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1. Introduction

Over the past three decades computational fluid dynamics (CFD) has successfully
evolved into an established tool for the design and analysis for many engineering
applications [Darmofal and Haimes (2005)]. On the other hand, the development
of CFD methods is still in progress, since the complexity of modern research and
engineering problems as well as the rapid increase in computational power require
to reevaluate the essential features of CFD codes. One alternative that should be
thoroughly explored prior to commitment to built a full three-dimensional simula-
tion tool is the study of high-order discretization schemes [Barth (1998)] to be used
in modern CFD codes.

Implementation of high-order schemes is a demanding issue, as they are opti-
mal from a cost reduction point of view for complex CFD problems. Nevertheless,
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despite the advantages of high-order schemes, by now very few attempts have been
made to develop this potentially powerful technology into an industrial CFD code
[Venkatakrishnan et al. (2003)]. Most of CFD codes currently use discretization
schemes which are second-order accurate in regions where the solution is smooth.
Generally, the implementation of high-order schemes for real-life applications is
a challenging problem, as it requires a significant computational effort, so that a
choice of a discretization scheme should be based on clear understanding of the
discretization features.

One crucial issue that should be investigated in detail is the robustness of a
high-order discretization scheme. In the present paper we discuss this issue from a
geometry viewpoint. Namely, we study the impact of a grid geometry on the quality
of high-order approximation on unstructured grids which are heavily exploited in
CFD codes to treat complex geometries. It is well known that in numerical solution
of CFD problems one may expect computational regions where grid cells almost
degenerate. For instance, long and thin grid cells inevitably appear as a result of grid
adaptation in boundary layer regions. The quality of the solution approximation on
such grid cells may be quite poor, resulting in slow convergence of the approximate
solution [Petrovskaya (2001)].

The two discretization approaches which are in the current focus of the research
in CFD include finite volume (FV) and finite element (FE) discretization schemes
[Barth (1998)]. Both of these approaches are flexible enough to be used on unstruc-
tured grids. Developing a high-order FV scheme often needs a definition of expanded
discretization stencils over a computational grid, as increasing the order of the FV
scheme requires more accurate gradient approximation which usually involves an
expanded stencil. Since the results of a standard gradient reconstruction procedure
(i.e. a Green–Gauss or a least-squares reconstruction) depend heavily on the geom-
etry of grid cells, the poor solution approximation may be expected in FV schemes
on stretched grids.

A general problem of reconstruction stencils in higher-order FV schemes has
been intensively investigated in recent years. The choice of the reconstruction
stencils has been discussed in Coirier [1994] where the optimal shape of the
stencil has been designed to discretize viscous terms in the Navier–Stokes equa-
tions. The approach implemented in Coirier [1994] has been further generalized
to 3D problems in Vigneron et al. [2003] where the optimization of weight coef-
ficients at stencil points has been used to keep the discretization scheme con-
sistent. The weighting of stencil points in high-order FV schemes has also been
discussed in Barth and Frederickson [1990]; Mavriplis [2003] and Ollivier-Gooch
and Van Altena [2002], and it has been demonstrated that in several cases a
proper choice of weight coefficients can help to maintain the accuracy of the
discretization.

Alternatively, a high-order FE scheme, such as a discontinuous Galerkin (DG)
[Bassi and Rebay (1997); Cockburn et al. (2000)] or streamline upwind Petrov-
Galerkin (SUPG) scheme [Hughes and Brooks (1979)] may be employed to discretize
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the problem. The accuracy of an FE discretization may appear to be sensitive to the
shape of grid cells, since the definition of basis functions in the scheme relies upon
the grid geometry. However, a crucial difference between high-order FV schemes and
FE schemes is that the latter approach employs a compact discretization stencil for
solution approximation. The advantage of a compact discretization has been dis-
cussed in work [Agarwal and Halt (1999)] where a compact higher-order polynomial
reconstruction technique has been developed for numerical solution of the Euler
equations on unstructured grids. The results obtained in Agarwal and Halt [1999]
for a compact solution reconstruction have been compared with the non-compact
scheme in Barth and Frederickson [1990] and the compact discretization appeared
to provide better accuracy. However, it was only a simple regular geometry that has
been considered in Agarwal and Halt [1999], so that a further study is required to
conclude about the efficiency of compact stencils on distorted grids.

