replaced by a single poly-
nomial over the entire domain of integration. Consider
a polynomial pK(x,y) of degree K,

pK ðx; yÞ ¼
XM
m¼1

amfmðx; yÞ; ð2:6Þ

where fm (x,y) ¼ (x 2 x0 )m1 (y 2 y0 )m2 are polynomial
basis functions, m1 þ m2 ¼ 0, 1, . . . , K. We then require
that

f ðx; yÞ � pK ðx; yÞ; ð2:7Þ

where the basis functions fm(x,y), m ¼ 1, . . . , M are
now linked to the central point of the unit square,
x0 ¼ 1/2, y0 ¼ 1/2. Hence, integral (2.1) can be
computed as

I ¼
ð1

0

ð1

0
f ðx; yÞ dx dy �

ð1

0

ð1

0

XM
m¼1

amfmðx; yÞ

¼
XM
m¼1

amIm; ð2:8Þ

where the partial integrals

Im ¼
ð1

0

ð1

0
fmðx; yÞdx dy; m ¼ 1; . . . ;M ;

are easily available in closed form for polynomial
functions fm(x,y).

http://rsif.royalsocietypublishing.org/
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The polynomial coefficients in expansion (2.6) can be
defined by interpolation or by least-squares approxi-
mation. In our work, we use a least-squares method to
define the coefficients am. The least-squares procedure
is explained in appendix A.

2.4. A coarse grid problem

A conventional approach to the choice of a numerical
integration method is to evaluate the error that appears
when the exact integral is approximated by a numerical
rule. Provided the grid step size h ¼ max(hx, hy) is suffi-
ciently small, the integration error e usually depends on
h as e ¼ Chk , where C is a constant and k � 1 [31]. If
two methods of numerical integration are compared,
then the most suitable candidate for the problem will
be the method that has a smaller integration error. In
other words, if the integration method A has the error
eA ¼ O(hk1) and method B has the error eB ¼ O(hk2),
where k1 . k2, then the first method should give a
more accurate result on a grid with a fixed number of
grid nodes. Thus, an integration method with faster
convergence rate (i.e. a method that has a greater
value of k in the error estimate) is thought of as a
more accurate method that should be recommended for
numerical integration.

Meanwhile, a crucial feature of the numerical inte-
gration problem we deal with is that the above
conclusion is not necessarily true for coarse grids, i.e.
for grids with a small number N2 of nodes. It has
been shown in Petrovskaya & Venturino [30] that the
asymptotic error estimates in the form e ¼ Chk cannot
be implemented when sparse data are integrated,
because we cannot provide an accurate estimate of the
constant C on coarse grids. The estimate of C depends
on the integrand function f(x,y), while discrete data fij
available on coarse grids may not have the same pro-
perties as their continuous counterpart f(x,y). In other
words, the method that has slower convergence rate
can nevertheless have a smaller integration error on
coarse grids, where the integrand function is not well
resolved. Hence, our next task is to compare the
integration error for all the methods above and to con-
clude if any of them can provide a user with acceptable
accuracy on coarse grids.
3. NUMERICAL TEST CASES I:
ECOLOGICAL MODEL

The ultimate goal of our study is to apply the methods
of numerical integration to trap count data of pest
monitoring with the purpose to estimate, with a reason-
able accuracy, the population size in a given area. We
aim to understand the relative efficiency of different
integration methods and also show how the number of
traps can be minimized without any essential loss of
information about pest abundance.

However, the currently available field data appropri-
ate for our purposes are rare, in particular, because the
standard methods of integration imply certain restric-
tions on the traps number and position. Indeed, the
methods discussed above can be applied only when
the traps are installed at the nodes of a rectangular
J. R. Soc. Interface
grid but not to the case of their arbitrary position.
Besides, the Simpson method requires that the
number of traps in each direction must be odd.

Therefore, in order to evaluate the effectiveness
and accuracy of numerical integration on a coarse
grid, we first consider simulation data obtained from
an ecologically sound mathematical model of popula-
tion dynamics. Specifically, we consider the following
spatially explicit predator–prey model with the Allee
effect (e.g. [28,32]):

@U ðX ;Y ;TÞ
@T

¼ D1
@2U
@X2 þ

@2U
@Y 2

� �
þ 4n

ðK � U0Þ2

 !

� U ðU � U0ÞðK � UÞ � AUV
U þ B

ð3:1Þ

and

@V ðX ;Y ;TÞ
@T

¼ D2
@2V
@X2 þ

@2V
@Y 2

� �
þ k

AUV
U þ B

�MV :

ð3:2Þ

Here U and V in equations (3.1) and (3.2) are the
densities of prey and predator, respectively, at time T
(T . 0) and position (X,Y ). Note that, depending on a
particular application, either of the two species can be
the pest. We consider population dynamics in a square-
shaped domain so that 0 , X , L and 0 , Y , L,
where L can be interpreted as the typical size of a given
agricultural field. At the domain boundaries, the zero-
flux conditions are used. Coefficients D1 and D2 describe
species diffusivity owing to the movement of the individ-
uals, parameter K is the prey carrying capacity, U0 is the
Allee threshold density (0 , U0 , K), n is the maximum
prey per capita growth rate (cf. [33]), A is the predator
attack rate, B is the half-saturation prey density, k is
the food assimilation efficiency coefficient and M is the
predator mortality. For the sake of simplicity, below we
assume that D1 ¼ D2 ¼ D. Note that this assumption is
not ecologically unrealistic: available estimates of the
range of diffusivity values often overlap between different
species, even for species from different taxonomic groups
([34], §3.7).

