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Abstract

Mader asked whether every C4-free graph G contains a subdivision of a
complete graph whose order is at least linear in the average degree of G.
We show that there is a subdivision of a complete graph whose order is al-
most linear. More generally, we prove that every Ks,t-free graph of average
degree r contains a subdivision of a complete graph of order r

1
2 + 1

2(s−1)−o(1).

1 Introduction

Bollobás and Thomason [4] as well as Komlós and Szemerédi [10] independently
proved the following result, which improved an earlier bound of Mader.

Theorem 1 [4, 10] There exists a positive constant c such that every graph of
average degree r contains a subdivision of a complete graph of order at least c

√
r.

It is easy to see (and was first observed by Jung [7]) that the complete
bipartite graph Kr,r contains no subdivision of a complete graph K` with ` ≥√

8r. So in general Theorem 1 is best possible up to the value of the constant c.
However, it turns out that dense bipartite graphs are the only counterexamples
in the sense that we can improve Theorem 1 if we forbid a fixed complete
bipartite subgraph Ks,t:

Theorem 2 For all integers t ≥ s ≥ 2 there exists an r0 = r0(s, t) such that
every Ks,t-free graph G of average degree r ≥ r0 contains a subdivision of a
complete graph of order at least

r
1
2

+ 1
2(s−1)

(log r)12
. (1)

By Jung’s observation, clearly we cannot hope for a similar result if we forbid
a non-bipartite graph H instead of a Ks,t since then Kr,r would be H-free.

In the C4-free case s = t = 2 the bound (1) is ‘almost linear’ and thus best
possible up to the logarithmic term. For arbitrary t ≥ s ≥ 2 a classical con-
jecture on the existence of dense Ks,t-free graphs (see e.g. Bollobás [2, p. 362])
would also imply that the bound (1) is best possible up to the logarithmic term.
We will give the details in Section 4.

Up to the logarithmic term, the special case s = t = 2 of Theorem 2 gives an
affirmative answer to a question of Mader [16], who asked whether every graphG
of girth at least 5 (and hence also every C4-free graph) contains a subdivision of
a complete graph whose order is at least linear in the average degree of G. This
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is true if the girth is at least 15: based on earlier results of Mader [15] we showed
that every graph of minimum degree r ≥ 500 and girth at least 15 contains a
subdivision of a complete graph of order r+ 1 [11]. An analogue of Theorem 2
for ordinary minors was proved in [14]: every Ks,t-free graph of average degree

r contains a complete graph of order r1+ 1
2(s−1)

−o(1) as minor. (This implies
Hadwiger’s conjecture for Ks,t-free graphs whose chromatic number is large
compared with s and t.) Further results about (topological) minors in graphs
of large girth can be found in [17, 12, 13].

The proof of Theorem 2 uses results of Komlós and Szemerédi [9, 10]. In
fact, Theorems 2.1 and 2.2 of [10] together with Theorem 9 below already imply

the weaker bound r
1
2

+ 1
6(s−1)

−o(1) instead of (1) in Theorem 2.
This paper is organized as follows. In Section 2 we state several results which

we will need later on. We prove Theorem 2 in Section 3. In the final section we
derive the upper bounds mentioned above.

2 Notation and tools

All logarithms in this paper are base e, where e denotes the Euler number. We
write e(G) for the number of edges of a graph G and |G| for its order. We denote
the maximum degree of a graph G by ∆(G), its minimum degree by δ(G) and
its average degree by d(G) := 2e(G)/|G|. We write dG(x) for the degree of a
vertex x ∈ G. Given X ⊆ V (G), we denote by NG(X) the set of all those
neighbours of vertices in X that lie outside X. Given disjoint A,B ⊆ V (G),
we write (A,B)G for the bipartite subgraph of G whose vertex classes are A
and B and whose edges are all the edges of G between A and B. We denote
by eG(A,B) the number of those edges. More generally, we write (A,B) for a
bipartite graph with vertex classes A and B.

A subdivision of a graph G is a graph TG obtained from G by replacing the
edges of G with internally disjoint paths. The branch vertices of TG are all
those vertices that correspond to vertices of G. We say that G is a topological
minor of a graph H if H contains a subdivision of G as a subgraph.

We will now collect some results which we need in our proof of Theorem 2.
The following lemma [14, Lemma 12] allows us to assume that in the proof of
Theorem 2 our given graph G is ‘almost regular’ in the sense that its maximum
degree is not much larger than its minimum degree.

