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Abstract Discontinuous weighted least-squares (DWLS) approximation is modifica-
tion of a weighted least-squares method that requires a local support (a reconstruction
stencil) to approximate a function at a given point. A DWLS method is often em-
ployed in computational problems where a function is approximated on an irregular
computational grid. It has recently been revealed that the method provides inaccurate
approximation on irregular grids and conventional weighting of distant points cap-
tured by a reconstruction stencil on an irregular coarse mesh does not improve the
accuracy of the approximation. Thus in our paper we further investigate the impact
of distant points on the accuracy of DWLS approximation and design new weight
coefficients for DWLS reconstruction that allow one to obtain more accurate recon-
struction results. Our approach is based on a concept of numerically distant points
originally developed in author’s previous works, as a new weight function calculates
the distance between two points in the data space.

Keywords Weighted least-squares approximation · Coarse mesh · Directional error
estimates

Mathematics Subject Classification (2000) 65D05 · 65Z05 · 68U10

1 Introduction

A least-squares (LS) method is one of the most well known approaches in solving a
problem of finding the best polynomial approximation to the input data [12]. While
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general accuracy estimates of the LS method are based on the assumption that all
observations made to get LS data should provide equally precise information, data
used in many practical applications are of varying quality in terms of the uncer-
tainty of the measurement. Thus a widespread approach is to use weighted least-
squares (WLS) approximation to improve the accuracy of LS approximation. In a
WLS method weight coefficients are allocated to least-squares data in order to sup-
press data points where the observation error can be large [6, 12]. As a large error of
LS approximation is often associated with distant points in the data set, many authors
recommend to choose a weight of each data point as a function of the inverse distance
between two given points (e.g., see [1, 2, 5, 10, 23]).

Discontinuous weighted least-squares (DWLS) approximation is modification of
a WLS method that approximates a given function at each point belonging to a set of
points selected over a computational grid. A DWLS reconstruction is very similar to
a moving least-squares (MLS) method [9], as the coefficients of the approximation
depend on the location of a point where the reconstruction is made. The MLS approx-
imation has successfully been adapted in meshless methods used as an alternative to
finite element methods in solution of various heat transfer and fluid flow problems
(e.g., see [18]), while the DWLS reconstruction is currently used in higher-order fi-
nite volume schemes heavily exploited in computational aerodynamics [3, 4, 10].
However, the difference between a DWLS and an MLS procedure is that in the latter
case a local support for the approximation is prescribed by the definition of a weight
function in the problem, while for the DWLS approximation a local support (also
called a reconstruction stencil) is entirely determined by the edge data structure on a
computational grid. The weight function in a DWLS method is only used to improve
the accuracy of the approximation on a given stencil by reducing the measurement
error, as it has been mentioned above.

One basic feature of DWLS reconstruction that stems from the nature of compu-
tational problems where the method is exploited is that a reconstruction stencil may
present a highly irregular geometry. The DWLS reconstruction on irregular meshes
remains a challenging and difficult problem as the method can lose accuracy to un-
acceptable limit [10, 16, 20, 22]. A general problem of weighted least-squares ap-
proximation with irregular (anisotropic) support has received little attention in the
literature so far (cf. discussion in [7, 15]). A research effort in meshless methods
that use MLS approximation was mainly focused on the shape of weight functions to
mitigate the impact of an irregular point distribution in the problem. Meanwhile, the
optimal radius of the support cannot be implemented in a DWLS problem, as the size
of a reconstruction stencil is prescribed by a geometry of a computational mesh.

Earlier insight into the problem attributed poor accuracy of the method on irregular
grids to the impact of distant points on the results of DWLS reconstruction. However,
it recently turned out that inverse distance weighting of stencil points is not always
efficient in practical computations [16, 20]. A detailed discussion of a DWLS method
with highly irregular support has been provided in recent papers [16, 17] where a con-
cept of numerically distant points has been introduced. While geometrically distant
points are remote points in the physical space, numerically distant points are defined
as distant points in the data space. In practical applications numerically distant points
appear in reconstruction stencils on irregular coarse meshes that are usually generated
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Data dependent weights in discontinuous weighted least-squares 129

at the initial stage of a solution grid adaptation procedure. Such points are a result of
poor solution resolution as a numerical solution on coarse meshes is an essentially
discrete function whose properties can be significantly different from its continuous
counterpart.

