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We discuss the methodology of the validation of a higher order discontinuous Galerkin (DG) scheme for
acoustic computations. That includes an accurate definition of the exact solution in the problem as well
as careful study of convergence properties of a higher order DG scheme for a chosen acoustic problem.
The efficiency of a higher order scheme will be confirmed for computations on coarse meshes.
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1. Introduction

In past decades methods of computational aeroacoustics (CAA)
have received a lot of attention in scientific computing commu-
nity. While the complexity of modern CAA problems is well docu-
mented (e.g., see [1]), the design of adequate numerical techniques
is still in progress. In particular, CAA problems require numerical
methods that allow for calculations with a small dissipation and
dispersion error. Thus the current attention is focused on higher
order discretization schemes that can meet the above requirement
without using extensive computational resource.

A discontinuous Galerkin (DG) discretization is a higher order
scheme that nowadays is intensively used in many computational
applications. First introduced for the transport equation and fur-
ther developed for many applications (see [2] for the review of DG
schemes), the DG method is a finite element scheme which uses
piecewise polynomial approximation in space. The discretization
also involves an approximate Riemann solver, since the approxi-
mate solution is discontinuous at grid interfaces. Among the ad-
vantages of the method are a compact scheme stencil that allows
one to vary the order of approximation on each grid cell, easy par-
allel implementation of the scheme, and flexibility in choice of a
computational mesh. The above advantages make a higher order
DG scheme potentially attractive for CAA applications and in re-
cent years intensive study of higher order DG schemes for CAA
problems has been performed [3–5,8]. In particular, the scheme
appeared to be attractive for a numerical solution of the linearized
Euler equations (LEE) [6,7], as the formulation of a DG method
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naturally stems from physical properties of hyperbolic equations.
However, despite the careful study of the LEE, the need still re-
mains to investigate systematically a higher order DG discretization
for the full Euler equations, as some important acoustic phenom-
ena such as intensity of sound sources can be captured only with
the numerical solution of fully nonlinear equations [8].

Implementation of higher order schemes for the numerical so-
lution of the Euler equations is a challenging issue, especially when
unstructured grids are generated in the problem. Most of industrial
codes used currently for aerodynamic computations on unstruc-
tured grids exploit second order accurate finite volume schemes.
For aeroacoustics computations fourth order finite volume schemes
have been designed and successfully exploited (e.g., see [10,11]),
but their implementation is restricted by carefully generated struc-
tured grids. Meanwhile, one of basic problems with the use of
higher order finite volume schemes on unstructured meshes is
that the scheme requires an expanded stencil for the discretization
of the derivatives. This requirement rises a number of still unre-
solved questions such as the increased cost of the algorithm, the
parallelization technique and the accuracy of a discretization on
expanded stencils when anisotropic unstructured grids should be
generated for complex geometries [12,13]. Thus in our paper we
explore a higher order DG discretization for the Euler equations
to investigate whether the scheme can be considered as a reliable
alternative to existing approaches.

The methodology of the validation of a DG scheme for aeroa-
coustic computations should include an accurate definition of the
exact solution in the problem as well as careful study of con-
vergence properties of the scheme for an acoustic problem under
consideration. In our paper we provide a comprehensive study of
a higher order DG scheme for an acoustic pulse problem, where
the solution error will be carefully computed to evaluate the accu-
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racy and efficiency of the scheme. The widespread ideology behind
many industrial aerodynamic codes is that a lower order scheme
combined with grid refinement allows one to achieve the same ac-
curacy as a higher order scheme would provide on a coarse mesh,
while a more significant computational effort is required in the
latter case. Thus we compare the results of higher order DG com-
putations on coarse meshes with those for a second order accurate
scheme on fine meshes to demonstrate that implementation of a
higher order scheme results in better accuracy in comparison with
a second order scheme that has the same number of degrees of
freedom. This result is very important for CAA applications, as it
allows one to reduce the computational effort required for solu-
tion of acoustic problems.