Lemma 3 For all integers t ≥ 2 and all r ≥ 109t4 every Kt,t-free graph G of
average degree at least r either contains a subdivision of some graph of average
degree at least r3 or a bipartite subgraph H such that δ(H) ≥ r

400t log r and
∆(H) ≤ r.

Throughout this paper, we fix a constant κ such that

1 < κ < 6/5 and κ2 + 3κ+ 3 < 8. (2)

Given positive constants d and ε0, let

ε(x) :=

{
0 if x < d/4
ε0/(log(8x/d))κ if x ≥ d/4.

(3)
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Note that ε(x)x is monotone increasing for all x ≥ d/2. We call a graph
H a (κ, d, ε0)-expander for sets of size at least x0 if every X ⊆ V (H) with
x0 ≤ |X| ≤ |H|/2 satisfies |NH(X)| ≥ ε(|X|)|X|, where ε is the function
defined in (3). H is a (κ, d, ε0)-expander if we can take x0 = 0.

The following result of Komlós and Szemerédi [9, Thm. 2.2] shows that every
graph G contains an expander whose average degree is not much smaller than
that of G.

Theorem 4 Let d, ε0 > 0 and suppose that the function ε defined in (3) satisfies∑∞
x=1 ε(x)/x ≤ 1/6 (which holds if ε0 is sufficiently small compared with κ).

Then every graph G has a subgraph H with d(H) ≥ d(G)/2 and δ(H) ≥ d(H)/2
which is a (κ, d, ε0)-expander for sets of size at least 3d/4.

Corollary 5 There is a positive ε0 = ε0(κ) < 1 such that every graph G has a
subgraph H with d(H) ≥ d(G)/2 and δ(H) ≥ d(H)/2 which is a (κ, d(H), ε0)-
expander.

Proof. Let G′ be a subgraph of G which maximizes d(G′). Put d′ := d(G′)/6.
If ε0 is sufficiently small, we may apply Theorem 4 to G′ to obtain a graph
H which is a (κ, d′, 8ε0)-expander for sets of size at least 3d′/4. Using that
d(H) ≤ 6d′, it is easy to check that for x ≥ d(H)/4 we have

8ε0

(log(8x/d′))κ
≥ ε0

(log(8x/d(H)))κ
.

Since d(H)/4 ≥ 3d′/4 this shows that H is a (κ, d(H), ε0)-expander. �

The following simple consequence of expansion is implicit in [9]. It shows that
expanders have ‘robustly small diameter’. A proof is included in [10, Lemma
2.1].

Lemma 6 Let d > 0, 1 > ε0 > 0 and let G be a (κ, d, ε0)-expander. Let ε be
as defined in (3) and suppose that X,Y, Z ⊆ V (G) such that |X|, |Y | ≥ x ≥ d,
|Z| ≤ ε(x)x/4 and (X ∪ Y ) ∩ Z = ∅. Then the distance between X and Y in
G− Z is at most

2 log(|G|/x)
log(1 + ε(|G|)/2)

≤ 8(log(8|G|/d))1+κ

ε0
.

In the proof of Theorem 2 we will first replace our given graph G with an
‘almost regular’ subgraph obtained by Lemma 3. Then we apply Corollary 5
to this subgraph to obtain an expander H which is still ‘almost regular’. The
following result of Komlós and Szemerédi [9, Thm. 3.1] implies that we are
already done if the order of H is sufficiently large compared with the average
degree of H.

Theorem 7 Let ε0 > 0 and let α > κ2+3κ+3 > 7. Then there exists a positive
constant c such that every graph G which is a (κ, d(G), ε0)-expander satisfying
d(G)/2 ≤ δ(G) ≤ ∆(G) ≤ 72(d(G))2 and log |G| ≥ (log d(G))α contains a
subdivision of a complete graph of order at least cd(G).
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In the remainder of this section we collect some other results which we will
use in our proof of Theorem 2. A proof of the following lemma can be found
in [3, Ch. IV, Lemma 7].

Lemma 8 Let (A,B) be a bipartite graph that does not contain a Ks,t with t
vertices in A and s vertices in B. Suppose that on average each vertex in A has
d neighbours in B. Then

|A|
(
d

s

)
≤ t
(
|B|
s

)
.

Lemma 8 can be used to prove the following lower bound on the order of
Ks,t-free graphs (see e.g. [2, Ch. VI, Thm. 2.3]).