It has been shown in [16] that numerically distant points in reconstruction stencil
seriously affect the accuracy of DWLS approximation. Meanwhile, standard methods
such as inverse distance weighting in a geometric domain cannot eliminate numeri-
cally distant points from a reconstruction stencil, as those points can be located close
to the origin P0 = (x0, y0) where the DWLS reconstruction should be computed.
Other techniques are required in order to provide more accurate reconstruction on
irregular coarse meshes where the accuracy control is a challenging task as asymp-
totic error estimates cannot be applied on such meshes. Thus in the present paper
we design new weight coefficients to deal with numerically distant points in a re-
construction stencil. The new weights depend on a function to be approximated by a
DWLS method and are different from the weights in the physical space. Using data
dependent weights in a DWLS reconstruction problem allows one to detect numeri-
cally distant points and to efficiently eliminate them from the stencil. Our approach
is illustrated by numerical examples.

2 The discontinuous weighted least-squares reconstruction

In this section we explain the formulation of a DWLS method along with the defi-
nition of a local reconstruction stencil used for the approximation. Consider a two-
dimensional domain � and a set of points Pi = (xi, yi) ∈ �, i = 1, . . . ,N . Weighted
least-squares (WLS) approximation deals with data U at points Pi , where Ui = U(Pi)

can be considered as the value of a continuous function U(x,y) at a given point Pi .
The data U should be fitted to the function

u(x, y) =
M∑

k=0

ukφk(x, y), M < N, (1)

where u = (u0, u1, u2, . . . , uM) are fitting parameters, and φk(x, y), k = 0, . . . ,M,

are polynomial basis functions. The unknown parameters {uk} are determined in the
WLS method by seeking the minimum of the following merit function (e.g., see [12,
19]),

F 2
w =

N∑

i=1

w(P̄ ,Pi) [U(Pi) − u(Pi)]
2 , (2)

where the weight function w(P̄ ,P ) is defined for a fixed point P̄ ∈ �. Taking par-
tial derivatives with respect to the fitting parameters uk , k = 0, . . . ,M, to find out
minu F 2, we obtain M + 1 normal equations of the WLS problem

N∑

i=1

w(P̄ ,Pi)

⎡

⎣Ui −
M∑

j=0

ujφj (Pi)

⎤

⎦φk(Pi) = 0, k = 0, . . . ,M.
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130 N.B. Petrovskaya

The normal equations can be written in the matrix form as

AT Au = AT U, (3)

where the design matrix A is as follows

Aij = φj (Pi), i = 1, . . . ,N, j = 0, . . . ,M,

the matrix Awls = AT WA, the vector bwls = AT WU and a diagonal weight matrix
W is defined as

Wij =
{

w(P̄ ,Pi), i = j,

0, otherwise; i, j = 1,2, . . . ,N.

Equations (3) are solved for the vector u,

u = A−1
wlsbwls, (4)

to obtain the WLS approximation at point P̄ .
The choice of the weight function w(P̄ ,Pi) depends on a given problem under

consideration. In many approximation problems the weight function w(P̄ ,P ) is de-
fined to mitigate the impact of distant points on the accuracy of the approximation.
For this purpose the weight function is chosen as a function of Euclidean distance
r = ‖P̄ − Pi‖ between point P̄ and a given point Pi . In MLS problems, where the
weight function is required to provide a compact support for the least-squares ap-
proximation, the Gaussian or the spline weight function is the most popular choice
[11, 13, 15], but other weight functions can also be found in the literature [1, 23].

An important feature of the WLS approximation is that the solution u becomes a
function of P̄ , and the fitting parameters {uk} have to be recomputed for any new P̄ .
The global approximation in this case can be achieved by imposing additional con-
ditions on the approximation, such as the requirement that the supports of the weight
functions entirely cover the domain �. On the contrary, discontinuous weighted least-
squares (DWLS) approximation remains local approximation, and no additional con-
ditions are required to reconstruct the function (1) in the domain of interest. Below
we introduce the DWLS approximation on an arbitrary computational grid.