Another issue discussed in the paper is the choice of a time
marching scheme to solve a semi-discrete problem obtained as the
result of a spatial discretization. Acoustic problems usually require
computations over a big time interval and a time marching scheme
should provide accurate results as time progresses. Implementa-
tion of an explicit time integration scheme such as a Runge–Kutta
(R–K) method may not always lead to accurate computations if the
order of the time marching scheme is not consistent with the or-
der of the spatial discretization [2]. However, using a higher order
total variation diminishing (TVD) R–K scheme is a computation-
ally intensive task and some authors try to avoid it by combin-
ing a higher order DG discretization with a lower order TVD R–K
scheme. Hence, we compare a 6-stage TVD R–K method with a
3-stage TVD R–K method that has previously been employed in
acoustic computations [7,8]. The results of our study demonstrate
the advantage of a higher order TVD R–K scheme that is consistent
with a higher order spatial DG discretization.

2. Discontinuous Galerkin discretization for the Euler equations

A problem of acoustic pulse propagation requires solution of
the Euler equations in a two-dimensional domain D . We consider
the Euler equations written in the domain D in conservative form,

∂U

∂t
+ ∂F1(U)

∂x
+ ∂F2(U)

∂ y
= 0, (1)

where the components of vector U = (ρ,ρu,ρv,ρE)T are mass,
x-momentum, y-momentum, and energy values per unit volume
of gas. The inviscid fluxes in Eqs. (1) are

F1(U) = (
ρu,ρu2 + p,ρuv,ρuH

)T
and

F2(U) = (
ρv,ρuv,ρv2 + p,ρv H

)T
,

where p is the gas pressure. The total enthalpy per unit mass H is
defined as

H = γ

γ − 1

p

ρ
+ 1

2

(
u2 + v2),

where γ = cp/cv is the specific heat ratio obtained from the equa-
tion of state considered for a perfect gas.

Let us now introduce a computational grid G as a set of non-
overlapping triangles ei , i = 1,2, . . . , N , in the domain D . The
details of grid generation will be discussed below in the text
for numerical test cases under consideration. A DG discretization
scheme defines the approximate solution uh(t, x, y) for each vari-
able u(t, x, y) on each grid cell ei as

uh(t, x, y) =
M∑

m=0

um(t)φm(x, y),

m = 0,1, . . . , M, x, y ∈ ei, (2)

where the basis functions are defined as φm(x, y) = (x − x0i)
α(y −

y0i)
β , α + β = 0,1, . . . , K . The functions φm(x, y) are piecewise

polynomial, as they are only defined within the grid cell ei . For
a cell-centered DG scheme, x0i and y0i are the coordinates of the
grid cell centroid. The number M of expansion coefficients is de-
termined by the maximum polynomial degree K as M = M(K ) =
(K + 1)(K + 2)/2.

In the DG method a weak formulation of the problem is used
to find the vector U(t, x, y). The test functions belong to the same
approximating space as the basis functions. For the sake of discus-
sion, it is convenient to write the Euler equations in condensed
form

∂U

∂t
+ ∇ · �F(U) = 0, (3)

where a hypervector �F = (F1(U),F2(U))T . The vector equation (3)
is then multiplied by a test function φl(x, y) and is integrated by
parts over the cell ei to arrive at

d

dt

∫
ei

Uφl dΩ +
∮
∂ei

�Fφl ds −
∫
ei

�F∇φl dΩ = 0,

l = 0,1, . . . , M, (4)

where ds = ∂ein, n = (nx,ny), is the outward unit normal vector,
and the notation ∂ei is used for the boundary of the cell ei . Further
substitution of the approximate solution (2) into the integrals (4)
results in

d

dt

∫
ei

Uhφl dΩ +
∮
∂ei

�H(
U−,U+)

φl ds −
∫
ei

�F∇φl dΩ = 0,

l = 0,1, . . . , M. (5)

Since the approximate solution Uh is discontinuous at any grid
edge, we need to compute a numerical flux �H(U−,U+) to approx-
imate the continuous flux �F at cell interfaces. For this purpose we
implement the Roe numerical flux in the problem. Namely, the
fluxes at cell interfaces are computed as follows

�H(
U−,U+) = 1

2

[�F(
U−) + �F(

U+) − ∣∣A(
U∗)∣∣(U+ − U−)]

