
SIAM J. SCI. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1329–1346

ON OSCILLATIONS IN DISCONTINUOUS GALERKIN
DISCRETIZATION SCHEMES FOR STEADY STATE PROBLEMS∗

N. B. PETROVSKAYA†

Abstract. High order discontinuous Galerkin discretization schemes are considered for steady
state problems. We discuss the issue of oscillations arising when Newton’s method is employed to
obtain a steady state solution. It will be demonstrated that flux approximation near flux extrema
may produce spurious oscillations propagating over the domain of computation. The control over
the numerical flux in the problem allows one to obtain nonoscillating convergent solutions.
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1. Introduction. In recent years a variety of discretization methods have been
developed to solve complex problems of physics and engineering. One of them is a
discontinuous Galerkin (DG) discretization scheme. Introduced in [11] and further
developed by many authors (see [4] for the review of DG schemes), the DG method is
a finite element scheme which uses piecewise polynomial approximation in space. The
method also involves an approximate Riemann solver, since the approximate solution
is discontinuous at grid interfaces.

The hyperbolic systems of conservation laws present a wide class of problems
where the DG method can be successfully applied. The DG discretization scheme
affords optimal orders of convergence for smooth problems by using high order ap-
proximating spaces. For the problems whose solutions have strong gradients and/or
discontinuities, solution oscillations may occur when a high order DG scheme is used
to discretize a conservation law. Since the nonphysical oscillations have a disastrous
impact on the convergence of the approximate solution, a limiting procedure that
eliminates the oscillations near discontinuities should be addressed. A number of au-
thors have contributed to the issue of limiters for DG schemes in recent years (e.g.,
see [5], [6], [9]). It has been demonstrated many times that stabilization of the scheme
by means of local limiters allows one to obtain accurate nonoscillating solutions to
nonlinear hyperbolic problems.

The local limiters are not always helpful, however, when steady state solutions
to conservation laws are considered. In practice, a time-dependent algorithm (e.g., a
backward Euler integration) is used to approach a steady state solution. The time
step is usually scaled as a function of the norm of the residual, so that the scheme
with an infinitely large time step is equivalent to Newton’s method. Thus it seems to
be a reasonable strategy to solve time-dependent equations only at the early stages of
computations. Once the basin of attraction has been approached, the Newton method
may be exploited in order to provide a faster convergence rate. Meanwhile, our nu-
merical experience shows that a transient solution may exhibit strong oscillations over
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the entire domain of computation, if the Newton iteration method is used to solve a
system of nonlinear equations obtained as a result of a high order DG discretization
in space. Those oscillations may appear for a smooth solution as well as a discon-
tinuous one, and their excitation does not depend on how close the initial guess for
the Newton method is to the fixed point considered as a steady state solution for the
problem. The spurious oscillations propagating over the domain cannot be eliminated
by means of a standard limiting procedure [5], and their nature requires careful study.

In our work, we consider two nonlinear scalar equations in order to examine a high
order DG discretization for steady state solutions. Simple enough, they nevertheless
demonstrate the difficulties arising in the solution of steady state problems. In our
first example the exact solution is smooth, while the solution to the second problem
has a discontinuity. It will be shown that in both cases a standard high order DG
discretization yields a divergent solution.

Based on our consideration, we conclude that a high order DG scheme is not
able to recognize flux extrema that may result in a singular Jacobian when Newton’s
method is used to solve the problem. Moreover, a transient solution may generate
nonphysical flux extrema which lead to a singular matrix as well. Thus, spurious
solution oscillations occur in the problem due to incorrect flux approximation, so that
a high order DG discretization requires flux control over each grid cell. We present a
flux control procedure that allows one to obtain convergent solutions.

2. The problem statement. We consider an ordinary differential equation
written for a function u(x) in the conservative form

Fx(x, u) = 0, x ∈ Ω = [0, 1],(1)

where F (x, u(x)) is a flux function. An appropriate boundary condition

Bu = 0(2)

is provided for (1), where B denotes a boundary condition operator.
For numerical solution of the boundary-value problem (1), (2) we introduce the

element partition G of the region, G =
⋃N

i=1 ei, ei = [xi, xi+1], 1 ≤ i ≤ N , where xi is
a nodal coordinate, and hi = xi+1 − xi is a grid step size. We also use the notation
xi − 0 and xi + 0 for the left and right limits at the point xi.

Let u(x) be the solution to the problem (1), (2). In order to find the approximate
solution uh(x), a weak formulation of the problem is used. Multiplying (1) by test
function φk(x), defined on the cell ei for k = 0, 1, . . . ,K as

φk(x) =

(
x− xi

hi

)k

, x ∈ ei,

and integrating by parts over the cell ei, we obtain

F (xi+1, u(xi+1))φk(xi+1) − F (xi, u(xi))φk(xi) −
∫ xi+1

xi

F (x, u)
dφk(x)

dx
dx = 0,

k = 0, 1, . . . ,K.(3)

We now replace the function u(x) in (3) by the approximate solution uh(x). The
DG discretization seeks for the approximation uh(x) to the solution u(x) such that
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uh(x) is a piecewise polynomial function over Ω. The approximate solution uh(x) is
expanded on the cell ei as

uh(x) =

K∑
k=0

ukφk(x), k = 0, 1, . . . ,K, x ∈ ei.(4)

