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Abstract. We prove a ‘resilience’ version of Dirac’s theorem in the setting of random regular
graphs. More precisely, we show that, whenever d is sufficiently large compared to ε > 0,
a.a.s. the following holds: let G′ be any subgraph of the random n-vertex d-regular graph Gn,d

with minimum degree at least (1/2 + ε)d. Then G′ is Hamiltonian.
This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov. Our result is best possible:

firstly, the condition that d is large cannot be omitted, and secondly, the minimum degree bound
cannot be improved.

1. Introduction

The study of Hamiltonicity has been at the core of graph theory for the past few decades. A
graph G is said to be Hamiltonian if it contains a cycle which covers all of the vertices of G,
and this is called a Hamilton cycle. It is well-known that the problem of determining whether
a graph is Hamiltonian is NP-complete, and thus most results about Hamiltonicity deal with
sufficient conditions which guarantee this property. One of the most well-known examples is due
to Dirac, who proved that any graph G on n ≥ 3 vertices with minimum degree at least n/2 is
Hamiltonian.

1.1. Hamilton cycles in random graphs. The search for Hamilton cycles in various models
of random graphs has also been a driving force in the development of this theory. The classical
binomial model Gn,p, in which each possible edge is added to an n-vertex graph with probability
p independently of the other edges, has seen many results in this direction. In particular, Komlós
and Szemerédi [23] showed that p = log n/n is the ‘sharp’ threshold for the existence of a
Hamilton cycle. This can be strengthened to obtain the following hitting time result. Consider
a random graph process as follows: given a set of n vertices, add each of the

(
n
2

)
possible edges,

one by one, by choosing the next edge uniformly at random among those that have not been
added yet. In this setting, Ajtai, Komlós and Szemerédi [1] and Bollobás [10] independently
proved that a.a.s. the resulting graph becomes Hamiltonian as soon as its minimum degree is at
least 2.

The search for Hamilton cycles in other random graph models has proven more difficult. In this
paper we will deal with random regular graphs: given n, d ∈ N such that d < n and nd is even,
Gn,d is chosen uniformly at random from the set of all d-regular graphs on n vertices. The study
of this model is often more challenging than that of Gn,p due to the fact that the presence and
absence of edges in Gn,d are correlated. Several different techniques have been developed to deal
with this model, such as the configuration model (see Section 3.3) or edge-switching techniques.
Robinson and Wormald [33] proved that Gn,3 is a.a.s. Hamiltonian, and later extended this
result to Gn,d for any fixed d ≥ 3 [34]. This is in contrast to Gn,p, where the average degree must
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be logarithmic in n to ensure Hamiltonicity. These results were later generalised by Cooper,
Frieze and Reed [14] and Krivelevich, Sudakov, Vu and Wormald [26] for the case when d is
allowed to grow with n, up to d ≤ n− 1. Many further results can be found in the recent survey
of Frieze [16].

1.2. Local resilience. More recently, several extremal results have been translated to random
graphs via the concept of local resilience. The local resilience of a graph G with respect to some
property P is the maximum number r ∈ N such that, for all H ⊆ G with ∆(H) < r, the graph
G \H satisfies P . We say that G is r-resilient with respect to a property P if the local resilience
of G is greater than r. The systematic study of local resilience was initiated by Sudakov and
Vu [36], and the subject has seen a lot of research since.

Note that Dirac’s theorem can be restated in this terminology to say that the local resilience
of the complete graph Kn with respect to Hamiltonicity is bn/2c. This concept of local resilience
then naturally suggests a generalisation of Dirac’s theorem to random graphs. In the binomial
model, Lee and Sudakov [27] showed that, for any constant ε > 0, if p ≥ C log n/n and C is
sufficiently large, then a.a.s. Gn,p is (1/2 − ε)np-resilient with respect to Hamiltonicity. This
improved on earlier bounds [7, 8, 17, 36]. Very recently, Montgomery [30] and independently
Nenadov, Steger and Trujić [32], proved a hitting time result for the local resilience of Gn,p
with respect to Hamiltonicity. In a different direction, Condon, Espuny Dı́az, Kim, Kühn and
Osthus [12] considered ‘resilient’ versions of Pósa’s theorem and Chvátal’s theorem for Gn,p.

