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A quadratic least-squares solution reconstruction
in a boundary layer region
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SUMMARY

A local weighted least-squares (LS) method is often used to approximate a solution function in compu-
tational aerodynamics problems. In our paper we study LS approximation by a quadratic polynomial on
unstructured grids that have the high cell aspect ratio. It will be shown in the paper that an LS method
degrades to unacceptable accuracy on stretched meshes and weighting of distant stencil points does not
result in a more accurate reconstruction. A concept of numerically distant points will be employed to
explain the reasons behind the method’s poor performance and an approach will be discussed that allows
one to improve the results of a quadratic LS reconstruction in a boundary layer region. Copyright q 2009
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In past decades, a method of local least-squares (LS) approximation has received a lot of attention
in computational aerodynamics [1–6]. The need in local LS approximation is based on a growing
demand to employ higher-order discretization schemes for numerical solution of complex aero-
dynamics problems [1, 2, 7–9]. Higher-order finite volume schemes are a class of discretization
schemes where an LS method is frequently employed, as they require a local reconstruction of
the solution gradient [2, 10, 11], and an LS method allows one to reconstruct a function at a
given point of a computational grid by using data that are readily available at neighboring grid
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points. Usually a function reconstruction is made by a polynomial of a chosen degree where the
polynomial coefficients are determined from the solution of a local LS problem.

The accuracy of a local LS reconstruction is considered as a priority requirement, as a recon-
structed function should be further used for iterative solution of the governing equations of a
computational aerodynamic problem. An LS method on regular grids is usually regarded as the
accurate means of function approximation (e.g. see [12, 13]). Meanwhile, in many practical appli-
cations it is required to reconstruct a function on highly anisotropic unstructured meshes that are
generated about an airfoil. In the latter case the implementation of an LS reconstruction in the
problem may encounter serious difficulties. It has recently been demonstrated in [4, 6, 14] that
an LS method degrades to unacceptable accuracy on stretched meshes. Furthermore, it has been
discussed in [4, 14] that the poor accuracy of an LS reconstruction affects the convergence of an
approximate solution by generating large discretization errors and ill-conditioned matrices. Thus,
the conclusions about the accuracy of an LS reconstruction should be revised if irregular meshes
are employed.

A detailed discussion of an LS method on highly anisotropic grids has been provided in recent
paper [6] for an LS reconstruction by a linear polynomial. In the present paper, we continue
the study of an LS method for the case when LS approximation by a quadratic polynomial is
exploited in the problem. To our best knowledge, a problem of a higher-order LS reconstruction on
anisotropic meshes has not been discussed in the literature yet, as a main research effort on a local
LS reconstruction has been concentrated on structured meshes and regular unstructured meshes so
far (e.g. see [3, 5, 15]). Meanwhile, our numerical experience with a quadratic LS reconstruction
used in practical computations is that the method generates a very inaccurate solution when a
solution function is reconstructed on a stretched mesh near an airfoil. Hence, using a higher-order
polynomial in an LS problem does not result in a more accurate reconstruction on irregular grids,
and further careful study of an LS method on anisotropic unstructured meshes is required.

A large reconstruction error is often attributed to the presence of geometrically distant points
that appear in a reconstruction stencil on grids with the high cell aspect ratio. Thus, a frequent
recommendation is to assign weights to stencil points, where a weight function is defined as a
function of the Euclidian distance between two points in order to mitigate the impact of distant
points on the accuracy of LS approximation [2, 3, 5, 16]. However, despite the success of this
approach for many test case problems, it turned out that weighting of stencil points is not efficient
on anisotropic meshes used in practical computations. It has been discussed in [6, 14] that the results
of a weighted linear LS reconstruction can be worse than those for an unweighted reconstruction.
In our paper, we expand the above conclusion to a quadratic reconstruction by making direct
comparison of the results of a weighted and unweighted reconstruction on irregular meshes.

In work [6], a concept of numerically distant points has been introduced to explain the poor
accuracy of a weighted LS method on stretched meshes. A numerically distant point is a point
that can be located close to the origin where a reconstruction is made, but it still has a large error
in data required for the reconstruction. It has been demonstrated in [6] that in regions where the
solution has a strong gradient (e.g. in a boundary layer) numerically distant points often appear
in a reconstruction stencil. Those regions usually require generation of an anisotropic mesh to
resolve the solution gradient, so that the poor performance of the method is associated with a
stretched mesh geometry. While geometrically distant points can be easily suppressed by means
of simple geometric weighting, it is still unclear how to get rid of numerically distant points in a
reconstruction stencil. It has been suggested in [6] that one approach to eliminate them from a linear
LS reconstruction is to use a compact stencil where the number of stencil points will be minimized.
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A quadratic reconstruction, however, represents a more difficult case, as a compact stencil does not
generally provide a number of degrees of freedom required for a quadratic polynomial. Thus, in our
paper we discuss an approach to a quadratic reconstruction on a compact stencil where additional
information about a solution function can be used to compute all degrees of freedom. This idea
is illustrated by consideration of an ‘anisotropic’ function where the knowledge of a gradient
direction allows one to determine the polynomial coefficients for a quadratic reconstruction.