, (6)

where A(U∗) = ∂F/∂U is the Jacobian of the inviscid flux and is
evaluated at the Roe averaged state U∗ (e.g., see [14]). The absolute
value |A| is obtained by decomposing matrix A as A = TΛT−1. Then
|A| = T|Λ|T−1, where T is the matrix of the left eigenvectors and
Λ is the matrix of eigenvalues. It is worth noticing here that the
choice of a numerical flux in the problem remains an open ques-
tion in the study of DG schemes [15–17]. For instance, a simple
space-centered numerical flux (e.g., the Lax–Friedrichs numerical
flux) could be implemented for the computational problem consid-
ered in the paper in order to save the computational resource. At
the same time, it is well known [14,15] that space-centered fluxes
are more dissipative than upwind fluxes, so that the choice of such
a flux may not be acceptable in problems where compressibility is
essential (e.g. see [17]). Thus we use a slightly more expensive but
generally more accurate Roe numerical flux in our computations.

For accurate evaluation of line and surface integrals in (5) an
appropriate Gaussian quadrature rule is used. The number of Gauss
points is taken according to the order K of DG approximation, as
Gaussian quadratures for line integrals are exact for any polyno-
mial of degree 2K + 1, and they are exact for any polynomial of
degree 2K if a surface integral is considered. For instance, three
Gaussian points should be taken to compute a line integral for a
piecewise linear polynomial K = 1.

A space discretization of Eq. (3) should be augmented by dis-
cretization of boundary conditions in a problem. In our work we
consider wave propagation at times t < Tc , where Tc is the time
when a wave approaches a boundary of the domain D . Thus
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Fig. 1. (a) The initial pressure distribution (11). (b) A uniform grid for computational problem (1), (10).

boundary conditions are ρu = 0, ρv = 0 at any boundary of the
domain. The condition t < Tc allows us to avoid the impact of
boundary conditions on the accuracy of a numerical solution and
to focus our attention entirely on the properties of a DG discretiza-
tion.

The semi-discrete system obtained as a result of space dis-
cretization by a DG method is as follows

M
Un+1 − Un

	t
+ R

(
Un) = 0, (7)

where R(U) is the residual of a DG discretization, M is the mass
matrix. The above system is integrated in time by the explicit
Runge–Kutta (R–K) method. The general explicit R–K method is

U(i) = U(0) + 	t
i−1∑
j=0

αi jL
(
U j), i = 1,2, . . . , N,

U(0) = Un, U(N) = Un+1, (8)

where the spatial operator L determined by DG approximation is

L= M−1R, (9)

and the coefficients αi j depend on the order of the scheme. It
was discussed in [2] that a spatial DG discretization of order p
requires the R–K method of order p + 1 to provide accurate time
integration. In our work we use the R–K method of order 5, as the
maximum order of a spatial DG discretization considered in the
work is K = 4.

3. Numerical results for the acoustic pulse problem

One difficulty arising in consideration of CAA problems is that
a closed-form solution is not readily available for the test cases
where the Euler equations should be solved to compute propaga-
tion of acoustic waves. Thus alternative approaches are often sug-
gested to evaluate the convergence rate of the numerical scheme.
For instance, in work [5] a DG solution has been computed at small
times only and the initial profile has been referred to as an accu-
rate solution to investigate the order of the scheme. Alternatively,
the accuracy of a DG scheme has been validated by computing

a numerical solution in a bigger domain and using it as a ref-
erence solution to avoid the impact of boundary conditions [8].
Meanwhile the nature of aeroacoustic problems requires painstak-
ing attention to the features of a discretization scheme used in
computations and the above-mentioned approaches are not always
applicable for the scheme validation, as they may result in a wrong
conclusion about the scheme accuracy and efficiency. In our work
we choose a simple test case where the exact solution is available
in order to carry out comprehensive study of a higher order DG
scheme for an acoustic wave propagation problem.