In our paper we consider stretched grids to compare the results of the solution
reconstruction on compact stencils with those obtained on expanded stencils. We
first elaborate a number of simple test cases which demonstrate that compact sten-
cils used for FE schemes are less sensitive to the grid geometry than a scheme on
expanded stencils. We then verify the ability of a high-order FE scheme to per-
form on distorted grids. The examples include an advection equation and a more
complicated case of a convection-diffusion equation.

2. The Expanded and Compact Stencils Over a Distorted Grid

We begin our consideration of the impact of the grid geometry on the quality of a
discretization with a simple test described below. Let us generate a computational
grid as follows. Consider a set of grid nodes given by P1 = (0, 0), P2 = (1 + dα, α),
P3 = (0, 1) and P4 = (1, 1). The unstructured grid is generated by subdividing a
quadrilateral D with vertices at points Pi, i = 1, . . . , 4 into two triangles, as it is
shown in Fig. 1. The parameter α ∈ [0,∞) allows one to control a grid geometry.
The value α = 0 corresponds to a regular geometry of the unit square displayed
in Fig. 1(a), while increasing α makes the grid more distorted for a fixed value d.
A distorted two-cell grid is shown in Fig. 1(b) for α = 1.1.
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C2
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P1
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Fig. 1. The test case geometry. The grid distortion is controlled by the parameter α. (a) A regular
two-cell grid, α = 0 and (b) a distorted two-cell grid, α = 1.1.
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We now consider the following advection equation in the domain D:
∂u

∂x
+ a

∂u

∂y
= 0, (1)

where a is a constant advection velocity. Equation (1) is subject to the boundary
condition

u(0, y) = u0(y), (2)

where the function u0(ξ = y − ax) determines the solution to the boundary-value
problem (1)–(2),

U(x, y) = u0(y − ax). (3)

Our purpose is to reconstruct the function U(x, y) and the solution gradient
∇U = (∂U/∂x, ∂U/∂y) at a given point P0 ∈ D. Here ∇ is a formal notation for
the gradient vector, ∇ = (∂/∂x, ∂/∂y). The question that should be answered as a
result of our study is how the geometry of a distorted grid impacts on the accuracy
of the approximation. Thus, we intend to reconstruct the quantities above by using
expanded stencils over the computational grid and to compare the results with those
by the reconstruction on compact stencils.

The reconstruction on expanded stencils will be illustrated by means of the least-
squares (LS) approximation. This approach is related to high-order FV schemes,
where the formulation of the scheme requires the evaluation of the solution gradi-
ents at grid nodes (e.g. see Mavriplis [2003] and references therein). Alternatively,
the reconstruction on a compact stencil will be carried out by the discontinuous
Galerkin (DG) discretization scheme. The DG approximation is a high-order FE
scheme which exploits piecewise polynomial solution approximation, so that the
approximate solution on neighbouring cells is “glued” by means of flux balance
equations at grid interfaces Cockburn et al. [2000].

