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Discontinuous Weighted Least-Squares Approximation on Irregular Grids

N.B.Petrovskaya 1

Abstract: Discontinuous weighted least–
squares (DWLS) approximation is a modification
of a standard weighted least-squares approach
that nowadays is intensively exploited in compu-
tational aerodynamics. A DWLS method is often
employed to approximate a solution function
over an unstructured computational grid that
results in an irregular local support for the ap-
proximation. While the properties of a weighted
least-squares reconstruction are well known for
regular geometries, the approximation over a
non-uniform grid is not a well researched area so
far. In our paper we demonstrate the difficulties
related to the performance of a DWLS method
on distorted grids and outline a new approach
based on a revised definition of distant points on
distorted grids. Our discussion is illustrated by
examples of DWLS approximation taken from
computational aerodynamics problems.
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1 Introduction

A least-squares (LS) method is one of the most
well known approaches in solving a problem of
finding the best polynomial approximation to the
input samples. Originally developed for statisti-
cal regression, a general concept of LS approxi-
mation nowadays is widely used for various ap-
plications beyond statistics.

While the LS approximation is a powerful tool for
various process modeling, its accuracy is based on
the assumption that all data points provide equally
precise information. However, in many cases data
point used for the LS method are of varying qual-
ity in terms of the uncertainty of the measurement.
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Thus a widespread approach to improve the accu-
racy of a LS approximation is to use weights in
the LS procedure [Bjőrck (1996); Neter, Wasser-
man, Kutner (1985)]. The idea of a weighted LS
approximation is to allocate weight coefficients to
least-squares data in order to suppress data points
where the observation error can be large. In many
applications the uncertainty of the measurement
is associated with geometrically distant points in
the data set, so that the weight of each observa-
tion is often chosen to be a function of the in-
verse distance between two given points (e.g., see
[Alexa, Behr, Cohen-Or, Fleishman, Levin and
T. Silva (2003); Atluri, Kim, and Cho (1999);
Bates, Watts (1988); Mavriplis (2003); Wend-
land (1995)]).

A discontinuous weighted least-squares (DWLS)
approximation is a modification of a weighted
LS method that has recently received a lot of at-
tention in computational aerodynamics [Ander-
son, Bonhaus (1994); Barth (1991); Haselbacher
(2006); Mavriplis (2007); Ollivier-Gooch, Van
Altena (2002); Petrovskaya (2007)]. A DWLS
method is a local weighted LS approximation that
is computed separately at each point that belongs
to a set of points selected over a computational
grid. While this approach is loosely referred
to as a ’weighed least-squares reconstruction’
or just ’least-squares reconstruction’ in compu-
tational aerodynamics [Anderson (1994); Barth
(1991); Ollivier-Gooch, Nejat, Michalak (2007)],
we use the name ’DWLS’ in our paper in order to
emphasize the local nature of the method. An ac-
curate and computationally efficient local recon-
struction of a given function at chosen grid points
is an essential part of numerical solution to many
computational aerodynamics problems. One ba-
sic application of the DWLS method is to recon-
struct a solution gradient in projection-evolution
discretization schemes that are heavily exploited
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in industrial aerodynamic codes. A second order
accurate discretization requires the solution gra-
dient reconstruction to maintain the accuracy of
the scheme [Anderson, Bonhaus (1994); Barth,
Jespersen (1989); Mavriplis (2007)]. The solu-
tion gradients should be reconstructed based upon
a solution field at grid nodes, and the DWLS
method is an attractive approach for this task, as
it only requires local support to compute the gra-
dient at a given grid point [Barth (1991); Hasel-
bacher, Vasilyev (2003)].

A DWLS reconstruction is very similar to a
moving least-squares (MLS) method [Lancaster,
Salkauskas (1981)], where the coefficients of a
LS approximation depend on the location of a
point where the reconstruction is made. The MLS
approximation is a well-known approach that has
been successfully adapted in meshless methods
such as a diffuse approximate method (DAM,
[Nayroles, Touzot, Villon (1992)]) as an alterna-
tive to finite element methods in solution of var-
ious heat transfer and fluid flow problems [Prax,
Sadat, Dabboura (2007); Sadat, Prax (1996); Šar-
ler, Vertnik, Perko (2005)]. However, the dif-
ference between a DWLS and MLS procedure is
that in the latter case a local support for the ap-
proximation is prescribed by the definition of a
weight function in the problem [Levin (1998)],
while for a DWLS approximation a local support
(also called a reconstruction stencil) is entirely de-
termined by the edge data structure of a compu-
tational grid. The weight function in a DWLS
method is only used to improve the accuracy of
the approximation on a given stencil by reducing
the uncertainty of the measurement, as it has been
mentioned above. Thus the formal definition of
the DWLS method may involve a weight func-
tion given by the identity matrix (’unweighted re-
construction’), while the method will still bene-
fit from a compact support at each computational
point.