Consider the following initial conditions to the system (1) in
the domain D = [−0.5,0.5] × [−0.5,0.5]:

u(x, y,0) = v(x, y,0) = 0, p(x, y,0) = P (x, y),

ρ(x, y,0) = ρ0(x, y). (10)

The initial acoustic pressure perturbation P (x, y) is

P (x, y) = p∞
(
1 + A2−(R/r0)2)

, (11)

where a location R is defined as R2 = x2 + y2, and the pressure
parameters are taken as p∞ = 1, A = 0.001 and r0 = 0.02 in our
computations. The initial pressure distribution is shown in Fig. 1a.
The initial density distribution is the same as in (11) and is given
by

ρ0(x, y) = ρ∞
(

1 + A

c2
2−(R/r0)2

)
,

where the density ρ∞ = 1 and c is the speed of sound.
The exact solution to the problem (1), (10) is defined as (e.g.,

see [18])

p(x, y, t) = p∞
(
1 + ApI (R, t)

)
, (12)

where

pI (R, t) =
∞∫

0

k−1 J0(kR) cos(ckt)

∞∫
0

ξ J0(ξ)2
−(

ξ
kr0

)2

dξ dk. (13)

In the integral above J0(y) is the Bessel function of order zero.
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Fig. 2. (a) The exact solution p(x, y, t) over the domain D at time t = T2. (b) The pressure distribution along line y = 0 at time t = T2.

We notice that

∞∫
0

ξ J0(ξ)2
−(

ξ
kr0

)2

dξ =
∞∫

0

ξ J0(ξ)exp
(−αξ2/k2)dξ

= k2

2α
exp

(−k2/4α
)
,

where α = ln(2)/r2
0 . Substituting the above result into (13) we ob-

tain the exact solution p(x, y, t) as follows (cf. [10]):

p(x, y, t) = p∞

(
1 + A

2α

∞∫
0

exp
(−k2/4α

)
cos(ckt) J0(kR)k dk

)
.

(14)

Let us emphasize here that the function (12) is also a solu-
tion to the linearized Euler equations, as for small perturbations
(δp(x, y, t) ∼ εp∞ , ε � 1, e.g., see [9]) the solution to the full
Euler equations is the same as the solution to the linearized equa-
tions. At the same time, in consideration of the above test case
we have used a DG discretization of the full Euler equations and
have not made any simplifications to the scheme that can be made
when one has to solve linearized Euler equations. That has been
done deliberately in order to verify the convergence properties of
a higher order DG discretization for the full Euler equations in the
case that an analytical solution and therefore the solution error
is available in the problem. Apparently, a more detailed study of
the Euler equations should include test cases where nonlinear ef-
fects present. However, at his stage our main goal is to investigate
if a higher order DG scheme has advantages over finite-volume
schemes in terms of the efficiency of computations.

The integral pI (R, t) for given location R and time t is com-
puted by the DQDAWO subroutine available in the IMSL Fortran
Library [19,20]. The subroutine is designed to integrate a function
over an infinite or semi-infinite interval if the integrand contains a
sine or a cosine function. The algorithm is to transform the original
interval into the finite interval [0,1] where a uniform grid is gener-
ated. The length of each grid subinterval is then taken into account
in relation to the size of a period of the cosine integrand to decide
either a modified Gauss–Kronrod rule [21] or a Clenshaw–Curtis
quadrature rule [22] will be employed to approximate the integral
on each subinterval and to evaluate the error. Any subinterval with

an unacceptable error estimate is bisected and the integration over
new subintervals continues until the required accuracy is achieved.

Most of our computational tests require generation of a uniform
grid in the domain D . A quasi-structured grid shown in Fig. 1b is
obtained from a Cartesian grid by cutting each grid cell by a di-
agonal. The Cartesian grid is generated with a regular distribution
of grid nodes given by xij = ihx , yij = jhy , where i = 0, . . . , Nx ,
j = 1, . . . , N y , and hx and hy are grid step sizes in the x-direction
and y-direction, respectively. In case that a sequence of nested
grids is required for computations, it will be generated by dou-
bling the number of grid nodes in the both directions for every
Cartesian grid in the sequence.

