
MODIFICATION OF A FINITE VOLUME SCHEME FOR LAPLACE’S
EQUATION∗

N. B. PETROVSKAYA†

SIAM J. SCI. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 3, pp. 891–909

Abstract. For Laplace’s equation, we discuss whether it is possible to construct a linear positive
finite volume (FV) scheme on arbitrary unstructured grids. Dealing with the arbitrary grids, we state
a control volume which guarantees a positive FV scheme with linear reconstruction of the solution.
The control volume is defined by a property of the analytical solution to the equation and does
not depend on the grid geometry. For those problems where the choice of the control volume is
prescribed a priori, we demonstrate how to improve positivity of the linear FV scheme by using
corrected reconstruction stencils. The difficulties arising when grids with no geometric restrictions
are used for the discretization are discussed. Numerical examples illustrating the developed approach
to the stencil correction are given.
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1. Introduction. A discrete Laplace operator is often considered to be a good
model for investigating a discretization of partial differential equations which contain
diffusion operator ∇·(D∇). Two important examples are given by convection-diffusion
equations and Navier–Stokes equations with possible applications that include the
problems of fluid dynamics, chemical engineering, and environmental pollution. For
the numerical solution of these equations, what is desirable are discretization schemes
which satisfy a discrete maximum principle (monotone schemes); otherwise one can
expect strong oscillations or even divergency of the solution.

There are two possible approaches for development of monotone schemes on un-
structured grids. The first approach is to use the grids with some geometric constraints
on the triangulation. It is well known that triangulations with no obtuse triangles
allow us to construct monotone schemes. The relevant examples are given in [6, 11].
However, nonobtuse triangulations can be used on very few practical problems. In
the process of the grid generation it is often required to resolve some complicated
features of the problem geometry that makes strict angle control to be difficult.

Looking for a wider class of triangulations, in the two-dimensional case a Delaunay
triangulation [10] is very attractive. For Laplace’s equation, in the two-dimensional
case the Delaunay triangulation provides positivity (that guarantees the discrete max-
imum principle) of the linear finite element/finite volume scheme (Barth [3]). This
important property may be applied for the solution of a wide range of problems,
even more general than discretization of the Laplace equation. For instance, Xu
and Zikatanov [17] developed a linear monotone finite element scheme for convection-
diffusion equations in any spatial dimension. To obtain a positive discretization of
the diffusion operator they assumed the restrictive geometrical conditions which in
the two-dimensional case mean that the triangulation is a Delaunay triangulation.
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Sakovich [16] used a Delaunay triangulation to control the grid quality for the con-
struction of the monotone scheme for the system of two-dimensional conservation
laws. In [16] the Laplace equation has been discretized first on the Delaunay grid.
The coefficients of this discretization have then been exploited to obtain grid quality
functional for the unstructured grids considered in the work.

Although giving us all advantages of using monotone schemes, for many complex
geometries (e.g., multicomponent airfoil configuration) the Delaunay triangulation
does not provide grids optimal in the sense of the accuracy of the solution. In partic-
ular, the Delaunay triangulation does not control the maximum angle, so that nearly
collapsed triangles may appear as the result of grid generation (Barth [4]). On the
other hand, for the equations mentioned above, grid adaptation to the solution usually
results in non-Delaunay meshes, while fully automatic generation of adapted Delau-
nay grids is a technically difficult task for many practical applications. That is why
another approach appears, where the grids with no geometric restrictions are allowed
for the discretization. In the present work, an effort has been made to investigate
whether it is possible to construct a linear positive finite volume (FV) scheme for the
Laplace equation on arbitrary unstructured grids. We demonstrate the impact of grid
geometry on the quality of the FV scheme and discuss to what extent arbitrary grids
are good for the positive discretization.

When dealing with the arbitrary grid cells, it has been shown many times that
for linear FV schemes a proper choice of the control volume allows us to improve the
results of the discretization both on the structured and unstructured grids. Barth
and Linton [5] successfully used the containment dual volume instead of the median
dual on stretched triangulated quadrilateral grids to compute viscous flows. Having
applied the viscous term discretization to the Laplace operator, Delanaye et al. [8]
showed that a correction of the diamond-shaped control volume on Cartesian grids
leads to the more positive scheme and obtained a robust discretization of the viscous
terms in Navier–Stokes equations. Putti and Cordes [13] have proposed a modification
of the control volume that allowed them to obtain the positive discretization of the
Laplace equation on three-dimensional Delaunay meshes. In all these cases the choice
of the control volume has been dictated by the geometry of grid cells.

In the present paper we show that it is possible to derive a convex control volume
which guarantees a positive FV scheme for the Laplace equation and does not depend
on the grid geometry. A property of the analytical solution to the equation is taken
into account for the construction of the control volume. Since a maximum principle is
exploited to obtain the solution on the central node of a cell, the produced FV scheme
is entirely positive on any two-dimensional unstructured mesh.