Here we want to mention that the equations (3.1)
and (3.2) are, in an appropriate parameter range, in a
good qualitative and sometimes quantitative agreement
with experimental data ([24], §11.3) and therefore
can be used to simulate ecologically realistic spatial
density distributions.

In order to obtain the population distributions,
equations (3.1) and (3.2) are solved numerically. For
convenience, we first introduce dimensionless variables.
The domain length L makes a convenient scale for the
coordinates, x ¼ X/L and y ¼ Y/L, where the new
variables x and y are dimensionless, 0 , x , 1, and
0 , y , 1. In a similar way, the carrying capacity
K makes a convenient scale for the prey population
density, u ¼ U/K. By introducing dimensionless pre-
dator density as v ¼ V/(kK) and dimensionless time
as t ¼ aT, where a ¼ A k K/B, equations (3.1) and

http://rsif.royalsocietypublishing.org/
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(3.2) take the following form:

@uðx; y; tÞ
@t

¼ d1
@2u
@x2 þ

@2u
@y2

� �
þ buðu � bÞð1� uÞ

� uv
1þ Lu

ð3:3Þ

and

@vðx; y; tÞ
@t

¼ d2
@2v
@x2 þ

@2v
@y2

� �
þ uv

1þ Lu
�mv; ð3:4Þ

where L ¼ K/B, b ¼ U0/K, b ¼ 4nBK/(Ak(K 2 U0 )2),
m ¼M/a, d1 ¼ D1/(aL2) and d2 ¼ D2/(aL2) are
dimensionless parameters.

For the parameter range where the local prey–pred-
ator dynamics is oscillatory, equations (3.3) and (3.4)
are known to generate a rich variety of spatio-temporal
patterns [24]. The left column in figure 2 shows three
different cases (the corresponding parameter values,
the initial conditions and other technical details are
given in appendix B). Figure 2a shows a smooth distri-
bution of the prey density over the area, it reaches its
maximum value (shown in red) near the x-axis and
drops to zero in the right-hand side of the domain.
Figure 2b shows the almost homogeneous prey
distribution inside the round area (shown in yellow)
separated from the rest of the domain, where the popu-
lation is absent, by a steep gradient in the population
density. This case may correspond to the species
spread from the place of its initial introduction in the
centre of the domain. Figure 2c also shows the species
spread but following a different dynamical regime
when the population distribution in the wake of
the population front forms a distinct patchy structure
(cf. [35]).

Now, we are going to check whether the method of
numerical integration on a coarse grid can be applied
to population distributions shown in figure 2. Note
that, in order to estimate the integration error, we
need the exact value of the integral (i.e. the popu-
lation size), which is not known because equations
(3.3) and (3.4) cannot be solved analytically. To over-
come this difficulty, we first solve equations (3.3) and
(3.4) numerically on a very fine grid Gf that has Nx ¼

Ny ; Nf ¼ 210 þ 1 grid nodes at each direction, and
consider the result as the exact solution to the pro-
blem. Consequently, the corresponding value INf of
the solution integral is considered as the exact integral
that will be compared with the value IN of the inte-
gral on a coarse grid. Coarse grids Gc are generated
as grids where the number of nodes at each direction
is Nx ¼ Ny ; N ¼ 2s þ 1, 1 � s � 7, and a projection
of the ‘exact’ solution obtained on Gf onto each
coarse grid is considered. Once the function u(x,y) is
available at nodes of a coarse grid, the numerical inte-
gration is performed and the integration error is
computed as

e ¼ jINf � IN j
INf

: ð3:5Þ

An advantage of using simulation data instead of
real data to test the integration methods on a coarse
J. R. Soc. Interface
grid is that we can easily make the grid as refined as
we want by adding more grid nodes, which is difficult
in empirical field studies. Correspondingly, we can con-
sider how the integration accuracy changes depending
on the number of grid nodes. Error (3.5) as a function
of the number N of grid nodes at each direction, starting
from the minimum number of N ¼ 3, is shown in the
right column of figure 2. The dashed red horizontal
line shows the hypothetical value of desirable error of
25 per cent. It is readily seen from figure 2 that, for
the coarse grid with N ¼ 5, the Simpson rule and the
least-squares method provide good accuracy of less
than 25 per cent consistently over all three different
types of population distribution. Even on a very
coarse grid with N ¼ 3 (so that the total number of
grid nodes is just N2 ¼ 9), methods of numerical inte-
gration provide a very good accuracy (less than 10%)
for the density distribution shown in figure 2a and a
reasonable accuracy1 less or about 50 per cent in the
case of figure 2c.

