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Abstract. We analyze a general concept of limiters for a high order
DG scheme written for a 1-D problem. The limiters, which are local
and do not require extended stencils, are incorporated into the solution
reconstruction in order to meet the requirement of monotonicity and
avoid spurious solution overshoots. A limiter β will be defined based on
the solution jumps at grid interfaces. It will be shown that β should be
0 < β < 1 for a monotone approximate solution.

1 Introduction.

Recently a number of new discretization methods have been developed to nu-
merically solve modern problems of science and engineering. One of them is a
Discontinuous Galerkin (DG) discretization scheme [3], which affords optimal
orders of convergence for smooth problems by using high order approximating
spaces. However, the capability of high order DG schemes to resolve solution
discontinuities is still an open question. It has been observed many times (e.g.
see [2, 5–7]) that a high order DG discretization may result in oscillations in the
vicinity of a shock discontinuity. The study carried out in [8] has shown that high
order DG approximations do not provide a monotone solution near the shock
even for the simplest linear advection problem.

Since the solution oscillations may have a disastrous impact on the conver-
gence of the approximate solution, a limiting procedure which allows one to
obtain a monotone solution near discontinuities should be addressed. A number
of authors have contributed to the issue of limiters for the DG scheme in re-
cent years [1, 2, 7, 10]. The examples of limiters implemented in a semi-discrete
DG scheme are given in [3]. The approach suggested in [6] is similar to that in
ENO schemes and takes data from neighboring grid cells to construct a local
solution limiter on a given cell. The discussion of using a limiting algorithm for
multi-dimensional problems can be found in [5].

In the present paper we develop an approach to define a limiter on a compact
discretization stencil for high order DG schemes. We analyze one-dimensional
problems where the definition of a new limiter is straightforward for a high or-
der DG discretization. The limiter β, which is local and does not require extended
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stencils, is based on the solution jumps at grid interfaces. It will be proved that
the values 0 < β < 1 provide a monotone approximate solution over a compu-
tational grid. One important feature of the suggested approach is that we also
incorporate the evaluation of flux approximation into the limiting procedure, as
upwind flux approximation in a high order DG scheme presents another difficulty
when steady state solutions are considered.

2 The definition of a discontinuous Galerkin scheme.

Our concept of limiters in high order DG schemes can be best illustrated by
consideration of an ordinary differential equation written for a function u(x) as

Fx(x, u) = S(x), x ∈ Ω = [a, b]. (1)

The function F (x, u(x)) is considered as a flux function for a steady state prob-
lem (1). The equation above should be augmented with a boundary condition
that will be further provided for a given problem under consideration.

We use a discontinuous Galerkin method to obtain a numerical solution to

the problem. Let us introduce the element partition G of the region, G =
N
⋃

i=1

ei,

ei = [xi, xi+1], 1 ≤ i ≤ N , where xi is a nodal coordinate, and hi = xi+1 − xi

is a grid step size. We seek an approximation uh(x) to the solution u(x) such
that uh(x) is a piecewise polynomial function over Ω. The approximate solution
uh(x) is expanded on each grid cell as

uh(x) =

K
∑

k=0

ukφk(x), x ∈ ei = [xi, xi+1], (2)

where the test functions are φk(x) = ((x − xi)/hi)
k
, x ∈ ei, k = 0, 1, . . . ,K.

Multiplying the equation (1) by the test function φk(x) and integrating over
the cell [xi, xi+1] results in the following weak formulation of the problem,

F (xi+1, u(xi+1))φk(xi+1) − F (xi, u(xi))φk(xi)−
xi+1
∫

xi

F (x, u)(dφk(x)/dx)dx =

xi+1
∫

xi

S(x)φk(x)dx, k = 0, 1, . . . ,K
(3)

where the function u(x) should be further replaced by the approximate solution
uh(x).

Since uh(x) is discontinuous at the cell interfaces, the above equations con-
sidered for the solution uh(x) require a numerical flux F̃ (x, uh) consistent with
the continuous flux F (x, u) to be defined. Suppose that the flux F̃ (x, uh) that
generally depends on the two values of the approximate solution at any grid
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interface xi is chosen for a given problem (see [4] for the discussion of numerical
fluxes). Then the DG discretization scheme reads

F̃ (uh(xi+1))φk(xi+1) − F̃ (uh(xi))φk(xi)−
xi+1
∫

xi

F (x, uh(x))(dφk(x)/dx)dx =

xi+1
∫

xi

S(x)φk(x)dx, k = 0, 1, . . . ,K.
(4)

Although very efficient for smooth problems, a high order DG discretization
is not always appropriate when discontinuous functions are concerned. It has
been shown in [8] that being applied to a discontinuous problem the DG scheme
(4) may generate solution overshoots that do not depend on the grid step size.
Below we address the issue of limiters required to eliminate spurious solution
oscillations in a high order DG scheme.