Let an unstructured computational grid G with grid nodes Pi = (xi, yi), i =
1,2, . . . ,NG, be generated in the domain � (see Fig. 1 where a fragment of a trian-
gular unstructured grid is shown) and the global data vector UG = (U1,U2, . . . ,UNG

)

be defined at nodes of grid G. Consider a discrete set of points P̄l, l = 1, . . . ,L, over
the grid G, where the data UG should be approximated at each P̄l . The definition of
the set {P̄l} is based on a given computational problem. In finite volume discretization
schemes, where DWLS approximation is intensively exploited, the set {P̄l} is often
considered as a set of all edge midpoints taken on the grid G. For the definition of
DWLS approximation at point P̄l a local support Sl (a reconstruction stencil) is allo-
cated for each point P̄l as follows. The two nodes n1 and n2 that comprise the edge
el are identified, and Sl consists of all nodes that belong to edges incident to the node
n1 or n2. Thus the support Sl appears as a subset of N grid nodes, Sl ⊂ G, chosen
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Data dependent weights in discontinuous weighted least-squares 131

Fig. 1 An example of a
reconstruction stencil for DWLS
approximation on an irregular
grid. Stencil members for the
reconstruction at point P0 are
shown as black circles

by a known rule for local WLS approximation at point P̄l . Once the reconstruction
stencil Sl has been allocated, local numbering is used in the approximation problem.
Namely, the point P̄l is denoted as P0, and the support points are numbered as Pi ,
i = 1, . . . ,N . An example of the reconstruction stencil on an irregular unstructured
grid is shown in Fig. 1.

The next step in the definition of the DWLS approximation is to allocate a local
data vector U = (U1,U2, . . . ,UN) by taking the entries of UG at stencil points. The
WLS approximation is then implemented to reconstruct the solution at point P0. The
weight function conventionally exploited in DWLS problems is

w(P0,Pi) ≡ w(r0i ) = r
−p

0i , p = 0,1,2, . . . , (5)

where p is an integer polynomial degree and r0i = √
(x0 − xi)2 + (y0 − yi)2 is the

distance between the point Pi , i = 1,2, . . . ,N, of the stencil and the point P0 (see
Fig. 1). The weights of stencil points are controlled by polynomial degree p. The
unweighted reconstruction corresponds to p = 0, while p > 0 provides inverse dis-
tance weighting used to mitigate the impact of remote stencil points on the results of
DWLS approximation.

Once the function has been reconstructed at the point P0 ≡ P̄l , the next point P̄l+1
is taken and the reconstruction procedure is repeated. Thus the fit functions {φk} re-
main discontinuous in �, as the DWLS approximation is computed at each point P̄l

independently. However, we should mention here that DWLS approximation does
not require a user to assemble global approximation over the domain �, as the for-
mulation of problems, where the DWLS reconstruction is used, implies that we are
interested in the approximation at each point Pl considered separately (e.g., see [16]
for details). That allows one to consider a DWLS method as truly local approxima-
tion where the computational cost of the algorithm is relatively low. It is the local
nature of the DWLS approximation that makes the method attractive for projection-
evolution schemes exploited in modern computational aerodynamics [3, 10, 20], as
using DWLS in a higher order finite volume scheme makes it possible to increase the
order of the scheme without increasing the total number of degrees of freedom.

One essential feature of DWLS reconstruction is that the local support Sl may
present a highly irregular geometry. The accuracy of DWLS reconstruction with an
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irregular support remains the main concern in practical applications, as a DWLS
method degrades to unacceptable accuracy on irregular coarse meshes that should be
considered at the initial stage of a solution grid adaptation procedure. Consequently,
poor accuracy of DWLS reconstruction used in a projection-evolution scheme af-
fects the convergence of a numerical solution by generating large discretization errors
and ill-conditioned matrices. In recent years the intensive study of factors that may
make an impact on the accuracy of the approximation has been performed for com-
putational aerodynamics problems [10, 16, 17, 20, 22], as the DWLS reconstruction
problem remains crucial for the progress in design and implementation of modern
industrial codes. However, while the impact of grid geometry was in the focus of
the recent research, little attention has been paid to the properties of a function that
should be reconstructed on an irregular coarse mesh. The first attempt to take those
properties into account has been made in the work [17], where the concept of nu-
merically distant points has been introduced. Furthermore, it has been shown in [16,
17] that numerically distant points can even be more dangerous for the accuracy of
DWLS reconstruction than geometrically distant points. Thus for the rest of the paper
we discuss how to handle numerically distant points that appear in DWLS reconstruc-
tion on irregular meshes.

3 The accuracy of DWLS approximation on irregular meshes: numerically
distant points

In this section we first briefly remind the idea of conventional weighting in the physi-
cal space used to eliminate geometrically distant points from a reconstruction stencil.
We then explain the concept of numerically distant points and demonstrate that in-
verse distant weighting does not work when the stencil contains numerically distant
points.