The population distributions shown in figure 2 cor-
respond to three qualitatively different cases but they,
of course, do not exhaust all the possibilities. An inter-
esting and ecologically important pattern is given by
the ‘patchy invasion’ [38–40] when, contrary to what
is shown in figure 2e, the strongly heterogeneous
patchy spatial distribution of a spreading population
is not preceded by the propagation of any continuous
front. The left column of figure 3 shows the snapshots
of the prey population density at three different stages
of the patchy invasion, i.e. (a) early, (b) intermediate,
and (c) late (the parameters and other details are
given in appendix B). The right column shows the cor-
responding accuracy of numerical integration. Rather
counterintuitively, except for the early stage of the
patchy spread, even a very coarse grid provides a
reasonable accuracy which is consistently less than 50
per cent for N ¼ 3 and less than 30 per cent for N ¼ 5.
4. NUMERICAL TEST CASES II: EXTREME
AGGREGATION

In §3, we showed that numerical integration on coarse
grids provides good accuracy in the case where the
population is distributed more or less over the whole
area, no matter whether this distribution is simple
(e.g. like the one shown in figure 2a) or may have a com-
plex structure (figure 3e). However, the accuracy
appears to be much lower when the population is aggre-
gated within one or a few small areas which may fall in
between the sampling grid nodes (cf. figure 3a).

It should be noted that, even on a very coarse grid,
such a narrow peak in the spatial population distri-
bution is not necessarily undetectable. It depends on
the peak location with respect to the position of the
traps (i.e. position of the grid nodes) if its contribution
to the population size is properly accounted. The actual
problem is that the location of the peak is not known a
priori. Therefore, it is impossible to distinguish in
advance between the cases when the numerical
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Figure 2. (a,c,e) Different population distributions as predicted by the population dynamics model (3.3) and (3.4) for different
parameter values (see appendix B). (b,d,f) The error e obtained by numerical integration rules on a sequence of uniformly refined
grids. Solid line with filled square, midpoint rule (MR); solid line with open circle, trapezoidal rule (TR); solid line with filled
triangle, Simpson’s rule (SR); dashed line with open diamond, least-squares method (LS). N is the number of grid nodes in
each direction on a uniform Cartesian grid. The red dashed line labeled as e ¼ 0.25 shows the hypothetical value of desirable
error of 25%.
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Figure 3. (a,c,e) Snapshots of the population density at different stages of the patchy invasion; the parameters and technical details
are given in appendix B. (b,d,f) The error e obtained by numerical integration rules on a sequence of uniformly refined grids. Solid
line with filled square, midpoint rule (MR); solid line with open circle, trapezoidal rule (TR); solid line with filled triangle, Simpson’s
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Cartesian grid. The red dashed line labeled as e ¼ 0.25 shows the hypothetical value of desirable error of 25%.
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Figure 4. Snapshots of the population density in the case of (a) a single peak distribution, (b) a three peak distribution and (c) a seven
peak distribution. The standard deviation of each peak is s¼ 0.05 and the position is chosen randomly. (Online version in colour.)

Table 1. The integration error (3.5) on a coarse grid of N2 ¼ 9
nodes for the single peak distributions, for different
integration rules: eMR for the midpoint rule, eTR for the
trapezoidal rule, eSR for the Simpson rule, eLS for the least-
square method and estat for the arithmetic mean-based
statistical approach (see equation (1.1)).

dataset eMR eTR eSR eLS estat

1 0.063 0.532 0.167 1.000 0.167
2 0.897 0.788 0.954 0.587 0.816
3 4.328 4.328 3.736 1.000 3.736
4 0.935 0.935 0.885 1.000 0.971
5 0.720 0.415 0.876 0.120 0.502
6 0.968 0.968 0.972 1.000 0.972
7 0.750 0.750 0.556 1.000 0.889
8 0.216 0.216 0.393 1.000 0.652
9 4.404 1.702 3.804 1.000 3.804

10 0.982 0.982 0.982 1.000 0.985
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integration on a coarse grid may still provide a reason-
able estimate and when it fails. However, it is possible
to assess the frequency of different outcomes if we fix
the grid and treat the location of the peak as random.

In order to make a quantitative insight into this
matter, we now reduce the grid size to a minimum sen-
sible case, e.g. N2 ¼ 9 or N2 ¼ 25 nodes, and consider
another series of numerical tests. We do not need any
population dynamics model now as we can generate
the desirable spatial distributions directly. We start
with the case when the population consists of a single
peak distribution (figure 4a). We describe the shape
of the peak by a normal distribution:

uðx; yÞ ¼ U0

4ps2 exp �ðx � x̂1Þ2 þ ðy � ŷ1Þ2

4s2

 !
; ð4:1Þ

where U0 is a scaling factor, the variance s2 is fixed at a
small hypothetical value and x̂1 and ŷ1 are random
numbers distributed uniformly between 0 and 1, so
that the position ðx̂1; ŷ1Þ of the peak is chosen rando-
mly. We consider 10 different realizations (numbered
sequentially in the first column of table 1) and calculate
the population size and the corresponding error for each
of them. We use the methods of numerical integration
described in §2 as well as the statistical method given
J. R. Soc. Interface
by equation (1.1). The results are given in tables 1
and 2. Expectedly, we observe that the typical accuracy
of the integration on a very coarse grid with N2 ¼ 9
nodes is low. In fact, only in one or two cases (shown
in bold in table 1) out of 10, the accuracy is within
the desirable 25 per cent; see also table 2a. However,
we point out that the number of cases, where the accu-
racy is within 90 per cent (which may still be acceptable
for some applications, see footnote 1), is five out of 10
for four integration rules (the least-squares method
appears to be somewhat less effective).