For those practical applications where the geometry of the control volume is
prescribed by some a priori conditions, we discuss how to improve the measures of
positivity of the linear FV scheme on non-Delaunay meshes. Based on the analysis
of the grid cell geometry, the stencils used for the linear reconstruction are corrected
to obtain a more positive scheme. For some triangles, additional nodes of the trian-
gulation are included into the stencils, while “far” stencil nodes generating negative
scheme coefficients are eliminated from the discretization. This correction technique
gives good results, producing a linear “quasipositive” FV scheme on the arbitrary
meshes.

The results obtained in the work lead us to a better understanding of the diffi-
culties one may expect discretizing the Laplace equation on arbitrary meshes. The
limits of using grids with no geometric restrictions for the positive discretization are
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Fig. 1. The geometry of an FV scheme for Laplace’s equation.

discussed in the conclusions.

2. Control volume for the discrete Laplace operator. We consider Laplace’s
equation with Dirichlet boundary conditions in the unit square Ω̄:

∆u(x, y) ≡ ∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0, (x, y) ∈ Ω = (0, 1) × (0, 1),

u(x, y) = g(x, y), (x, y) ∈ ∂Ω.
(1)

Let a triangulation T be the union of all triangles ti, i = 1, . . . , N, incident to a central
node 0 (see Figure 1). To obtain an FV discretization of (1) on node 0, the contour
integral ∮

∂Vdual

∂u(x, y)

∂n
dl = 0(2)

is calculated over the edges of a control volume Vdual according to Green–Gauss

theorem. For calculating ∂u(x,y)
∂n =(∇u,n) in (2) a linear reconstruction of the solution

u(x, y) in each triangle ti is used:

ui(x, y) = ai0 + ai1x + ai2y.(3)

A standard stencil for the linear reconstruction in triangle ti includes three nodes of
the triangle. Expansion coefficients aik, k = 0, 1, 2, in triangle ti are calculated by the
condition

ui(xk, yk) = u(xk, yk) ≡ uk.

After calculation ∂u(x,y)
∂n and summation over all dual edges, the discrete Laplace

operator on central node 0 is written as a weighted sum of nodal values un of the
solution u(x, y):

L(u) ≡
NT∑
n=0

ωnun = 0,(4)
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where NT is the number of the nodes of the triangulation. The requirement of non-
negativity

ω0 < 0, ωn ≥ 0, n = 1, . . . , NT ,

NT∑
n=0

ωn = 0(5)

guarantees a maximum principle, which must hold for the discrete Laplacean (4) to
provide stability and uniform convergence.

For the standard FV scheme (4) coefficients ωn depend on what control volume
Vdual is used for the discretization. A possible choice is a median dual or a centroid
dual. The discretizations obtained over these control volumes are consistent and
conservative, but they are not positive on arbitrary triangulations. Below we consider
the following problem: For arbitrary triangulation T , find a control volume VL which
provides conditions (5) for the scheme (4).

Let r0 = (x0, y0) be a radius-vector of central node 0: u(r0) = u0. An analytical
expression for the solution to the Laplace equation in point r0 is

u(r0) =
1

2πR

∫
CR

u(x, y)dl,(6)

where CR is the circumference of radius R, the circle center being point r0. Since
triangulation T may contain boundary edges, the value R is restricted by the require-
ment CR ⊂ T to provide u(x, y) being a harmonic function inside the circle CR. Note
that formula (6) expresses a maximum principle for Laplace’s equation.

We calculate integral (6) assuming the linear reconstruction (3) of the solution.
Substituting (3) into (6) and integrating over a circle arc Ai, we obtain the integral
term for triangle ti:

1

2πR

∫
Ai

u(x, y)dl =
1

2πR

∫
Ai

(ai0 + ai1x + ai2y)dl

=
1

2πR

∫ φi
2

φi
1

(ai0 + ai1x0 + ai2y0 + ai1R cosφ + ai2R sinφ)Rdφ

= u0
δφi

2π
+

R

2π
[ai1(sinφi

2 − sinφi
1) − ai2(cosφi

2 − cosφi
1)],

where φi
1 and φi

2 are the arc angles and δφi = φi
2 − φi

1. The summation over all
triangles yields

u0 =
u0

2π

N∑
i=1

δφi +
R

2π

N∑
i=1

[ai1(sinφi
2 − sinφi

1) − ai2(cosφi
2 − cosφi

1)].

Noting that
∑N

i=1 δφi = 2π, the following condition for a discrete Laplace operator
with the linear reconstruction appears:

N∑
i=1

[ai1(sinφi
2 − sinφi

1) − ai2(cosφi
2 − cosφi

1)] = 0.(7)

Since ∇ui = (ai1, a
i
2) and ni+1/2 = (sinφi

2,− cosφi
2), where ni+1/2 is the unit normal

vector for an interior edge ei+1/2, condition (7) takes the following form:

N∑
i=1

(∇ui,ni+1/2 − ni−1/2) = 0.(8)
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Now let us consider a control volume VL defined as a convex polygon created by
connecting in every triangle ti the endpoints of arc Ai (see Figure 1). For control
volume VL, the difference ni+1/2−ni−1/2 gives a vector, normal to dual edge eiL. The
unit outward normal vector ni to edge eiL is calculated as

ni =
R

|eiL|
(ni+1/2 − ni−1/2);

therefore, a flux Φi across edge eiL is

Φi = |eiL|(∇ui,ni) = R(∇ui,ni+1/2 − ni−1/2).