Let us briefly describe the two above-mentioned approaches. The LS reconstruc-
tion assumes that the solution function is given at certain points over the domain.
Let a data set U=(U1, U2, . . . , UN) be the values of the function U(x, y) at points
(P1, P2, . . . , PN ). We have to fit the data U to the function

u(x, y) =
M∑

m=1

umφm(x, y), M ≤ N, (4)

where φm(x, y), m = 1, . . . , M , are basis functions, and the expansion coefficients
(u1, u2, . . . , uM ) are considered as fitting parameters. The polynomial basis func-
tions φm(x, y) are given by

φm(x, y) = (x − x0)k1(y − y0)k2 , (5)

where k1 + k2 = 0, 1, . . . , K, and the K defines the highest polynomial degree of
the expansion (4). For any given K, the number of basis functions is determined as
M = (K + 1)(K + 2)/2. The point P0 = (x0, y0) is a point in the domain D, where
the value of the function u(x, y) should be reconstructed.
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The LS approach considers the vector u = (u1, u2, . . . , uM ) as the best fit to a
given data set, if u minimizes the following merit function F 2:

F 2 =
N∑

i=1




Ui −
M∑

m=1
umφm(Pi)

σi




2

, (6)

where σi are the weights of the method. Thus, the parameters um can be found
from the M conditions

∂F 2

∂um
= 0, m = 1, . . . , M,

which are called the normal equations of the method. Taking into account the
definition (6), we obtain the normal equations in the following form:

N∑
i=1

1
σ2

i


Ui −

M∑
j=1

ujφj(Pi)


φm(Pi) = 0, m = 1, . . . , M. (7)

Introducing the weighted data b and the design matrix [D] as

bi = Ui/σi, Dij = φj(Pi)/σi, i = 1, . . . , N, j = 1, . . . , M,

the normal equations can be written as [A]u = r, where the matrix [A] = [D]T [D],
and the right-hand side r = [D]T b. They are to be solved for the vector of param-
eters u = (u1, . . . , uM ),

u = [A]−1r. (8)

The definition of the data set U in the LS methods implies an expanded stencil
for the solution reconstruction. For a linear reconstruction (K = 1) it is sufficient
to define data U at grid nodes, while for a higher-order polynomial degree in the
expansion (4) the solution U should be defined at additional grid points. In our
tests, the choice of those points will refer to a regular geometry, as they will be
uniformly distributed over the edges of an “undisturbed” grid cell numbered as C1
in Fig. 1. It has been discussed in Petrovskaya [2004] that the LS reconstruction does
not take into account the properties of the function U , so that the method performs
best of all over a uniform grid. Hence, we will only distort the grid by moving the
point P2 away, while keeping a regular geometry for the rest of the stencil. The data
U will be computed as Un = U(xn, yn), n = 1, . . . , N , where the function U(x, y)
is given by solution (3). An example of the LS reconstruction stencil for K = 3 is
given in Fig. 1(b).

Another way to reconstruct a solution or a gradient function at a given point is to
solve the boundary-value problems (1) and (2) by a discontinuous Galerkin method.
Consider an unstructured computational grid as a set of non-overlapping triangles
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ei, i = 1, 2, . . . , N . The DG method defines the approximate solution uh(x, y) on
each grid cell ei as

uh(x, y) =
M∑

m=0

umφm(x, y), m = 0, 1, . . . , M, x, y ∈ ei. (9)

Despite the form of the expansion (9) is identical to that in (4), the polynomial
basis functions φm(x, y) = (x − x0i)α(y − y0i)β , α + β = 0, 1, . . . , K are now local,
they are only defined within the grid cell ei. For a cell-centered DG scheme, x0i and
y0i are the coordinates of the grid cell centroid.

In the DG method a weak formulation of the problem is used to find the approx-
imate solution uh(x, y), the test functions belonging to the same space as the basis
functions. Equation (1) is multiplied by test function φl(x, y), l = 0, 1, . . . , M and is
integrated by parts over the cell ei. Further substitution of the approximate solution
(9) into integrals gives

−
∫ ∫

ei

uh(x, y)
(

∂φl

∂x
+ a

∂φl

∂y

)
dxdy +

∮
∂ei

hu(u−, u+)φl(nx + any) ds = 0, (10)

where n = (nx, ny) is the outward unit normal vector, and the notation ∂ei is used
for the boundary of the cell ei.