Theorem 9 Let t ≥ s ≥ 2 be integers. Then every Ks,t-free graph G has at
most t|G|2−1/s edges and thus satisfies

|G| ≥
(
δ(G)

2t

)1+ 1
s−1

. (4)

Moreover, we will use the following Chernoff bound (see e.g. [6, Cor. 2.3
and 2.4]).

Lemma 10 Let X1, . . . , Xn be independent 0-1 random variables with P(Xi =
1) = p and let X :=

∑n
i=1Xi. Then

P(X ≤ EX/2) ≤ 2e−EX/12, (5)
P(X ≥ x) ≤ e−x for all x ≥ 7E(X). (6)

The next result is an easy consequence of Hall’s matching theorem (see e.g. [3,
Ch. III, Thm. 7] or [5, Thm. 2.1.2]).

Corollary 11 Let G = (A,B) be a bipartite graph such that dG(a) ≥ dA for
all a ∈ A and dG(B) ≤ dB for all b ∈ B. Then G contains |A| disjoint stars
with centres in A and such that each of them has bdA/dBc leaves.

Proof. Form a new bipartite graph G′ = (A′, B) by replacing every vertex
a ∈ A with τ := bdA/dBc new vertices and joining each such vertex to all the
neighbours of a. For every A∗ ⊆ A′ we have

|A∗|dA ≤ eG′(A∗, NG′(A∗)) ≤ |NG′(A∗)|τdB

and thus |NG′(A∗)| ≥ |A∗|. So by Hall’s theorem there exists a matching of A′

in G′. But this corresponds to the required disjoint stars in G. �
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3 Proof of Theorem 2

As indicated in Section 2, in the proof of Theorem 2 we may assume the we
are given a graph H which is an ‘almost regular’ expander such that log |H| ≤
(log d(H))α. But then by Lemma 6, the distance in H between any two suffi-
ciently large sets is small in terms of d(H) and this remains true if we delete a
few vertices of H. Roughly, we shall use this property as follows. Let ` be the
value of (1) in Theorem 2. So we are seeking a subdivision TK` of K` in H.
Lemma 12 below implies that we can find ` disjoint stars in H such that the
neighbourhood in H of each star is large even if we delete a small but arbitrary
subset of the leaves. The centres of these stars will form the branch vertices of
our TK`. To find the subdivided edges, we will apply Lemma 6 to obtain for
every pair of stars a short path joining the neighbourhoods of the stars. All
these paths will be disjoint, will avoid the stars themselves and they can be
extended to subdivided edges of the TK`.

Given a star S, we denote by L(S) the set of its leaves.

Lemma 12 For all integers t ≥ s ≥ 2 there exists an r0 = r0(s, t) such that for
each r ≥ r0 every Ks,t-free graph G with δ(G) ≥ r/1600t log r and ∆(G) ≤ r
contains at least

k :=

⌊
r

1
2

+ 1
2(s−1)

t(1600 log r)2

⌋
(7)

disjoint stars where each such star S satisfies the following two conditions.

(i) |L(S)| = k.

(ii) For every v ∈ L(S) there is a set Nv of k neighbours of v outside V (S)
such that Nv ∩Nw = ∅ for distinct v, w ∈ L(S).

As described in Section 4, it is believed that for t ≥ s ≥ 2 there are Ks,t-free
graphs of average degree r and order at most csr1+1/(s−1). Note that for such
graphs G the union of the stars in Lemma 12 (and thus the subdivision of the
complete graph which we will construct in our proof of Theorem 2) would cover
a significant portion of V (G).

Proof of Lemma 12. Throughout the proof of the lemma we will assume
that r is sufficiently large compared with s and t. Put n := |G|, δ := δ(G) and

f := 2(log r)r
1
2
− 1

2(s−1) . Consider a random subset Xp of V (G) which is obtained
by including each vertex of G with probability p := f/e2r in Xp, independently
of all other vertices of G. Call a vertex v ∈ G good if it has at most f neighbours
in Xp. Then Stirling’s inequality (see e.g. [3, p. 124]) implies that

P(v is not good) ≤
(
dG(v)
f

)
pf ≤

(
er
f
· p
)f

= e−f ≤ r−2. (8)

Let np denote the number of vertices in G which are not good or have a neigh-
bour that is not good. Then (8) implies that E(np) ≤ (r + 1)n/r2. So writing
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mp := |Xp| − np, we have

E(mp) ≥ pn−
(r + 1)n

r2
≥ pn

2

(4)

≥ f

2e2r
·
(
δ

2t

)1+ 1
s−1

≥ r
1
2

+ 1
2(s−1)

(2e1600t2)2 log r
≥ 2k.