In our computations the exact solution has been reconstructed
at given time T on a very fine uniform grid G f of N f = 22 201
nodes. The location Rn has been defined as R2

n = x2
n + y2

n , where
(xn, yn) are coordinates of node n, n = 1, . . . , N f . Computation of
the exact solution on a very fine mesh is necessary to guarantee
that the exact solution is always available at several points inside
every grid cell on coarser meshes where the numerical solution
is computed in our test cases. Let the exact solution be known at
points P1, P2, . . . , Pl inside the grid cell el . The numerical solution
is reconstructed at every point Pi , i = 1, . . . , l using the expan-
sion (2). The reconstruction is performed at every grid cell, so
that the numerical solution becomes available at N f points over
the grid. We then compute the solution error at each point P j ,
j = 1, . . . , N f , as

e(P j) = ∣∣p(x j, y j) − ph(x j, y j)
∣∣, (15)

where p(x j, y j) and ph(x j, y j) are the exact and approximate so-
lutions at point P j , respectively.

For our test cases we need the exact solution at a time T when
the perturbation front has yet not reached a boundary of the com-
putation domain to avoid the impact of boundary conditions on
the accuracy of the results. The time T is evaluated as T = R f /c,
where R f < 0.5 is a chosen location of the perturbation front.
Thus we consider times T1 and T2 that correspond to the radius
R f1 = 0.2 and R f2 = 0.4, respectively. The exact solution (12) over
the domain D is shown in Fig. 2a at time T2. The pressure along
line y = 0 at time T2 is displayed in Fig. 2b.

Once the exact solution has been computed, various numerical
tests can be carried out to validate the accuracy of a DG scheme.
We first compute a numerical solution on a uniform grid G with
Nx = N y = 50 at time T2. A graph of the exact solution and a nu-
merical solution along the line y = 0 at time T2 is presented in
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Fig. 3. (a) The solution p(x, y) to the problem (1), (10) at time t = T2. The exact solution is shown as a dashed line. A numerical solution is obtained by a DG method for
polynomial degree K = 1 (bold line) and K = 4. (b) A close-up of the solution in (a) near the pressure peak. A higher order DG solution is visually the same as the exact
solution (12).

Table 1
The number of degrees of freedom (NDOF ) per grid cell required for a higher order
DG discretization. N is the number of grid nodes in each direction on a structured
grid that provides the equivalent number of the degrees of freedom.

K 1 2 3 4

NDOF 3 6 10 15
N 112 79 61 50

Fig. 3 where the numerical solution p(x, y) is shown for polyno-
mial degree K = 1 and K = 4. It can be seen from the figure that a
higher order approximation K = 4 results in a well resolved solu-
tion function, while a piecewise linear approximation K = 1 does
not resolve a region of a high pressure gradient. This expected re-
sult is confirmed by the solution error that is further computed for
various polynomial degrees K in order to obtain the convergence
history on a sequence of uniform grids.

The evaluation of accuracy of a higher order scheme should be
linked to computational efficiency of the scheme. In other words,
it should be taken into account that a higher order DG scheme re-
quires computing the higher number of expansion coefficients (de-
grees of freedom) in (5) in comparison with a lower order scheme.
The number of degrees of freedom (NDOF ) required to approximate
a solution on a single grid cell is shown in Table 1 for polynomial
degrees K = 1, . . . ,4. Hence, if we want compare a solution error
for different polynomial degrees K in a DG scheme, we need to
generate grids with different number of grid cells and to compare
the solution error for DG approximations that will have the same
number of degrees of freedom on such grids. An example of grids
used in our test is given in Table 1. In the table, a sequence of
structured grids is shown where Nx = N y = N for any next grid in
the sequence. The grids are generated as to have the total number
of degrees of freedom approximately the same for different val-
ues of K . For instance, a grid with N = 112 will have N2 = 12 544
nodes and N2 × NDOF = 37 362 degrees of freedom for K = 1. The
DG K = 1 approximation on this grid should be compared with a
DG solution on a much coarser grid with N = 50, if we want to
compare the K = 1 and K = 4 discretizations. The DG K = 4 ap-
proximation on the latter grid has N2 × NDOF = 37 500 degrees of
freedom.