Since uh(x) is discontinuous at cell interfaces, (3) considered for the solution
uh(x) requires us to define numerical flux F̃ (uh). Suppose that the flux F̃ (uh), which
generally depends on the two values of the approximate solution at any grid point, is
chosen for a given problem. Then the DG discretization scheme reads

F̃ (uh(xi+1))φk(xi+1) − F̃ (uh(xi))φk(xi) −
∫ xi+1

xi

F (x, uh(x))
dφk(x)

dx
dx = 0,

k = 0, 1, . . . ,K.(5)

For steady state problem (1), (2), the DG space discretization over the grid results
in the following system of nonlinear equations:

R(u) = 0,(6)

where the vector R(u) is the residual of the DG method given by (5) on each grid cell
and u is the solution vector. We use Newton’s iteration method to solve the nonlinear
equations (6). Let un and un+1 be the solution vector at the nth and (n+1)th solution
iteration, respectively. Then the linearized system is

J(un)(un+1 − un) = −R(un),(7)

where the Jacobian matrix J(u) = [∂R/∂u] and residual R(u) are taken from the nth
iteration. The GMRES algorithm [12], [2] is used to solve numerically the algebraic
system of linear equations obtained at each Newton iteration.

In the remainder of our paper we discuss oscillations appearing in solution (5), (7).
One important observation about the DG scheme is that for the steady state problem
(1), (2) the solution on the ith grid cell impacts on the solution on neighboring cells
only by means of the numerical flux F̃ (uh). Hence, the two possible ways of the
excitation of oscillations at the nth Newton iteration are as follows.

1. The numerical flux required to define the DG discretization on the cell ei
is correct, but the approximate solution on the cell does not converge in
a particular norm. That may happen, for instance, when a discontinuity
presented in the cell is approximated by smooth function (4). The solution
overshoots arising as a result of such approximation are local and do not affect
the solution on other cells.

2. The numerical flux is not correct on the ith cell. The incorrect flux approxi-
mation produces solution oscillations that will propagate over the domain at
the next Newton iterations and result in a divergent solution.

While local limiters can be successfully used to smooth the local solution overshoots,
another approach is required to recognize and eliminate the spurious oscillations prop-
agating over the grid. That approach will be discussed below.

3. The numerical flux in steady state problems. In this section, we address
a numerical flux used in the formulation of the DG discretization. Usually, oscillations
arising in the approximate solution are associated with solution discontinuities. Thus,
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our aim is to verify the definition of the numerical flux and demonstrate that the
oscillations may appear for a smooth solution as well as a discontinuous function.

We begin our consideration with a simple example of (1) that illustrates the
problem. Let the flux F (x, u) be

F (x, u) = p(x)f(u), p(x) =
1

((x− x0)(x− x1))
2 , f(u) = (u−A)2.(8)

The problem parameters x0, x1, and A and the boundary condition are chosen to
provide a smooth solution to the problem

U(x) = A + C(x− x0)(x− x1), x ∈ [0, 1],

where C is a constant. Namely, we take A = 1.0, C = −1.0, x0 = −0.5, and x1 = 1.5,
so that bifurcation points x = x0 and x = x1 lie outside the domain of computation.
The boundary condition is ∫ 1

0

u(x)dx = B,(9)

where the value B is defined by integrating the exact solution with the parameters
above.

The model problem (1), (8) is numerically solved by using the DG discretization
approach. We choose the Engquist–Osher definition [10] to approximate the flux
at grid interfaces. Let ul and ur be the left and right states at the interface xi,
respectively. The numerical flux reads

F̃EO(ul, ur) =

∫ ur

0

min(F ′(s), 0)ds +

∫ ul

0

max(F ′(s), 0)ds + F (0).(10)

For the problem (8), the flux has a single extremum point, u = A. Hence, the
numerical flux (10) is as follows:

f̃(ul, ur) =

⎧⎪⎪⎨
⎪⎪⎩

f(ul), ul > A, ur > A,
f(ur), ul < A, ur < A,
f(A), ul < A, ur > A,
f(ul) + f(ur) − f(A), ul > A, ur < A.

(11)

The numerical experience with the problem shows that the convergence of the
Newton method depends strongly on the choice of initial guess. Consider a sine wave
function

u0(x, s0) = sin(2πx) + s0,

where s0 is a parameter. Let us consider sI
0 = 2.3 and sII

0 = 1.8. For the initial guess
uI

0 = u0(x, s
I
0), the flux f(u) is a monotone function over the domain of definition

u0 ∈ [uI
min, u

I
max]. For the function uII

0 = u0(x, s
II
0 ), we have uII

min < A, uII
max > A,

so that the flux approximation is required at the extremum point u = A at the first
Newton step.

Although the curves uI
0 and uII

0 are close to each other, i.e., ||uII
0 − uI

0||L∞ =
|sII

0 − sI
0|, x ∈ [0, 1], the convergence results are quite different for the two functions.