The term hu(u−, u+) in the expression above stands for a numerical flux used
to approximate the continuous flux u(x, y) at grid interfaces. The need of the flux
approximation in the DG scheme arises from the fact that the approximate solution
uh(x, y) is discontinuous at any grid edge. Let u− be the solution on the cell ei and
u+ be the solution on the cell ej which shares a given edge with the cell ej . For
the advection equation (1), the implementation of the Riemann solver, elaborated
to discretize the flux u(x, y), results in a well-known definition of the upwind flux,

hu(u−, u+) =

{
u−, if the flow is directed outward from ei,

u+, otherwise.
(11)

Substitution of the numerical flux (11) into (10) leads to a system of algebraic
equations of the form

R(u) = 0, (12)

where the vector R(u) is the residual of the DG method given by (10) on each grid
cell and u is the solution vector. Taking into account the definition of the numerical
flux at the left boundary x = 0 of the domain D, the discretization of boundary
conditions is straightforward.

It can be seen from definition (10) that the results of the DG discretization
on the cell C1 do not depend on the approximate solution on the cell C2. The
DG solution on C1 is only defined by the boundary condition at the left boundary
x = 0. Hence, we may expect that, unlike the LS approach (7), a discretization on
compact stencils will result in a more accurate solution, as the distortion of the cell
C2 does not impact on the solution at the neighbouring cell. Below we compare



August 25, 2007 9:52 WSPC/IJCM-j050 00108

Solution Approximation in Higher-Order Schemes on Distorted Grids 373

both approximations (7) and (10) for various polynomial degrees in expansions (4)
and (9).

3. Numerical Results on a Model Grid

In our numerical experiments, the exact solution (3) to the problems (1) and (2)
has been chosen as

U(x, y) = (y − ax)4. (13)

The advection velocity is a = 1.0. Evidently, both LS and DG methods considered
for the polynomial degree K = 4 provide the precise reconstruction of the solution
and the gradient at any point of the domain D, no matter what the geometry is.
Regarding lower polynomial degrees, a robust solution approximation should not
be sensitive to the changes in grid geometry. Thus, our first test case is to verify
this feature for the solution reconstruction over compact (DG) and expanded (LS)
stencils.

Let us vary the parameter α for the fixed value d = 0.7. We measure the
solution and gradient errors at certain grid points. One of our control points,
P01 = (0.2, 0.75), is located in grid cell C1 which geometry remains undisturbed
as we increase α (see Fig. 1(b)). Another point P02 = (0.8, 0.75) belongs to the
stretched grid cell C2. We compute the L∞-norm of the solution error as

es(P0) = |U(x, y) − uh(x, y)||P0 ,

at points P01 and P02. The gradient error is defined as

e∇(P0) = ||∇U(x, y) −∇uh(x, y)|||P0

=
√(

(∂U/∂x)|P0 − (∂uh/∂x)|P0

)2 +
(
(∂U/∂y)|P0 − (∂uh/∂y)|P0

)2
,

where the derivatives of the approximate solution uh(x, y) are obtained by straight-
forward differentiation of expansion (4) or (9), respectively.

First, we consider the results of the solution and gradient reconstruction for
the polynomial degree K = 1. We use three basis functions in both expansions (4)
and (9). For the LS solution reconstruction an expanded stencil is formed by grid
nodes P1 through P4, as it is shown in Fig. 1.

Table 1 displays the solution and gradient error at point P01 for the LS and DG
reconstructions. It can be seen from the table that the error for the DG method
does not depend on the grid geometry, whereas increasing α affects the error of the
LS approximation in cell C1. While the DG reconstruction for α = 100.0 provides
a reasonable error in both the solution and the gradient, the LS approximation is
unreliable for that value of parameter α.

The results of the test for the point P02 are presented in Table 2. Now both
the DG and LS methods appear to be sensitive to the grid distortion. The error is
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Table 1. The LS and DG reconstructions at point P01. The solution (es) and
gradient (e∇) errors are shown for the polynomial degree K = 1.