The convergence history on a sequence of grids that have the
similar number NDOF is shown in Fig. 4. We compute the L2-norm
of the solution error over the grid as

‖e‖L2 =
√ ∑

j=1,...,N f

e(P j)
2, (16)

where the error e(x, y) is computed in points P j determined by
the algorithm (15).

The convergence graphs are plotted for polynomial degrees K =
1, . . . ,4 at time t = T1 and t = T2 in Figs. 4a and 4b, respectively.
It can be seen from the figure that a higher order discretization
is more efficient that a lower order scheme, as the former scheme
has a smaller error even if a coarser grid is used for computations.

Let us also mention here that a DG discretization with piece-
wise constant solution approximation (K = 0) is equivalent to a fi-
nite volume scheme in terms of the number of degrees of freedom,
as one degree of freedom per each variable in the Euler equations
is used in a finite volume method on each grid cell. A compar-
ison of a finite volume scheme and a DG scheme has been dis-
cussed in [23], where a finite volume scheme has been considered
on a uniform grid with N = 200. Consequently, a piecewise lin-
ear DG discretization (K = 1) has been considered on a grid with
N = 100, and a grid with N = 64 has been generated for a piece-
wise quadratic DG scheme (K = 2). It has been shown in [23] that
the accuracy of a finite volume scheme was similar to a piecewise
linear DG discretization, as expected. However, a DG K = 2 scheme
has provided a more accurate solution on a coarse grid N = 64 in
comparison with both a finite volume scheme and a DG K = 1
scheme applied on finer meshes. This result is further confirmed
by our computations, as the solution error displayed in Fig. 4 for
the DG K = 3 and K = 4 discretizations reveals higher accuracy of
these schemes on coarse meshes. At the same time, it has already
been discussed in the paper that the implementation of a higher
order DG discretization in the problem is a simpler and a more
straightforward programming task in comparison with a higher or-
der finite volume discretization, as the DG scheme does not require
an expanded stencil to approximate higher order derivatives.

Speaking about the accuracy of a higher order scheme, it is in-
structive to look at the performance of a DG discretization on non-
uniform grids. The propagation of a cylindric acoustic wave (12)
does not require generation of an anisotropic grid for the numeri-
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Fig. 4. The convergence history on a sequence of grids that have the similar number of degrees of freedom for various polynomial degrees K . The L2-norm of the solution
error (16) is shown as a function of the number NDOF . (a) The L2-norm of the solution error at time t = T1. (b) The L2-norm of the solution error at time t = T2.

Fig. 5. (a) Example of a slightly perturbed grid generated in domain D . (b) Comparison of a piecewise linear (K = 1) DG approximation on a refined grid with that on a
uniform grid. The exact solution is shown as a dotted line in the figure.

cal solution of the problem. However, in more complex problems a
uniform grid may turn to be unsuitable for adequate resolution of
solution features, so that generation of a non-uniform mesh may
be required. The theoretical results state that a DG discretization
provides an optimal order of convergence on grids with regular
geometries. It has been discussed in [2] that the L2-norm of the
solution error can be estimated as O (hK+1), where h is a diameter
of grid cells. On the other hand, it has been demonstrated in [24,
25] that the convergence estimates that are true on regular meshes
fail for a DG discretization on arbitrary unstructured grids. Thus
our next test case is to slightly perturb a uniform quasi-structured
grid used in our computations and to investigate the accuracy of a
DG scheme in order to check how the grid geometry impacts on
the accuracy of the DG approximation.

A slightly distorted quasi-structured grid of 228 cells generated
in the domain D is shown in Fig. 5a. This grid is then considered
as an initial grid for the convergence test. All nested grids that
we need to verify the convergence rate are obtained by uniform
refinement of the initial grid. The standard uniform refinement

procedure is to cut each grid cell into four by connecting the edge
midpoints. Such an approach should eventually improve the grid
quality as it does not increase the maximum angle in each triangle
but at the same time decreases the diameter of each grid cell.