3 Limiters for a high order DG scheme.

Let U(x) be the exact solution to the boundary-value problem for the equation
(1) and three points Pi = (xi, U(xi)), P = (x̂, U(x̂)), and Pi+1 = (xi+1, U(xi+1))
be chosen at the curve U(x) (see Fig. 1a). Let the distance xi+1 − xi = h > 0,
and we denote (x̂− xi)/(xi+1 − xi) = s0, s0 ∈ (0, 1). We define the parameter θ
as follows

θ = (U(x̂) − U(xi))/(U(xi+1) − U(xi)), U(xi+1) 6= U(xi), (5)

Let us fix s0 and move the points P and Pi+1 along the curve U(x). The param-
eter θ is then considered as a function of the distance h.

The behavior of θ(h) depends on the solution U(x). Let U(x) be a monotone
function shown in Fig. 1a. For the monotone solution, the following conditions
hold

1. |U(x̂) − U(xi)| < |U(xi+1) − U(xi)|, if x̂ − xi < xi+1 − xi,
2. sgn(U(x̂) − U(xi)) = sgn(U(xi+1) − U(xi)).

Hence, θ(h) > 0, and θ(h) is a bounded function over the domain of definition.
We now estimate the value of θ for h → 0. The solution is assumed to be

a smooth function over the interval [xi, xi+1]. We denote the k − th derivative
d(k)U(x)/dxk taken at the point xi as Dk. The Taylor series expansion of the
solution U(x) near the point xi yields U(x̂) ≈ U(xi) + D1s0h, and

1/(U(xi+1) − U(xi)) ≈ 1/(D1h + (1/2)D2h
2) = 1/(D1h(1 + (D2/2D1)h)) ≈

1/(D1h(1 − (D2/2D1)h)), D1 6= 0.

Substituting the expansion above into (5), we obtain

θ ≈ (D1s0h(1 − (D2/2D1)h))/D1h = s0(1 − O(h)). (6)

For the sake of simplicity, let us further consider xi = 0, so that xi+1 = h.
There are three extreme cases of a monotone smooth function U(x) that define
the behavior of θ(h):
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Fig. 1. A monotone solution U(x). (a) Geometric interpretation of the function θ(h)
in the (x, U(x)) - plane. (b) The function θ(h) for a monotone solution U(x): (I) a
linear function U(x), (II) a concave function U(x), (III) a convex function U(x).

1. U(x) is a linear function. The definition of θ yields θ(h) = const = s0. The
function θ(h) is presented by curve (I) in Fig. 1b.

2. U(x) is a concave function, which has a vertical asymptote at the point
x = h∗: U(x) → ∞, as x → h∗. Since |U(h) − U(0)| → ∞, and |U(s0h) −
U(0)| → ∆U 6= ∞, as x → h∗, we have θ(h) → 0, as h → h∗. If we consider
a set of smooth concave functions, then h∗ → ∞, and we arrive at θ(h) → 0,
as h → ∞. The function θ(h) for a concave U(x) is shown as curve (II) in
Fig. 1b.

3. U(x) is a convex function, which has a horizontal asymptote: U(x) → U0, as
x → ∞. Since U(h)−U(0) → U0 −U(0), and U(s0h)−U(0) → U0 −U(0),
as x → ∞, we have θ(h) → 1, as h → ∞. The function θ(h) generated by a
convex U(x) is shown as curve (III) in Fig. 1b.

Hence, for a monotone smooth function U(x), the parameter θ is bounded by
0 < θ ≤ 1, where θ = 1 for U(x) ≡ const by convention.

We now consider a non-monotone solution U(x) shown in Fig. 2a. Let Pext =
(xext, U(xext)) be an extremum point. For small h < xext, the solution U(x) is a
monotone function and we refer to the analysis above, as the function θ(h) will
depend entirely on the derivative d2U(x)/dx2. For h > xext, the function θ(h) is
an increasing function which takes the value θ(h0) = 1 at the point h = h0, where
U(h) = U(s0h) (see Fig. 2a). The function θ(h) has a singular point h = hd,
defined by the condition U(hd) = U(xi). Since xi = 0 and U(h) − U(0) changes
the sign at the point x = hd, the asymptotic behavior of θ(h) is θ(h) → +∞
as h → hd − 0, and θ(h) → −∞, as h → hd + 0. Finally, θ(h) → 0 (or another
constant), as h → ∞, provided there are no other extremum points. The function
θ(h) for a non-monotone solution is shown in Fig. 2b.