α eLS
s eDG

s e∇LS e∇DG

0.0 0.4375 0.1319 0.7071 0.2357
0.5 0.4157 0.1319 1.1722 0.2357
1.0 0.3915 0.1319 1.5970 0.2357
10.0 0.6832 0.1319 22.1897 0.2357
100.0 434.544 0.1319 7966.24 0.2357

Table 2. The LS and DG reconstructions at point P02. The
solution (es) and gradient (e∇) errors are shown for the poly-
nomial degree K = 1.

α eLS
s eDG

s e∇LS e∇DG

0.0 0.5 0.1388 0.0 0.9428
0.5 0.7472 0.2429 0.5399 1.4338
1.0 0.9655 0.3966 1.0231 2.0713
10.0 10.086 35.555 21.78 60.339
100.0 3392.8 128266.6 7965.9 28087.22

growing up for both approaches as α is increased resulting in an unreliable recon-
struction for relatively small α = 10.0. Let us notice that the range of parameter
α in our tests is adequate to grid geometries appearing in CFD applications. For
instance, the high Reynolds number calculations require stretched grids with cell
aspect ratio up to 106 in a boundary layer. The solution and gradient reconstruction
on such cells is a challenging engineering problem (e.g. [see Mavriplis (2003)]) that
is still far away from its final solution.

Our next test is to study the convergence properties of both methods. Namely,
for a given grid geometry increasing the polynomial degree of the approximate solu-
tion should result in a smaller solution and gradient error. While this statement is
correct for a regular geometry of a uniform grid [Petrovskaya (2004)], it should be
verified on distorted grids. Hence, we increase the polynomial order in approxima-
tions (7) and (10) for a given value α. Let us point out that, unlike our previous
test, we now compute the solution error over the grid. Namely, we measure the
L2-norm of the solution error over the grid as

eL2 =
∫ ∫

D

(U(x) − uh(x))2ds. (14)

The L∞-norm of the error is defined as

eL∞ = max
(x,y)∈D

|U(x, y) − uh(x, y)|. (15)

Error (14) has been computed at Gaussian quadrature points used on each grid cell
for numerical integration in the DG discretization (10).
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Table 3. The LS and DG reconstructions for various polynomial degrees
K > 0. The L2-norm and the L∞-norm of the solution error are computed
over a slightly distorted grid at α = 1.0.

K eLS
L∞ eLS

L2 eDG
L∞ eDG

L2

1 0.1148e + 1 0.8011 0.3085 0.1608
2 0.6721 0.4237 0.1552 0.1061
3 0.4162e + 1 0.3631e + 1 0.0152 0.778e − 2

The results of the test are displayed in Table 3. The parameter α = 1.0 has
been chosen to generate a slightly distorted grid. It can be seen from Table 3 that
the value of the solution error is smaller for a given polynomial degree when a DG
method is exploited to obtain the approximate solution. This is readily explained
by the results of our previous test, as for the DG reconstruction the contribution to
the integral error from the first grid cell is quite small. However, the main difference
between the two approaches is that increasing the polynomial degree up to K = 3
reduces the solution error in the DG method, while the cubic solution reconstruction
by the LS method results in a solution error greater than that for a linear and
quadratic reconstruction. This result well illustrates the problem of the gradient
reconstruction over expanded stencils that still remains an open question, given a
cell aspect ratio on stretched grids for CFD problems.

4. High-Order DG Scheme on Distorted Grids

The results of our tests described in the previous section allow one to conclude that
a discretization scheme over a compact stencil may be only locally affected by grid
distortion. On the other hand, the ability of the scheme on compact stencils to cope
with a distorted geometry should be proven for more complicated test cases. Thus,
in this section we further study how a high-order DG scheme performs on distorted
grids. The similar study for high-order FV schemes on expanded stencils has been
carried out in Petrovskaya [2001].