Multiplying by R and taking into account that in the case of linear reconstruction
(3) the sum (8) is the result of the exact integration, formula (8) transforms into the
following: ∮

∂VL

∂u(x, y)

∂n
dl = 0.(9)

The above results show us that the calculation of the solution on the central node
of the triangulation by using formula (6) with condition (3) is equivalent to the linear
FV discretization over control volume VL. For the discretization over VL, maximum
principle (6) holds; therefore, scheme (4) is entirely positive on any two-dimensional
unstructured mesh.

3. Correction of the stencils used for linear reconstruction. The con-
struction of control volume VL provides us with the positive discretization. However,
on arbitrary grids the convex dual VL is not consistent with the grid cell geometry,
since gaps (or overlappings) appear in a convex dual mesh when stretched grid cells
are considered. Concerning the issue of positivity, our next purpose is to discuss
how far the geometry of the grid cells impacts on the discretization and whether it is
possible to obtain the positive discretization (4) over the given control volume which
completely covers domain Ω.

For the prescribed geometry of dual cell Vdual , the only way to render the fluxes
in (2) closer to those in (9) is to change the approximation of the gradients. The
following example illustrates the situation. Suppose a flux Φ1 obtained as a result of
the discretization on control volume VL in triangle ti is given as follows (index i is
omitted):

Φ1 = (a1n1 + a2n2)|eL|.
Now consider a control volume Vdual different from VL. Provided the same recon-
struction (a1, a2) of the gradient is used, the discretization on control volume Vdual

results in a flux Φ2:

Φ2 = (a1n
dual
1 + a2n

dual
2 )|edual|,

where ndual = (ndual
1 , ndual

2 ) is the unit vector, normal to control volume edge edual in
triangle ti. Evidently, if it is possible to find in every triangle ti the new approximation
of the gradient

āk = ak
nk|eL|

ndual
k |edual|

k = 1, 2,
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Fig. 2. The Delaunay correction: implementation of a circumcircle test to include close nodes
into the reconstruction stencil.

then the positive scheme is guaranteed.
Below we consider modifications of a standard FV scheme obtained by including

other nodes of the triangulation into the reconstruction stencils. In this case the fol-
lowing least squares problem is solved to calculate expansion coefficients ai in triangle
ti:

Ns∑
l=0

(ui(xl, yl) − u(xl, yl))
2 = min,(10)

where Ns is the number of stencil nodes, Ns > 3. Using extended stencils, it is possible
to change the values of ai in (2) and improve the discretization as a result. The crucial
question for such a correction of the reconstruction stencils is how to select additional
nodes.

Since a Delaunay triangulation provides a positive discretization on a dual cell
different from VL, the choice of convex polygon VL as a control volume is not a
necessary condition for the positive discretization. On the other hand, a simple linear
search of the triangulation nodes shows that for many triangulations there is a variety
of extended stencils providing a positive scheme. These facts allow us to suggest an
existence of a more than one way for the stencil correction.

Unlike the linear reconstruction on a 3-point stencil, where it is possible to state
exact conditions of positivity (cf. [3]), a strict geometric analysis of the scheme coef-
ficients in the case of using the least squares method is very laborious and can hardly
lead to production a fast and cheap algorithm for getting a positive scheme. That is
why our present intention is not to obtain a rigorous mathematical formulation but
to develop a reliable empirical approach to the selection of stencils.

The first possible way of stencil correction is based on the following hypothesis.
Consider triangulation T shown in Figure 2. Since it is intuitively clear that it would
be reasonable to include the closest to triangle ti node nc into the reconstruction
stencil in the triangle, the following question arises:

Given triangulation T , differential operator L[u], and polynomial basis set {Ψ}
for a linear reconstruction, what is measure M(T,L[u], {Ψ}) of proximity of stencil
nodes? In other words, what nodes can be considered as being close to reconstruction
stencil ti?
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Based on the theorem (Barth [3]), which states positivity of an FV scheme with
a linear reconstruction on Delaunay triangulations, we suggest that for the Laplace
operator the right answer to the above question is given by a circumcircle criterion
which is the unique characterization of the Delaunay triangulation (Joe [10]). Namely,
if node nc belonging to T lies inside the circumcircle of given triangle ti , it is consid-
ered as being close to the given triangle and should be included into reconstruction
stencil ti. In the general case, if the number k of triangulation nodes lie inside the
circumcircle, they are included into the stencil for the reconstruction in triangle ti by
using the least squares method. This way of the stencil selection we call the Delaunay
correction (DC).

For each grid node where the standard FV scheme is nonpositive, the algorithm
for the Delaunay correction may be written as follows:

1. Define triangulation T as a the union of all triangles ti, i = 1, . . . , N, incident
to the central node, and put all nodes of the triangulation (except of the central
one) into array T−nodes.