The resilience of random regular graphs with respect to Hamiltonicity is less understood.
Ben-Shimon, Krivelevich and Sudakov [7] proved that, for large (but constant) d, a.a.s. Gn,d is
(1− ε)d/6-resilient with respect to Hamiltonicity. They conjectured that the true value should
be closer to d/2.

Conjecture 1.1 (Ben-Shimon, Krivelevich and Sudakov [7]). For every ε > 0 there exists an
integer D = D(ε) > 0 such that, for every fixed integer d > D, the local resilience of Gn,d with
respect to Hamiltonicity a.a.s. lies in the interval ((1/2− ε)d, (1/2 + ε)d).

They also suggested to study the same problem when d is allowed to grow with n. In this
direction, Sudakov and Vu [36] showed that, for any fixed ε > 0, and for any (n, d, λ)-graph G
(that is, a d-regular graph on n vertices whose second largest eigenvalue in absolute value is at
most λ) with d/λ > log2 n, we have that G is (1/2− ε)d-resilient with respect to Hamiltonicity.
This, together with a result of Krivelevich, Sudakov, Vu and Wormald [26] and recent results of
Cook, Goldstein and Johnson [13] and Tikhomirov and Youssef [37] about the spectral gap of
random regular graphs, implies that, for log4 n� d ≤ n− 1, a.a.s. Gn,d is (1/2− ε)d-resilient
with respect to Hamiltonicity. One can extend this to d� log n by combining a result of Kim
and Vu [22] on joint distributions of binomial random graphs and random regular graphs with
the result of Lee and Sudakov [27] about the resilience of Gn,p with respect to Hamiltonicity.

The study of local resilience has not been restricted to Hamiltonicity. Other properties that
have been considered include the containment of perfect matchings [12, 32], directed Hamilton
cycles [15, 18, 31], cycles of all possible lengths [25], k-th powers of cycles [35], bounded degree
trees [5], triangle factors [6], and bounded degree graphs [2, 20].

1.3. New results. In this paper, we completely resolve Conjecture 1.1, as well as its extension
to d growing slowly with n (recall that the case when d� log n is covered by earlier results).
This can be seen as a version of Dirac’s theorem for random regular graphs. Our main result
gives the lower bound in Conjecture 1.1.

Theorem 1.2. For every ε > 0 there exists D such that, for every D < d ≤ log2 n, the random
graph Gn,d is a.a.s. (1/2− ε)d-resilient with respect to Hamiltonicity.

While we do not try to optimise the dependency of D on ε, we remark that D in Theorem 1.2
can be taken to be polynomial in ε−1. This is essentially best possible in the sense that
Theorem 1.2 fails if d ≤ (2ε)−1.

Theorem 1.3. For any odd d > 2, the random graph Gn,d is not a.a.s. (d− 1)/2-resilient with
respect to Hamiltonicity.
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Our proof also shows that Gn,d is not a.a.s. (d− 1)/2-resilient with respect to the containment
of a perfect matching. Moreover, one can adapt the proof of Theorem 1.3 to show that, for
every even d, the random graph Gn,d is not a.a.s. d/2-resilient with respect to Hamiltonicity (or
the containment of a perfect matching). It would also be interesting to obtain bounds on the
resilience for small d. In particular, here are some questions:

i) Given any fixed even d, determine whether the graph Gn,d is a.a.s. (d/2− 1)-resilient
with respect to Hamiltonicity.

ii) What is the likely resilience of Gn,4 with respect to Hamiltonicity or the contain-
ment of perfect matchings? Is a graph obtained from Gn,4 by removing any matching
a.a.s. Hamiltonian?

Finally, we observe (as is well known) that the upper bound of (1/2 + ε)d in Conjecture 1.1
follows easily from edge distribution properties of random regular graphs. Indeed, we note that
for every ε > 0 there exists a constant D such that for every D ≤ d ≤ log2 n, a.a.s. the graph
G = Gn,d has the property that between any two disjoint sets A,B of size bn/2c and dn/2e,
respectively, the number of edges in G[A,B] is a.a.s. bounded from above by (1/2 + ε/2)nd/2
(see Proposition 4.4). Now let A,B be a maximum cut in G. Thus eG(a,B) ≥ d/2 for all a ∈ A,
and similarly for all b ∈ B. If |A| 6= |B|, then by deleting the edges in G[A]∪G[B], the remaining
graph is not Hamiltonian since it forms an unbalanced bipartite graph. If |A| = |B|, then by
the above property, there must exist a vertex x ∈ A such that eG(x,B) ≤ (1/2 + ε/2)d. Let
A′ := A \ {x} and B′ := B ∪ {x}. As before, by deleting the edges in G[A′] ∪G[B′], we obtain a
graph which is not Hamiltonian.