Let us generate a distorted computational grid to solve the boundary-value
problem (1)–(2) in the unit square Ω. The exact solution for the test cases below is
chosen as

U(x, y) = sin(π(y − ax)). (16)

The grid distortion is now controlled by parameter β ∈ (0, 1) as follows. First,
a uniform Cartesian grid is generated with a regular distribution of grid nodes
given by

xij = ihx, yij = jhy,
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Fig. 2. (a) An example of a distorted unstructured grid. The distortion parameter β = 0.7.
(b) The distribution of solution error (17) for problems (1) and (2) over the distorted grid. The
number of grid cells Nc = 722, the distortion parameter β = 0.5.

where i = 1, . . . , Nx, j = 1, . . . , Ny, hx and hy are grid step sizes in the x-
and y-directions, respectively. Then grid nodes along the selected line i = i0 are
shifted as

yi0j = (jhy)β , 0 < β ≤ 1,

resulting in a distorted Cartesian grid. The distorted unstructured grid is
then obtained by cutting each cell of a structured grid by the diagonal (see
Fig. 2).

On the surface, the distorted grids shown in Fig. 2 may look exotic. Appar-
ently, if our goal were to obtain an accurate numerical solution over a computa-
tional grid with a given number of grid nodes, a uniform unstructured grid would
be more adequate to problem (1)–(2). Our test, however, imitates a wrong grid
adaptation in a local domain to study to what extent the DG scheme is sensi-
tive to local grid distortion. Actually, one of the requirements to modern CFD
codes is automatic grid generation over a computational domain, [Sherwin and
Peiro (2002)]. Furthermore, for many CFD problems a computational grid should
be adapted to the solution to resolve solution latent features (e.g. wakes, bound-
ary layers, etc.) inherent in real-life applications. Usually, the solution adaptation
is an iterative process where grid redefinition (i.e. insertion of new nodes or node
movement) happens at each iteration. A flaw in the adaptation algorithm may lead
to a locally distorted grid at a given solution-adaptation iteration. Hence, auto-
matic grid adaptation appeals to highly robust discretization schemes, so that it is
strongly desirable to understand the behavior of a discretization scheme on distorted
grids.

The value β = 1.0 provides a uniform grid, while smaller values of β make the
grid more distorted. Hence, one may expect a larger solution error, as β varies from
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Table 4. Numerical solution to problem (1)–(2). The results of the linear (K =
1) DG discretization for various degrees of distortion β. The L2-norm and the
L∞-norm of the solution error are computed on the grid with the number of
grid cells Nc = 722.

β 1.0 0.8 0.6 0.4 0.2

eL2 0.3796e − 3 0.1614e − 2 0.4728e − 2 0.1783e − 1 0.3975e − 1
eL∞ 0.7592e − 3 0.5497e − 2 0.2115e − 1 0.8361e − 1 0.1899e − 1

Table 5. The results of DG discretization for various polynomial degrees
K.0 in the advection problem. The grid distortion parameter is β = 0.5.
The L2-norm and the L∞-norm of the solution error are computed on
the grid with the number of grid cells Nc = 722.

K 1 2 3 4

eL2 0.9477e − 2 0.7579e − 3 0.3332e − 4 0.2609e − 5
eL∞ 0.4141e − 1 0.6943e − 2 0.2182e − 3 0.1954e − 4

1.0 to smaller values. This conclusion is confirmed by Table 4 where the results of
the linear (K = 1) DG discretization are presented for various β.

We also compute the solution error function e(x, y) on each grid cell ei as

e(x, y) = |U(x, y) − uh(x, y)|, (x, y) ∈ ei. (17)

The solution error distribution over the grid is given in Fig. 2(b). It can be seen
from the figure that the grid distortion affects the accuracy of the DG discretization.
The maximum solution error appears in the distorted strip of grid cells and it
then propagates over the domain once the solution front has passed the distorted
region.