2. For each triangle ti ⊂ T , Do:
2.1. Define the reconstruction stencil Si as a set of triangle’s vertices.
2.2. Define circumcircle Ci.
2.3. Form array marked−nodes as a subset of the set T−nodes:
– For each node nk, 1 ≤ k ≤ NT , from the array T−nodes Do:
– If the circumcircle Ci contains the node nk And the node nk /∈ Si Then:
– Add nk to the array marked−nodes.
– EndDo

2.4. Include all nodes from the array marked−nodes into the reconstruction
stencil Si by using the least squares method.

3. EndDo
Now let us discuss another type of the grid cell geometry. For triangulation T

shown in Figure 3, there are no nodes obviously close to triangle ti. On the contrary,
node nf is so far from others that if we were allowed to reconnect the nodes of the
triangulation, it would be natural to connect node ni with node nl and remove nf

from T . Thus, another important for a proper correction of stencils question may be
formulated as follows:

Given triangulation T , differential operator L[u], and basis set {Ψ} for a linear
reconstruction , what nodes have no effect on a discretization of L[u]? In other words,
what nodes in ti can be considered as being far from any other reconstruction stencil?

To answer this question (“inverse” to the previous one), again consider formula
(6) for solution u0 on central node 0. We define the value Rmax as the maximum
radius which holds the requirement CR ⊂ T stated in the previous section (see Figure
3). Evidently, only those R which satisfy

R ≤ Rmax(11)

should be considered in (6). Due to inequality (11) we conclude that for the dis-
cretization of the Laplace operator a characteristic size of the triangulation is not the
maximum edge length but radius Rmax. To make certain that far node nf with the
edge length |ef | � Rmax is odd for the scheme on node 0, let us consider standard
FV scheme (4) on a median dual. According to [3], the coefficient ωnf

corresponding
to node nf is calculated as

ωnf
=

1

2

(
sin(αi + αl)

sin(αi) sin(αl)

)
,(12)
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Fig. 3. The gradient correction: elimination of a “far” node from the reconstruction stencil.

where angles αi and αl are depicted in Figure 3. It can be seen from the figure that
the more distant node nf is from the central node of the triangulation, the more
obtuse are the angles αi and αl. Obviously, the condition αi + αl ≤ π, necessary for
positive ωnf

, fails for far node nf .
To develop a correction technique for the stencils which contain node nf , consider

linear reconstruction (3) on a median control volume in triangle ti. Since the gradient
is constant in triangle ti, the value of ∂u

∂n in (2) is also constant at any point inside
the given control volume in ti

∂u

∂n
≈ ai1n

i
1 + ai2n

i
2 = const = Ci,(13)

where ni = (ni
1, n

i
2) is the unit vector, normal to a control volume edge ei. On the

other hand, by definition,

∂u

∂n
= lim

∆t→0

u(r0 + ∆tn) − u(r0)

∆t
,

and we approximately calculate ∂u
∂n at point r0 ∈ ti as

∂u

∂n
≈ u(r∗) − u(r0)

|r∗ − r0| ,(14)
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where r∗ = (x∗, y∗) is an interior point of triangulation T , point r∗ belongs to the
line, normal to edge ei, and u(r0) = u0. The linear reconstruction at point r∗ yields

u(r∗) − u(r0) = a∗0 + a∗1x
∗ + a∗2y

∗ − u0 = a∗1(x
∗ − x0) + a∗2(y

∗ − y0).(15)

Since the components of the normal vector may be calculated as

ni
1 =

x∗ − x0

|r∗ − r0| , ni
2 =

y∗ − y0

|r∗ − r0| ,

we obtain from (14) and (15)

∂u

∂n
≈ a∗1n

i
1 + a∗2n

i
2 = const = C∗.(16)

In “nice” triangle ti point r∗ ∈ ti; therefore,

a∗1 = a∗1(u0, u
i
1, u

i
2) = ai1, a∗2 = a∗2(u0, u

i
1, u

i
2) = ai2,

and the values Ci and C∗ are the same. In “bad” triangle ti point r∗ belongs to
another triangle tj (see Figure 3), where the gradient depends on the values uj

1 and

uj
2: a∗ = (a∗1, a

∗
2) = a∗(u0, u

j
1, u

j
2) = aj �= ai. In this case, when formula (13) is used

for calculating ∂u
∂n , a nonphysical flux across edge ei appears:

(
∂u

∂n

)
false

= C∗ − Ci= (a∗1n
i
1 + a∗2n

i
2) − (ai1n

i
1 + ai2n

i
2) = (aj1 − ai1)n

i
1 + (aj2 − ai2)n

i
2

= (∇ufalse,n
i),

where the false gradient (∇u)false is defined as the difference between the gradients
in triangles tj and ti, respectively. To improve the situation when false gradients
appear, we suggest in “bad” triangle ti to include stencil tj into the reconstruction in
ti by using the least squares method. Another even more radical way is to change the
stencil ti by stencil tj . These corrections change the value of the gradient in triangle
ti that may decrease the nonphysical flux. We refer to such a correction technique as
the gradient correction (GC). Numerical experiments show that for geometry T from
Figure 3 the gradient correction results in the positive scheme when the stencil points
from triangles tj and tm are captured to form extended stencils for triangles ti and
tl, respectively.