2. A LOCAL LS SOLUTION RECONSTRUCTION

Consider a two-dimensional domain � where an unstructured computational grid G is generated
about an airfoil (see Figure 1(a)). Let points Pn = (xn, yn)∈G, n=1, . . .,NG , and data vector UG
be defined at points Pn , where Un =U(Pn). The vector UG is usually thought of as a solution
to governing equations of a computational aerodynamics problem that is numerically solved on
grid G.

We now define another set of points { P̄l}, l=1, . . ., L, over the grid G, where the data UG will
be approximated at each point P̄l by an LS method. The definition of the set { P̄l} is based on a
given problem under consideration. Below we discuss a computational problem where the solution
UG is defined at nodes of grid G, and the set { P̄l} consists of all edge midpoints taken on G. Such
a definition of the points { P̄l} is often related to node-centered discretization schemes.

Let P̄l be the edge midpoint at edge el . For a local LS reconstruction at point P̄l , a reconstruction
stencil Sl is allocated as follows. The two nodes n1 and n2 that comprise the edge el are identified,
and the stencil Sl composes all grid nodes that belong to edges incident to the node n1 or n2 (stencil
I in Figure 2). Generally, the number N of stencil points is different for two different points P̄l1
and P̄l2 , as it depends on the geometry of a computational grid. Some computational problems
may also require an expanded reconstruction stencil, in which case ‘neighbors of neighbors’ are
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Figure 1. (a) An unstructured grid generated about an airfoil. (b) A grid fragment near the wall (the
domain �1 in (a)). A grid with the high cell aspect ratio should be generated to resolve the solution in

the direction normal to the wall.
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Figure 2. Examples of a reconstruction stencil for local LS approximation at a given edge midpoint.
Stencil members are shown as black circles. A stencil (I) used for the reconstruction at point P I

0 composes
all grid nodes that belong to edges incident to the node n1 or n2. An expanded stencil (II) generated for
P II
0 also includes ‘neighbors of neighbors’ shown as empty circles in the figure. A compact stencil (III)

consists of four grid nodes belonging to the adjacent cells that share a given edge.

considered to select the next layer of grid nodes for stencil Sl . One example of an expanded
reconstruction stencil is shown in Figure 2 (see stencil II in the figure).

Once a reconstruction stencil Sl has been defined, the point P̄l is denoted as P0 and the
stencil points are locally numbered as P1 through PN . Consequently, a local data vector U=
(U1,U2, . . .,UN ) is allocated by taking the entries of UG at stencil points. A local LS solution
reconstruction is then a problem of fitting the data U to the function

uLS(x, y)=
M∑
k=0

uk�k(x, y), M<N (1)

where u= (u0,u1,u2, . . .,uM ) are fitting parameters and �k(x, y), k=0, . . .,M , are polynomial
basis functions. In our paper we consider the approximation by a quadratic polynomial,

uLS(x, y)=u0+u1(x−x0)+u2(y− y0)+u3(x−x0)
2+u4(x−x0)(y− y0)+u5(y− y0)

2 (2)

where we have uLS(P0)=u0.
The unknown parameters {uk} are determined in the LS method by seeking the minimum of

the merit function,

F2=min
u

N∑
i=1

[U(Pi )−u(Pi )]2

Taking the partial derivatives of the function F2 with respect to the fitting parameters uk results
in M+1 normal equations

N∑
i=1

[
Ui −

M∑
j=0

u j� j (Pi )

]
�k(Pi )=0, k=0, . . .,M
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Introducing the design matrix A as Ai j =� j (Pi ), i =1, . . .,N, j=0, . . .,M, the normal equa-
tions are solved for the vector u

u=A−1
LS bLS (3)

where the matrix ALS=ATA and the vector bLS=ATU. Once the function U(x, y) has been
reconstructed at a given point P0≡ P̄l , the next edge midpoint P̄l+1 is taken and the reconstruction
procedure is repeated until the solution field is reconstructed over the entire grid.

While an LS method reconstructs a smooth function U(x, y) with desired accuracy on a uniform
grid [12, 13, 17], the method demonstrates the poor accuracy when the stretched meshes are
considered. Below we discuss a numerical example illustrating the difficulties arising when a local
LS reconstruction is implemented in a practical computational aerodynamics problem where an
anisotropic mesh is generated about an airfoil.