One basic feature of a DWLS reconstruction that
stems from the nature of computational problems
where the method is exploited is that a reconstruc-
tion stencil may present a highly irregular geome-
try because of generation of a non-uniform grid in
the problem. For instance, the need for stretched

meshes may be dictated by a requirement of ade-
quate resolution of the solution gradient in com-
putational sub-domains around an airfoil. In par-
ticular, grid cells with very high cell aspect ratio
inevitably appear as a result of grid generation in
boundary layer regions. While the accuracy tests
for a DWLS approximation on uniform and qua-
siuniform meshes demonstrate very good results
[Ollivier-Gooch, Van Altena (2002); Ollivier-
Gooch, Nejat, Michalak (2007)], a reconstruc-
tion on irregular meshes presents a challenging
and difficult problem as the method can lose ac-
curacy to unacceptable limit [Mavriplis (2003);
Petrovskaya (2007); Smith, Barone, Bond, Lor-
ber, and Baur (2007)]. Let us notice here that a
DWLS reconstruction task is an important part of
a nonlinear solver used in a computational aero-
dynamics problem. Once the approximate solu-
tion has been reconstructed over the grid, the ‘ex-
panded’ solution should be further used for the
next nonlinear iteration that generally involves a
discretization of governing equations as well as
numerical solution of a resulting system of non-
linear algebraic equations. The poor accuracy of
a DWLS reconstruction affects the convergence
of the approximate solution by generating large
discretization errors and ill-conditioned matrices.
It has been demonstrated in [Mavriplis (2003);
Smith, Barone, Bond, Lorber, and Baur (2007)]
that the poor accuracy of the DWLS approxima-
tion may result in an oscillating inaccurate solu-
tion or even in a divergent solution.

A general problem of a weighted LS approxima-
tion on irregular meshes has received little at-
tention in the literature so far (cf. the discus-
sion in [Breitkopf, Naceur, Rassineux, and Vil-
lon (2005); Perko, Šarler (2007)]). A research
effort in meshless methods that use the MLS ap-
proximation was mainly focused on the shape of
weight functions to mitigate the impact of an ir-
regular node distribution in the problem [Most,
Bucher (2008)], where earlier results mainly
dealt with heuristic determination of the geomet-
ric scaling of a weight function [Prax, Salagnac,
Sadat (1998)]. Recently the optimization of a
scaling parameter in a Gaussian weight function
for the MLS based diffuse approximate method
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was implemented in [Perko, Šarler (2007)] to al-
low the authors to solve a transient Burgers equa-
tion over a random node distribution. The prob-
lem of finding the optimal radius of the support
for a spline weight function has been investigated
in [Nie, Atluri, Zou (2006)].

Meanwhile, the optimal radius of the support can-
not be implemented in a DWLS problem as the
size of a reconstruction stencil is prescribed by
a geometry of a computational mesh and distant
points are unavoidable in a stencil on grids with
high cell aspect ratios. Earlier insight into the
problem attributed poor accuracy of the method
on stretched meshes to the impact of remote
points on the results of a DWLS reconstruction,
so that inverse distance weighting has been rec-
ommended by many authors (e.g., see [Ander-
son, Bonhaus (1994); Barth (1991); Hasel-
bacher (2006); Ollivier-Gooch, Nejat, Micha-
lak (2007)]). However, it recently turned out
that weighting of stencil points is not efficient
on anisotropic meshes used in practical compu-
tations. It has been discussed in [Petrovskaya
(2007); Smith, Barone, Bond, Lorber, and Baur
(2007)] that the results of a weighted LS re-
construction can be worse than those for an un-
weighted one. Hence the problem of a DWLS
reconstruction on irregular meshes appeals for a
more detailed discussion, and in our paper an at-
tempt has been made to sort out basic issues re-
lated to the problem. In particular, it will be
demonstrated in the paper that the use of a weight
function in a DWLS approximation requires a
thorough definition of distant points in the prob-
lem. Furthermore, the recognition of the distant
points in a reconstruction stencil should not rely
upon geometric shape of the stencil only, as their
definition is based on the data used for the ap-
proximation. This statement will be discussed
in the paper where we introduce a novel concept
of numerically distant points in a DWLS recon-
struction. We demonstrate a difference between
geometrically distant points (r-outliers) and nu-
merically distant points (U-outliers) and conclude
that poor accuracy of a DWLS approximation is
mainly due to the presence of U-outliers in a re-
construction stencil. Our approach is illustrated

by numerical examples.

2 The local least-squares solution reconstruc-
tion

Discontinuousweighted least-squares approxima-
tion can be considered as a modification of a
weighted LS approximation that does not require
continuity of fit functions. Thus for a discussion
of a DWLS approximation we need to outline a
weighted LS method first. Below we briefly re-
call the basic concepts related to the least-squares
approximation.

2.1 The weighted least-squares approximation

Consider a two-dimensional domain Ω and a set
of points Pi = (xi,yi) ∈ Ω, i = 1, ...,N. A least-
squares approximation deals with data U at points
Pi, where Ui = U(Pi) can be considered as a value
of a continuous function U(x,y) at a given point
Pi. The data U should be fitted to the function

uLS(x,y) =
M

∑
k=0

ukφk(x,y), M < N, (1)

where u = (u0,u1,u2, ...,uM) are fitting parame-
ters, and φk(x,y), k = 0, ...,M, are polynomial ba-
sis functions. The unknown parameters {uk} are
determined in the LS method by seeking the min-
imum of the following merit function (e.g., see
[Neter, Wasserman, Kutner (1985); Press, Flan-
nery, Teukolsky, and Vetterling (1996)]),

F2 =
N

∑
i=1

[
Ui −

M

∑
k=0

ukφk(Pi)

]2

, (2)

Taking partial derivatives with respect to the fit-
ting parameters uk to find out min

u
F2, we obtain

M +1 normal equations of the LS problem

∂F2

∂uk
= 0, k = 0, ...,M.

The normal equations can be written in the matrix
form as

AT Au = AT U, (3)

where the design matrix A is as follows

Ai j = φ j(Pi), i = 1, ...,N, j = 0, ...,M.
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Once a function uLS(x,y) has been reconstructed,
we can define its value everywhere in the do-
main Ω by computing u(P) for arbitrary point
P = (x,y) ∈ Ω.