In order to further reveal the tendency, we repeat
this procedure in the case where the population
distribution consists of a few peaks:

uðx; yÞ ¼ U0

4ps2

XJ

j¼1

exp �
ðx � x̂jÞ2 þ ðy � ŷjÞ2

4s2

 !
;

ð4:2Þ

where x̂j and ŷj ( j ¼ 1, . . . , J ) are random numbers and
J is the total number of peaks. Table 2b,c shows respect-
ively, the results obtained for J ¼ 3 and J ¼ 7
(figure 4b,c). Interestingly, the frequency of the ‘good’
cases does not change much when the number of
peaks increases from one to three. However, it increases
significantly when the number of peaks increases from
three to seven. Note that even in the latter case, the
population density is negligibly small in more than 80
per cent of the area, yet the midpoint and trapezoidal
rules ensure the acceptable accuracy within 90 per
cent in all the cases considered.

We also mention here that, in all three cases con-
sidered above, i.e. for J ¼ 1, J ¼ 3 and J ¼ 7, there is
no significant difference in accuracy between the stat-
istical method (1.1) and the numerical integration rules.

The situation, however, changes remarkably if the
integration is considered on a slightly less coarse grid,
i.e. when the number of nodes increases from N2 ¼ 9
to N2 ¼ 25 (table 2d). Now, even in the extreme situ-
ation of the single peak distribution (J ¼ 1), the
Simpson rule ensures the desirable accuracy (within
25%) in 10 out of 10 cases. Almost the same good
accuracy is provided by the least-squares method.
The efficiency of other integration rules is comparable
with the Simpson rule in the low accuracy range of

http://rsif.royalsocietypublishing.org/


Table 2. The integration accuracy of different methods for the distributions consisting of J peaks. The first column gives the
number N2 of the nodes in the grid, columns 4–8 give the number of cases with the accuracy in the prescribed range.

N2 peaks (J ) accuracy range (%) midpoint trapezoidal Simpson least squares equation (1.1)

a 9 1 1 � 25 2 1 1 1 1
9 1 1 � 50 2 2 2 1 1
9 1 1 �90 5 5 5 2 5

b 9 3 1 �25 0 0 1 0 3
9 3 1 �50 3 3 3 1 4
9 3 1 �90 7 7 8 3 8

c 9 7 1 �25 3 4 3 2 4
9 7 1 �50 6 7 4 2 6
9 7 1 �90 10 10 9 3 10

d 25 1 1 �25 3 2 10 8 1
25 1 1 �50 7 6 10 10 3
25 1 1 �90 9 10 10 10 8
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1 � 90% but appears to be much lower in the high accu-
racy range of 1 � 25%.
5. APPLICATION TO FIELD DATA

In the previous sections, we demonstrated that numeri-
cal integration on a grid as coarse as N2 ¼ 9 nodes can
provide a reliable estimate of the population size even
when the population spatial distribution has a highly
complicated structure. Now, we are going to further
validate our approach by applying it to field data of eco-
logical monitoring. The experimental data we use have
been collected for a New Zealand flatworm population
(Arthurdendyus triangulatus) [41]. This flatworm is an
alien species originally brought from New Zealand and
eventually having established itself over a large part
of the British Isles [42] as well as having potential to
colonize Europe [43]. The New Zealand flatworm is
regarded as a potentially dangerous pest because of its
predatory impact on earthworms [44], which may
have a severe disruptive effect on the corresponding eco-
system, in particular, causing a decline in the soil fauna
and strongly affecting earthworm predators like moles
and badgers [45,46].

For this reason, flatworms have been a subject of
controversy, intensive study and monitoring, particu-
larly, in Northern Ireland [42,47]. Here, we use the
results obtained in a field study performed in Janu-
ary–March of 2002. The goal of the study was to
reveal the features of flatworms’ spatial distribution in
grassland, including a population assessment. An area
of a flatworm-infested grassland field at Newforge
Lane, Belfast, Northern Ireland, was used for the
investigation (World Geodetic System 5483302400 N,
585604700W, Irish Grid J330698). The data on flat-
worms abundance at different locations were collected
by means of trapping (figure 1). Shelter traps were
heavy duty black polythene sacks, filled with 5 kg of
gravel/sand mixed in a ratio of 4 : 1 and measuring
50 � 30 cm. Arthurdendyus triangulatus typically shel-
ters on the soil surface under stones, wood and
discarded plastic, so shelter traps such as these provide
a relatively cheap and convenient method of sampling
J. R. Soc. Interface
and have been widely used [48–50]. The traps were
positioned in the nodes of 12 � 12 uniform grid with
2 m spacing, they were examined every week and the
numbers of flatworms caught were counted. The fea-
tures of the experimental design (in particular, trap
spacing) are consistent with other similar studies on
flatworms (e.g. [49]) and hence can be regarded as
typical for this species.