2.1. The accuracy of a quadratic reconstruction on irregular meshes

Consider turbulent flow about an NACA0012 airfoil obtained as a result of numerical solution of the
Navier–Stokes equations on a sequence of adaptive unstructured grids generated by an anisotropic
grid adaptation procedure [18]. A solution to the system of governing equations is computed by
an accurate numerical method (streamline upwind Petrov–Galerkin (SUPG), [19]) that employs
higher-order polynomial functions to discretize the equations over a given computational grid G.
In the test case under consideration, a solution has been obtained for a Mach number of 0.2, a
Reynolds number of 9×106 and an angle of attack of 12.0◦. Characteristic boundary conditions
have been implemented in a far field, and an isothermal solid wall boundary condition has been
considered in a near field. The details of the numerical solution procedure can be found in [9].

In our example, the x-component of the velocity vector in the Navier–Stokes equations has been
chosen as a scalar solution field U(x, y) to discuss the results of a quadratic LS reconstruction.
Let us consider the grid GC taken from the sequence of grids used in the solution grid adaptation
algorithm. This ‘coarse’ grid shown in Figure 1(a) is a very irregular grid as would generally be
the case for an unstructured adaptive grid code. The maximum cell aspect ratio on grid GC is 103,
with the distance of the first point normal to the wall being 8×10−6 chords. For the purpose of
our study we then generate a new grid G by uniform refinement of the grid GC, so that all edge
midpoints on coarse grid GC become grid nodes on fine grid G (see Figure 3, where an example
of uniform refinement is given). The coarse grid GC has NGC =6270 grid nodes, while the grid
G used to compute an accurate solution U(x, y) has NG =24807 nodes, where NG =NGC +NEC ,
and NEC =18537 is the number of edge midpoints on grid GC. The original data structure related
to grid GC is stored, and once the solution has been computed on grid G it is projected onto the
coarse grid GC. The function U(x, y) is then reconstructed at edge midpoints of grid GC by an
LS method and the approximation uLS(x, y) is compared with the solution U(x, y) available at
the same grid points on grid G (see Figure 3).

The validation of the accuracy of an LS reconstruction is made based on the following error
function e(x, y) computed at points (x, y)∈{ P̄l}, l=1, . . .,NEC ,

e(x, y)=|U(x, y)−uLS(x, y)| (4)

where point P= (x, y)∈G and P∈{ P̄l}. In other words, P is a node on the fine grid G and at
the same time P is an edge midpoint on the coarse grid GC. The functions U(x, y) and uLS(x, y)
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Figure 3. A fragment of a computational grid near the wall. The y-axis is scaled for the sake of visualization:
(a) a reconstruction stencil for point P0 includes all points P1 through P9 (except point P6) on a coarse
grid GC and (b) the grid GC is refined and the solution U (x, y) is computed at grid nodes on a fine grid
G . Once the solution is available at the stencil points, an LS reconstruction is made at point P0 on coarse
grid GC and the value uLS(P0) is compared with the solution U (P0) obtained at point P0 on fine grid G .

are an accurate SUPG solution and a quadratically reconstructed solution (2), respectively. We are
interested in the maximum error (4) in a ‘boundary layer’ region Db ,

emaxb = max
(x,y)∈Db

e(x, y) (5)

where Db is a subgrid of the grid G with nodes (x, y) : X1=−0.05<x<X2=1.05, Y1=
−0.05<y<Y2=0.05. Let us notice that despite the actual topology of a boundary layer being
different from that of a rectangle Db, we use the name ‘boundary layer’ to emphasize that a
non-uniform grid with the high cell aspect ratio is generated in a computational domain near the
airfoil (see the example shown in Figure 1(b)).

The maximum error is also computed in a ‘far-field’ region D f as follows:

emax f = max
(x,y)∈D f

e(x, y) (6)

where D f is a subgrid of the grid G with nodes (x, y) : R f =10.0<
√

(x−0.5)2+ y2 <R� =500.0.
Again, the name ‘far field’ is only used to emphasize that the grid in the domain D f is quasi-
uniform.

A logarithmic error el(x, y),

el(x, y)= log10
|U(x, y)|

|uLS(x, y)| (7)

allows one to control the order of the reconstruction error magnitude. The maximum logarithmic
error near the wall is defined as

elmaxb = max
(x,y)∈Db

|el(x, y)| (8)
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Figure 4. Results of a quadratic LS reconstruction on grid G in grid subdomain near the wall (see also
a computational grid shown in Figure 1(b)): (a) an accurate SUPG solution is a monotone function in
the direction n normal to the wall and (b) a quadratic LS reconstruction results in a non-monotone and

inaccurate solution on the same grid.

while the maximum logarithmic error in a far field is

elmax f
= max

(x,y)∈D f
|el(x, y)| (9)

Our numerical experience with the problem shows that a quadratic LS reconstruction provides
accurate results in a far-field region. The maximum error (6) for the reconstruction in domain
D f is emax f ≡e(x f , y f )=1.2728×10−3, where U(x f , y f )=0.9766, uLS(x f , y f )=0.9779, and
the point Pf = (10.814,1.269). The maximum logarithmic error (9) is elmax f

≡|el(x f , y f )|=
5.6561×10−4.