Similarly, weighted LS approximation minimizes
the following functional

F2
w =

N

∑
i=1

w(P,Pi) [U(Pi)−u(Pi)]
2 ,

where the weight function w(P,P) is defined for a
fixed point P ∈ Ω. The normal equations now are
as follows

N

∑
i=1

w(P,Pi)

[
Ui −

M

∑
j=0

u jφ j(Pi)

]
φk(Pi) = 0,

k = 0, ...,M,

and the solution is

u = A−1
wlsbwls,

where Awls = AT WA, bwls = AT WU, and a di-
agonal weight matrix W is defined as

Wi j =

{
w(P,Pi), i = j, i, j = 1,2, . . .,N,

0, otherwise.

The choice of the weight function w(P,Pi) de-
pends on a given problem under consideration. In
surface approximation problems the weight func-
tion w(P,P) is often defined to mitigate the im-
pact of distant points on the accuracy of the ap-
proximation. For this purpose the weight func-
tion is chosen as a function of Euclidian distance
r = ||P− P|| between point P and a given point
P. In MLS problems, where a weight function
is required to provide a compact support for the
least-squares approximation, the Gaussian or the
spline weight function is the most popular choice
[Most, Bucher (2008); Nie, Atluri, Zou (2006);
Perko, Šarler (2007)], but other weight functions
can also be found in the literature [Alexa, Behr,
Cohen-Or, Fleishman, Levin and T. Silva (2003);
Wendland (1995)].

An important feature of the weighted LS approx-
imation is that the solution u becomes a function
of P, and the fitting parameters have to be recom-
puted for any new P. The global approximation in

this case can be achieved by imposing additional
conditions on the approximation, such as the re-
quirement that the supports of the weight func-
tions entirely cover the domain Ω.

On the contrary, a discontinuous weighted least-
squares approximation remains a local approxi-
mation, and no additional conditions are required
to reconstruct function u(x,y) in the domain of in-
terest. The method formulation is discussed be-
low.

2.2 The discontinuous weighted least-squares
approximation

Let a computational grid G be generated in the do-
main Ω. For the sake of our further discussion we
consider grid G as a set of points Pi = (xi,yi), i =
1,2, . . .,NG, supported with a certain data struc-
ture (i.e., grid edges, grid cells, etc.). An exam-
ple of a non-uniform computational grid gener-
ated around an airfoil is shown in Fig. 1.

Let us assume that the global data vector UG =
(U1,U2, . . . ,UNG) is defined in G. We then define
a discrete set of points Pl, l = 1, . . .,L, over the
grid G, where the data UG will be approximated
at each Pl . The definition of the set {Pl} is based
on a given computational problem under consid-
eration. For instance, the set {Pl} may coincide
with a set of all interior nodes in grid G, while
the vector UG is defined at cell centroid points (a
cell-centered discretization scheme). Below we
consider a case when UG is defined at nodes of
grid G, and the set {Pl} is a set of all edge mid-
points taken on G (a node-centered discretization
scheme).

We now allocate a local support Sl for each point
Pl , where the definition of Sl depends on the set
{Pl}. In case that a point Pl is the edge midpoint
for a grid edge el , the support Sl is allocated as
follows. The two nodes n1 and n2 that comprise
the edge el are identified, and Sl consists of all
nodes that belong to edges incident to the node n1

or n2. Thus the support Sl appears as a subset of
N grid nodes, Sl ⊂ G, chosen by a known rule for
local LS approximation at point Pl . An example
of the local support for the edge midpoint Pl is
shown as set I in Fig. 2.
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Figure 1: An unstructured computational grid around an airfoil. (a) A coarse quasi-uniform grid is generated
in a far field. (b) A grid with high cell aspect ratios is required to resolve a solution near the wall.

Once the support Sl has been allocated, local
numbering is used in the approximation problem.
Namely, the point Pl is now denoted as P0, and
the support points are numbered as Pi, i = 1, . . .,N
(see Fig. 2), where the number N of support points
can be different for two different points Pl1 and
Pl2 , as it depends on the geometry of a computa-
tional grid. A widespread terminology is to use
the name reconstruction stencil for the set Sl and
to think of the LS approximation at point P0 as
of a solution reconstruction problem. The point
P0 is then called a central reconstruction node.
This terminology comes from the fact that the data
vector UG usually appears as an approximate so-
lution computed at grid nodes and the solution
UG should further be locally approximated (re-
constructed) at some grid points.

Our next step is to allocate a local data vector U
= (U1,U2, . . .,UN) by taking the entries of UG at
stencil points. We then implement a weighted LS
approximation to reconstruct the solution at point
P0. In our work we use the following weight func-
tion

w(P0,Pi)≡ w(r0i) = r−p
0i , p = 0,1,2, ..., (4)

where r0i is the Euclidian distance between P0 and
Pi, i = 1,2...,N, and p is an integer polynomial

degree. The simple weight function (4) is a pop-
ular choice in computational aerodynamics prob-
lems [Barth (1991); Mavriplis (2003); Ollivier-
Gooch, Van Altena (2002); Ollivier-Gooch, Ne-
jat, Michalak (2007); Petrovskaya (2007)]. The
unweighted reconstruction corresponds to p = 0,
while p > 0 provides inverse distance weight-
ing used to mitigate the impact of remote stencil
points on the results of LS approximation.