The six distributions of trap counts obtained in the
field study are shown in figure 5. Over the sampling
period, the 12 � 12 grid traps caught 465–748 flatworms
per week. The initial two adjacent sampling weeks, gave
counts of 624 and 544 flatworms, equating to a total of
1168 individual flatworms within the grid area [41].
For our purposes, from the trap data collected in the
field, we extract the sub-grid with Nx ¼ Ny ; N ¼ 11
nodes at each direction. That has been carried out
because the Simpson rule requires an odd number N of
grid nodes. An example of the corresponding trap data
is given in table 3.

Dividing the trap counts at each location by the
area of the grid cell (i.e. by 4 m2), the trap counts
are linked to the local population density [13,14].
Having then integrated the population density over
the fine grid of N2 ¼ 121 nodes, we reproduce the
total number of collected flatworms (shown in the
first row of table 4 for each of distributions from
figure 5a– f). This number is considered as the exact
value of the population size.

We then recalculate the population size using a very
coarse grid of N2 ¼ 9 nodes by the midpoint rule (the
row marked as IMR in table 4), by the trapezoidal rule
(the row ITR), by the Simpson rule (the row ISR), by
the least-squares approximation (the row ILS) and by
the baseline statistical approach given by equation (1.1)
(the row Istat). For each of these rules, we compute the
integration error (3.5) (the rows marked as eMR, eTR,
eSR, eLS and estat, table 4).

It is readily seen from table 4 that, apart from case
(a), integration on the grid of N2 ¼ 9 nodes gives an
estimate of the total population with error consistently
less or about 30 per cent. Note that, even in the ‘unfor-
tunate’ case (a) where the information is largely lost
because the patch of a high flatworm population
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Figure 5. The field data on flatworm spatial distribution over the study area obtained at six different times (see details in the text).
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density falls in between the grid nodes, the error of the
population size estimate still remains within 55 per cent.
Such accuracy can still be considered as acceptable for
large-scale monitoring programmes (cf. [20]).

The value of the error averaged over the six cases
appears to be just 22 per cent for all four numerical inte-
gration rules and 30 per cent for the statistical rule
J. R. Soc. Interface
(1.1). It shows that a robust information about the
population size of flatworm population can be obtained
using much less traps per unit area (or much larger
inter-trap distance) than it is usually used. It also
demonstrates a higher accuracy of the numerical
integration rules compared with the standard
statistical approach.

http://rsif.royalsocietypublishing.org/


Table 3. An example of the flatworm trap count data (cf.
figure 5a). The square brackets show the traps that form the
coarse 3 � 3 grid, the corresponding counts (shown in bold)
are used to calculate the coarse-grid estimate of the flatworm
population size (table 4).

[2] 1 0 5 2 [4] 6 8 5 5 [3]
0 1 2 4 4 2 10 3 3 5 1
1 0 3 1 4 5 5 1 4 8 3
1 0 4 2 2 4 5 6 1 5 5
2 2 2 6 4 7 8 9 4 5 3

[0] 5 4 2 5 [2] 14 10 11 4 [3]
4 1 2 3 9 10 6 4 4 5 1
0 1 2 3 2 10 9 8 7 2 6
1 0 5 7 3 7 7 10 10 2 1
5 4 2 6 7 6 9 7 9 7 9

[2] 3 6 7 7 [4] 7 6 10 5 [6]
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6. DISCUSSION

Ecological monitoring is an essential part of the inte-
grated pest management and control. Its main goal is
to provide information about the abundance of problem
species, which is performed through collecting infor-
mation in the field. This information is then used as a
basis for decision-making, for instance, about appli-
cation of pesticides. The reliability of the information
on pest abundance is therefore an issue of high impor-
tance. On the other hand, collecting field data on a
large scale, as required by national or regional pest sur-
veys, is costly. A challenging problem is therefore to
obtain sufficiently accurate estimates of pest abundance
keeping the resources spent on collecting field data
collection at a minimum possible value.

For invertebrate species, the information about popu-
lation abundance is usually obtained from trap counts.
The trap counts are then re-calculated into the popu-
lation density at the position of the traps (e.g. [13,14]).
However, as the number of traps cannot be made large,
it gives the value of population density only at several
locations. The statistical methods to estimate the
total population size based on this sparse information
remain difficult, in particular, owing to the majority
of pests displaying some form of non-random aggrega-
ted distribution [21]. The commonly used statistical
approaches [25,18] are not fully satisfactory as they are
based on restrictive assumptions about the properties
of the population spatial distribution or neglecting the
spatial aspect at all. The determination of the optimum
number of traps within a sampling programme often
relies on properties of the frequency distribution of
counts rather than the actual pattern [27].

In our previous work [29], we considered a hypothe-
tical one-dimensional case and showed that this
problem can, in principle, be solved by applying
methods of numerical integration. The population size
is obtained by integrating the population density on a
coarse grid, where the grid nodes are given by the
traps’ position. In this paper, we applied this approach
to a realistic two-dimensional case using both numerical
data (in particular, simulation data from a mathemat-
ical model of population dynamics) and field data on
some invertebrate species (New Zealand flatworms).
J. R. Soc. Interface
We used several different methods of numerical inte-
gration along with a baseline statistical method and
showed that a reliable estimate of the population size
(with a good accuracy within 25%) can be obtained
on a grid consisting of just 5 � 5 ¼ 25 nodes, even in
the cases when the population density exhibits a
highly complex spatial structure (e.g. figure 3c) or
shows extreme spatial aggregation (e.g. figure 4a).
In fact, for some of the numerical tests, as well as for
the field data, even a smaller grid of 3 � 3 ¼ 9 nodes
is sufficient to provide a good accuracy, although the
results become more sensitive to the details of the den-
sity distribution. This is in good agreement with the
results of other field studies. In particular, Boag
et al. [50] analysed the results of trap counts on a
spatially aggregated flatworm population and suggested
that a minimum trap number of 15 was necessary to
achieve a good population estimate, although they cau-
tioned that this is a compromise between statistical
accuracy and fieldwork practicalities.