The problem of geometrically distant points can be illustrated by a simple exam-
ple of a harmonic function discussed below. Let us notice that the Laplace equation is
often considered to be a good model for investigating a discretization of the diffusion
operator in the Navier-Stokes equations. Thus a finite volume discretization of the
Laplace equation, where DWLS reconstruction of the solution gradient is an essen-
tial discretization requirement, has intensively been studied and validated in various
computational aerodynamics problems.

Consider the following solution to Laplace’s equation

U(x) = 1

2
((x − A)2 − (y − A)2), (6)

where the parameter A is taken as A = 10.0 in our computations. Let the set of stencil
points be defined as

Pi = (R cosφi,R sinφi), (7)

where φi = π
4 (2i − 1), i = 1, . . . ,4 and the radius R = 0.1 (see Fig. 2). Let us now

add a remote point P5 = (10.0,7.0) to the stencil and look at the results of DWLS
reconstruction at the origin P0 = (0,0).
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Fig. 2 Reconstruction stencil geometries for the DWLS test cases. (a) A reconstruction stencil includes a
geometrically distant point P5. (b) A reconstruction stencil includes numerically distant points P5 and P6
that are not geometrically distant points. (c) All stencil points are equidistant, but weights in the solution
space are not the same as weights in the physical space

We consider linear DWLS approximation at the point P0,

uDWLS(x, y) =
2∑

k=0

ukφk(x, y), (8)

where φk(x, y) = (x − x0)
α(y − y0)

β, α + β = 0,1. We are interested in the recon-
struction error,

e(P0) = |U(P0) − uDWLS(P0)|, (9)

and the gradient error,

e∇(P0) = ‖∇U(x,y) − ∇uDWLS(x, y)‖|P0 , (10)

at the origin P0, where the gradient vector is ∇ = (∂/∂x, ∂/∂y) and the norm

‖∇g(x, y)‖ is defined as
√

(
∂g(x,y)

∂x
)2 + (

∂g(x,y)
∂y

)2. The errors are first computed for
unweighted reconstruction, where we take p = 0 in the function (5). The function er-
ror and the gradient error are e(P0) = 2.4148e–02, e∇(P0) = 1.78745, respectively.
The large gradient error can be attributed to the presence of a distant point P5 in the
reconstruction stencil (see Fig. 2a) and we expect that data weighting will mitigate
the impact of a distant point on the accuracy of the reconstruction.

The results of the implementation of the weight function (5) in the DWLS recon-
struction (8) are shown in Table 1. The function error (9) and the gradient error (10)
are shown in the table for various polynomial degrees p in (5). It can be seen from
the table that the weighting of stencil points reduces the error of the DWLS recon-
struction, as a remote point P5 becomes effectively eliminated from the stencil by
assigning a very small weight to it.

The above example justifies inverse distance weighting in computations on
anisotropic meshes, and many authors recommend weighting (5) in a DWLS problem
in order to suppress distant points in a reconstruction stencil and to obtain accurate
approximation [4, 10, 22]. Meanwhile, it recently turned out that implementation of
the weight function (5) still provides very inaccurate results on irregular coarse grids.
Several examples illustrating the accuracy of a DWLS method on computational grids
used in industrial applications that require numerical solution of the Navier-Stokes
equations have been discussed in papers [16, 17, 20, 22].
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134 N.B. Petrovskaya

Table 1 Inverse distance weighting of geometrically distant points. The function error e(P0) and the
gradient error e∇ (P0) are computed for DWLS reconstruction (8) of the function (6). The error (9) and (10)
are obtained for various polynomial degrees p in the weight function (5)

p 0 1 2 3 4

e(P0) 8.5563e–04 8.4188e–04 2.8523e–04 3.4908e–06 2.8714e–08

e∇ (P0) 2.08869 2.05631 6.96314e–01 8.52214e–02 7.00997e–05

In recent paper [17] a novel idea of numerically distant points in a reconstruction
stencil has been introduced and such points have been defined as stencil points that are
distant points in the data space. While recognition of geometrically distant points is
a straightforward task, it is difficult to detect numerically distant points in the stencil,
as their definition depends essentially on a function U(x,y) under consideration.
Such points can be close to the origin P0 = (x0, y0), where the function U(x,y) is
reconstructed, but the function value measured at a numerically distant point still has
a big data error that affects the accuracy of DWLS reconstruction. As numerically
distant points are not remote points in a geometric domain, weighting (5) cannot
eliminate them from a reconstruction stencil.