Meanwhile, the results of an LS reconstruction near the wall are quite different from those in
a far-field region. A grid fragment near the wall has been selected to demonstrate the results of a
quadratic reconstruction on an anisotropic grid (see domain X1 in Figure 1). An accurate SUPG
solution is presented in Figure 4(a), while a quadratically reconstructed solution on grid G is shown
in Figure 4(b). It can be seen from the figure that an LS reconstruction results in a non-monotone and
inaccurate solution near the wall. This conclusion is confirmed by the calculation of a reconstruction
error near the wall. The maximum error (5) for a quadratic reconstruction in domain Db is emaxb ≡
e(xb1, yb1)=1.3859, where U(xb1, yb1)=−3.89462×10−2, uLS(xb1, yb1)=1.34701, and the point
Pb1 = (xb1, yb1) is located close to the wall, xb1 =0.0162473, yb1 =−0.021828. The maximum
logarithmic error (8) is elmax f

≡|el(xb2, yb2)|=2.49593, where xb2 =0.274632, yb2 =−0.059519

and the solution isU(xb2 , yb2)=2.62319×10−1, uLS(xb2, yb2)=2.9709×10−4. Hence a quadratic
LS reconstruction near the wall degrades to unacceptably poor accuracy on a stretched mesh.

2.2. Weighting of stencil points

Our next observation about an LS reconstruction in a ‘boundary layer’ region Db is that geometric
weighting of stencil points does not result in more accurate approximation. This result contradicts
a widespread opinion that the poor accuracy of an LS reconstruction should be attributed to
geometrically distant points that are present in a reconstruction stencil on a stretched mesh.
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Geometrically distant points are often associated with a large observation error in data U(x, y),
so that many authors recommend inverse distance weighting of stencil points in order to suppress
distant points in a reconstruction stencil and to obtain an accurate reconstructed solution [2–5].

A weighted LS reconstruction is defined by the following merit function F2
w,

F2
w =min

u

N∑
i=1

w(r0i )[U(Pi )−u(Pi )]2

where the weight function w(r0i ) depends on the Euclidian distance r0i between points P0 and
Pi , i =1,2 . . .,N . The solution u to the normal equations is now obtained as

u=A−1
wlsbwls

where the matrix Awls=ATWA, the vector bwls=ATWU, and a diagonal weight matrix W is
defined as

Wi j =
{

w(r0i ), i = j,

0 otherwise
i, j =1,2, . . .,N

The weight function

w(r0i )=r−p
0i , p=0,1,2, . . . (10)

where p is an integer polynomial degree, is a frequent choice in computational aerodynamics
problems [2, 4, 5, 9]. The polynomial degree p=0 is related to an unweighted reconstruction,
while p>0 provides inverse distance weighting used to mitigate the impact of distant points in a
reconstruction stencil on the accuracy of LS approximation.

Below we discuss the results of a weighted quadratic LS reconstruction for the NACA0012 test
case. The maximum error (6) and maximum logarithmic error (9) of a weighted LS reconstruction
in ‘far-field’ domain D f is given in Table I for various polynomial degrees p. It can be seen from the
table that assigning weights to stencil points results in a more accurate reconstruction. In particular,
the error for a weighted LS reconstruction with polynomial degree p=2 is about 15% smaller than
the error for an unweighted reconstruction (p=0). However, heavy weighting of stencil points
with p=8 results in a larger error in comparison with the error obtained for the unweighted
reconstruction. That happens because heavy weighting of stencil points effectively eliminates them
from the stencil, so that the LS approximation misses the data required to quadratically reconstruct
function U(x, y).

The results of a weighted LS reconstruction in ‘boundary layer’ region Db are shown in
Table II. The weight function (10) is not efficient in the domain Db , as the weighting of

Table I. The reconstruction error for quadratic LS approximation in a far field. The
maximum error (6) and the maximum logarithmic error (9) are shown for various degrees

p of polynomial weight function (10).

p 0 1 2 4 8

emax f 1.27282×10−3 1.09508×10−3 1.08304×10−3 1.14044×10−3 1.38461×10−3

elmax f
5.65614×10−4 4.86696×10−4 4.80916×10−4 5.06832×10−4 6.15279×10−4
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Table II. The reconstruction error for quadratic LS approximation near the airfoil. The
maximum error (5) and the maximum logarithmic error (8) is shown for various degrees

p of polynomial weight function (10).