A DWLS approximation does not require a user
to assemble a global approximation over the do-
main Ω. Instead, we compute the approxima-
tion at each point Pl separately, and fit functions
(1) remain discontinuous in Ω. Once the solu-
tion has been reconstructed at a given point Pl ,
the next point Pl+1 is taken and the reconstruc-
tion procedure is repeated. At first glance, the
entire algorithm can be considered as solving a
number of weighted LS problems in domain Ω,
where the results of each approximation can be
considered independently. However, the nature
of computational problems where a DWLS recon-
struction is usually implemented dictates that the
approximation at each point Pl should be consid-
ered on a given computational grid G. That means
the DWLS reconstruction has to deal with a pre-
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Figure 2: Examples of a reconstruction stencil for a DWLS approximation at point P0. Stencil members are
shown as black circles. A stencil (I) consists of all grid nodes Pi (i=1,. . . ,10) that belong to edges incident
to the node n1 or n2. A compact stencil (II) consists of four grid nodes belonging to the adjacent cells that
share a given edge.

scribed geometry of the support Sl that cannot be
chosen from a priori considerations. The recon-
struction stencil Sl is, in turn, entirely defined by
the geometry of grid G. Thus the quality of the
grid determines the accuracy of the DWLS ap-
proximation, as it will be discussed below.

2.3 The accuracy of the DWLS approximation
on irregular meshes

A basic feature of a DWLS reconstruction is that
the support Sl may present a highly irregular ge-
ometry. While for a standard weighted LS ap-
proximation the accuracy of the method can be
assessed in many cases via smoothness of a re-
constructed surface, with a DWLS approximation
a user is concerned about the approximation er-
ror over a given set of points, no matter how
many kinks and overlaps a resulting ‘surface’ may
exhibit on the domain Ω. However, the accu-
racy of the DWLS approximation should be of-
ten achieved by using a distorted reconstruction
stencil at each point Pl . Most of the problems
where a standard weighted LS approximation is
employed allow a user to generate a regular grid
to define the data set. Meanwhile, it is very of-

ten that highly irregular grids should be generated
in computational problems where a DWLS recon-
struction is used. For instance, grids with very
high cell aspect ratios inevitably appear as a re-
sult of grid generation in boundary layer regions
where the solution gradient should be adequately
resolved. Below we discuss a typical example that
well illustrates a DWLS reconstruction in compu-
tational aerodynamics problems.

Consider laminar flow around a Zhukovsky air-
foil obtained as a result of numerical solution of
the Navier-Stokes equations on a non-uniform un-
structured grid [Johnson (2007)]. Let G1 be a
grid of NG1 = 12351 nodes generated to resolve
the solution in a boundary layer, so that the grid
is quasi-uniform in a far field (see Fig. 1a) and
has cells with big cell aspect ratios near the wall
(Fig. 1b). A solution to the system of govern-
ing equations is computed by a numerical method
(streamline upwind Petrov-Galerkin (SUPG), see
[Hughes, Brooks (1979)]) that employs higher or-
der polynomial functions to discretize the equa-
tions and results in an accurate solution on grid
G1. In the discussed test case a solution has been
obtained for a Mach number of 0.5, a Reynolds
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number of 5000 and an angle of attack α = 0.0.
Characteristic boundary conditions have been im-
plemented in a far field, and an isothermal solid
wall boundary condition has been considered in a
near field. The details of the numerical solution
procedure can be found in [Venkatakrishnan, All-
maras, Johnson, and Kamenetskii (2003)].

In our study the first component of the velocity
vector in the Navier-Stokes equations has been
chosen as a scalar solution field U(x,y) to dis-
cuss the DWLS reconstruction on grid G1. The
solution obtained at grid nodes is used as a global
data vector UG for a DWLS reconstruction of the
solution at the edge midpoints on grid G1. The
solution is reconstructed by a linear polynomial,

uDWLS(x,y) = u0 +u1(x−x0)+u2(y−y0), (5)

and the weight function (4) with polynomial de-
gree p = 2 is used for the reconstruction.

The grid G1, where the reconstruction has been
made, is then uniformly refined, so that the edge
midpoints on the original grid G1 become grid
nodes on a new grid G2. The grid G2 has NG2 =
48252 nodes, where NG2 = NG1 + NE1 , NE1 being
the number of edge midpoints on grid G1. Every
grid node on grid G2 which is the edge midpoint
on grid G1 is marked and stored, as those grid
nodes will further be used to compute the error
of the DWLS reconstruction. The Navier-Stokes
problem is solved numerically again by the SUPG
method to obtain an accurate solution on grid G2.
Finally, the accurate ‘true’ solution on a fine grid
G2 (Fig. 3a) is compared with the DWLS recon-
struction made over a set of marked grid nodes
to validate the accuracy of the DWLS approxima-
tion.

Let us introduce the error function e(x,y) as fol-
lows

e(x,y) = |uSUPG(x,y)−uDW LS(x,y)|, (6)

where we consider all points (x,y) defined by
the requirement that (x,y) ∈ G2 and (x,y) is an
edge midpoint on G1. The function uSUPG(x,y)
and uDW LS(x,y) is an accurate SUPG solution
and a linearly reconstructed solution, respec-
tively. The function e(x,y) will be considered

in a computational domain D near the airfoil
which is defined as a subgrid of the grid G2 with
nodes (x,y) :

√
x2 +y2 < R = 2.0 (the entire do-

main has radius R f = 300.0). The maximum error
near the wall is defined as

emax = max
(x,y)∈D

e(x,y). (7)

We are also interested in the maximum error com-
puted for the rest of domain Ω where the grid is
more regular and grid cells have smaller cell as-
pect ratios. Namely, we compute the error

emax1 = max
(x,y)∈D1

e(x,y), (8)

where D1 is a subgrid of the grid G2 with nodes
(x,y) : R1 <

√
x2 +y2 < R f , and R1 is a chosen

radius, R1 ≥ R.

Similarly, a logarithmic error el(x,y) is given by

el(x,y) = log10
|uSUPG(x,y)|
|uDWLS(x,y)| .