One example of numerically distant points in a reconstruction stencil is given by
the following function

U(x,y) = 2x2 + exp(2By). (11)

Let us design a reconstruction stencil for the function (11) that does not contain any
geometrically distant points. Namely, we require that x2

i + y2
i = R2 for any stencil

point Pi, i = 1, . . . ,6. The stencil points are then located at the circle CR as follows
(see Fig. 2b),

Pi = ((−1)i+1R cosα,R sinα), i = 1,2,

Pi = ((−1)iR cosα,−R sinα), i = 3,4, (12)

Pi = (0, (−1)i+1R), i = 5,6.

As in the previous test case, we compute the function error (9) and the gradient error
(10) at the origin P0 = (0,0). Let parameter B = 3, the radius R = 0.8 and the angle
α = π

16 , then the function error and the gradient error for the unweighted reconstruc-
tion are e(P0) = 21.0549 and e∇(P0) = 65.0566, respectively.

It is obvious that the implementation of the weight function (5) in the problem will
result in the same error values, as the weights are given by w(r0i ) = 1/Rp = const

for all stencil points by the definition of the reconstruction stencil. Meanwhile, if we
eliminate points P5 and P6 from the stencil, we will get an essentially smaller error,
e(P0) = 1.70273, e∇(P0) = 9.16169e–01, over a new stencil Sl = {P1,P2,P3,P4}
(see Fig. 2b). Hence, the points P5 and P6, which are not geometrically distant stencil
points, can be considered as numerically distant points in the problem, as including
them into the stencil worsen the accuracy of DWLS approximation.

An important observation about the DWLS support is that points P5 and P6 are
not numerically distant points in reconstruction stencil (12) if the function (6) is
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Data dependent weights in discontinuous weighted least-squares 135

considered. The error computation for the DWLS reconstruction of the function (6)
over stencil (12) gives us e(P0) = 9.04276e–02, e∇(P0) = 1.28095e–14. At the same
time, the error is e(P0) = 2.95641e–01, e∇(P0) = 5.37623e–14, if we consider sten-
cil S = {P1,P2,P3,P4} for the DWLS reconstruction of (6) at point P0.

The test case above shows that the definition of a numerically distant point in
the stencil depend on a given function U(x,y). In other words, a point Pi = (xi, yi),
considered as a numerically distant point for approximation of U(x,y), would belong
to a correct range of observations if another function Ũ (x, y) were considered. Ideally
a weight function should mitigate the impact of numerically distant points defined by
the function U(x,y) as well as it mitigates the impact of geometrically distant points
on the accuracy of the DWLS reconstruction. Thus in the next section we design an
approach that allows one to measure the distance between points in the data space
rather than in the physical space.

To conclude this section, let us emphasize it again that we discuss the DWLS error
on a given grid rather than the convergence rate of the method. Obviously, careful grid
refinement (that is decreasing the maximum radius in the test cases above) would re-
sult in a smaller error of the DWLS approximation. However, we are interested in the
error reduction on a given grid with fixed geometry as in many practical applications
a large reconstruction error on an irregular coarse grid makes further grid refinement
impossible.

4 Data dependent weights in DWLS approximation

Consider the merit function for unweighted LS approximation,

F 2 =
N∑

i=1

[U(Pi) − u(Pi)]
2 . (13)

Our aim is to re-formulate the LS problem defined by the function (13) in terms of
the minimization of the interpolation error. Let us denote by �1 the set of all real
linear polynomials π(x, y),

π(x, y) =
2∑

k=0

akψk(x, y), (14)

where ψk(x, y) = xαyβ, α + β = 0,1. The following theorem (e.g., see [21]) states
the uniqueness of the linear interpolation.

Theorem 1 Consider three arbitrary support points (P̂i ,U(P̂i)), i = 1,2,3 for lin-
ear interpolation of the function U(x,y) by polynomial π(x, y), where we require
that P̂i �= P̂i′ for i �= i′. Then there exists a unique polynomial π(x, y) ∈ �1 with
π(P̂i) = U(P̂i), i = 1,2,3.

Consider linear DWLS approximation (8). Once coefficients uk in the expansion
(8) have been defined, the expansion (8) can be thought of as linear interpolation of
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136 N.B. Petrovskaya

the function U(x,y). In other words, it follows from Theorem 1 that there exist three
points, P̂1, P̂2 and P̂3, such that the following condition holds

2∑

k=0

ukφk(P̂l) = U(P̂l), l = 1,2,3.