p 0 1 2 4 8

emaxb 1.38595 1.52966 1.72857 2.18609 198.303

elmaxb 2.49593 3.23984 2.80793 2.57411 2.79986
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Figure 5. The maximum error and the maximum logarithmic error is shown as a function
of degree p of polynomial weight function (10): (a) the error (6) and (9) in a far field and

(b) the error (5) and (8) in a near field.

stencil points further increases the maximum error of the reconstruction. One example is given
by weighting with p=8, where the maximum error becomes emaxb =198.303 after the imple-
mentation of weight function (10) in the problem. However, the weight function (10) does not
work for the other values of p as well. In particular, weighting with p=2, which appears
to be optimal in the far field, does not provide an acceptable reconstruction error near the
wall.

Figure 5 illustrates the data presented in Tables I and II. The error in a far field is shown in
Figure 5(a), while the error near the airfoil is displayed in (b). It can be seen from Figure 5(b) that
the maximum logarithmic error slightly decreases when we increase the degree p of the weight
function (10), but its value still remains very large. Moreover, the logarithmic error elmax is larger
than the error emax in the near field for any polynomial degree p (except the degenerate case p=8,
which is not shown in the figure for the sake of scaling). This result clearly demonstrates that
a weighted LS reconstruction fails to reconstruct a solution function near the wall and another
approach is required for an accurate local solution reconstruction.
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3. ELIMINATION OF DISTANT POINTS ON A STRETCHED MESH

It has been shown in the previous section that, while a weighting procedure mitigates the impact
of geometrically distant points on an LS reconstruction in a far field, elimination of geometrically
distant points from the stencil does not lead to an accurate LS reconstruction on an anisotropic
grid generated near the airfoil. In recent work [6] a concept of distant points has been generalized
to explain the poor accuracy of a weighted LS method. It has been suggested in [6] that, along
with geometrically distant points, numerically distant points may also appear in a reconstruction
stencil. A numerically distant point Pn is a stencil point that can be located close to the origin P0,
where the function U(x, y) is reconstructed, but the value U(Pn) at such a point still has a large
data error that affects the accuracy of an LS reconstruction.

While a detailed discussion of numerically distant points has been provided in [6], below we
consider a simple example illustrating the concept. Consider a quadratic function

U(x, y)=ax2+ y (11)

where parameter a=−0.001. We are interested in LS approximation of the gradient �U/�x=
2ax , �U/�y=1 at the origin P0= (0,0), where for the sake of simplicity we consider linear
reconstruction at point P0

uLS(x, y)−u(P0)=u1x+u2y (12)

If the function (11) is known at point P0, we have two expansion coefficients u1 and u2 to be
defined from LS approximation (12).

Let points Pi , i =1, . . .,4, be defined as P1= (−H,h1), P2= (0,h0), P3= (H,h1) and P4=
(0,−�), where h0, h1 and H are fixed positive values with H �1, H �h1, h1�h0 (see Figure 6).
The reconstruction stencil {P1, P2, P3, P4} results in the following design matrix:

A=

⎡
⎢⎢⎢⎢⎣

−H h1

0 h0

H h1

0 −�

⎤
⎥⎥⎥⎥⎦

The data vector is U= (aH2+h1,h0,aH2+h1,−�)T. The LS method (3) approximates the
gradient (u1,u2) at point P0 as

u1=0, u2= 2h1(aH2+h1)+h20+�2

�2+h20+2h21
=1+ 2ah1H2

�2+h20+2h21
(13)

while the exact gradient is ∇U(P0)= (0,1).
The gradient component u2 depends on the parameter �. Let the accuracy � of the gradient

approximation be defined as

|u2−�U(P0)/�y|= � (14)

Substituting the approximate and the exact gradient into (14) we obtain

2|a|h1H2

�2+h20+2h21
= �, �2= 2|a|h1H2

�
−h20−2h21
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Figure 6. Example of numerically distant points in a reconstruction stencil. The stencil {P1, P2, P3, P4}
provides the reconstruction with prescribed accuracy �, while the stencil {P1, P2, P3, P∗

4 } contains a
numerically distant point P∗

4 that affects the accuracy of the reconstruction.

For the accuracy �∼|a|=10−3, the estimate of � becomes

�∼√
h1H (15)

where the condition H �h1 is taken into account. Consider H =20, h1=0.5, h0=0.01. Taking
�=15 in the reconstruction (13) we obtain u2=0.9982. Meanwhile, if we take �=�∗ =0.01, the
condition (15) is broken and we have u2=0.2003. Thus, a reconstruction stencil {P1, P2, P3, P∗

4 }
shown in Figure 6 contains a numerically distant point P∗

4 = (0,−�∗). Taking the data U(x, y) at
point P∗

4 results in a large reconstruction error, despite point P∗
4 being located close to the origin.