1.4. Organisation of the paper. The remainder of the paper is organised as follows. In
Section 2 we give a sketch of the proof of Theorem 1.2. In Section 3 we collect notation, some
probabilistic tools, and observations about the configuration model. Section 4 is devoted to
proving different edge-distribution and expansion properties of random regular graphs and their
subgraphs, and the proof of Theorem 1.2 is given in Section 5, using all the techniques that have
been introduced before. Finally, we prove Theorem 1.3 in Section 6.

2. Outline of the proof of Theorem 1.2

Consider G = Gn,d. Let H ⊆ G be such that ∆(H) ≤ (1/2 − ε)d and let G′ := G \H. We
will prove that G′ contains a ‘sparse’ spanning subgraph R which has strong edge expansion
properties. These properties will then be used to provide a lower bound on the number of edges
in G whose addition would make R Hamiltonian, or increase the length of a longest path in R
(such edges are commonly called ‘boosters’, see e.g. [24]). We then argue that some of these
edges must in fact be retained when passing to G′. We then add such edges to R and iterate the
above process (at most n times) until R becomes Hamiltonian.

More specifically, as a preliminary step we ‘thin’ the graph G′, that is, we take a subgraph
R ⊆ G′ with ∆(R) ≤ δd, for some δ � ε. As described above, we consider a longest path in R
and then argue that it can be extended via edges in G′ \R. The fact that R is relatively ‘sparse’
with respect to G′ will be important when calculating union bounds over all graphs R of this
type, at a later stage in the proof.

Given many paths of maximum length and with different endpoints in R, it follows that
there will be many edges whose addition will increase the length of a longest path (or make R
Hamiltonian). A theorem of Pósa implies that graphs with strong expansion properties will
indeed contain many of such paths. These expansion properties are captured by the notion of a
3-expander (see Definition 4.1). Therefore, we wish to show that our thinned graph R can be
chosen to be a 3-expander. This is one point where working with the random graph Gn,d proves
more difficult than working with Gn,p, due to the fact that the appearance of edges in Gn,d is
correlated.

The next step is to provide a lower bound on the number of edges whose addition to R would
increase the length of a longest path (or make R Hamiltonian). Here we further develop an
approach of Montgomery [30] who, instead of considering single edges that would bring R closer
to being Hamiltonian, considered ‘booster’ edge pairs whose addition would yield the same result.
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For example, if R is connected and P is a longest path in R with endpoints x and y, and ab is
an edge of P (with b closer to y on P ), then {ya, xb} is a booster pair. The main advantage of
considering such pairs of edges is that it results in a much larger set of boosters for R. More
precisely, we show the existence of another thinned graph F ⊆ G′ \R for which each booster we
consider is of the form {e, e′}, where e ∈ E(F ) and e′ ∈ E(G′) (see Corollary 5.6).

Finally, we can complete the proof of the main theorem by iteratively adding booster pairs to
the thinned graph R, increasing the length of a maximum path in each step until R becomes
Hamiltonian. Two points are important here as to why we can iterate this process. First, proving
the existence of boosters (see Lemma 5.7) involves a union bound over all pairs of thinned graphs
R and F. To bound this efficiently, we need that both R and F are relatively ‘sparse’ with respect
to G′. But in each step we only add two booster edges to R, so it remains sparse. Secondly, we
take special care to ensure that no vertex is contained in too many of the boosters we add to R,
ensuring that its degree in successive iterations remains small. This process terminates after at
most n iterations, resulting in a graph R′ ⊆ G′ which is Hamiltonian.

3. Preliminaries

3.1. Notation. For n ∈ N, we denote [n] := {1, . . . , n}. Given any set S, we denote S(2) :=
{{s1, s2} : s1, s2 ∈ S, s1 6= s2}. The parameters which appear in hierarchies are chosen from
right to left. That is, whenever we claim that a result holds for 0 < a� b ≤ 1, we mean that
there exists a non-decreasing function f : [0, 1)→ [0, 1) such that the result holds for all a > 0
and all b ≤ 1 with a ≤ f(b). We will not compute these functions explicitly.