Starting with the initial guess uI
0, Newton’s method rapidly converges to the approxi-

mate solution uh(x). The convergence results obtained on a sequence of uniform grids
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confirm the consistency of the approximation (5), (11). In particular, the DG scheme
with polynomial degree K = 2 provides a precise reconstruction of the quadratic
function U(x). Meanwhile, the choice of uII

0 as initial guess for the problem results in
a divergent solution for any polynomial degree K > 0.

Let us look more closely at the numerical flux used in the problem. For a scalar
flux function, the definition of the numerical flux is essentially based on the analysis of
the flux derivative, the results of which depend on how the solution variation ur − ul

is determined. In the definition (10), the solution variation is assigned to the grid
interface xi, ul = uh(xi − 0), ur = uh(xi + 0). In other words, the definition (10)
implies that the flux variation is due only to the solution variation at grid interfaces,
i.e., F (u) = const within a grid cell. Evidently, this assumption will be correct if
the approximate solution is constant over each cell. Meanwhile, for a high order DG
discretization scheme the approximate solution varies in the domain [xi, xi+1]. The
solution variation δuh = uh(xi+1 − 0) − uh(xi + 0) may generate a flux extremum at
the interior point of the cell ei, while the flux remains a monotone function at both
interfaces xi and xi+1. Below we compare flux approximation in a piecewise constant
and a higher order DG discretization and demonstrate that for a high order scheme,
considering a flux as a monotone function at the interfaces of the cell where the flux
extremum is located may lead to incorrect DG approximation.

As an example of a high order DG scheme, let us consider a piecewise linear
approximate solution

uh(x) = u0 + u1φ1(x), x ∈ ei.

Since a DG discretization with polynomial degree K results in K+1 unknown solution
values (degrees of freedom) per cell, two DG equations (5) per cell must be employed
for a piecewise linear solution. Those equations are a discrete conservation law,

p(xi+1)f̃(ul, ur) − p(xi)f̃(ul, ur) = 0,(12)

and the momentum equation,

p(xi+1)f̃(ul, ur) −
1

hi

∫ xi+1

xi

p(x)f(uh(x))dx = 0.(13)

For the purpose of further discussion it is more convenient to define the DG
discretization on a given cell in terms of the solution values rather than the solution
derivatives in the expansion (4) (see [13] for more details). We now introduce the
notation ul

i and ur
i for the left and right solution states at the interface xi, respectively.

Then the values ur
i and ul

i+1 are defined by the piecewise linear function uh(x) on a
given cell ei. The evident transformation

ur
i ≡ uh(xi + 0) = u0, ul

i+1 ≡ uh(xi+1 − 0) = u0 + u1,

allows one to consider left and right solution states as unknown degrees of freedom
for a piecewise linear solution.

The flux approximation in the DG equations at the first Newton step is illus-
trated in Figure 1 for a piecewise constant and a linear approximate solution. The
flux function f(u) = (u − A)2 is shown in the (u, f(u))-plane in Figure 1(a)–(b).
The solution degrees of freedom are stationed at the u-axis, and the solution values
required to approximate the flux at cell interfaces are displayed as black dots. The
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Fig. 1. (a)–(b) The numerical flux near the extremum point for the problem (1), (8). (a) The
numerical flux for the piecewise constant approximate solution. All degrees of freedom are involved
in the flux approximation. (b) The flux approximation for a piecewise linear DG solution. Both
degrees of freedom are not involved in the flux approximation on the cell where the flux extremum
is located. (c)–(d) The DG discretization in the (x, uh(x))-plane. (c) Piecewise constant solution
approximation captures the flux extremum. (d) Higher order solution approximation misses the
extremum point inside the grid cell.

corresponding values of the numerical flux (10) at grid interfaces are shown at the
curve f(u). In the figure, the flux approximation is presented in the vicinity of the
cell ei1 : ur

i1 > A, ul
i1+1 < A. In other words, the initial guess is a decreasing function

near the extremum point, and the solution states at the grid interfaces corresponding
to greater values of u are shown at the left from the extremum point u = A.

The flux approximation for the piecewise constant approximate solution (one
degree of freedom per cell) is presented in Figure 1(a). It can be seen from the figure
that, according to the definition (10), a discrete conservation law (12) involves one
unknown solution value per cell. In other words, the number of DG equations to be
solved over the grid is equal to the number of unknown solution values, as all degrees
of freedom are involved in the flux approximation.

Now we look at the flux approximation in a piecewise linear DG scheme shown
in Figure 1(b). Let flux be a monotone function over a given cell ei. Again the DG
equation (12) requires one degree of freedom per cell to balance the monotone fluxes
at the left and right cell interfaces. That degree of freedom is chosen to provide the
upwind discretization; i.e., we take ur

i for df(u)/du < 0 or ul
i+1 for df(u)/du > 0 to

approximate the flux. A second degree of freedom on the cell is not involved in the
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discrete conservation equation (12), and thus another equation is required to define the
second unknown solution value on the cell. This equation appears as the momentum
equation (13) in the DG scheme. Hence, there are two DG equations for two unknown
solution values on any cell where the flux is a monotone function through the cell.