Let us notice that a conclusion about the numerically distant points in a reconstruction stencil
depends essentially on a function U(x, y) under consideration. Since an analytic solution U(x, y)
is not available in practical computations, it is difficult to recognize numerically distant points that
are captured by a reconstruction stencil on an irregular mesh. Moreover, examples designed in [6]
demonstrated that weighting of stencil points does not guarantee that numerically distant points
will be eliminated from a reconstruction stencil, as their data error does not depend on the distance
to the origin. Thus, it has been suggested in [6] that in some cases it may be helpful to minimize
the number of stencil points in order to eliminate a priori numerically distant points from the
stencil. The idea is to reconstruct a function over a compact stencil SC which is defined as a set of
four grid nodes belonging to the two grid cells that share a given edge (see stencil III in Figure 2).
Below we discuss an example of a solution function, where a reconstruction on a compact stencil
eliminates numerically distant points and results in more accurate solution approximation.

3.1. Anisotropic basis functions for an LS reconstruction

A main difficulty arising in consideration of a compact stencil SC is that it does not provide data
for a quadratic reconstruction. The stencil SC consists of four grid points, while at least six grid
points are required to determine the coefficients of a quadratic polynomial. Hence we need to
use additional information about a solution function in order to define all fitting parameters for a
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quadratic reconstruction. Obviously the information about the solution, that allows one to recover
the data missed when we reduce the number of stencil points, is not always available in the problem.
However, in some important cases it becomes possible to enhance the function resolution on a
compact stencil. Below we present one such example where the idea of anisotropic basis functions
originally developed in [20] is employed in order to provide accurate reconstruction on a compact
stencil. While the approach discussed below cannot be applied to any reconstruction problem, this
example, nevertheless, clearly demonstrates that solution information is very important if we want
to get accurate quadratic LS reconstruction near the wall. This subsection provides a brief outline
of anisotropic basis functions for a quadratic reconstruction.

For the sake of further discussion, let us introduce the following definition of an ‘anisotropic’
solution.

The function u(x, y) is called ‘anisotropic’ at point (x0, y0), if the following condition holds:
�2u
��2

=0 (16)

where the direction g is orthogonal to the gradient vector, that is (∇u,g)=0.
The concept of anisotropic basis functions is based on a simple observation that, if a function has

a strong gradient, we can enhance its approximation by using a greater number of basis functions
related to the gradient direction in the expansion (1). This idea is somewhat similar to p-refinement
in discretization schemes, except the total number of basis functions used for the approximation
is not increased. Consider the rotation mapping of the (x, y)-plane onto the (�,�)-plane

� = x cos�+ y sin�

� = −x sin�+ y cos�
(17)

where � is the angle between the x-axis and the �-axis. Since the transformation (17) is linear,
basis functions �m, m=0,1, . . .,M , in the expansion (1) can be replaced by another set �̃m, m=
0,1, . . .,M , where the new basis functions are

�̃m(�,�)= (�−�0)
�(�−�0)

�, �+�=0,1, . . .,M

and the coordinates �0 and �0 are given by the transformation (17) of the coordinates x0 and y0,
respectively. The quadratic approximation (2) in the new basis is

u(�,�)=u0+u1(�−�0)+u2(�−�0)+u3(�−�0)
2+u4(�−�0)(�−�0)+u5(�−�0)

2 (18)

The expansion coefficients uk are now determined by derivatives �ku(�,�)/������,�+�=k, in
the (�,�)-coordinates.

Let now � be the gradient direction, so that the angle � between the �-axis and the x-axis is
defined as

cos�= (∇u)1

‖∇u‖ , sin�= (∇u)2

‖∇u‖
where (∇u)i , i =1,2, are components of the gradient vector and ‖∇u‖=

√
(∇u)21+(∇u)22. The

definition (16) allows one to use a new set of basis functions

{�̃(�,�)}= (1, (�−�0), (�−�0)
2, (�−�0)(�−�0)) (19)
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for a quadratic LS reconstruction at point (x0, y0), as we have

u2= �u
��

=0

for the gradient direction and

u5= 1

2

�2u
��2

=0

for an anisotropic function. Hence, a compact stencil becomes adequate to the reconstruction task,
as only four fitting parameters are now required for a quadratic reconstruction.

3.2. Reconstruction on a compact stencil

In this subsection, we implement anisotropic basis function in an LS reconstruction problem to
obtain a more accurate LS reconstruction on a given grid. An anisotropic reconstruction (19)
can be illustrated by a simple example where a single reconstruction stencil is considered in a
boundary layer region. We consider a fragment of a computational grid shown in Figure 3(a),
where a solution function U(x, y) is anisotropic near the wall. The gradient direction is a direction
normal to the wall (vector n in Figure 7).