Hence there is an outcome Xp which contains least 2k vertices that are good
and have only good neighbours in G. Let X denote the set of all these vertices.

We remark that for the case t = s = 2 the lemma now follows easily. Indeed,
since every vertex x ∈ X is good, it has at least δ− f ≥ δ/2 neighbours outside
X and, since each such neighbour is good, it sends at most f edges to X. As

δ

2f
≥ 100k (9)

we can apply Corollary 11 to (X,NG(X))G to obtain |X| disjoint stars whose
centres are the vertices in X and where each such star has k leaves. Then these
stars S are as required in the lemma. (Given v ∈ L(S), we can take for Nv

any set of k neighbours of v outside S. As t = s = 2 these sets are disjoint for
distinct v ∈ L(S).) The argument easily extends to the case t ≥ s = 2 but not
to the general case. However, we will show that a random assignment of leaves
(these will be the vertices in NG(X)) to star centres (which will be the vertices
in X) works for all t ≥ s ≥ 2.

Given a vertex v ∈ NG(X), with probability |NG(v) ∩ X|/f choose one of
the vertices x ∈ NG(v) ∩ X. Here each of these vertices is equally likely to
be chosen and so the corresponding probability is 1/f . Choose no vertex at all
with the remaining probability 1−|NG(v)∩X|/f . (Recall that |NG(v)∩X| ≤ f
since NG(X) 3 v consists of good vertices. So the probability is well defined.)
Do this independently for all vertices v ∈ NG(X). Let Sx denote the star in G
whose centre is x and whose leaves are the vertices in NG(X) that have chosen
x. Thus the Sx are disjoint for distinct x. We will now show that with positive
probability at least half of the stars Sx (x ∈ X) contain a substar which satisfies
(i) and (ii). So call Sx useful if there is a set Lx ⊆ L(Sx) satisfying the following
two conditions.

(a) |Lx| = k.

(b) For every v ∈ Lx there is a set Nv of k neighbours of v outside Lx ∪ {x}
such that Nv ∩Nw = ∅ for distinct v, w ∈ Lx.

Call Sx useless if it is not useful. Fix a set Ax of bδ/2c neighbours of x in G
that lie outside X. For each v ∈ Ax fix a set Vv of dδ/2e neighbours of v in
G outside Ax ∪ {x}. Let Gx denote the bipartite subgraph of G whose vertex
classes are Ax and Bx :=

⋃
v∈Ax Vv and in which each vertex v ∈ Ax is joined

to precisely the vertices in Vv. So e(Gx) = dδ/2e|Ax|. Denote by B1
x the set of

all vertices in Bx whose degree in Gx is at most f2 and let B2
x := Bx \B1

x.
We now claim that eGx(Ax, B2

x) ≤ e(Gx)/2. Suppose not. Then on average
each vertex in Ax has at least δ/4 neighbours in B2

x. Since (Ax, B2
x)Gx does not

contain a Ks−1,t with t vertices in Ax and s − 1 vertices in B2
x (such a Ks−1,t
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would yield a Ks,t in G together with x), Lemma 8 implies that

|Ax|
(
δ/4
s− 1

)
≤ t
(
|B2

x|
s− 1

)
.

As |Ax| ≥ bδ/2c ≥ δ/4 it follows that

|B2
x| ≥

δ|Ax|
1
s−1

8t
≥ δ1+ 1

s−1

32t
. (10)

On the other hand, we have f2|B2
x| ≤ eGx(Ax, B2

x) ≤ δ2, and thus

|B2
x| ≤

δ2

f2
≤ δ1+ 1

s−1

(2 log r)2
,

contradicting (10). So eGx(Ax, B1
x) ≥ e(Gx)/2. Let A′x be the set of all those

vertices in Ax which have at least δ/8 neighbours in Gx that lie inside B1
x. Then

|A′x|δ + |Ax|δ/8 ≥ eGx(Ax, B1
x) ≥ e(Gx)/2 ≥ |Ax|δ/4

and thus |A′x| ≥ |Ax|/8. We claim that Sx is useful if |A′x ∩ L(Sx)| ≥ k and
if in Gx each vertex in B1

x has at most 7f neighbours lying inside L(Sx). To
see this, apply Corollary 11 with A := A′x ∩ L(Sx), B := B1

x, dA := δ/8 and
dB := 7f to the graph (A,B)Gx to obtain |A′x ∩ L(Sx)| ≥ k disjoint stars with
centres in A′x∩L(Sx) and such that each star has at least bδ/56fc leaves. Since
bδ/56fc ≥ k by (9), we can take for the set Lx in the definition of a useful star
Sx any set of k centres of these stars. Hence Sx is useful.