The situation is different, however, on the cell where the flux extremum is located
at the interior point. Now both degrees of freedom on the cell are not involved in the
flux approximation, as the definition of the numerical flux concerns only the solution
on the adjacent cells. Namely, we have ul

i1 > A, ur
i1 > A at the left cell interface, so

that the upwind flux is f(ul
i1). Meanwhile, ul

i1+1 < A, ur
i1+1 < A, and the numerical

flux is f(ur
i1+1) at the right cell interface.

The DG equations on the cell ei1 are illustrated in the (x, uh(x))-plane in Fig-
ure 1(c)–(d) for a piecewise constant and a linear discretization, respectively. Again,
the solution values required to define the flux at the interfaces of the cell ei1 are
shown as black dots. It can be seen from the figure that for the piecewise constant
DG discretization, displayed in Figure 1(c), the extremum point at the interface is
taken into account in the definition of the numerical flux. The discrete conservation
law reads

p(xi1+1)f(ur
i1+1) − p(xi1)(f(ul

i1) + f(ur
i1) − f(A)) = 0.

For the linear approximate solution, shown in Figure 1(d), the “phantom” solution
on the cell ei1 is not involved in the flux definition. The discrete conservation law is

p(xi1+1)f(ur
i1+1) − p(xi1)f(ul

i1) = 0,(14)

where ul
i1 = uh(xi1 − 0) and ur

i1+1 = uh(xi1+1 + 0) are the solution unknowns on the
adjacent cells.

Thus, we still need two equations to define the unknowns (ur
i1, u

l
i1+1), while the

DG discretization provides us with only one more equation that involves the unknowns
on the cell ei1. Let us also note that, by the definition of the numerical flux (10), the
unknowns (ur

i1, u
l
i1+1) on the cell ei1 are not required for the discretization on neigh-

boring cells (see Figure 1(b)), and thus the number of DG equations to be solved over
the grid is not equal to the number of unknown solution values for a piecewise linear
solution. This indicates that the solution should be reduced to piecewise constant ap-
proximation on the cell ei1 in order to avoid the underdetermined system of equations
over the grid. In other words, the number of degrees of freedom is excessive on the
cell ei1, and only one of them should be used for the discretization.

The same conclusion can be made in the case of a DG discretization with any
polynomial degree K > 0. For instance, a piecewise quadratic approximation K = 2
results in three unknown values per cell. Instead of coefficients (u0, u1, u2) in the
expansion (4), these unknowns can be defined as ur

i , ul
i+1, and um

i , where um
i =

uh(xm), xm = 0.5(xi +xi+1). Again, the discrete conservation law (12) on the cell ei1
does not require any of these degrees of freedom, as only the solution on adjacent cells
is concerned, and thus we have two equations per cell to find three unknown values.

Consequently, solving the underdetermined system of equations arising as a result
of a high order DG discretization leads to a singular Jacobian in the Newton method.
For a piecewise linear solution, let us define a local Jacobian jk1k2

= [∂Rk1
/∂uk2

]
by linearizing the two DG equations on the cell ei1. Here the local index k1 = 0, 1
is related to the DG residual on the cell, while the local index k2 = 0, 1 refers to
the corresponding degree of freedom from the set (ur

i1, u
l
i1+1). Then the first row

in the 2 × 2-matrix jk1k2
has only zero entries, as we have j00 ≡ ∂R0/∂u

r
i1 = 0 and
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j01 ≡ ∂R0/∂u
l
i1+1 = 0 for the residual R0 defined by (14). Hence, the rank of the

local Jacobian is rank(jk1k2
) = 1 < dim(jk1k2

) = 2, and by reordering the rows and
columns we can obtain a zero column in the matrix jk1k2 .

We now consider the matrix jk1k2 as the block Jlm of the Jacobian J of the
linearized system (7). The global indices for the block entries are l = k1 + M1 and
m = k2 + M1, where M1 = 2 i1 − 1. Since the definition (10) provides the exact flux
splitting for the problem, we have the Jacobian entries JlM1 = 0, JlM1+1 = 0, ∀l :
l < M1 or l > M1 + 1. On the other hand, it follows from the above consideration
that the rows and columns of the Jacobian matrix can be reordered to provide

JlM1 = 0, l = M1,M1 + 1,

while we still have JlM1 = 0, ∀l : l < M1 or l > M1 + 1 in the reordered matrix.
Hence, a zero column appears in the Jacobian of the system (7). The singular Jacobian
leads to an incorrect transient solution (whose appearance depends strongly on the
robustness of the GMRES solver used in the problem). That solution, in turn, will
impact on the flux at the next Newton iterations, so that the oscillations will rapidly
propagate over the domain resulting in the divergence of the method. Let us also
notice that a similar analysis can be carried out for a DG discretization with any
polynomial degree K > 0 to demonstrate that a singular Jacobian will appear in the
problem, if the number of unknowns on the cell exceeds the number of equations.

The above results bring us to the conclusion that the nature of oscillations arising
in the steady state problem (8), (9) is different from that appearing in approximate
solution to hyperbolic conservation laws. In the latter case the oscillations arise
near a solution discontinuity, and the approximation implies a well-defined numerical
flux over the computational domain. Now the numerical flux f̃(u) is not a correct
approximation to the flux function f(u) at the extremum point, while the solution
remains a smooth monotone function near the flux extremum.