The results above demonstrate that grid distortion may slow down the con-
vergence or even result in a divergent numerical solution, as the solution accuracy
decreases on distorted grids. The convergence of the numerical solution can be often
accelerated by means of a local grid refinement that usually makes a grid smoother
in the region of the original distortion. Another way to improve the convergence
is iterative p-refinement, i.e. increasing of a polynomial degree in a discretization
method to resolve the solution. It has been demonstrated in the previous section
that the p-refinement is not always efficient with a scheme on expanded stencils, as
the LS solution reconstruction for higher polynomial degree provided worse results
over a distorted grid. Thus, our next test is to increase the K in expansion (10)
to verify whether the p-refinement will help to resolve the solution in a region of
grid distortion. The results for various polynomial degrees in the DG method are
presented in Table 5 for the given value β = 0.5. It can be seen from the table
that increasing a polynomial degree reduces the solution error leading therefore to
a better convergence rate of the approximate solution.
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Finally, we consider a high-order DG discretization as an example of the scheme
on compact stencils for a convection–diffusion equation. From a geometry view-
point, the convection–diffusion problem presents a more difficult case. Namely,
a DG discretization of diffusion terms requires a more expanded stencil, as flux
balance equations now depend on the neighbor of neighbors cells (see [Cockburn
et al. (2000)] for more details).

We consider the following convection–diffusion equation in the unit square Ω

ux + f ′(x)uy = µuyy, (x, y) ∈ (0, 1) × (0, 1), (18)

where the derivative f ′(x) ≡ df/dx defines a convective velocity, and µ is a diffusion
coefficient.

After the transformation

ξ =
(y − y0) − f(x − x0)√

4µ(x − x0)
, (19)

the exact solution to Eq. (18) is given by

u(x, y) = Erf(ξ), (20)

where the error function Erf(z) is defined as

Erf(z) =
2√
π

∫ z

0

exp (−ω2)dω.

The exact solution depends on the shape of the function f . The choice of f(x) as

f(x) =
1
8

sin 5x,

leads to a “shear layer” solution (see Fig. 3(a)). The origin of a discontinuity in
the shear layer is located at (x0, y0). The shear layer evolution over the domain is
characterized by strong local solution gradients which makes this test case attractive
for our study.

The boundary conditions for Eq. (18) are chosen to provide a required analytical
solution to the problem. Namely, we take

u(0, y) = Erf(ξ(0, y)), u(x, 0) = Erf(ξ(x, 0)) and u(x, 1) = Erf(ξ(x, 1)),

(21)

where the function ξ(x, y) is given by (19).
Let us now briefly comment on a high-order DG discretization used to obtain a

numerical solution to problem (18)–(21). The standard approach in discretization
of diffusion terms by a DG method is that the equation should be reduced to a



August 25, 2007 9:52 WSPC/IJCM-j050 00108

Solution Approximation in Higher-Order Schemes on Distorted Grids 379

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

(a) (b)

Fig. 3. (a) The shear layer solution to problem (18)–(21). (b) The distribution of the solution error
(17) for problem (18) and (21) over the distorted grid. The number of grid cells Nc = 722 and the
distortion parameter β = 0.5.

system of two first-order equations. Introducing a new variable q = uy we arrive at
the following system of equations:{

ux + f ′(x)uy = µqy,

q = uy.
(22)

The variable q(x, y) is approximated by using the same basis functions,

qh(x, y) =
M∑

m=0

qmφm(x, y), m = 0, 1, . . . , M, x, y ∈ ei, (23)

Approximation of the variable q in the equations above requires to determine
viscous numerical fluxes huq(q−, q+) = 1

2 (q−+q+) and hqq(u−, u+) = 1
2 (u−+u+) in

the problem as well as an inviscid flux (11). After the numerical fluxes are defined,
the DG discretization scheme reads

−
∫∫

ej

uh

(
∂φl

∂x
+ f ′(x)

∂φl

∂y

)
dxdy +

∮
∂ei

hu(u+, u−)φl(nx + f ′(x)ny) ds

= −µ

∫∫
ej

qh
∂φl

∂y
dxdy + µ

∮
∂ei

huq(q+, q−)φlny ds,

∫∫
ej

qhφl dxdy = −
∫∫

ej

uh
∂φl

∂y
dxdy +

∮
∂ei

hqq(u+, u−)φlny ds.