So it remains to estimate the probability that |A′x ∩ L(Sx)| ≤ k or that B1
x

contains a vertex with more than 7f neighbours in L(Sx). As each vertex in
Ax ⊇ A′x chooses x with probability 1/f , we have

E(|A′x ∩ L(Sx)|) = |A′x|/f ≥ |Ax|/8f ≥ δ/32f
(9)

≥ 2k.

Together with (5) this implies

P(|A′x ∩ L(Sx)| ≤ k) ≤ 2e−2k/12 ≤ 1/4. (11)

Furthermore, the definition of B1
x implies that for every vertex b ∈ B1

x

E(|NGx(b) ∩ L(Sx)|) ≤ f,

and thus from (6) it follows that

P(|NGx(b) ∩ L(Sx)| ≥ 7f) ≤ e−7f .

Hence

P(∃ b ∈ B1
x with |NGx(b) ∩ L(Sx)| ≥ 7f) ≤ e−7f |B1

x| ≤ e−7fδ2 ≤ 1/4.

Together with (11) this implies that with probability at most 1/2 the star Sx
is useless. Hence the expected number of useless stars Sx is at most |X|/2,
and therefore for some outcome at least |X|/2 ≥ k of the stars Sx (x ∈ X) are
useful. For each such Sx let S′x ⊆ Sx be the star whose centre is x and whose
leaves are the vertices in a set Lx satisfying (a) and (b). Then the S′x are stars
as required in the lemma. �
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Proof of Theorem 2. Throughout the proof we assume that r is sufficiently
large compared with s and t. Let k be as defined in (7) and put

` :=
⌊

k

(log r)4+5κ

⌋
(2)

≥ r
1
2

+ 1
2(s−1)

(log r)12
.

We will show that G contains a subdivision of K`. First we apply Lemma 3 to
G. Since by Theorem 1 every graph of average degree r3 contains a subdivision
of a complete graph of order r ≥ `, we may assume that the lemma returns
a subgraph G′ with δ(G′) ≥ r

400t log r and ∆(G′) ≤ r. Apply Corollary 5 to
G′ to obtain a positive constant ε0 = ε0(κ) < 1 and a subgraph H which is a
(κ, d(H), ε0)-expander and satisfies d := d(H) ≥ d(G′)/2 and δ(H) ≥ d(H)/2.
Since 72d2 ≥ r ≥ ∆(H), Theorem 7 with α := 8 shows that H contains a
subdivision of a complete graph of order at least cd ≥ `, provided that log |H| ≥
(log d)8. Thus, setting n := |H|, we may assume that

log n < (log d)8 ≤ (log r)8. (12)

Apply Lemma 12 to H to obtain k disjoint stars as described there. Pick ` of
these stars, S1, . . . , S` say. For all leaves v of Si fix a set N i

v satisfying condition
(ii) of Lemma 12 and let Ai :=

⋃
v∈L(Si)

N i
v. So |Ai| = k2. The branch vertices

of our subdivision of K` in G will be the centres of the Si and each edge ij of K`

will correspond to a path joining a leaf of Si to a leaf of Sj . We will find disjoint
such paths as follows. For each edge ij ∈ K` in turn we use Lemma 6 to find a
short Ai–Aj path in the graph obtained from H by deleting S1, . . . , S` as well
as all previously constructed paths. We have to take care that for every vertex
i ∈ K` the paths that correspond to the edges of K` which are incident with i
start in distinct sets N i

v ⊆ Ai and thus can be joined by independent edges to
distinct leaves of Si. Thus when defining the Ai–Aj path corresponding to the
edge ij ∈ K`, we will also delete all those sets N i

v from H which contain the
starting point of a previously constructed Ai–Aj′ path; and similarly for j.