The maximum logarithmic error near the wall is
defined as

el
max = max

(x,y)∈D
|el(x,y)|, (9)

and the maximum logarithmic error in D1 is com-
puted as

el
max1

= max
(x,y)∈D1

|el(x,y)|. (10)

The overall accuracy of the DWLS approxima-
tion is good, as the maximum error is emax1 =
4.99432× 10−2 and el

max1
= 2.32228× 10−2 in

domain D1, where R1 = R = 2.0. Moreover, if
we consider the radius R1 = 10.0, then the max-
imum error decreases as emax1 = 1.95457×10−3

and el
max1

= 8.50617× 10−4. This result can be
attributed to generation of a quasiuniform grid in
a far field where a DWLS method provide an ac-
curate solution reconstruction.

Meanwhile, a DWLS reconstruction does not per-
form well in those grid subdomains where the
stretched cells present. A grid fragment near
the airfoil leading edge (domain B in Fig. 3a)
has been selected to demonstrate the results of a
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Figure 3: Results of a DWLS solution reconstruction in a computational aerodynamics problem. (a) A
solution field U(x,y) about an airfoil. (b) A solution close-up in the domain B near the wall. Solution
contours are shown along with the solution colour chart. An accurate SUPG solution is a monotone function
in the n direction normal to the wall. (c) A DWLS reconstruction results in a non-monotone and inaccurate
solution on the same grid in the domain B. (d) A LS reconstruction over a compact stencil Sc provides a
monotone function uCLS(x,y).
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DWLS reconstruction on cells with high cell as-
pect ratios. A ‘true’ SUPG solutionU(x,y) is pre-
sented in Fig. 3b, while a reconstructed solution
uDWLS(x,y) is shown in Fig. 3c. It can be seen
from the figure that the DWLS reconstruction re-
sults in a non-monotone and inaccurate solution
near the wall.

A reconstruction error computed in the boundary
layer region confirms the above result. The maxi-
mum error (7) for the linear DWLS reconstruction
in domain D is

emax ≡ e(x0,y0) = 0.3448,

where uSUPG(x0,y0) = 0.748121, uDWLS(x0,y0) =
0.40329, and the point (x0,y0) is located near
the wall, x0 = 0.0307725, y0 = −0.030712. The
maximum logarithmic error (9) for the DWLS re-
construction in a boundary layer is

el
max ≡ |el(x1,y1)|= 1.85098,

x1 = 2.19748×10−4,

y1 = −4.52691×10−3,

where uSUPG(x1,y1) = −3.58752 × 10−3,
uDWLS(x1,y1) = 5.05609 × 10−5. Hence the
DWLS reconstruction near the wall may lose
several orders of magnitude degrading to
unacceptably poor accuracy on stretched meshes.

The idea of weighting in a DWLS reconstruc-
tion is to allow one to effectively eliminate distant
points that may be captured by a reconstruction
stencil on a stretched mesh. However, an exam-
ple of a DWLS reconstruction considered in this
section demonstrates that the weighting of sten-
cil points is not always efficient on grids with big
cell aspect ratios. This conclusion is confirmed by
other authors [Mavriplis (2003); Smith, Barone,
Bond, Lorber, and Baur (2007)] who have shown
in their work that introducing weights in a LS pro-
cedure has not always resulted in a more accu-
rate reconstruction on stretched meshes. Thus our
next goal is to discuss why a weighting procedure
does not improve the accuracy of the DWLS ap-
proximation.

3 The problem of outliers

We have already mentioned in the previous sec-
tion that weight functions used in a DWLS
method are in many cases functions of the Euclid-
ian distance between two given points. Thus data
weighting is helpful when it is required to elim-
inate geometrically distant points from a recon-
struction stencil. Many authors, therefore, advo-
cate the data weighting on unstructured grids as
they believe weighting of stencil points will result
in a more accurate reconstruction [Barth (1991);
Haselbacher (2006); Ollivier-Gooch, Van Altena
(2002)]. However, contrary to that popular opin-
ion, a weighting procedure will not be always ef-
ficient on stretched meshes because another type
of distant points also presents in the data set.
Namely, our further discussion of a DWLS re-
construction on irregular meshes is based on the
assumption that a reconstruction stencil on such
meshes may include numerically distant points
that lie beyond the solution "range of interest".
While those numerically distant points signifi-
cantly affect the accuracy of the DWLS method,
they can be located close to the origin P0 in a geo-
metric domain, in which case they cannot be elim-
inated by means of simple geometric weighing.

For a given function U(x,y), we will name ge-
ometrically distant points as r-outliers and nu-
merically distant points will be referred to as U-
outliers. The detection of U-outliers is a diffi-
cult task, as it requires a rigorous definition of a
geometric domain Sl , which size will depend on
properties of function U(x,y). At the same time,
numerical examples can be readily designed that
illustrate the concept of U-outliers for a DWLS
reconstruction. Below we discuss one instructive
example that demonstrates a difference between
geometrically distant points and numerically dis-
tant points in a reconstruction stencil.

3.1 Numerically distant points in a reconstruc-
tion stencil

Consider a quadratic function,

U(x,y) = 0.5((x−A)2− (y−A)2), (11)

where parameter A is taken as A = 10. The func-
tion (11) is reconstructed at the origin P0 = (0,0)
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by a DWLS method with the inverse distance
weight function (4). Let a linear polynomial func-
tion (5) be used for the reconstruction over the fol-
lowing stencil shown in Fig. 4a,

P1 = (0.01,−0.1), P2 = (0.11,−0.01),
P3 = (−0.01,0.08), P4 = (−0.11,0.08),
P5 = (1,1), P6 = (−0.8,−2).