Throughout this paper, the word graph will refer to a simple, undirected graph. Whenever the
graphs are allowed to have parallel edges or loops, we will refer to these as multigraphs. Given
any (multi)graph G = (V,E) and sets A,B ⊆ V , we will denote the (multi)set of edges of G
spanned by A as EG(A), and the (multi)set of edges of G having one endpoint in A and one
endpoint in B as EG(A,B). The number of such edges will be denoted by eG(A) and eG(A,B),
respectively. We will also write e(G) for eG(V ). Given two (multi)graphs G1 and G2 on the
same vertex set V , we write G1 + G2 := (V,E(G1) ∪ E(G2)), where the union represents set
union for graphs and multiset union for multigraphs. When G1 and G2 are graphs, we write
G1 \G2 := (V,E(G1) \E(G2)). Given any vertex v ∈ V , we will denote the set of vertices which
are adjacent to v in G by NG(v). We define NG(A) :=

⋃
v∈ANG(v). The degree of vertex v in

a multigraph G is dG(v) := |{e ∈ E(G) : v ∈ e}| + |{e ∈ E(G) : e = vv}| (i.e. each loop at v
contributes two to dG(v)). We denote ∆(G) := maxv∈V dG(v) and δ(G) := minv∈V dG(v). The
(multi)graph G is said to be d-regular for some d ∈ N if all vertices have degree d. Given a
multigraph G on [n], we refer to the vector d = (dG(1), . . . , dG(n)) as its degree sequence. In
general, a vector d = (d1, . . . , dn) with di ∈ Z≥0 for all i ∈ [n] is called graphic if there exists a
graph on n vertices with degree sequence d (note that, as long as

∑n
i=1 di is even, there is always

a multigraph with degree sequence d). Given a graph G and a real number α > 0, let Hα(G) be
the collection of all spanning subgraphs H ⊆ G for which dH(v) ≤ αdG(v), for all v ∈ V (G).

We will use Gn,d to denote the set of all d-regular graphs on vertex set [n], and Gn,d will denote
a graph chosen from Gn,d uniformly at random. Whenever we use this notation, we implicitly
assume that nd is even. In more generality, given a graphic degree sequence d = (d1, . . . , dn),
we will denote the collection of all graphs on vertex set [n] with degree sequence d by Gn,d, and
Gn,d will denote a graph chosen from Gn,d uniformly at random.

We use a.a.s. as an abbreviation for asymptotically almost surely. Given a sequence of events
{En}n∈N, whenever we claim that En holds a.a.s., we mean that the probability that En holds
tends to 1 as n tends to infinity. For the purpose of clarity, we will ignore rounding issues when
dealing with asymptotic statements. By abusing notation, given p ≥ 0 and n ∈ N, we write
Bin(n, p) for the binomial distribution with parameters n and min{p, 1}.

3.2. Probabilistic tools. We will need the following Chernoff bound (see e.g. [21, Corollary
2.3]).

Lemma 3.1. Let X be the sum of n independent Bernoulli random variables and let µ := E[X].

Then, for all 0 ≤ δ ≤ 1 we have that P[|X − µ| ≥ δµ] ≤ 2e−δ
2µ/3.
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The following bound will also be used repeatedly (see e.g. [3, Theorem A.1.12]).

Lemma 3.2. Let X ∼ Bin(n, p), and let β > 1. Then, P[X ≥ βnp] ≤ (e/β)βnp.

Given any sequence of random variables X = (X1, . . . , Xn) taking values in a set A and a
function f : An → R, for each i ∈ [n] ∪ {0} define Yi := E[f(X) | X1, . . . , Xi]. The sequence
Y0, . . . , Yn is called the Doob martingale for f . All the martingales that appear in this paper
will be of this form. To deal with them, we will need the following version of the well-known
Azuma-Hoeffding inequality.

Lemma 3.3 (Azuma’s inequality [4, 19]). Let X0, X1, . . . be a martingale and suppose that
|Xi −Xi−1| ≤ ci for all i ∈ N. Then, for any n, t ∈ N,

P[|Xn −X0| ≥ t] ≤ 2 exp

(
−t2

2
∑n

i=1 c
2
i

)
.

Finally, the Lóvasz local lemma will come in useful. Let E := {E1, E2, . . . , Em} be a collection
of events. A dependency graph for E is a graph H on vertex set [m] such that, for all i ∈ [m],
Ei is mutually independent of {Ej : j 6= i, j /∈ NH(i)}, that is, if P[Ei] = P[Ei |

∧
j∈J Ej ] for

all J ⊆ [m] \ (NH(i) ∪ {i}). We will use the following version of the local lemma (it follows
e.g. from [3, Lemma 5.1.1]).