An example of a numerical solution obtained on a non-uniform
mesh is shown in Fig. 5b. A piecewise linear DG solution shown
in the figure is computed on a uniform quasi-structured mesh of
2706 nodes and also on a refined mesh that has the same number
of grid nodes. The latter solution appears to be more dissipative at
the region of the pressure peak. The above result is further illus-
trated by the convergence history shown in Fig. 6 at time t = T2. In
the figure, the L2-norm of a DG solution obtained on a sequence of
refined grids is compared with the error on a sequence of uniform
quasi-structured grids that has been used in our previous tests.
The convergence history for polynomial degrees K = 1 and K = 2
is shown in Fig. 6a, while Fig. 6b displays the convergence his-
tory for polynomial degrees K = 3 and K = 4. It can be seen from
the figure that a DG discretization is sensitive to the grid quality
as even slight distortion of a uniform mesh results in the loss of
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Fig. 6. The comparison of the convergence rate of a DG scheme on uniform and refined grids. The L2-norm of the solution error is computed as a function of the number of
degrees of freedom at time t = T2. (a) The convergence history for a DG K = 1 scheme and a DG K = 2 scheme on uniform (black symbols) and refined (empty symbols)
grids. (b) The convergence history for a DG K = 3 scheme and a DG K = 4 scheme on uniform (black symbols) and refined (empty symbols) grids.

accuracy of the scheme. The DG solution obtained for a fixed num-
ber of the degrees of freedom is always better resolved on uniform
quasi-structured meshes as the error on a uniform mesh is always
smaller than the error on a refined distorted mesh. Thus the con-
vergence rate of a DG scheme on arbitrary unstructured grids still
remains an open question, especially in case that coarse meshes
are considered in the problem.

Finally, we are interested in validation of our time marching
scheme for a higher order DG discretization. The previous numer-
ical results were obtained with the 5-stage R–K method that does
not have a TVD (total variation diminishing) property. We now
compare it with a TVD R–K scheme where the total variation of
the solution does not increase as the time progresses. The TVD
property of a time discretization is important as it maintains the
stability of the scheme, and it is well known that a non-TVD R–K
time discretization can generate oscillations even for a TVD spatial
discretization (e.g., see [26]).

The general TVD R–K method was formulated in [26] as follows

U(i) =
i−1∑
p=0

αipU(p) + βip	tL(
Up)

, i = 1,2, . . . ,m,

U(0) = Un, U(m) = Un+1, (17)

where the operator L is defined by (9). For non-negative αip and
βip the expansion (17) represents a combination of Euler forward
operators and computations are similar to a non-TVD R–K scheme.
The problem, however, is that for a higher-order TVD R–K method
the coefficients βip might be negative, in which case the computa-
tion of an adjoint operator L̃ is required to meet the TVD condition
for the scheme (17). The operator L̃ approximates the same space
problem (1) as the operator L does, but the backward time inte-
gration should be applied in the problem

Un+1 − Un = −	tL̃Un.

Since the computation of L̃ comes at the same cost as com-
putation of operator L, the implementation of a higher-order TVD
R–K scheme doubles the CPU time required for the discretization
as well as storage requirement. Hence, an alternative is to com-
bine a higher order space discretization with lower order TVD R–K
schemes where all coefficients βin are non-negative [4,7,8]. At the

same time, a lower order R–K scheme may not provide the accu-
rate time integration in the problem. Thus in our work we compare
the 4th order m = 3 TVD R–K scheme previously combined with a
higher-order DG discretization in [7,8] with the 5th order m = 6
scheme (17) that will be used along with a DG K = 4 discretiza-
tion.

The coefficients αip and βip required for the both TVD R–K
schemes that are exploited in our work can be found in paper [26].
Let us notice here again that we need to compute the adjoint op-
erator L in order to implement the TVD N = 6 R–K method. For
instance, the solution U(4) is computed as

U(4) = 1

4
U(0) − 5

64
	tL̃(

U(0)
) + 1

8
U(1) − 13

64
	tL̃(

U(1)
)

+ 1

8
U(2) + 1

8
	tL(

U(2)
) + 1

2
U(3) + 9

16
	tL(

U(3)
)
.

The results of the implementation of a TVD R–K scheme in the
problem are presented in Fig. 7 where the convergence history on
a sequence of uniform grids is shown at time t = T2. In the figure
the L2-norm of the solution error is displayed as a function of the
number Nc of grid nodes and the solution is integrated in time up
to t = T2 by using the 5-stage R–K scheme, the 3-stage TVD R–K
scheme and the 6-stage TVD R–K scheme.