The above consideration reveals how a limiting procedure can be defined
for an approximate solution in a high order DG scheme. Let x̂ be an arbitrary
point in the cell [xi, xi+1]. Suppose that the approximate solution uh(x) coincides
with the exact solution U(x) everywhere except for the point x̂, so that a local
extremum appears at x̂ (see Fig. 3a). Since for a monotone function the condition
0 < θ ≤ 1 always holds, we now compare the approximate solution variation
(uh(x̂)− uh(xi)) with the exact solution variation (U(xi+1)−U(xi)). The value
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Fig. 2. A non-monotone solution U(x). (a) Geometric interpretation of the function
θ(h) in the (x, U(x)) - plane. (b) The function θ(h) for a non-monotone solution: (I)
θ(h) is not bounded near the extremum point, (II) A limiting procedure cuts off θ(h)
near the solution extremum.

θi < 0 or θi > 1 of the parameter

θi = (uh(x̂) − uh(xi))/(U(xi+1) − U(xi)) (7)

indicates that a local extremum is present in the cell ei. The limiting procedure
for a non-monotone function is shown in Fig. 2b in the (h, θ)-plane.

4 The flux control in the limiting procedure.

The limiter (7) is not viable, unless an accurate estimate of the exact solution
has been given at the points xi and xi+1. Hence, our next purpose is to obtain a
reliable solution estimate to be used in the limiter θi. Moreover, we also want the
evaluation of flux approximation to be incorporated into the limiting procedure,
as upwind flux approximation in a high order DG scheme presents another diffi-
culty when steady state solutions are considered. It has been recently shown in
[9] that a high order DG scheme is not able to recognize flux extrema that may
lead to an underdetermined system of algebraic equations obtained as a result
of the discretization. Solving that system of equation will inevitably result in an
oscillating numerical solution, so that a flux control procedure should be devel-
oped to avoid a divergent solution (see [9] for a further discussion of spurious
oscillations arising as a result of incorrect flux approximation).

Our approach to the flux control in the DG scheme (4) is based on the
definition of ”frame” and ”phantom” points on a grid cell. Let P = (xi, uh(xi))
be a point in the (x, u) - plane, where xi ∈ G. Each pair (xi, uh(xi)) generates
the flux F (xi, uh(xi)). We will refer to the point P as a ”frame” point and
denote it as PF , if P is involved into the definition of the numerical flux, i.e.
F̃ (xi, uh) = F (P ). Otherwise, we will refer to the point P as a ”phantom” point
and will use the notation PP for it. A solution estimate we use is based on the
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assumption that a discrete conservation law

F̃ (xi+1, uh) − F̃ (xi, uh) =

xi+1
∫

xi

S(x)φk(x)dx, (8)

is consistent with the equation (1), that is uF (xF ) → U(xF ), h → 0. In other
words, we assume that local extrema which do not vanish on fine grids may only
appear at ”phantom” points. The above requirement is to guarantee that the
correct flux approximation is used in the problem.

Based on the assumption above, we suggest the following approximation to
the function (7)

βi = δui/∆u, (9)

where δui = uh(xi+1) − uh(xi) for approximate solution uh(x) defined at the
interval ei. The exact solution variation ∆U = U(xi+1)−U(xi) on the cell ei is
replaced in limiter βi with the approximate solution variation ∆u = uhF (xi+1)−
uhF (xi) at the ”frame” points.

In order to incorporate the limiter (9) into the DG scheme, the ”frame” points
should be defined for a given grid cell. Consider an upwind flux approximation
that requires one value of the approximate solution at each grid interface for
a monotone solution function. Let the ”frame” points for the upwind flux be
defined as PF 1 = (xi, ui−1 + δui−1), and PF 2 = (xi+1, ui + δui) on the cell ei.
The solution variation is

∆u = ui+δui−ui−1−δui−1 = ui+δui−(ui−[u]i) = δui+[u]i, βi =
δui

δui + [u]i
,

where [u]i = uh(xi + 0)− uh(xi − 0) = ui − (ui−1 + δui−1) is a solution jump at
the interface xi.

If the ”frame” points are defined as PF 1 = (xi, ui), and PF 2 = (xi+1, ui+1),
the solution variation will be

∆u = ui+1 − ui = (ui + δui) + [u]i+1 − ui = δui + [u]i+1, βi =
δui

δui + [u]i+1
,

where the jump [u]i+1 = uh(xi+1 + 0) − uh(xi+1 − 0) = ui+1 − (ui + δui) is
considered at the interface xi+1. Generally, the limiter βi can be written as

βi = 1 − [u]P
δui + [u]P

, (10)

so that βi depends always on the solution jump [u]P calculated at the cell inter-
face where a ”phantom” point presents.