We are now going back to the problem (8). The above analysis reveals that a high
order approximate solution should be reduced to a piecewise constant approximation
near a flux extremum in order to avoid nonphysical oscillations in the problem. If
the flux extremum generates a “phantom” solution on a given grid cell ei (i.e., the
number of unknowns exceeds the number of equations on the cell) at the nth Newton
iteration, then we compute ū = 1

hi

∫ xi+1

xi
uh(x)dx and define the approximate solution

on the cell ei as uh(x) = ū. The equations

p(xi+1)f̃(uh) − p(xi)f̃(uh) = 0, k = 0,
uk = 0, k = 1, . . . ,K,

are then considered on the cell ei to obtain the solution at the (n + 1)th Newton
iteration. A modified DG discretization allows one to obtain the convergent solution
with the polynomial degree K > 0 for the function uII

0 (x) considered as the initial
guess.

Finally, let us mention that the problem of flux approximation in a high order DG
discretization cannot be completely solved by considering another numerical flux in a
problem. The discussion in this section demonstrates that the number of degrees of
freedom should be equal to the number of equations on each grid cell in a high order
DG scheme. Hence, many of the upwind fluxes which provide exact flux splitting at
the flux extremum point are hardly appropriate for a high order discretization, as
they do not meet the requirement above. For instance, the Godunov flux is defined
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as

F̃G(ul, ur) =

⎧⎨
⎩

min
ul≤u≤ur

F (u) if ul ≤ ur,

max
ul≤u≤ur

F (u) otherwise

for the left state ul and right state ur at a given grid interface. It can be seen
from the flux definition that the Godunov flux presents us with the same problem as
the Engquist–Osher flux (10). Since the discrete conservation law does not involve
the solution near the extremum for a high order DG discretization, the number of
unknowns exceeds the number of equations on the cell, where the extremum point is
located. On the other hand, the space-centered fluxes, such as the local Lax–Friedrichs
flux,

F̃LLF (ul, ur) =
1

2
[F (ul) + F (ur) − C(ur − ul)],

C = max
min(ul,ur)≤s≤max(ul,ur)

|F ′(s)|,

use both left and right solution states to approximate the flux, which makes the
number of degrees of freedom equal to the number of equations on each grid cell.
However, the space-centered fluxes cannot be considered a priori as a preferable choice
for a high order DG discretization, as the issues of accuracy also should be taken
into account. For instance, it is well known that the Lax–Friedrichs flux is more
dissipative than upwind fluxes, and thus it may not be acceptable for a problem under
consideration (e.g., see [14]). This makes the choice of a numerical flux in steady state
problems a complicated task which requires further study and discussion.

4. The numerical flux for time-dependent problems. Approximate Rie-
mann solvers have been successfully used many times in numerical solution of the
hyperbolic systems of conservation laws (e.g., see [7] and the references therein).
Thus, it is instructive to compare the results obtained for the steady state problem
above with the convergence of a nonlinear solver for a time-dependent problem. The
inviscid Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0(15)

is a well-known example of a nonlinear hyperbolic equation which provides us with a

quadratic flux function f(u) = u2

2 similar to that in (8). We solve (15) in the domain
x ∈ [0, 1] due to a periodic boundary condition. The initial condition is taken from
[3], where it has been chosen as a sine wave function,

u(x, 0) = u0(x) =
1

4
+

1

2
sin(π(2x− 1)).

The exact solution is smooth for any time T < 1/π, while the shock appears at later
times.

For numerical solution of the conservation law (15), a DG discretization in space
is combined with a backward Euler time integration scheme which results in a system
of nonlinear equations at each time step. This system is linearized in order to obtain
the solution at the upper time level. Notice that the choice of the initial condition
requires the flux approximation near the extremum point u = 0. Nevertheless, the
nonlinear solver provides a convergent solution at any time T > 0. An approximate
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Fig. 2. Exact and numerical solution to the Burgers equation. Smooth approximation to the
solution generates local oscillations at the shock for the DG solution with polynomial degree K > 0.
The solution overshoots can be eliminated by means of local limiters.

solution at T = 0.4 is shown in Figure 2 for DG discretizations with polynomial degree
K ≥ 0 on a uniform grid of 128 cells. Let us notice that the DG K = 1 and K = 2
approximate solutions oscillate near the shock. However, those oscillations are local
and can be eliminated by means of a limiting procedure [5].

The robustness of the nonlinear solver for the time-dependent problem (15) is
readily explained based on the analysis of the Jacobian matrix. Consider the conser-
vation law

∂u

∂t
+ Fx(x, u) = 0, x ∈ Ω.(16)

The semidiscrete formulation of (16) on the cell ei is∫
ei

∂u

∂t
φk(x)dx + RDG

k (u) = 0, k = 0, 1, . . . ,K,

where RDG
k (u) is the DG residual given by (5).

Let un and un+1 be the solution vector over the grid at time tn and tn+1 =
tn+Δt, respectively. After discretizing in time, the implicit scheme for the hyperbolic
equation (16) reads

M(un+1 − un) = −ΔtRDG(un+1),(17)

where positive diagonal matrix M is given by

Mkl =

∫
ei

φk(x)φl(x)dx, k, l = 0, 1, . . . ,K,

on each grid cell.
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The linearization of the residual vector yields the system of equations

J(un+1 − un) = −R(un).