Our goal is to reconstruct the function U(x, y) at point P0 and to compare the result with the
available solution U(P0)=2.109×10−3. The procedure to compute the ‘exact’ solution U(P0) has
been discussed in Section 2. A reconstruction stencil Sl used for a quadratic reconstruction consists
of eight points (see Figure 3(a)). A quadratic LS reconstruction (2) weighted with p=2 gives the
solution value uLS(P0)=3.356×10−4 on stencil Sl , so that the reconstruction error (4) at point
P0 is e(P0)=1.7734×10−3. The inaccurate reconstruction at point P0 results in a non-monotone
solution near the wall as shown in Figure 7(a).

Let us apply the anisotropic basis functions in the problem. A compact stencil SC is formed of
points P1 through P4. In practical computations the gradient direction can be evaluated from a linear

x
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Figure 7. The example of a quadratic LS reconstruction near the wall: (a) an LS reconstruction over a
standard stencil Sl shown in Figure 3(a) results in an inaccurate solution at point P0 and (b) a compact
stencil SC={P1, P2, P3, P4} (see Figure 3) provides an accurate quadratic reconstruction at point P0.
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reconstruction considered over a compact stencil. We first use the stencil SC to compute the linear
function (12) and consider the expansion coefficients in (12) as u1≈�u/�x and u2≈�u/�y. The
gradient direction is then evaluated as cos�≈u1/‖∇u‖, sin�≈u2/‖∇u‖, and we can apply the
transformation (17) along with basis functions (19) for a quadratic LS reconstruction at point P0.
The quadratic LS reconstruction on a compact stencil SC provides a much better result, uCLS(P0)=
2.123×10−3, and the error (4) now is e(P0)=1.41×10−5. Thus, the information about the
gradient direction allows one to obtain an accurate and monotone solution near the wall (see
Figure 7(b)).

We now consider the NACA0012 test case discussed in Section 2 to re-compute an LS recon-
struction on a compact stencil. Let us emphasize it again that our purpose is to demonstrate the
improvement in the accuracy of LS approximation on a given grid only. A more accurate recon-
struction obtained on a compact stencil should confirm our hypothesis about numerically distant
points that are present on an anisotropic mesh generated near the wall. At the same time, while our
approach offers an alternative to a conventional quadratic LS reconstruction, it cannot be generally
employed in practical computations, as it requires condition (16) to reduce the reconstruction
support to a compact stencil.

Since we cannot evaluate condition (16) beforehand in order to conclude whether the solution
is anisotropic in a given grid cell, we elaborate a ‘black box’ procedure to obtain the best possible
result of an LS reconstruction on a given mesh. Namely, we compute the reconstruction error (4)
at a given edge midpoint for both quadratic and linear reconstruction on a compact stencil as well
as the error for a conventional quadratic reconstruction (2). We then leave a reconstruction that
provides the smallest error (4).

A switch between a quadratic and linear reconstruction is implemented in the problem because
there are grid cells where numerically distant points appear in a reconstruction stencil, but the
solution function is not anisotropic in those cells. A quadratic reconstruction on a compact stencil
will give inaccurate results in grid cells where the condition (16) does not hold, so that a linear
reconstruction is required if we want to eliminate numerically distant points. On the other hand, a
standard quadratic LS method (2) performs well in grid cells, where the solution is not anisotropic
and a reconstruction stencil does not contain numerically distant points. Hence, we need to compute
the error for a conventional LS reconstruction as well, as we expect that a quadratic reconstruction
on standard stencil Sl will provide a smaller error in the latter case.

The results of our numerical experiment are shown in Table III. In the table we present the
error of a standard quadratic reconstruction (LS) weighted with p=2 over the grid G. The error
is compared with that for a ‘hybrid’ reconstruction on a compact stencil (CLS) computed on grid
G. Namely, the maximum error emaxb and the maximum logarithmic error elmaxb is obtained for

Table III. The reconstruction error for standard least-squares approximation weighted with p=2 (LS) and
least-squares approximation on a compact stencil (CLS).

emaxb elmaxb emax f elmax f

LS 1.72857 2.80793 1.08304×10−3 4.80916×10−4

CLS 0.371705 1.03009 9.57454×10−4 4.24763×10−4

The maximum error emax and the maximum logarithmic error elmax is computed in domain Db near the airfoil
and in far-field D f .
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both approaches in the domain Db near the airfoil. We also compute the maximum error emax f and
the maximum logarithmic error elmax f

in the far-field domain D f . It can be seen from the table
that, while the results of an LS reconstruction on a compact stencil in domain D f are similar to
a weighted quadratic reconstruction (2), a reconstruction on a compact stencil reduces both the
maximum error and the maximum logarithmic error in boundary layer region Db. That confirms
our assumption about numerically distant points in a boundary layer. Minimizing the number of
stencil points and aligning basis functions to the gradient direction allows one to improve the
performance of an LS method near the wall.