The idea of GC correction leads us to the following algorithm.
1. Define triangulation T and all control volume edges ei, i = 1, . . . , N.1

2. For each triangle ti ⊂ T , Do:
2.1 Define the reconstruction stencil Si as a set of triangle’s vertices.
2.2 Define point r∗ as a point of intersection between the line ei and the per-

pendicular dropped to the line ei from the central node of the triangulation.
2.3 Find a triangle tj point r

∗ belongs to.
2.4 If j �= i, include nodes of the triangle tj into the reconstruction stencil Si

by using the least squares method.
3. EndDo

1According to Green–Gauss theorem, it is possible to consider a segment ei created by connection
of the edge midpoints (see Figure 3) instead of treating two median segments in each triangle.
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Concerning practical realization of the suggested correction technique, there are
still some open questions. Thus for the Delaunay correction, it is unclear whether
or not the nodes which lie on a circumcircle boundary should be included into the
reconstruction. Similar questions arise in the implementation of the GC. For instance,
in the case when point r∗ comes to an edge of the triangulation it is possible to include
either one of the adjacent triangles or both of them into the stencil. Also, point r∗

may coincide with a grid node ng or lay outside domain Ω̄.
Since there is no strict mathematical foundation of the suggested algorithms, only

practical recommendations can be given for correct treatment of these cases. One
may find extended discussion based on our numerical experience with the correction
algorithms in [12].

To conclude this section, let us make some remarks on the possible implementa-
tion of the suggested algorithms. Considering the discretization of a given differential
operator on unstructured grids where stretched cells can appear, a most important
problem is how to indicate cells which are “bad” for the discretization. Although
the strict mathematical conditions based on error estimation are obtained for some
important cases (Babuška and Aziz [1]), and stretched triangular cells proved to not
always be bad (Rippa [14]), the general concept of “bad” or “nice” triangles requires
further analysis, its formulation depending upon what differential operator is consid-
ered and what discretization method is used. For the FV discretization of the Laplace
equation, the developed technique provides us with a kind of an empirical indicator
of the “bad”/“nice” triangle, as those triangles where the stencil correction is needed
may be considered as the “bad” ones.

4. Numerical results. The aim of this section is to present numerical validation
of the suggested ways of the stencil correction. Unfortunately, by now we are not able
to formulate precisely under what conditions each correction algorithm should be
implemented. That is why a combined approach is used to correct scheme stencils.
For those nodes where the standard FV scheme (4) is nonpositive, both DC and
GC scheme stencils are constructed. Then the stencil providing the least nonpositive
scheme is selected. This procedure may appear rather costly, but keeping in mind our
present purpose we do not discuss here a computational efficiency of the developed
algorithm.

To assess nonpositivity of the scheme coefficients we use a simple criterion taken
from the work (Coirier [7]). Let us rewrite (4) as

u0 =

NT∑
n=1

αnun,

where αn = −ωn/ω0. Then the value αmin

αmin =
min1≤n≤NT

(αn, 0)√∑NT

n=0
α2

n

NT

(17)

is a measure of positivity2 of the scheme coefficients for the given node u0. For
the nonpositive function αmin defined on the grid nodes we introduce the following

2The definition of αmin formally misses the case when ωn < 0 ∀n �= 0, ω0 > 0. In practice,
this case should be treated separately as it indicates strong degeneration of an FV volume cell. The
consideration of this situation is beyond the scope of the paper.
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Table 1
Positivity measures for standard (FV S) and corrected (CS) FV schemes with linear recon-

struction.

Grid αL1
min αC

min
FV S CS FV S CS

G1 −0.191 −9.6 · 10−3 −1.355 −0.354
G2 −0.126 −6.9 · 10−3 −3.593 −0.411
G3 −0.437 −2.42 · 10−2 −1.696 −0.377
G4 −0.188 −4.2 · 10−3 −1.587 −0.241
G5 −0.416 −3.45 · 10−2 −1.438 −0.412
G6 −0.485 −7.2 · 10−3 −1.602 −0.286

quantity:

αL1
min =

∑Ng

m=0 α
m
min

Ng
,

where Ng is the number of mesh nodes. The value αL1
min, as well as αC

min, where

αC
min = min

m
{αm

min},

are used to estimate nonpositivity of the discretization over the whole mesh. Evi-
dently, αL1

min = 0 for an entirely positive scheme.
What are reasonable values for the parameter αmin? Coirier [7] has investigated

a number of different stencils for an FV discretization of the Laplace equation on
adaptive Cartesian grids for further implementing to the Navier–Stokes equations. It
was found that schemes with αL1

min ∼ −10−1 ÷−10−2 are acceptable for calculating a

low Reynolds number laminar flow. At the same time the discretization with αL1
min ∼

−1.0 proved to be divergent. Delanaye et al. [8] have also considered a discrete
Laplacean on Cartesian meshes. They discovered that the value αL1

min = −1.62 leads

to the loss of the scheme stability. After stencil correction a new value αL1
min = −0.366

provided convergence to the solution. Based on these results, in our work we consider
stencils with αL1

min ∼ −1.0 to be strongly nonpositive.
Our first numerical experiment is to verify that the corrected scheme exhibits

better measures of positivity. A number of grids with various geometries of grid cells
have been generated to test suggested correction algorithms. Generating these “bad”
grids, the main requirement was to produce the most possible number of non-Delaunay
cells, where a standard FV scheme is nonpositive. The grids are shown in Figures 4
and 5.