Let us denote the linear polynomial defined by (8) as π̂(x, y). The function (13)
can then be rewritten as

F 2 =
N∑

i=1

[
U(Pi) − π̂(Pi)

]2 =
N∑

i=1

E2
i , (15)

where Ei = |U(Pi) − π̂(Pi)| is the interpolation error taken at point Pi . Hence the
minimization of the merit function is equivalent to the minimization of the interpo-
lation error at all stencil points, and we conclude that those stencil points where the
interpolation error is large should be eliminated from the stencil by means of weight-
ing.

It is obvious that we do not know the interpolation error as the expansion coeffi-
cients {uk} in (8) are not known to us when we define weights in the reconstruction
problem. However, we can use interpolation error estimates in a DWLS problem. Let
us connect points P0 and Pi in order to define edge ei of the reconstruction sten-
cil, where the edge length is r2

0i = (xi − x0)
2 + (yi − y0)

2 (see Fig. 1). Consider a
function U(x,y) ∈ C2 and let π(x, y) be a linear interpolant (14) of U(x,y). The
interpolation error Ei at the edge ei is then given by (e.g., see [8, 14])

Ei = |U(x,y) − π(x, y)| = r2
0i

∣∣∣∣∣
∂2U(ξi)

∂τ 2
i

∣∣∣∣∣,

where τi is the unit tangential vector and point ξi ∈ ei . The error Ei can be rewritten
as

Ei = |rT
0iHr0i | = rT

0i |H|r0i ,

where the Hessian matrix H is defined at point ξi as

Hkl = ∂2U

∂xk∂xl

, k = 1,2, l = 1,2,

and the notation (x, y) ≡ (x1, x2) is used for points in the physical space.
We now replace the directional derivative at unknown point ξi by its value at point

Pi+1/2 = ( 1
2 (x0 + xi),

1
2 (y0 + yi)) in order to obtain the interpolation error estimate

at the edge ei ,

Ei = r2
0i

∣∣∣∣∣
∂2U(Pi+1/2)

∂τ 2
i

∣∣∣∣∣ = rT
0i |H|Pi+1/2r0i , (16)

where the Hessian is now computed at the edge midpoint Pi+1/2.
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Fig. 3 The convergence rate for
linear DWLS approximation of
the function (11). The weight
function (18) is used to
eliminate numerically distant
points from the stencil. (a) The
function error (9) for the
weighted (solid line) and
unweighted (dashed line)
approximation. (b) The gradient
error (10) for the weighted
(solid line) and unweighted
(dashed line) approximation

The matrix H in (16) can be decomposed as H = R�R−1, where � is a diagonal
matrix of the eigenvalues of H, R is the matrix of right eigenvectors of H, and the
matrix R−1 = RT . Hence we can introduce the metric tensor M at point Pi+1/2 as
M = R|�|R−1. The transformation defined by the metric tensor M is a rotation
mapping of the R2 canonical basis onto the unit eigenvectors of H. Then the error
estimate (16) gives us the edge length r̃0i in the metric space determined by M,

r̃2
0i ≡ Ei = rT

0i |H|Pi+1/2r0i . (17)

Hence, stencil points that generate a large interpolation error can be considered as
distant points in the space induced by the metric M, and we will use the length r̃0i

in order to measure the distance between points P0 and Pi in the ‘data’ space defined
by the function U(x,y). The new weight matrix W̃ for the DWLS reconstruction is
now written as

W̃ij =
{

r̃
−p

0i , i = j,

0, otherwise; i, j = 1,2, . . . ,N,
(18)
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where we choose the polynomial degree p = 2. The brief outline of the algorithm can
be as follows:

1. Define a reconstruction stencil S = {Pi}, i = 1, . . . ,N , for a given point P0.
2. Compute the Hessian matrix at the edge midpoint Pi+1/2, i = 1, . . . ,N .
3. Compute the distance r̃2

0i , i = 1, . . . ,N , as defined by (17).
4. Compute the weight function (18) for each point Pi , i = 1, . . . ,N and use it for

the DWLS approximation at point P0.

Let us note here that the main computational effort in the new algorithm is related
to the computation of the Hessian matrix at each edge midpoint in the reconstruction
stencil. This is a task that requires further investigation as in many computational
problems the Hessian is not readily available and estimates of second derivatives
should be obtained in order to use the algorithm above. However, for the sake of
discussion in the present paper we assume that the Hessian matrix is available in the
problem.