The Jacobian matrix is

J =
M

Δt
+ JDG,

where JDG is the Jacobian of steady state problem (1), JDG = [∂RDG/∂u].

It can be seen from the above expression that the presence of mass matrix M
in the discretization ensures diagonal entries in the Jacobian, even if matrix JDG is
singular. Hence, the time derivative can be considered as a stabilization term for high
order DG discretizations.

5. The flux correction for steady state solutions. Lack of stabilization
terms in steady state problems makes it difficult to use Newton’s method for their
numerical solution. On the one hand, it has been demonstrated in section 3 of the
paper that an approximate Riemann solver may result in a singular matrix near the
flux extremum. On the other hand, to obtain a convergent solution it is not sufficient
to control the flux only near the extremum point. Below we demonstrate that a
general case, unlike a simple model problem considered above, requires flux control
on any grid cell.

Consider a scalar flux function F (u). Any smooth function F (u) that is not
monotone in the domain of definition yields a multivalued solution u(x) to the steady
state equation (1). (From a geometric point of view, this means that the solution
F (x, u) = C to (1) intersects the curve F (u) more than one time in the (u, F (u))-
plane.) For the boundary-value problem (1), (2), the uniqueness of the solution
is defined by a boundary condition.1 However, a transient solution may experience
jumps from one solution branch to another, until the basin of attraction is approached.
Those local bifurcations may change the sign of the derivative dF/du and produce
nonphysical flux extrema on the cell. As a result, a “phantom” solution appears on
the cell, which, in turn, leads to incorrect flux approximation and a singular Jacobian
in the problem.

The flux correction algorithm that we present in this section detects all flux ex-
trema over the grid. It is important to notice here that one should distinguish between
physical and nonphysical extrema in the problem. At the physical flux extremum, the
solution should be reduced to piecewise constant approximation, as the number of
degrees of freedom is not equal to the number of equations for a high order DG dis-
cretization. Nonphysical extrema appear in the regions where the flux should be a
monotone function. In this case it is sufficient to render the flux monotone on a given
cell, as the number of unknowns is equal to the number of equations on the cells where
the flux is a monotone function.

The topic of the treatment of physical flux extrema has been covered in section 3.
Below we discuss how to eliminate the nonphysical flux extrema in the problem. Let
us denote the extremum points of the function F (u) as u1, u2, . . . , uP−1. The domain

of definition of the variable u can be partitioned as Du =
⋃P−1

p=0 [up, up+1], where u0

1For a weak solution, additional constraints, such as the entropy condition (e.g., see [8]), are also
required to provide the uniqueness of the solution.
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and uP are the boundary points of the domain. Consider the values u(xi − 0) and
u(xi+1 + 0), i.e., the approximate solution taken from the adjacent cells at the left
and right interfaces of the cell ei. Each of these values lies between two extremum (or
boundary) points, u(xi− 0) ∈ [up, up+1], u(xi+1 +0) ∈ [uq, uq+1], where 0 ≤ p, q < P .
We now consider u(xi + 0) and u(xi+1 − 0), which are the boundary values of the
solution approximation in the cell ei. Our goal is to detect nonphysical flux extrema
within each grid cell. Instead of limiting the solution variation, we bound the flux
variation in the cell in order to eliminate the flux oscillations.

Namely, we require that

u(xi + 0) ∈ [up, up+1], u(xi+1 − 0) ∈ [uq, uq+1].

In other words, an approximate Riemann solver used in the problem must give the
same choice of the numerical flux for the solution considered at [ul = u(xi + 0), ur =
u(xi+1 − 0)] as for the interval [ul = u(xi − 0), ur = u(xi+1 + 0)].

From an algorithmic point of view, it is convenient to introduce the following
formal description of our approach. Let us denote the left and right solution states
at the interface xi as u1i and u2i, respectively. Given numerical flux F̃ (uh), we define
state vector si = (s1i, s2i)

T at each grid interface xi, i = 1, . . . , N + 1, as follows:

sli =

{
1 if uli is required to define F̃ (uh), l = 1, 2,
0 otherwise.

Once the state vector has been defined at each grid interface, the cell ei can be
described by state matrix Si,

Si =

[
s1 i s1 i+1

s2 i s2 i+1

]
,

where the columns of the matrix Si are state vectors taken at the left and right cell
interface, respectively.

The values u(xi − 0) and u(xi+1 + 0) define the main diagonal of the matrix Si,
while the u(xi + 0) and u(xi+1 − 0) define the off-diagonal entries. Hence, the flux
within the cell can be controlled by means of the matrix Si. In particular, it can
be easily seen that zero off-diagonal entries of the matrix indicate the “phantom”
solution, which yields incorrect flux approximation in the cell ei.

Below we illustrate our approach with a nonlinear boundary-value problem known
as the problem of mass flow in a convergent-divergent nozzle [1]. Let A(x) be the area
of the nozzle, A(x) = 1/2 + 2(x − 1/2)2, 0 ≤ x ≤ 1, and let u(x) be the velocity
deviation.