To calculate the positivity measures, the Laplace equation is discretized in the
unit square with the following boundary conditions:

u(x, 0) = x2, u(0, y) = y2, u(x, 1) = x2 − 1, u(1, y) = 1 − y2.(18)

The values of αL1
min and αC

min for the standard FV scheme and the corrected scheme
calculated on the generated grids are shown in Table 1. It can be seen from the table
that the corrected scheme is much more positive than the standard one. Examples of
function αmin(xi, yi) for the standard and the corrected schemes on some of generated
grids are shown in Figure 5.

Grid G2 (see Figure 4) gives us a nice example of how the GC algorithm treats
stretched cells. Fans on the grid are generated using the “torture test” idea (GGNS
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Fig. 4. Examples of “bad” grids used to estimate positivity measures of the corrected FV
scheme; Ng is the number of the grid nodes, φmax is the maximum grid angle (in degrees).

Fig. 5. Function αmin(x, y) for (A) the standard and (B) the corrected FV scheme with the
linear reconstruction.
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team [9]). In this test the following procedure has been implemented to generate a
grid with large angles. At each step of the grid generation, the boundary problem
(e.g., the convection-diffusion equation with Dirichlet boundary conditions in the
considered example) is solved numerically. Given the numerical solution, a new grid
node is always placed in the cell with the maximum solution error and the old triangle
is subdivided into three triangles to increase the maximum angle in the new triangles.
Then the boundary problem is solved again over the new grid, and the above procedure
is repeated until the required value of the maximum angle is reached.

As a result of the grid generation, each of the triangulations with central nodes
A and B shown in Figure 4 comprises 85 nodes. The standard FV discretization
of the boundary problem (18) on median control volume produces the extremely
nonpositive scheme on nodes A and B : αmin(A) = −3.498, αmin(B) = −3.593. For
triangulations A and B, the gradient correction not only renders the scheme positive
(αmin(A) = αmin(B) = 0.0) but also crucially transforms the scheme stencils NA

s and
NB

s . New stencil NA
s for the scheme in node A includes seven nodes while new stencil

NB
s includes only five nodes.

Our next test is to compare convergence to the exact solution for the standard
and the corrected schemes. Due to the strong distortion of the finite volume cells the
“bad” grids generated in the previous test exhibit poor approximation properties that
makes it difficult to assess the convergence rate. That is why for the convergence test
we generate a sequence of model meshes as follows. First, cells of a uniform Cartesian
grid are cut by two diagonals. Then, the central node in each Cartesian cell is moved
down vertically to increase the angle φmax corresponding to the central node. Thus a
parametric family of meshes with different geometry of stencils can be obtained, the
maximum grid angle φmax (π/2 ≤ φmax < π) being a controlling parameter. The
angle φmax = π/2 determines the standard grid considered in the previous test and
provides positive standard FV discretization. For any angle φmax > π/2 the standard
FV scheme is nonpositive.

For the convergence test we solve the following boundary problem in the unit
square:

u(x, 0) = cos(ωx), u(0, y) = exp(ωy), u(x, 1) = cos(ωx) exp(ω), u(1, y) = cos(ω) exp(ωy).
(19)
The analytical solution to the problem is

u(x, y) = cos(ωx) exp(ωy).(20)

The numerical solution is calculated for the value ω = −5.0. The convergence results
for both the standard FV scheme (FVS) and the corrected scheme (CS) are plotted in
Figure 6. The error measured in the L2-norm is shown in the semilogarithmic scale.
The value of φmax has been varied to study how the convergence rate depends on
the maximum grid angle. Figure 6(a) shows the convergence history for the solution
on grids with φmax ≡ φ1 = 2

3π (curves I and I’ in the figure for the CS and FVS,
respectively). Curves II and II’ in the figure present the convergence results for the
value φmax ≡ φ2 = 5

6π. In both cases the corrected scheme converges, although the
rate of the convergence is slower in comparison with that for the standard scheme. Let
us note that for the corrected scheme the approximation over nonsymmetric stencils
may impact on the convergence rate as well as geometric degeneration of the finite
volume cells. These two factors may slow down the convergence rate on the grids with
large values of angle φmax.
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Fig. 6. Convergence test problem (19), (20). The convergence history of (a) the solution and
(b) the gradient for the corrected (curves I, II) and the standard (curves I’, II’) schemes.
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Fig. 7. Convergence test problem with discontinous boundary conditions (21), (22). The con-
vergence history of the solution for the corrected (curves I, II) and standard (curves I’, II’) schemes.

The convergence history for the gradient obtained on grids with the same values of
φmax is shown in Figure 6(b). As can be seen from the figure, the gradient convergence
results are almost the same for both schemes.

For the function u(x, y) considered in the test, the effect of the triangle geometry
on approximation is that increasing the angle φmax leads to the slower convergence
rate for both standard and corrected schemes. In our numerical experiments we have
obtained the slowest convergence rate for the extreme case of φmax = 0.99π.