Below we illustrate our approach by several numerical test cases. Our first test
case is given by the isotropic function (6) considered in the previous section. It can be
easily seen that the Hessian matrix |H| for function (6) is given the identity matrix I.
Hence, the weighting (18) in the solution space is equivalent to the weighting in the
physical space, r̃2

0i = r2
0i . The geometrically distant point P5 in the reconstruction

stencil (7) is also a numerically distant point that should be eliminated by means of
weighting (5).

The situation becomes quite different when the anisotropic function (11) is con-
sidered. Let us apply the new weight function (18) to the points P1 through P6 of the
reconstruction stencil (12). The Hessian at each edge midpoint Pi+1/2, i = 1, . . . ,6
of the stencil (12) is computed as

|H| =
[

4 0
0 4B2e2Byi+1/2

]
, (19)

and the weight of point Pi in the data space is

r̃2
0i = 4x2

i + 4B2e2Byi+1/2y2
i . (20)

The results of the weighted reconstruction are e(P0) = 2.49141 and e∇(P0) =
3.05147e–01, so that we have a significant improvement in both the function error
and the gradient error in comparison with the original result of e(P0) = 21.0549 and
e∇(P0) = 65.0566.

Let us imitate the grid refinement procedure for the reconstruction stencil (12) by
halving the radius R of the circle CR where the stencil points are located. The con-
vergence rate for the unweighted and weighted approximation is presented in Fig. 3,
where the function error (9) and the gradient error (10) are shown on a logarithmic
scale in Figs. 3a and b, respectively. The error for the unweighted reconstruction is
shown as a dashed line in the figure, while the error for the reconstruction that em-
ploys the weight function (18) is shown as a solid line. It can be seen from the figure
that the convergence rate remains the same when we implement the data based weight
function in the problem, as the function (11) is approximated by a linear polynomial
in both cases. However, for any given radius R (where R can be thought of as the
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grid step size) the error of the weighted reconstruction is much smaller than the one
computed for the unweighted reconstruction. The implementation of data dependent
weights in the problem allows one to obtain accurate function approximation as well
as to resolve the function gradient on a given coarse mesh.

The eigenvectors r1 and r2 defined by matrix R yield principal stretching direc-
tions in the Hessian-based metric space, the magnitudes of stretching in each direc-
tion being given by the Hessian eigenvalues λ

−1/2
1 and λ

−1/2
2 . While in the previous

test cases the Hessian was a diagonal matrix, our next test case is to consider the func-
tion where the stretching directions do not coincide with the canonical basis. Namely,
we consider the Rosenbrock function,

U(x,y) = 100(y − x2)2 + (1 − x)2, (21)

where the points of the reconstruction stencil are again located along a circle of a
given radius R as follows (see Fig. 2c),

Pi = (R cosγi,R sinγi), (22)

γi = π
4 (2i − 1), i = 1, . . . ,6. The computation of the Hessian matrix results in the

following weights in the data space

r̃2
0i = 1200x2

i+1/2x
2
i + 400yi+1/2x

2
i − 800xi+1/2xiyi + 2x2

i + 200y2
i . (23)

The convergence graphs for the unweighted and weighted DWLS reconstruction are
shown in Fig. 4, where the notation in the figure is the same as in Fig. 3. It can be seen
from the figure that the convergence rate for weighted approximation is the same as
the convergence rate for the unweighted one. However, let us emphasize it again, that
weighting of stencil points in the data space reduces the function error and the gradi-
ent error on ‘coarse meshes’ where the radius R is large enough. This result is very
important for practical applications as it allows one to use DWLS reconstruction in a
solution mesh adaptation procedure without losing the accuracy on coarse meshes.

Finally, let us consider a simple example of DWLS reconstruction in computa-
tional aerodynamics. Namely, the geometry shown in Fig. 5 presents a stencil on a
stretched grid generated about an airfoil. Let stencil points Pi , i = 1, . . . ,4, be de-
fined as P1 = (−H,h0), P2 = (0, h1), P3 = (H,h0) and P4 = (0,−h2), where h0,
h1, h2 and H are grid parameters with H 	 1, H 	 h0, h0 	 h1, h1 	 h2. The
parameter H is considered as a controlling parameter in the problem, so that the
geometry in Fig. 5 is parametrized as h0 = γ0H , h1 = γ1H , h2 = γ2H , positive con-
stants γ2 
 γ0, γ1 
 γ0, γ0 
 1 being fixed for given H . Let us note that points
P1, P2 and P3 can be thought of as points belonging to the airfoil boundary, and the
choice of stencil points is explained by the requirement of generation of a high cell
aspect ratio grid about an airfoil.