We are interested in the reconstruction error,

e(P0) = |U(P0)−uDW LS(P0)|, (12)

and the gradient error,

e∇(P0) = ||∇U(x,y)−∇uDW LS(x,y)|||P0
, (13)

at the origin, where the gradient vector in (13)
is ∇ = (∂/∂x,∂/∂y). The both errors will be
computed for an unweighted DWLS reconstruc-
tion, where we take p = 0 in the function (4),
and for a weighted reconstruction with p = 1.
For the unweighted approximation the function
error and gradient error is e(P0) = 2.4148 ×
10−2, e∇(P0) = 1.78745, respectively. This re-
sult can be attributed to the presence of two dis-
tant points, P5 and P6, in the reconstruction sten-
cil (see Fig. 4a). Thus we expect a smaller error
for a weighted reconstruction, as data weighting
will mitigate the impact of distance points on the
accuracy of the reconstruction. The implemen-
tation of weights in the problem gives e(P0) =
2.75142×10−4 and e∇(P0) = 5.3598×10−3.

We now consider an exponential function,

U(x,y) = 2x2 +exp(2By), (14)

with parameter B = 3. Let us design a recon-
struction stencil that does not contain any geo-
metrically distant points. Namely, we require that
x2

i + y2
i = R2 for any stencil point Pi, i = 1, . . .,6,

where the radius R is taken R = 0.8 in our com-
putations. The stencil points are then stationed at
the circumference CR as follows (see Fig. 4b),

P1 = (−0.798,−0.056), P2 = (0.798,−0.056),
P3 = (0.792,0.112), P4 = (−0.792,0.112),
P5 = (0,0.8), P6 = (0,−0.8).

As in the previous test case, we compute the re-
construction error (12) and the gradient error (13)
at the origin. The errors for the unweighted re-
constructions are e(P0) = 20.3738 and e∇(P0) =
69.2418, respectively.

It is obvious that the implementation of the weight
function (4) in the problem will result in the
same error values, as the weights are given by
w(r0i) = 1/Rp = const for all stencil points by
the definition of stencil Sl. Meanwhile, if we
eliminate points P5 and P6 from the reconstruc-
tion stencil, we will get an essentially smaller
error, e(P0) = 1.1892, e∇(P0) = 1.5401, over a
new stencil Sl={P1,P2,P3,P4}. Hence, the points
P5 and P6, which are not geometrically distant
stencil points, can be considered as U-outliers in
the problem, and we conclude that the domain Sl

bounded by the circumference CR is not adequate
to the exponential function (14).

A simple evaluate of the size of domain Sl for
functions (11) and (14) can be obtained from the
following consideration. Let us approximate the
function gradient at the origin as

∂U
∂x |P0

≈ ∇̃x =
U(Δx,0)−U(0,0)

Δx
,

∂U
∂y |P0

≈ ∇̃y =
U(0,Δy)−U(0,0)

Δy
,

(15)

where we assume that the first order approxima-
tion (15) gives us the upper bound for the gradient
error. For the function (11) we have

U(Δx,0)−U(0,0)
Δx

=
1
2

Δx−A,

U(0,Δy)−U(0,0)
Δy

= A− 1
2

Δy.

The gradient at the origin is
∂U
∂x |P0

= ∇x = −A, ∂U
∂y |P0

= ∇y = A, and

the error for each gradient component is given by

ex = |∇x − ∇̃x| = 1
2
|Δx|,

ey = |∇x − ∇̃x| = 1
2
|Δy|.

(16)
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Figure 4: A reconstruction stencil for (a) an ‘isotropic’ and (b) an ‘anisotropic’ function. (a) Geometrically
distant points P5 and P6 are also numerically distant points for the harmonic function (11). (b) Points P5 and
P6 are numerically distant points for exponential function (14), but they are not geometrically distant points.

For the function (14) the evaluate (15) gives

U(Δx,0)−U(0,0)
Δx

= 2Δx,

U(0,Δy)−U(0,0)
Δy

=
exp(2BΔy)−1

Δy

≈ 2B+4B2Δy,

and the error for each gradient component is

ex = 2|Δx|, ey = 4B2|Δy|. (17)

While a more accurate error estimate should in-
volve a rigorous LS method formulation, simple
evaluates (16), (17) allow us to conclude about a
characteristic size of the domain Sl where stencil
points should belong to. Let us require that

ex = ey = E, (18)

so that the function derivatives will be recon-
structed with the same accuracy in both direc-
tions. For a chosen length Δx = l, which is dic-
tated by the size of grid cells on a given compu-
tational grid, we can obtain the length Δy from
the condition (18). The stencil point Pi = (xi,yi)
is then considered as a distant point in the recon-
struction stencil, if we have at least one of the fol-
lowing evaluates

xi � Δx or yi � Δy. (19)

For the function (11) the condition (18) deter-
mines the size of domain Sl as Δx ≈ Δy for

all stencil points. Thus the points P5 and P6

are outliers in the reconstruction stencil designed
for function (11), as those geometrically dis-
tant points are numerically distant points as well.
Meanwhile, for the function (14) we have Δy ≈
Δx/2B2, and the stencil points P5 and P6, for
which xi = yi, i = 5,6, are outliers that should be
eliminated or be stationed close to the origin ac-
cording to the estimate (17).