Now we consider the problem with discontinuous boundary conditions

u(x, 0) = 0, u(0, y) = 0, u(x, 1) = u0, u(1, y) =
2u0

π
arctg

(
th

π

2
tg

πy

2

)
.(21)

The analytical solution to the problem is given by function

u(x, y) =
2u0

π
arctg

(
th

πx

2
tg

πy

2

)
.(22)

Convergence to the exact solution for the FVS and the CS is shown in Figure 7. The
plots are obtained for the same values of angle φ1 (curves I and I’ in the figure for
the CS and FVS, respectively) and φ2 (curves II and II’), the parameter u0 = 0.1.
As one can see from the figure, the convergence rate is slightly different for stencils
with φmax = φ1, while for φmax = φ2 the standard scheme converges noticeably
better. The dependence of the convergence rate on the maximum grid angle is not so
trivial as in the previous example; for a wide range of φmax the greater value of the
maximum grid angle provides the better convergence for both schemes. However, for
angles φmax close to π the degeneration of FV cells becomes as strong as to make the
convergence rate slower.
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Table 2
GMRES convergence test for standard (FV S) and corrected (CS) FV schemes.

N FV S CS Nst FV Sst

181 29 14 181 10
685 95 28 761 20
2665 251 69 3121 43

In our code we use GMRES algorithm (Saad [15]) to solve the algebraic system
of equations obtained as a result of the discretization. The convergence of GMRES
depends on the condition number of the system matrix A. A low rate of the conver-
gence corresponds to a poorly conditioned matrix, while positive definite matrix A
provides the best rate of convergence [15]. That is why the study of the convergence
rate of GMRES may be considered as a stability test for the corrected scheme.

To assess the GMRES convergence rate, the convergence test has been taken from
the PETSc library (Balay et al. [2]). In this test the number of iterations necessary
to meet the convergence is counted, the other GMRES parameters being fixed.

The sequence of “bad” grids with the number N of grid nodes, where the standard
scheme produces a poorly conditioned matrix A, is generated by isotropic refinement
of grid G3 shown in Figure 4. For each “bad” grid, the standard grid with the similar
number Nst of nodes, where the standard FV scheme produces the positive definite
matrix A, is generated by cutting cells of a uniform Cartesian grid by two diagonals.
The convergence rate of GMRES for both the standard (FV S) and the corrected
(CS) schemes on “bad” grids is then compared with the results obtained for the FV
scheme on the corresponding standard grid (FV Sst). Table 2 reports the number of
GMRES iterations needed for the convergence. The test matrix A is generated for
the boundary problem (18).

As one may expect, the “quasi-positive” corrected scheme produces a well-
conditioned system matrix even on “bad” grids and, therefore, requires essentially
fewer number of GMRES iterations than the standard scheme. The GMRES conver-
gence rate for the corrected scheme is close to that obtained for the positive defined
matrix A.

5. The three-dimensional case. In this section, we briefly discuss whether it
is possible to extend the obtained results to the three-dimensional case. Let T be the
volume formed by the union of all tetrahedra ti, i = 1, . . . , N, which have the central
node 0 as a common vertex. Consider a sphere SR of radius R with the center at
the point r0. As in the two-dimensional case, it is possible to introduce a control
volume VL as a convex polyhedron with faces created by setting in each tetrahedron
ti the plane passing through the points of intersection between the sphere SR and
the edges of the tetrahedron. Let us calculate the solution on the central node of the
triangulation by using the formula

u(r0) =
1

4πR2

∫
SR

∫
u(x, y, z)ds.(23)

We assume the linear reconstruction of the solution in each tetrahedron ti:

ui(x, y, z) = ai0 + ai1x + ai2y + ai3z = ai0 + (∇ui, r).(24)

For integration over the sphere the vector r in (24) is

r(x, y, z) = r0 + Rns,(25)
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where ns is the unit vector normal to the sphere surface. Substitution of (24), (25)
into (23) and summation over all tetrahedra yields

u(r0) =
1

4πR2

N∑
i=1

∫
Si
R

∫ [
ai0 + (∇ui, r0 + Rns)

]
ds =u(r0)+

1

4πR

N∑
i=1

∫
Si
R

∫
(∇ui,ns)ds.

(26)
The equality (26) gives us the following condition which may be considered as a finite
volume discretization of the Laplace equation over the sphere SR:

N∑
i=1

∫
Si
R

∫
(∇ui,ns)ds = 0.(27)

It can be seen from (23), (27) that the discretization over the sphere provides us with
the positive scheme. The sufficient condition, which allows us to consider in (27) the
polyhedron VL instead of the sphere SR as a control volume providing the positive
scheme, is that∫

Si
R

∫
(∇ui,ns)ds ≡

∫
V i
L

∫
(∇ui,ns)ds ∀i = 1, . . . , N,(28)

where the face V i
L of VL belongs to the tetrahedron ti. However, unlike the two-

dimensional case, this condition does not hold for the inscribed polyhedron VL. Let
Si
side be the union of the three plane segments of the tetrahedron faces in the tetrahe-

dron ti, each segment being bounded by the edge of V i
L, the circle arc of Si

R, and the
edges of ti. To estimate the integral over Si

R in (28), we consider for each tetrahedron
ti the auxiliary closed surface Si

aux which comprises Si
side, the face V i

L, and the part
Si
R of the sphere. Since the gradient is a constant vector in each tetrahedron, the

integral (28) may be transformed as

∫
Si
R

∫
(∇ui,ns)ds =

(
∇ui,

∫
Si
R

∫
ds

)
,

where a vector elemental area ds = nsds. According to the gradient theorem,

©
∫∫

Si
aux

ds ≡
∫
Si
R

∫
ds+

∫
V i
L

∫
ds+

∫
Si
side

∫
ds = 0.