More formally, we proceed as follows. Fix an enumeration i1j1, . . . , i(`2)
j(`2)

of the edges of K`. We will show that for all b ≤
(
`
2

)
there is a path Pb whose

length is at most 2 + 8(log n)1+κ/ε0 =: diam, which joins a leaf of Sib to a leaf
of Sjb , has no inner vertices in

⋃`
i=1 Si and such that the Pb are disjoint for

distinct b ≤
(
`
2

)
. Suppose inductively that for some a ≥ 1 we have already

defined Pb for all b < a.
To find Pa, let Nia be the union of all those N ia

v for which the leaf v of Sia is
an endpoint of a path Pb constructed previously. (In other words, these paths
Pb are precisely the previously constructed paths that correspond to an edge of
K` incident with ia, i.e. for which ia ∈ {ib, jb}.) Define Nja similarly. Let Z be
the set consisting of the vertices in Nia ∪Nja together with all vertices lying in
some Si (i ≤ `) and all vertices on the paths Pb already constructed. So

|Z| ≤ 2`k + `(k + 1) + (diam + 1) ·
(
`

2

)
≤ 4`k +

5`2(log n)1+κ

ε0

(12)

≤ 4`k +
5`2(log r)8+8κ

ε0
≤ 6k2

ε0(log r)2κ
. (13)
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Let A′ia := Aia \ Z and define A′ja similarly. Then

|A′ia | ≥ |Aia | − |Z|
(13)

≥ k2 − 6k2

ε0(log r)2κ
≥ k2

2
. (14)

Let ε be as defined in (3). Using that ε(x)x is monotone increasing for all
x ≥ d/2 and thus for x ≥ k2/2, it is easy to check that (13) and (14) imply
|Z| ≤ |A′ia |ε(|A

′
ia
|)/4. Similarly it follows that |Z| ≤ |A′ja |ε(|A

′
ja
|)/4. Thus we

may apply Lemma 6 to obtain an A′ia–A′ja path P in H − Z of length at most

8(log(8n/d))1+κ

ε0
≤ diam− 2.

The definition of A′ia implies that the endpoint of P in A′ia can be joined by
an edge to some leaf of Sia which is not already an endpoint of a path Pb
constructed previously. The same is true for ja. Altogether this shows that the
Sia–Sja path Pa obtained from P in this way has the required properties. �

4 Upper bounds

The following proposition shows that the existence of sufficiently dense Ks,t-free
graphs would imply that the bound (1) in Theorem 2 is best possible up to the
logarithmic factor.

Proposition 13 For every c > 0 and all t ≥ s ≥ 2 there is a constant
C = C(c, s, t) such that no Ks,t-free graph G with e(G) ≥ c|G|2−1/s contains a

subdivision of a complete graph of order at least Cd(G)
1
2

+ 1
2(s−1) .

Proof. We will show that C := (16t)s/c
1
2

+ 1
2(s−1) works. Let n := |G| and

r := d(G). Clearly, we may assume that G contains a subdivision TK` of K`

for some ` ≥ (16t)s. Recall that by Theorem 9, every subgraph H of G has at
most t|H|2−1/s edges. In particular, the subgraph of G induced by the branch
vertices of TK` contains at most t`2−1/s ≤ `2/16 ≤ e(K`)/4 edges. So at least
3/4 of the edges of K` correspond to paths in TK` of length at least two. Thus
n ≥ 3e(K`)/4 ≥ `2/4. On the other hand, our assumption on G implies that
n ≤ (r/c)1+1/(s−1). Hence

` ≤ 2
(r
c

) 1
2

+ 1
2(s−1)

,

as required. �

It is widely believed that Ks,t-free graphs as in the statement of Propo-
sition 13 do exist, i.e. that for all t ≥ s ≥ 2 there exists a positive con-
stant c = c(s, t) such that there are arbitrarily large Ks,t-free graphs G with
e(G) ≥ c|G|2−1/s. Note that this would mean that the upper bound of Theo-
rem 9 gives the correct order of magnitude. The case s = t of the conjecture
(which of course would already imply the general case) as well as a proof of the
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conjecture for the case t ≥ s with s = 2, 3 can be found in Bollobás [2]. Based
on a construction in [8], Alon, Rónyai and Szabó [1] proved that the conjecture
is also true for all t ≥ s ≥ 2 with t > (s− 1)!.

For s ≥ 4 the best known lower bound on the maximum number of edges of
a Ks,s-free graph G is c|G|2−2/(s+1) (see e.g. [2, Ch. VI, Thm. 2.10]). Using this
bound, the proof of Proposition 13 still yields an upper bound of C ′r

1
2

+ 1
s−1 for

the order of the complete topological minor in Theorem 2.
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