Meanwhile, although the maximum logarithmic error elmaxb significantly decreases, it still
remains relatively large in domain Db . This result indicates the presence of grid cells where we
miss solution information required for an accurate reconstruction when we minimize the number
of stencil points. Hence the issue of numerically distant points requires further study to elaborate
a reliable approach for an accurate LS reconstruction on stretched meshes.

It is worth mentioning here a problem of accuracy validation that arises in consideration of
an LS reconstruction on irregular meshes. Obviously, a resulting LS reconstruction on a compact
stencil is not entirely quadratic in our test case, as the algorithm we use implies that in some grid
cells the reconstruction is reduced to a linear polynomial. However, it is not possible to conclude
about the order of LS approximation by looking at a reconstruction error obtained on a single
grid, and more thorough investigation of a quadratic reconstruction should involve convergence
tests that usually require uniform refinement of a computational grid. Meanwhile, the uniform
refinement cannot be straightforwardly applied in the problem to obtain a sequence of nested
meshes in a boundary layer region, as a solution needs an anisotropic grid near the wall [9]. Thus,
another validation procedure should be designed in order to verify the accuracy of an LS method
on stretched meshes. This task is considered as a topic of future work.

To conclude this section, we demonstrate an example of an LS reconstruction on a compact
stencil for the NACA0012 test case. The reconstruction results are presented over a grid fragment
near the wall as shown in Figure 4. While a conventional quadratic LS reconstruction results in a
non-monotone solution uLS(x, y) shown in Figure 8(a), the use of a compact stencil allows one
to get rid of solution oscillations. It can be seen from Figure 8(b) that a reconstructed solution
uCLS(x, y) is a monotone function in the direction normal to the wall.

4. CONCLUDING REMARKS

In our paper we have discussed a local LS reconstruction on anisotropic unstructured grids. It has
been shown that using a higher-order (quadratic) polynomial in an LS reconstruction procedure does
not maintain the accuracy of the reconstruction when irregular geometries are considered. Moreover,
weighting of stencil points does not improve the accuracy of the method. This result contradicts
a widespread viewpoint that a weighting procedure results in a more accurate reconstruction, as
weighting eliminates distant points that are usually associated with a large error in data used for
the reconstruction. The above contradiction can be resolved by admitting that, while a weighting
procedure deals with geometrically distant points, another type of distant points may appear in a
reconstruction stencil on anisotropic meshes. Those points, called numerically distant points in the
paper, are not geometrically remote, but they still have a large data error that affects the accuracy
of LS approximation.
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Figure 8. Results of an LS reconstruction on a stretched mesh near the wall: (a) a standard quadratic
reconstruction shown also in Figure 4(b) is a non-monotone function in the direction n normal to the wall
and (b) an LS reconstruction on a compact stencil results in a monotone solution on the same grid.

The concept of numerically distant points has been illustrated in the paper by consideration
of a compact stencil that minimizes the total number of stencil points. We have compared a
weighted LS reconstruction that only eliminates geometrically distant points with a reconstruc-
tion on the compact stencil. The purpose of this numerical experiment is to demonstrate that
numerically distant points still remain in a reconstruction stencil after the implementation of
a weighting procedure. An approach developed in the paper has shown the advantages of a
compact stencil in grid subdomains where a solution function has a strong gradient that requires
the generation of a stretched mesh. While the considered approach is restrained by condition
(16) that prevents using a compact stencil for an arbitrary function, the test case discussed
in the paper clearly indicates the problem of optimal stencil selection that arises in practical
computations. In other words, our computations show that solution information rather than grid
geometry is crucial for an LS method on irregular meshes. A reliable algorithm of detection of
numerically distant points in a reconstruction stencil should help one to get a more accurate LS
reconstruction.

Finally, let us notice here that the accuracy of an LS reconstruction on irregular meshes is a
challenging task where, in our opinion, investigation of model test cases cannot replace dealing
with real-life computations (cf. [11]). Our numerical experience with the problem shows that
stencil points with a large data error appear on grids that are not properly refined to accommodate
solution features. Hence we may expect numerically distant points in practical computations where
a solution is not resolved on coarse meshes. On the other hand, consideration of a test problem,
where an analytical solution is available, usually allows one to generate a mesh that is well
adapted to a solution function. Reconstruction stencils defined on such a mesh will unlikely contain
numerically distant points. Indeed, numerous test cases, where a computational mesh was carefully
generated, demonstrated good accuracy of a weighted LS method [3, 5, 15]. Thus, the design of
adequate test cases to verify the results of an LS reconstruction on irregular meshes is an important
problem, which is considered as a topic of future work.
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