The function

U(x,y) = ax2 + y, (24)

is used to simulate the velocity gradient near the airfoil surface. The standard DWLS
validation test case is to find the gradient of the function (24) by linear DWLS recon-
struction at the origin P0 = (0,0), where the exact gradient is ∇U(P0) = (0,1).
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Fig. 4 The convergence rate for
linear DWLS approximation of
the function (21). The weight
function (18) is used to
eliminate numerically distant
points from the stencil. (a) The
function error (9) for the
weighted (solid line) and
unweighted (dashed line)
approximation. (b) The gradient
error (10) for the weighted
(solid line) and unweighted
(dashed line) approximation

Let H = 100, γ0 = 0.1, γ1 = 0.01, γ2 = 0.001. We emphasize again that the val-
ues of H and γi , i = 0,1,2 reflect the point distribution at the curvilinear boundary
that appears in real-life computations in the near field, and parameters γi cannot be
increased for given H to make the stencil less stretched in the x-direction. Consider
a = −0.001, then the gradient error (10) for the unweighted DWLS reconstruction
(8) is e∇ = 1.04022. It has been originally concluded that the accuracy of the gradient
reconstruction is poor because points P1 and P3 are geometrically distant points in
the stencil and those points should be eliminated by means of weighting. Implementa-
tion of the weight function (5) with p = 2 in the problem gives us e∇ = 1.64002e–02,
so that the gradient error is getting smaller when stencil points are weighted in the
physical space.

Meanwhile, let us implement data dependent weights in the problem. The func-
tion (24) is a truly anisotropic function, as the matrix |H|

|H| =
[

2|a| 0

0 0

]
, (25)
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Fig. 5 The reconstruction stencil on an anisotropic mesh about an airfoil

has only one eigenvalue. The weights in the data space are then given by

r̃2
0i = 2|a|x2

i , (26)

and, unlike the weights in the physical space, they do not depend on the y-coordinate.
The result of the weighting (26) in the data space is e∇ = 9.53674e–10, which is the
gradient reconstruction with much better accuracy than that obtained by weighting in
the physical space. Obviously, more test cases are required for numerical validation
of data dependent weights but the first results obtained in the paper indicate that the
weighting in the data space can be a promising technique for the gradient reconstruc-
tion in finite volume schemes on anisotropic meshes.

5 Concluding remarks

In our paper we have considered the problem of local approximation by a discon-
tinuous weighted least-squares method when an irregular local support is used for
the approximation. The need to study DWLS approximation with anisotropic support
comes from computational applications (mainly from computational aerodynamics
problems) where the method is widely used on irregular unstructured meshes. The
support set on such meshes contains distant points that make a negative impact on the
accuracy of the DWLS reconstruction. While the inverse distance weight function
has been well investigated by many authors for points that are remote in the physi-
cal space, it has been discussed in the paper that another type of distant points may
appear in the reconstruction stencil. Those points (called numerically distant points
in the paper) appear in reconstruction stencil as a result of poor function resolution
on irregular coarse meshes. The numerically distant points affect the accuracy of the
DWLS reconstruction but they cannot be eliminated from the stencil by inverse dis-
tance weighting.
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It has been suggested in the paper that the numerically distant points have to be
weighted in the data space in order to remove them from a DWLS reconstruction
stencil. Thus we have designed a new approach that allows one to measure distance
between points in the data space. Implementation of data dependent weights in order
to suppress numerically distant points in the stencil resulted in much better accuracy
in test cases considered in the paper. The results obtained in the paper are also impor-
tant for MSL approximation as they may help one to better understand what support
set would be optimal for a given function.

While it has been shown in the paper that weighting in the data space presents an
efficient alternative to weighting in the physical space, several questions remain that
require further thorough discussion and should become a focus of future work. The
most important issue is to validate an error estimate used to design weight coeffi-
cients in the data space. Also, as we have already mentioned it in the paper, it is often
that the Hessian matrix is not available in practical applications where DWLS ap-
proximation is required. Thus a reliable estimate of the matrix of second derivatives
should be obtained. Once the above-mentioned questions have been sorted out, the
extension of the method to the 3-D case becomes a straightforward task that should
not be computationally expensive as weighted DWLS reconstruction still uses a local
reconstruction stencil. However, the computational cost of the algorithm should be
further investigated and that is considered as another topic of future work.
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