The functions (11) and (14) present two ex-
treme cases of an ‘isotropic’ function that needs
a uniform distribution of stencil points and an
‘anisotropic’ function with a strong gradient that
requires grid refinement in the y-direction. These
model cases demonstrate that elimination of sten-
cil points should not be entirely based on the geo-
metric shape of the stencil, as the function proper-
ties should be taken into account as well. Appar-
ently, if the distance r0i → ∞, then the conditions
(19) are true, and the point Pi is an outlier. How-
ever the definition (19) may not agree with a sim-
ple geometric evaluation of Pi. In particular, we
have seen that for the anisotropic function (14) a
small distance r0i may be beyond the solution do-
main of interest (19) if any of the lengths Δx and
Δy is small. In the latter case the point Pi should be
eliminated from a reconstruction stencil, despite it
can be located close to the origin.
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3.2 U-outliers in a boundary layer region

The results of the section 3.1 lead us to the con-
clusion that U-outliers may present a serious dif-
ficulty for a DWLS method as they cannot be re-
moved by means of geometric weighting of sten-
cil points. In this section we consider the results
of a DWLS reconstruction with various degrees p
of weight function (4) to demonstrate that in prac-
tical computations U-outliers remain in a bound-
ary layer, no matter how heavily distant points are
weighted. We also consider an extreme case of
a weighted reconstruction, which is a LS recon-
struction over a compact stencil. Namely, in case
that a solution function should be reconstructed
at the edge midpoints of a computational grid, a
compact stencil Sc={P1,P2,P3,P4} is defined as a
set of grid nodes belonging to the two grid cells
that share a given edge (see stencil II in Fig. 2).

The reconstruction over compact stencil Sc can be
considered as a weighted reconstruction on orig-
inal stencil Sl where points Pi, i = 1, . . . ,4 have
weights wi = 1 and the rest of stencil points have
infinitely small weights. A reconstruction over a
compact stencil seems to be a controversial ap-
proach, as we miss the solution information pro-
vided by neighboring nodes when we reduce the
support Sl to the set Sc. However, using a com-
pact stencil may help one to eliminate potentialU-
outliers from the reconstruction, as neighboring
nodes in reconstruction stencil Sl may appear as
U-outliers that contaminate the results of a DWLS
reconstruction. Thus we expect the maximum er-
ror for the reconstruction over a compact stencil
to be compatible or even better than that for a
weighted reconstruction over a standard stencil Sl .
On the other hand, a reconstruction over a com-
pact stencil does not always eliminate U-outliers
from the stencil. For instance, if we consider a
compact stencil Sc={P1,P3,P5,P6} for the geom-
etry of Fig. 4b, the points P5 and P6 still remain
U-outliers as it has been discussed in section 3.1.
In the latter case a big reconstruction error on a
compact stencil will indicate that a computational
grid generated in the problem does not resolve an
"anisotropic" solution function that has two char-
acteristic lengths.

We are now going back to a Zhukovsky airfoil test

case considered previously in section 2.3 where
a strongly irregular mesh was generated near the
airfoil, while the mesh was quasiuniform in a
far field region. The results of a DWLS recon-
struction a region D near the airfoil (R < 2.0)
are shown in Table 1. In the table we compute
the maximum error (7) and the maximum loga-
rithmic error (9) for various degrees p of poly-
nomial weight function (4). It can be seen from
the table that weighting of stencil nodes does not
significantly decrease the error of the reconstruc-
tion. Moreover, the logarithmic error el

max is big-
ger then the error emax. That result, in our opin-
ion, indicates that the solution is not well resolved
on a given grid. In other words, insertion of new
nodes is required to make a grid cell size in the
direction normal to the wall (the solution gradient
direction) adequate to the solution characteristic
length (see the discussion in section 3.1).

The last column labeled CS in the table is a LS
reconstruction on a compact stencil where the
weights are taken as wi = 1 at points Pi, i =
1, . . .,4. While reduction of a reconstruction sten-
cil to a 4-point support makes a reconstruction er-
ror smaller, a compact reconstruction stencil still
contains U-outliers, which is indicated by a rel-
atively big logarithmic error. At the same time
it is worth noticing here that, despite leaving the
maximum error big, the use of a compact stencil
allows one to smoothen a solution in many grid
cells in a boundary layer region and to result in
a monotone function as one moves normal to the
airfoil boundary. A typical example of a recon-
structed solution on a compact stencil is shown
in Fig.3d. A reconstructed solution uCLS(x,y) is a
monotone function, while a DWLS reconstruction
using a standard reconstruction stencil results in a
non-monotone solution uDW LS(x,y) (see Fig.3c),
as it has been discussed in section 2.3.

The results of a DWLS reconstruction in a far
field (R1 = 10.0) are quite different from that near
the airfoil. The DWLS reconstruction error is
presented in Table 2 where both maximum error
(8) and maximum logarithmic error (10) are com-
puted in the far field for various degrees p. The
reconstruction on a compact stencil (CS) is shown
as the last column in the table. A DWLS recon-
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Table 1: The reconstruction error for a DWLS approximation near the airfoil (R < 2.0). The maximum error
(7) and the maximum logarithmic error (9) are shown for various degrees p of polynomial weight function
(4).

p 0 1 2 4 8 CS

emax 0.37684 0.36355 0.344832 0.32259 0.321201 0.305658
el

max 2.06805 1.64364 1.85098 1.37883 1.52484 1.49584

struction provides much better results in a far field
region where we do not expect numerically distant
points. It can be seen from the table that the log-
arithmic error el

max1
is smaller than the error emax1

that means a well resolved solution on a given
grid. At the same time, it is interesting to notice
that heavy weighting of reconstruction data (p=4
and p=8) does not result in a smaller reconstruc-
tion error. Similarly, using a compact stencil in a
far field does not significantly improve the results
of the reconstruction.