The conservation law is

dF (x, u(x))

dx
≡ d(A(x)m(u))

dx
= 0, x ∈ [0, 1],(18)

where the mass flux through the nozzle is given by

m(u) =
1

2
(1 − u2).(19)

The value us = 0 (sonic point) is a flux extremum point.
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Fig. 3. The nozzle problem. (a) The solution parametric field u(x,C). (b) A discontinuous
solution to the boundary-value problem (18), (9).

A solution to the problem (18) is multivalued. The solutions are given by

u1,2(x) = ±
√

1 − 2C

A(x)
,

where C is a constant. The solution parametric field u(x,C) is shown in Figure 3(a).
The value xs = 1/2 is a solution extremum point for any C �= 0 from the domain of
the definition of C.

The value C is a controlling parameter for the problem. Let us choose C = 1/4,
such that u(xs) = us and the point Ps = (xs, us) becomes the solution bifurcation
point. Then the solution may be discontinuous at the point xsh:

U(x) =

{
−
√

(1 − 1/2A(x)), 0 ≤ x ≤ xs or xsh + 0 ≤ x ≤ 1,√
(1 − 1/2A(x)), xs ≤ x ≤ xsh − 0.

(20)

Equation (18) is solved due to the boundary condition (9) which determines the
shock location xsh. Integrating the solution over the domain [0, 1] yields the following
algebraic equation with respect to the variable xsh:

I1 + I2(xsh) + I3(xsh) = B,

where

I1 = −
∫ xs

0

√
1 − 1/2A(x)dx, I2(xsh) =

∫ xsh

xs

√
1 − 1/2A(x)dx,

I3(xsh) = −
∫ 1

xsh

√
1 − 1/2A(x)dx.

Solving this equation for a given value of B, the shock location can be defined. If we
choose B = −0.25, then the shock will be located at xsh = 0.798074. The discontin-
uous solution U(x) is shown in Figure 3(b).
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Consider the approximate solution uh(x) at the interface xi. Given the left and
right states at the interface, the Engquist–Osher numerical flux is similar to that
in (11),

m̃(ul, ur) =

⎧⎪⎪⎨
⎪⎪⎩

m(ur), ul < 0, ur < 0 (subsonic case),
m(ul), ul > 0, ur > 0 (supersonic case),
m(0), ul < 0, ur > 0 (sonic case),
m(ul) + m(ur) −m(0), ul > 0, ur < 0 (shock case).

(21)

First, we use the standard DG approach to solve the boundary problem (18), (9).
The problem is solved on a sequence of uniform grids. The initial guess on the first
grid of eight nodes is chosen as u0(x) = const = −1.0. The initial guess for the next
finer grid is obtained by linear interpolation of the solution taken from a previous
grid. The results with the standard DG discretization are that Newton’s method fails
to obtain a convergent solution for any polynomial degree K > 0. Only a piecewise
constant discretization reconstructs the discontinuous solution U(x).

A DG discretization with polynomial degree K > 0 yields a singular Jacobian on
a shock cell. However, simple reduction to piecewise constant approximation near the
shock is not successful in the problem and results in a divergent solution. A more
thorough control of the numerical flux is required. For this purpose, we compute the
matrix Si on each grid cell ei, i = 1, . . . , N , at each Newton step. The definition (21)
gives us the following formal classification of the matrix Si:

Si =

[
0 s1 i+1

s2 i 1

]
(subsonic case), Si =

[
1 s1 i+1

s2 i 0

]
(supersonic case),

Si =

[
0 s1 i+1

s2 i 0

]
(sonic case), Si =

[
1 s1 i+1

s2 i 1

]
(shock case),

where s1 i+1 and s2 i may take the value 0 or 1.
Based on the analysis of the state matrix Si, the correction algorithm, which

eliminates nonphysical flux extrema for the problem (18), (9), is as follows.
1. Compute the solution uh(x) on the cell ei, i = 1, . . . , N , at the nth Newton

iteration. Compute the left and right states at each cell interface.
2. Compute the state matrix Si on the cell ei, i = 1, . . . , N , and define the type

of Si.
3. Mark the cell ei for linear interpolation if

3.1 s2i �= 1 or s1 i+1 �= 0 for subsonic Si,
3.2 s2i �= 0 or s1 i+1 �= 1 for supersonic Si,
3.3 s2i = 0 and s1 i+1 = 0 for sonic Si, or
3.4 Si is a shock state matrix.

4. If the cell is marked for linear interpolation, then define the approximate
solution on the cell ei as

ulin
h (x) = u1i + (u2 i+1 − u1i)φ1(x).

5. For shock cell ei, define the approximate solution on the cell ei as

uc
h(x) =

1

hi

∫ xi+1

xi

ulin
h (x)dx.

6. Use the interpolated (piecewise linear or constant) solution on the marked
cells to obtain uh(x) at the next Newton iteration.
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Fig. 4. Examples of nonphysical flux extrema in the problem (18), (9). (a) The subsonic solution
overshoot produces a sonic point and a shock at the cell interfaces. (b) The sonic solution overshoot
produces a shock at the interior point of the cell and another sonic point at the cell interface.