The convergence on coarse grids (Nc < 625) is shown in Fig. 7a,
while the error on finer grids (Nc < 2500) is demonstrated in
Fig. 7b. The performance of the 3-stage TVD R–K scheme on coarse
meshes is identical to the convergence history obtained with a
5-stage R–K method. Meanwhile, the 6-stage TVD R–K method ap-
pears to be slightly less accurate in comparison with the 5-stage
and the 3-stage R–K method on coarse meshes. However, once the
grid has been refined, the accuracy of the 6-stage method is get-
ting better. The implementation of the 6-stage TVD R–K method on
a grid of 2500 nodes results in a more accurate solution in compar-
ison with the 5-stage non-TVD and the 3-stage TVD R–K method.

Since every convergence graph appears as a broken line in the
figure, it is difficult to evaluate the order of convergence from the
slope of a graph. The results of the convergence order evaluation
made on two consequently refined grids are displayed in Table 2,
where the order q has been computed from the solution error on
grids with the number of nodes Nc = 225,900 and 2500. Namely,
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Fig. 7. Implementation of a TVD R–K schemes for a DG K = 4 discretization. The L2-norm of the solution error is shown at time t = T2. (a) A 5-stage R–K scheme, a 3-stage
TVD R–K scheme and a 6-stage R–K scheme on coarse meshes. (b) The same time-marching schemes on fine meshes.

Table 2
The convergence order q of a DG discretization for polynomial degree K = 4. The
solution error is computed at time t = T2, where the solution is integrated in time
by the 5-stage R–K scheme (RK5), the 3-stage TVD R–K scheme (RKtvd

3 ) and the
6-stage TVD R–K scheme (RKtvd

6 ).

Nc 225 900 2500

q (RK5) 1.55 4.74 3.51
q (RKtvd

3 ) 1.56 5.00 3.63
q (RKtvd

6 ) 1.45 5.24 4.93

let us introduce the error ratio re as re = ‖e‖i−1/‖e‖i , where ‖e‖i
is the L2-norm (16) computed over the ith grid in the sequence
of grids used in our computations. The convergence order is then
evaluated as

q = log(re)

log(rN)
,

where rN = √
NDOFi /NDOFi−1 , and NDOFi is the number of degrees

of freedom on the ith grid.
It can be seen from the table that using a more accurate TVD

R–K method improves the convergence rate as the grid is refined.
However, further conclusions about the accuracy and efficiency of a
TVD R–K method that is consistent with the order of a spatial DG
discretization should be based on integration over a longer time
interval where we need to take into account the impact of bound-
ary conditions on the accuracy of the scheme. That should consist
a topic of future work.

4. Concluding remarks

In the present work we have considered the problem of acous-
tic wave propagation where a numerical solution to the prob-
lem has been obtained by a higher order discontinuous Galerkin
method. The aim of our work was to validate a higher order DG
discretization for a simple problem where the analytical solution
was available. The convergence tests were made to compare the
accuracy of piecewise polynomial approximation with the degree
at most K = 4 with that for a lower order discretization. The con-
vergence tests demonstrated that a higher order scheme has better
accuracy than a lower order scheme with the same number of de-
grees of freedom. Hence, a higher order discretization makes it
possible to compute an accurate solution to the Euler equations
on a coarse mesh, which is an issue of utmost importance in CAA

applications where very fine grids are usually considered in large
computational domains in order to provide accurate calculations in
the near and the far acoustic field.

The results of our paper demonstrate that a higher order DG
discretization can be considered as a reliable alternative to fi-
nite volume schemes currently used for numerical solution of the
Euler equations on unstructured grids. At the same time, regard-
ing the scheme efficiency, the implementation of a DG method
should be further investigated to reduce the computational cost of
the algorithm. Besides the scheme parallelization one of the fu-
ture work targets is to understand whether a technique similar
to the quadrature-free method developed in [27] for solving the
linearized Euler equations can be applied to the computation of
nonlinear fluxes in the problem.
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