(24)

In our numerical experiments we choose x0 = −0.1 and y0 = 0.6. The diffu-
sion coefficient is µ = 0.5 · 10−3 to provide a sharp shear layer propagating over
the domain. Similarly to a pure advection case, we measure the L2-norm and the
L∞-norm of the solution error on distorted grids generated for various values of β.
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Table 6. Numerical solution to the “shear layer” problem (18)–(21). The
results of the linear (K = 1) DG discretization for various degrees of distor-
tion β. The L2-norm and the L∞-norm of the solution error are computed
on the grid with the number of grid cells Nc = 722.

β 1.0 0.8 0.6 0.4 0.2

eL2 0.5421e − 1 0.7341e − 1 0.1278 0.18734 0.2558
eL∞ 0.2785 0.4163 0.6986 0.9169 0.9457

Table 7. The shear layer problem. The results of the DG discretization
for various polynomial degrees K > 0. The grid distortion parameter
is β = 0.5. The L2-norm and the L∞-norm of the solution error are
computed on the grid with the number of grid cells Nc = 722.

K 1 2 3 4

eL2 0.1574 0.1011 0.6533e − 1 0.4267e − 1
eL∞ 0.8143 0.5896 0.4186 0.3014

The results of the linear DG discretization are presented in Table 6. It can be seen
from the table that a solution to the convection–diffusion problem is more sensi-
tive to the grid distortion than a pure convection case as a larger solution error
appear on a grid with the same degree of distortion. This conclusion is also con-
firmed by solution error function (17) over the grid displayed in Fig. 3(b). Thus we
verify in our next series of computations that increasing a polynomial degree of the
discretization leads to a smaller solution error. The results for various polynomial
degrees presented in Table 7 for the given value β = 0.5 confirm the robustness of
a high-order DG scheme.

5. Concluding Remarks

In our paper we have discussed the impact of grid geometry on the results of a high-
order discretization. It has been demonstrated that a scheme on a compact stencil
is less sensitive to the grid distortion than a scheme on an expanded stencil. Our
numerical experience with a high-order discretization on compact stencils for a pure
convection and a convection–diffusion equation has showed that the discretization
remains robust on grids with highly stretched cells.

Our study can be considered as a first step on the way of understanding the
features of high-order discretizations on unstructured grids with arbitrary geome-
try of grid cells. That may help to answer a crucial question of the modern CFD:
whether it is possible to develop an efficient high-order discretization on adaptive
unstructured grids? It is now a growing understanding in aerodynamic commu-
nity that coupling a high-order discretization with grid adaptation to the solution
could bring great benefits to the flow simulations [Venkatakrishnan et al. (2003)]
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and we believe that the study of the geometry impact on the quality of a dis-
cretization is an essential part for development of future CFD codes for real-life
applications.

The priority of the future work should be given to the study of a nonlinear case,
as the question still remains open whether a discretization scheme will benefit from
the compact stencil in case that nonlinear equations are discretized. There are sev-
eral issues of importance, however, that should be investigated for linear equations
as well. One of them is a choice of basis functions for a high-order FE scheme, as
a transformation of the basis (i.e. the alignment of basis functions with the solu-
tion gradient) may help to render a discretization more robust. Local increasing of
a polynomial degree to resolve the solution on stretched cells is another issue of
interest as distorted grids are concerned. Finally, a general question of the geom-
etry study is: how a grid distortion can be recognized for a given discretization
procedure? This issue is of utmost importance with regard to the impact of grid
geometry on the results of a discretization.
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