Finally, let us mention that a quadratic recon-
struction (M = 5 in the expansion (1)) that usu-
ally requires a greater number of stencil points
is often considered as an alternative way to get
a more accurate reconstruction in case that the ac-
curacy of a linear approximation is not sufficient
for a given problem [Barth (1991); Haselbacher
(2006); Ollivier-Gooch, Nejat, Michalak (2007)].
Hence a common approach would be to increase a
number of stencil points and to use a quadratic re-
construction on an expanded stencil in a boundary
layer region. Meanwhile the results of our study
of a quadratic reconstruction on stretched meshes
[Petrovskaya (2008)] reveal that an expanded re-
construction stencil may provide even a bigger
number of U-outliers than that for a linear approx-
imation, so that we have to expect even worse ac-
curacy when we use a higher order reconstruction
in the problem. For instance, in the above test case
the maximum error for a quadratic DWLS recon-
struction with the weight function p = 2 is emax ≡
e(x0,y0) = 1.38595, where uSUPG(x0,y0) =
−0.0389462, uDW LS(x0,y0) = 1.34701. Similarly,
the maximum logarithmic error for a quadratic
DWLS reconstruction is el

max ≡ |el(x1,y1)| =
2.48118, where point x1 = 0.00668591, y1 =
−0.0140429, and uSUPG(x1,y1) = −5.41308 ×

10−2, uDW LS(x1,y1) = −1.78758 × 10−4 in a
boundary layer. Thus the conclusions about ac-
curacy of a higher order LS reconstruction should
be revised if irregular meshes are exploited in the
problem.

4 Concluding remarks

In the present work we have considered the prob-
lem of local approximation by a weighted least-
squares method that does not require to assemble
global approximation from local fit functions de-
fined at each sub-domain of a computational grid.
The method has been referred to as a discontin-
uous weighted least-squares (DWLS) approxima-
tion. The need to study a DWLS approximation
came from computational aerodynamics applica-
tions where a DWLS method is widely used for a
local solution reconstruction. It has been shown in
our paper that a DWLS method cannot be consid-
ered as a reliable means of solution reconstruction
on stretched meshes, as the method may degrade
to unacceptable accuracy. Moreover, examples
of a DWLS reconstruction discussed in the paper
demonstrate that the weighting of stencil points is
not efficient on stretched meshes, as it does not
improve the accuracy of the method.

A concept of numerically distant points (U-
outliers) has been introduced in the paper in or-
der to reveal the nature of the accuracy problem
on stretched meshes. This concept allows one to
explain poor performance of the DWLS method
on grids with high cell aspect ratios. A com-
mon inverse distance weighting procedure only
eliminates geometrically distant points from a
reconstruction stencil, while numerically distant
points still remain in the stencil and may signif-
icantly affect the accuracy of the method. That
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Table 2: The reconstruction error for a DWLS approximation in a far field (R1 = 10.0). The maximum error
(8) and the maximum logarithmic error (10) are shown for various degrees p of polynomial weight function
(4).

p 0 1 2 4 8 CS

emax1 2.038×10−3 1.853×10−3 1.772×10−3 1.954×10−3 2.099×10−3 1.772×10−3

el
max1

8.872×10−4 8.065×10−4 7.712×10−4 8.506×10−4 9.136×10−4 7.713×10−4

makes weighting inefficient for those reconstruc-
tion stencils where the location of U-outliers is
not directly related to the distance to a given sten-
cil point. In the latter case it may appear to be
helpful to minimize the number of stencil points
in order to a priori eliminate U-outliers from
the stencil. A simple procedure implemented in
the paper has demonstrated that using a compact
stencil may potentially be advantageous in sub-
domains where the solution has a strong gradient
and requires a stretched mesh for its proper res-
olution. However, this approach requires a fur-
ther thorough study and cannot currently be rec-
ommended for practical applications.

By now we do not have a reliable algorithm for an
optimal choice of a reconstruction stencil in com-
putations in unstructured meshes. Ideally such
an algorithm should be based on a rigorous def-
inition of U-outliers in a problem. Let us notice
that the problem of outliers is well known in the
statistics [Agee, Turner (1982); Neter, Wasser-
man, Kutner (1985); Press, Flannery, Teukolsky,
and Vetterling (1996)] and the methods of their
detection have been developed in statistical prob-
lems [Moore, McCabe (1999); Neter, Wasser-
man, Kutner (1985)]. Those methods, however,
are not applicable in a DWLS problem, as they
usually require a big data array, while it is un-
likely that a reconstruction stencil on an unstruc-
tured computational grid will contain more than
several dozens of grid nodes. Thus detection of
numerically distant points remains the most im-
portant problem for a DWLS solution reconstruc-
tion on irregular grids.

There is one more point worth mentioning here.
A usual procedure of verification of a numerical
method is to consider model test cases where an-
alytical solution is available and to compare a nu-

merical solution with the analytical one. In our
paper, however, we have used ‘real-life’ test cases
where an analytical solution was not known. That
was done mainly to demonstrate difficulties aris-
ing in practical computations but also because it is
very hard to design a meaningful test case, where
a closed-form solution is available, in order to dis-
cuss U-outliers on stretched meshes. The mat-
ter is that if an analytical solution can be used
in the problem, then all information about the so-
lution function becomes available at the stage of
computational grid generation/adaptation, so that
a grid can be readily generated to take that infor-
mation into account. Thus a reconstruction sten-
cil on an adequately resolved grid would not con-
tain numerically distant points, despite the grid it-
self can be strongly stretched to accommodate the
solution features. In other words, U-outliers ap-
pear on grids that are not adequate to the solution
(e.g., a coarse grid that does not properly resolve
a boundary layer solution). Hence, in our opin-
ion, a comprehensive approach to the problem of
U-outliers in a DWLS reconstruction should be
combined with a grid adaptation problem. That
will consist a topic of future work on DWLS ap-
proximation.
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