It is not difficult to see that
∫
Si
side

∫
ds �= 0; therefore, the weight coefficients of the

discretization over the control volume VL are different from those in (27). Thus, in
the three-dimensional case the condition (28) sufficient for the positive discretization
does not hold.

Now we consider a discretization over the prescribed control volume Vdual defined
as a polyhedron with faces ei constructed under some geometric conditions (i.e., me-
dian or centroid dual). As in the two-dimensional case, we suggest that including
close nodes into the reconstruction stencil provides us with a more positive scheme.
Since the results of [13] demonstrate that it is possible to obtain the positive scheme
for the Laplace equation on three-dimensional Delaunay meshes, we believe that a
circumsphere criterion may be used to find the nodes close to the given tetrahedron
ti. If node nc belonging to T lies inside the circumsphere Si , it may be considered as
being close to ti and included into the reconstruction stencil for the given tetrahedron.
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To analyze the behavior of the fluxes in the three-dimensional case we calculate
the directional derivative ∂u

∂n across the face ei in the given tetrahedron ti as

∂u

∂n
≈ u(r∗) − u(r0)

|r∗ − r0| ,(29)

where r∗ = (x∗, y∗, z∗) is defined as the point of intersection between the plane ei and
the perpendicular dropped to this plane from the central node of the triangulation.
Since the components of the unit vector normal to the plane ei may be calculated as

ni
1 =

x∗ − x0

|r∗ − r0| , ni
2 =

y∗ − y0

|r∗ − r0| , ni
3 =

z∗ − z0

|r∗ − r0| ,

the expression (29) is transformed as

∂u

∂n
≈ a∗1n

i
1 + a∗2n

i
2 + a∗3n

i
3 = const = C∗,

provided the linear reconstruction of the solution u(r∗)−u(r0) = a∗1(x
∗−x0)+a∗2(y

∗−
y0)+ a∗3(z

∗− z0) is used. The result of calculation is then compared with the formula

∂u

∂n
≈ ai1n

i
1 + ai2n

i
2 + ai3n

i
3 = const = Ci.

If the value Ci is different from C∗, then we consider ti as the tetrahedron where
the false gradient appears. In this case it is possible to include nodes of the tetrahedron
tj which contains point r∗ into the reconstruction stencil for the given tetrahedron ti
by using the least squares method. This correction may decrease the false gradient.

6. Conclusions. In the present work the analysis of how a discretization of
Laplace’s equation depends on grid geometry has been made. We have demonstrated
the way to construct a control volume for a positive FV scheme with a linear recon-
struction on any two-dimensional unstructured grid. The important result obtained
here is that on arbitrary grids the Laplace operator requires a convex control vol-
ume to provide a positive discretization. This result indicates that grids with highly
stretched cells are not appropriate for constructing the positive scheme, since gaps
(or overlappings) may appear in the convex dual mesh.

For the prescribed geometry of the control volume, we have investigated whether
it is possible to improve the positivity measures of the linear FV scheme on arbitrary
grids by using extended stencils. Although having the empirical nature, the suggested
approach to the stencil correction allows us to treat stretched cells effectively. Nu-
merical experiments show that the developed technique produces a “quasi-positive”
scheme. However, in spite of giving us all advantages of the positive discretization,
the practical applicability of the corrected scheme is restricted. The produced stencils
are nonsymmetric which may lead to the loss of conservativity of the scheme.

The property of positivity is very important and can be considered as a criterion
of a proper discretization of Laplace’s equation as it expresses a maximum principle
which is an inherent feature of the Laplacean. On the other hand, being a natu-
ral property of FV schemes conservativity makes them attractive for many practical
applications. The results obtained in this paper seem to indicate that the proper-
ties of positivity and conservativity are incompatible with each other on arbitrary
grids. This fact demonstrates how far grid quality is crucial for the discretization.
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In our opinion, in order to overcome the incompatibility between these two basic re-
quirements, one should admit that due to space isotropy of the Laplace equation its
discretization needs the grid to be isotropic, in a certain sense. A mesh with all edges
of the same length gives us the simplest example, while a Delaunay triangulation can
be considered as a more general kind of grid with space isotropy.

Grids with stretched cells are “alien” for the Laplace equation. For those prob-
lems, where stretched grids arise as a result of grid adaptation, it may be better
to make a discretization of the full problem operator rather than discretize diffu-
sion terms separately. Meanwhile, the further development of algorithms of fully
automatic Delaunay grid generation is strongly needed to provide us with a positive
discretization which holds the property of conservativity.
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