The above algorithm traces flux extrema over the grid for a transient solution
at each Newton iteration. For the subsonic and supersonic cases, i.e., in the regions
where the flux m(u) is a monotone function, it is sufficient to control off-diagonal
entries of Si to ensure that there is no local bifurcation in the cell. We require that
a transient solution generates the state matrix on the cell ei as follows:

Si =

[
0 0
1 1

]
(subsonic case), Si =

[
1 1
0 0

]
(supersonic case).

Let, for instance, the “subsonic” matrix be

Si =

[
0 1
0 1

]
.

This matrix is related to the solution shown in Figure 4(a). The matrix Si indi-
cates that a local solution overshoot appears on the cell ei. That overshoot produces
two nonphysical flux extrema (a sonic point and a shock) which must be eliminated.
For this purpose, we linearly interpolate a transient solution on the cell ei between
the points u(xi − 0) and u(xi+1 + 0) (see Figure 4(a)).

For the sonic case, we must eliminate the state matrix

Si =

[
0 0
0 0

]
,

which indicates a “phantom” sonic solution. Again, the solution on the cell ei will be
linearly interpolated between the points u(xi−0) and u(xi+1 +0) if a sonic cell yields
the above matrix (see Figure 4(b)). The other “sonic” matrices are legal. The matrix
Si, which has s1 i+1 = 1 and s2 i = 1, corresponds to the sonic point inside the cell ei,
while the other two matrices indicate the sonic point at the interface.

As it has been earlier discussed, the linear solution interpolation between the
points u(xi − 0) and u(xi+1 + 0) is not sufficient for the shock. The interpolated
solution eliminates nonphysical flux extrema on the cell, but it remains “phantom”
in the presence of the shock. In other words, the number of degrees of freedom is
not equal to the number of equations on the shock cell for the interpolated solution.
Thus, in our algorithm we reduce the solution to piecewise constant approximation
at the shock.
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Table 1

The number N of Newton iterations required to converge on a given grid. Nc is the number of
grid cells.

N(K,Nc) : Nc = 8 Nc = 16 Nc = 32 Nc = 48 Nc = 64

K=0 9 5 4 3 4
K=1 9 5 5 4 4
K=2 10 5 5 4 4
K=3 10 5 4 4 4

number of DOF’s

|
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Fig. 5. Numerical solution to the problem (18), (9). (a) An example of the DG solution (poly-
nomial degree K = 3) on a coarse and a fine grid. Nc is the number of grid cells. (b) Convergence
history for the DG solution with polynomial degree K ≥ 0.

The correction procedure allows one to obtain convergent solutions for DG K > 0
discretization schemes. Once the flux correction has been performed, the Newton
method rapidly converges to the approximate solution. The number of Newton iter-
ations required to converge on a given grid is displayed in Table 1 for the polynomial
degree K ≥ 0.

The approximate DG solution with polynomial degree K = 3 obtained by the
flux correction is shown in Figure 5(a) on a coarse uniform grid of 16 cells and a fine
grid of 128 cells. According to the correction algorithm, the shock is smeared over
two adjacent grid cells, as an uncorrected solution has the shock at the grid interface
at the final Newton step.

The convergence history on a sequence of uniform grids is plotted in Figure 5(b)
for polynomial degree K ≥ 0. The L1-norm of the solution error,

||err||L1 =

∫ 1

0

|U(x) − uh(x)|dx,

is computed in regions where the solution is smooth (i.e., grid cells, which produce
a shock state matrix, are not taken into account). The error norm is shown in the
logarithmic scale. It can be seen from the convergence plots that the suggested algo-
rithm keeps the order of approximation. The polynomial degree of the approximate
solution is reduced only for a transient solution at the current Newton step. Once
the solution is correct, the original polynomial degree will be restored on the cell
at the next iterations. This approach allows one to obtain the optimal order of the
convergence for high order DG discretizations.
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6. Concluding remarks. We have considered high order DG schemes for steady
state solutions. It has been shown that flux approximation near extremum points
may generate spurious solution oscillations. Physical flux extrema require careful
treatment to avoid a singular Jacobian in a steady state problem. Besides, false flux
extrema may appear in a transient solution, when Newton’s method is used to solve
the problem. A high order DG discretization needs flux monitoring over each grid cell
in order to eliminate nonphysical flux extrema.

The requirement of careful flux approximation makes Newton’s method hardly
appropriate for those steady state problems which do not have stabilization terms
(e.g., diffusion and/or source terms) providing nonzero diagonal entries in the Jaco-
bian. Although the flux control algorithm presented in the paper allows one to avoid
a singular matrix in the one-dimensional case, it does not seem to always be efficient
for multidimensional problems, where the construction of the state matrix on each
grid cell becomes a complicated task.

The results of our paper confirm that a reasonable alternative to Newton’s method
is to use a time marching approach in order to obtain a steady state solution. It has
been discussed in the paper that the time derivative can be considered as a stabi-
lization term for high order DG schemes. However, an ill-conditioned Jacobian may
appear at the end of the time stepping process when we approach “quasi-Newton”
iterations. Thus, care should be taken of the flux approximation even in the case
that a time stepping algorithm is used, and the issue of the numerical flux for
high order DG discretizations requires further study when steady state problems are
considered.
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