The limiting procedure is illustrated in Fig. 3b for a piecewise linear (K = 1)
DG discretization. The ”phantom” point ui + δui is shown as a white dot, the
frame points are shown as black dots. The location (I) of the ”phantom” point
yields a monotone approximate solution, while the locations (II) and (III)
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Fig. 3. Limiters for a piecewise linear approximate solution. (a) The limiter detects a
solution overshoot at the interior point of the domain. (b) The limiter detects a solution
overshoot at the cell interface. The ”phantom” point (I) yields a monotone approximate
solution. The ”phantom” point (II) yields an overshoot which is indicated by βi < 0.
The ”phantom” point (III) yields an overshoot which is indicated by βi > 1.

result in a nonphysical local extremum. The limiter (10) detects both cases of
the solution overshoot, as βi < 0 for the location (II) and βi > 1 for the location
(III).

We first illustrate the use of limiters by a simple numerical test discussed
earlier in [8]. Consider the following linear boundary-value problem

ux = S(x), u(0) = U0, x ∈ Ω = [0, 2], (11)

so that flux function F (x, u) ≡ u. Let a discontinuous solution U(x) to the
equation (11) be given by

U(x) =







1. −
√

0.5 − x 0 ≤ x < 0.5,
1 0.5 < x ≤ 1,

tanh(200(x − 1.5)) 1 < x ≤ 2.
(12)

Given the solution (12), the source function S(x) is reconstructed from the equa-
tion (11). The boundary condition is u(0) = U(0).

For the advection equation the upwind numerical flux is F̃ (ui, ui+1) = ui,
and we have [u]P = [u]i on any grid cell. The approximate solution obtained as
a result of the DG discretization with a piecewise linear solution reconstruction
is shown in Fig. 4a. The number of grid nodes is N = 32.

The DG scheme (4) employed in the problem generates oscillations near the
shock. Those oscillations do not vanish on fine grids, so that the limiting is
required to eliminate them. Thus, we compute the limiter (10) on each grid cell.
In case that β < 0 or β > 1 ( a solution overshoot) the solution interpolation
between two ”frame” points is used to obtain a monotone approximate solution.

After the limiting procedure is applied, the new solution reconstruction is
shown in Fig. 4b. It can be seen from the figure that the new solution has no
overshoots over the domain.

We now consider the inviscid Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= 0. (13)
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Fig. 4. The advection test problem (1) with a shock discontinuity. (a) Oscillations in
the vicinity of the shock for the DG K = 1 solution. The number of grid nodes N = 32.
(b) The solution on the same grid after the limiting procedure.

This is a well known example of a nonlinear hyperbolic equation with a quadratic
flux function F (u) = u2/2. We solve the equation (13) in the domain x ∈ [0, 1]
due to a periodic boundary condition. The initial condition has been chosen as
a sine wave function

u(x, 0) = u0(x) = 0.25 + 0.5 sin(π(2x − 1)). (14)

The exact solution is smooth for any time t < 1/π, while the solution becomes
discontinuous at later times.

We are interested in the numerical solution to the problem (13), (14). A
high order DG discretization is implemented, and we apply the Godunov flux
F̃G(ul, ur) in order to discretize the function F (u). The flux approximation is
defined as

F̃G(ul, ur) =







min
ul≤u≤ur

F (u), if ul ≤ ur,

max
ul≤u≤ur

F (u), otherwise,

for the left state ul and right state ur at a given grid interface.
For numerical solution of the conservation law (13), a DG discretization in

space is combined with an implicit time integration scheme. Let us notice that
while the limiting procedure for the explicit Runge-Kutta integration has been
introduced in the work [2] and further investigated in [5] and other works, limiters
for implicit integration schemes have not been intensively discussed in literature.
Thus we use a backward Euler time integration scheme in our problem to see
how a suggested limiting algorithm will work for time dependent problems.

An approximate solution at t = 0.47 is shown in Fig. 5a for a piecewise
linear DG discretization on a uniform grid of 128 cells. It can be seen from the
figure that the approximate solution oscillates near the shock and we need to
apply the limiting procedure (10) at each time step to obtain a non-oscillating
solution. A new approximate solution is shown in Fig. 5b. The limiters eliminate
spurious oscillations while remaining the solution piecewise linear in the vicinity
of the shock. However, further numerical validation of the limiting procedure for
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Fig. 5. The numerical solution to the inviscid Burgers’ equation (13). (a) The approx-
imate DG K = 1 solution to the problem (13), (14) oscillates near the shock soon after
the shock formation ( time t = 0.47). The number of grid nodes N = 128. (b) The
solution on the same grid after the limiting procedure.

nonlinear equations is required to confirm that the suggested algorithm keeps the
order of approximation in a high order DG discretization scheme. That should
be considered as a topic for future work.
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