We also mention here that in almost all cases, the
statistical approach based on the arithmetic mean,
see equation (1.1), appears to be less accurate than
(some of) the integration rules; in general, the Simpson
rule seems to be the most accurate one.

6.1. Explicit space

The simulation results shown in figures 2–4 are
obtained in the dimensionless space. It evokes questions
as to what spatial scale the shown population distri-
butions may correspond in reality and how we can
relate their scale to the number of grid nodes required
for an accurate numerical integration. Recalling that,
in simulations, the distances are measured as fractions
of the domain size (see the definition of the dimension-
less variables above equations (3.3) and (3.4)), for a
hump with a characteristic dimensionless size dhump,
we obtain that its real size Dhump is calculated as

Dhump ¼ dhumpL: ð6:1Þ

Obviously, for a given size L of the domain, a smaller
dhump corresponds to a smaller Dhump. However, let us
note that L is a parameter which, generally speaking,
can be made different in different simulations, e.g. by
considering fields of different size. Therefore, we can
address this situation by assuming that the size Dhump

of the hump is the same but the size of the domain is
different. Indeed, there is significant theoretical and
empirical evidence (cf. [23,51–53]) that, for a given
species, the typical size of animals’ spatial aggregates
can be regarded as a species’ trait as it remains
approximately the same for different habitats.

We therefore assume that the distribution shown
in figure 2a corresponds to the ‘microscale’ of a sin-
gle hump in a small field, whereas the multi-hump
distribution shown in figure 3e corresponds to a ‘macro-
scopic’ spatial scale of the same population but in a
much larger field. Having estimated the number of
humps at each direction, we conclude that the spatial
scale of the distribution shown in figure 3e is about
20 times larger than that of figure 2a. Interestingly,
the accuracy of the numerical integration on the same
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Table 4. The population size I and the integration error e for different integration rules for the flatworm field data on the fine
(N2 ¼ 121) and the coarse (N2 ¼ 9) grids. Notations are as in table 1, labels (a–f) correspond to the spatial distribution shown
in figure 5.

field data (a) (b) (c) (d) (e) (f)

I, N2 ¼ 121 544 459 543 419 651 611
IMR, N2 ¼ 9 269 319 512 450 531 488
eMR 0.506 0.305 0.056 0.074 0.184 0.202
ITR, N2 ¼ 9 269 319 512 450 531 488
eTR 0.506 0.305 0.056 0.074 0.184 0.202
ISR, N2 ¼ 9 247 325 589 544 636 561
eSR 0.545 0.291 0.085 0.299 0.023 0.082
ILS, N2 ¼ 9 250 350 550 567 600 567
eLS 0.540 0.237 0.013 0.352 0.078 0.073
Istat, N2 ¼ 9 289 300 456 344 444 411
estat 0.469 0.346 0.161 0.178 0.317 0.327
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coarse grid does not at all drop down 20 times; in fact,
using the midpoint integration rule, the accuracy of the
population size estimate on the grid of 5 � 5 nodes
appears to be even higher for figure 3e than for
figure 2a. Therefore, contrary to what has been
observed before in the one-dimensional case (cf. [29]),
in order to achieve reasonable accuracy, the numerical
grid must not necessarily resolve all the solution’s
heterogeneities. (A heuristic explanation for this can
be that, owing to the high irregularity of the complex
‘multipatch’ spatial pattern, the overshoots and under-
shoots at different grid nodes may balance each other.)
Having in mind the practical applications of our
approach, it leads to a highly counterintuitive con-
clusion that the number of traps required to obtain a
reliable estimate of the population size does not directly
depend on the size of the monitored area, and the same
minimum number of traps (e.g. nine, as required by the
Simpson rule) may be sufficient for a small agricultural
field as well as for a large one.

In order to relate the simulation results to the real
scale of metres or kilometres, we consider the character-
istic scale of the pattern, e.g. an average linear size of a
single hump. Its value is known to be species-specific.
For instance, it is estimated to be between 30 and
50 m for many common agricultural insect pests
[51,52] but it can be much smaller for soil invertebrates;
e.g. the results shown in figure 5 suggest the value of
the order of several metres. Therefore, the pattern
shown in figure 3e may correspond to an insect popu-
lation distribution over a field of roughly 1 � 1 km.
Thus, we conclude that a grid of 5 � 5 traps should
be sufficient to provide robust information about the
population size over the area of up to 100 ha for
insect species and over the area of about 4 ha for flat-
worms. A conceptual possibility of using smaller grids
of traps is discussed below.
2Except for some degenerate cases (cf. figure 3a).
6.2. Ultra-coarse grids: a paradigm shift?

A traditional approach to numerical integration
assumes that the integral can be calculated with a
given accuracy. Indeed, in computational mathematics,
any prescribed accuracy can be reached by refining the
numerical grid (i.e. by increasing the number of nodes
J. R. Soc. Interface
per unit area) as the theory predicts that the calculated
value converges to the exact value when the grid spa-
cing tends to zero. In the case that the ideas of
numerical integration are applied to ecological monitor-
ing, the situation becomes qualitatively different: we
have to deal with sparse data (e.g. population density)
obtained at certain given locations (traps position). The
numerical grid is therefore fixed and cannot be refined.

Convergency of the calculated integral to the exact
value implies that, as a general tendency, the inte-
gration error should be the smaller the more refined
the grid is, i.e. the larger the number of nodes is.
That, in principle, makes it possible to give a robust
estimate of the population size with a reasonable accu-
racy even on a fixed grid if the number of nodes is not
too small. Ideally, the number of nodes should be suf-
ficiently large in order to resolve the inhomogeneities
in the population spatial distribution [29]. This
requires some a priori information about the distri-
bution features, which is often unknown. Moreover,
careful resolution of small size heterogeneities such as
narrow peaks would require a number of nodes per
unit area much larger than it is normally available
in ecological monitoring programmes [29]. In practical
terms, however, we have observed that, using the
Simpson integration rule, a good accuracy of less
than 25 per cent can be reached2 on a grid consisting
of just 25 nodes, even that this grid apparently does
not resolve the single peak distributions well enough
(figure 4a).

A grid of 25 traps is still larger than that used in
practice (cf. [20]) so there is a need for further optimiz-
ation. A question is whether any useful information can
be obtained on a smaller grid. Obviously, for an ‘ultra-
coarse’ grid, the above approach is not valid any more:
indeed, a smaller grid of nine nodes largely fails when
applied to highly aggregated population distributions
consisting of one or a few narrow peaks (see §4). The
problem is that the position of the peak(s) is not
known in advance. Hence, it is not possible to adjust
the position of the grid nodes (traps) to the position
of the peaks. A narrow peak can still be ‘integrated’
properly but only if it is located close to one of the
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grid nodes. This is a typical example of a problem with
uncertainty, which can have more than one outcome,
e.g. depending on relative position of the peaks and
traps. A standard way to deal with this type of problem
(e.g. [54]) is by introducing probabilities of different
outcomes (table 2). That leads to a paradigm shift:
instead of considering the integration result per se, we
now have to interpret it probabilistically. For instance,
whatever is the estimate obtained, there is a probability
p1 that the integration error is within 25 per cent, a pro-
bability p2 that it is within 50 per cent, etc. The results
of the monitoring should be interpreted accordingly by
considering the risks associated with each of the pro-
bability ranges. Although this approach is unlikely to be
informative if the monitoring is limited to one particular
field or area, it may be effective for nationwide pro-
grammes where the corresponding probabilities can be
obtained from comparison of the results between different
fields, with the results of case studies on the given species,
and with simulations.
6.3. Concluding remarks

The main conclusions from our study are as follows:

— numerical integration rules (in particular, Simpson
rule) can provide a significantly more accurate esti-
mate of the population size from sparse trap data
than the standard statistical approach. Application
of integration rules is not based on any assumption
about the population distribution and remains
effective even when the distribution exhibits a
complex spatial structure;

— the minimum number of traps required to provide
a robust estimate of the population size is found
to be 25 (on a rectangular grid). Integration on
a grid of 5 � 5 traps keeps the error consistently
within 25 per cent. This result shows only slight
dependence on the spatial scale and hence is
applicable to large areas as well as to small
ones; and

— the use of a smaller grid of traps is possible but it
may result in a paradigm shift. Integration on an
ultra-coarse grid cannot provide an estimate of
the population size with any prescribed accuracy
because of the insufficient information (uncer-
tainty) about the population distribution
properties. Instead, the results of the integration
can be treated probabilistically by considering the
integration error as a random variable. Results of
a large-scale ecological monitoring should be inter-
preted accordingly by considering additional risks
associated with different accuracy ranges.

Our study leaves a number of open questions. On the
theoretical side of our approach, for the methods con-
sidered in this paper, it is required that the values of the
population density are known at the nodes of a rectangu-
lar grid, so that the traps’ position must be chosen
accordingly. It remains unclear how the accuracy of the
integration may change if the traps are installed at
arbitrary locations. Obviously, the power of our approach
would increase considerably shouldwebe able to place the
J. R. Soc. Interface
traps flexibly. However, the latter requires application of
more advanced rules of numerical integration. A similar
observation can be made with regards to the domain’s
geometry. Application of the methods considered here is
restricted to a rectangular domain. In order to ensure a
broad practical application of our approach, the inte-
gration rules should be generalized onto the case of an
arbitrary field shape.

A related question is to what extent the integration
accuracy may be affected if the traps are not laid
exactly at the grid points but at some neighbouring
position, e.g. as a result of environmental heterogen-
eity. Our preliminary analysis indicates that
relatively small deviations (up to approx. 25% of the
inter-trap distance) from a uniform grid do not
seriously affect the integration error. A more detailed
consideration of this problem will become a focus of
a separate study.

On a more practical side, there can be some possible
limitations that we do not take into account in this
study but those can affect the application of our
approach. In particular, spatial and temporal variations
in trapping results may reflect not only variations in
densities, but also errors connected to the trapping
methods used (e.g. how efficient are the traps). The
effect of such factors may call for a larger trapping
effort than our theoretical study indicates. Future
research should develop a more quantitative approach
to address these issues.
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APPENDIX A. THE LEAST-SQUARES
APPROXIMATION

Consider points Pi ¼ (xi, yi), i ¼ 1, . . ., N and let f1,
f2, . . . , fN be the values of the function f(x, y) at
points P1, P2, . . . , PN, respectively. We have to fit the
data fi, i ¼ 1, . . . , N to the function

uðx; yÞ ¼
XM
m¼1

umfmðx; yÞ; M � N ; ðA 1Þ

where fm(x, y), m ¼ 1, . . . , M, are basis functions, and
the expansion coefficients (u1, u2, . . . , uM) are con-
sidered as fitting parameters. The polynomial basis
functions fm(x, y) are given by

fmðx; yÞ ¼ ðx � x0Þk1ðy � y0Þk2 ; ðA 2Þ

where k1 þ k2 ¼ 0,1, . . . , K, and the K defines the high-
est polynomial degree of the expansion (A 1). For any
given K, the number of basis functions is determined
as M ¼ (K þ 1)(K þ 2)/2. The point P0 ¼ (x0, y0) is a
fixed point in the domain D. We take P0 ¼ (0.5, 0.5)
when the function f(x, y) is reconstructed in the unit
square D ¼ [0, 1] � [0,1].

The least-squares approach considers the vector
u ¼ (u1, u2, . . . , uM) as the best fit to a given dataset,
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if u minimizes the following merit function F2:

F2 ¼
XN
i¼1

fi �
PM
m¼1

umfmðPiÞ
� �

si

2
664

3
775

2

; ðA 3Þ

where si are the weights of the method. Thus, the
parameters um can be found from the M conditions

@F2

@um
¼ 0; m ¼ 1; . . . ;M ;

which are called the normal equations of the method.
Taking into account the definition (A 3), we obtain
the normal equations in the following form

XN
i¼1

1
s2

i
fi �

XM
j¼1

ujfjðPiÞ
" #

fmðPiÞ ¼ 0;

m ¼ 1; . . . ;M :

ðA 4Þ

Introducing the weighted data b and the design
matrix [D] as

bi ¼
Ui

si
and Dij ¼

fjðPiÞ
si

; i ¼ 1; . . . ;N ;

j ¼ 1; . . . ;M ;

the normal equations can be written as [A] u ¼ r, where
the matrix [A] ¼ [D]T [D], and the right-hand side r ¼
[D]Tb. They are to be solved for the vector of
parameters u ¼ (u1, . . . , uM ),

u ¼ ½A��1r: ðA 5Þ
APPENDIX B. SIMULATION
PARAMETERS AND THE INITIAL
CONDITIONS

The population density snapshot shown in figure 2a is
obtained at t ¼ 50 for parameters b ¼ 3, b ¼ 0.28,
L ¼ 0.5, m ¼ 0.48, D ¼ 1026 and the initial conditions
when both populations are distributed over the domain:

uðx; y; 0Þ ¼ u� þ 1uxx þ 1uyy ðB 1Þ

and

vðx; y; 0Þ ¼ v� þ 1vxx þ 1vyy; ðB 2Þ

where 1ux ¼ 0.007, 1uy ¼ 0.008, 1vx ¼ 0.008 and 1vy ¼

20.007.
Figures 2c,e and 3 are obtained for the initial

conditions when both populations are concentrated
around the place of the original introduction,
e.g. around the domain centre:

uðx; y; 0Þ ¼ u0 if x11 , x , x12 and

y11 , y , y12; otherwise uðx; y; 0Þ ¼ 0
ðB 3Þ

and

vðx; y; 0Þ ¼ v0 if x21 , x , x22 and

y21 , y , y22; otherwise vðx; y; 0Þ ¼ 0;
ðB 4Þ
J. R. Soc. Interface
where u0 and v0 are the initial prey and predator
densities, respectively, and xij, yij (where i ¼ 1, 2 and
j ¼ 1, 2) are parameters with obvious meaning.

The snapshot shown in figure 2c is obtained at
t ¼ 800 for m ¼ 0.5 (other parameters are the same
as in figure 2a) and the initial conditions (B 3 and
B 4) with x11 ¼ 0.42, x12 ¼ 0.53, y11 ¼ 0.45, y12 ¼

0.55, x21 ¼ 0.42, x22 ¼ 0.48, y21 ¼ 0.45 and y22 ¼ 0.51.
The snapshot shown in figure 2e is obtained at t ¼

1200 for m ¼ 0.45 (other parameters are the same as
in figure 2a,c) and the same initial conditions as in
figure 2c.

Figure 3 is obtained for m ¼ 0.414 (other parameters
are the same as in figure 2) and the same initial
conditions as figure 2c,e. The snapshots are shown for
(a) t ¼ 450, (c) t ¼ 1500 and (e) t ¼ 3500.
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