Lemma 3.4 (Lóvasz local lemma). Let E := {E1, E2, . . . , Em} be a collection of events and let
H be a dependency graph for E. Suppose that ∆(H) ≤ d and P[Ei] ≤ p for all i ∈ [m]. If
ep(d+ 1) ≤ 1, then

P

[
m∧
i=1

Ei

]
≥ (1− ep)m.

3.3. The configuration model. We will work with the configuration model introduced by
Bollobás [9], which can be used to sample d-regular graphs uniformly at random. In more
generality, it can be used to produce graphs with any given graphic degree sequence d. The
process to generate such graphs is as follows.

Given n ∈ N and a degree sequence d = (d1, . . . , dn) with m :=
∑n

i=1 di even, consider a set of
m vertices labelled as xij for i ∈ [n] and j ∈ [di]. For each i ∈ [n], we call the set {xij : j ∈ [di]}
the expanded set of i. Similarly, for any X ⊆ [n], we call the set {xij : i ∈ X, j ∈ [di]} the
expanded set of X. Choose uniformly at random a perfect matching M covering the expanded
set of [n]. Then, obtain a multigraph ϕ(M) = ([n], E) by letting E be the following multiset:
for each edge e ∈M , consider its endpoints e = xijxk`, for some i, k ∈ [n], j ∈ [di] and ` ∈ [dk],
and add ik to E (if i = k, this adds a loop to E).

When we consider a multigraph G obtained via this configuration model, this will be denoted
by G ∼ Cn,d. In particular, when we obtain a d-regular multigraph via the configuration model,
we will denote this by G ∼ Cn,d. We refer to the possible perfect matchings on the expanded
set of [n] as configurations, and we will denote a configuration obtained uniformly at random
by M ∼ C∗n,d. By abusing notation, we will sometimes also use C∗n,d to denote the set of all
configurations with parameters n and d. In order to easily distinguish the setting of graphs from
that of configurations, we will call the elements of the expanded sets points, and each element in
a configuration will be called a pairing.

The above process may produce a multigraph with loops and/or multiple edges. However, if d
is a graphic degree sequence, then, when conditioning on the resulting multigraph being simple,
the configuration model yields a graph G ∈ Gn,d chosen uniformly at random. The following
proposition bounds the probability that this happens, and can be proved similarly to (part of) a
result of Cooper, Frieze and Reed [14, Lemma 7] (see [11] for details). It will be useful when
analysing the distribution of edges in Gn,d via the configuration model.

Proposition 3.5. Let 0 < δ < 1/10. Let d ≤ log2 n be a positive integer and let R be a graph
on vertex set [n] with degree sequence d′ = (d1, . . . , dn) such that di < δd for all i ∈ [n]. Let
d := (d− d1, . . . , d− dn) and let F ∼ Cn,d. Then, if n is sufficiently large,

P[R+ F is simple] ≥ e−3d2
.
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Note that, by choosing R to be the empty graph on n vertices, we obtain a lower bound on
the probability that the multigraph obtained by a random configuration is simple.

When studying the configuration model, it will be useful to consider the following process
to generate M ∼ C∗n,d. Let d = (d1, . . . , dn) and suppose that m :=

∑n
i=1 di is even. Label

the points of the expanded set of [n] in any arbitrary order, x1, . . . , xm, and identify them
naturally with the set [m]. Start with an empty set of pairings M0. Inductively, for each i ∈ [m],
if i is covered by Mi−1, let Mi := Mi−1; otherwise, choose a point j ∈ [m] \ (V (Mi−1) ∪ {i})
uniformly at random and define Mi := Mi−1 ∪{ij}. We sometimes refer to Mi as the i-th partial
configuration. Finally, let M := Mm. It is clear that the resulting configuration M is generated
uniformly at random, independently of the labelling of the expanded set of [n].

We will often be interested in bounding the number of edges in Gn,d between two sets of
vertices. For this, it will be useful to consider binomial random variables that stochastically
dominate the number of edges. We formalise this via the following lemma.

Lemma 3.6. Let n, d ∈ N with d < n, and let δ ∈ [0, 1). Let d = (d1, . . . , dn) with
∑n

i=1 di
even be such that (1− δ)d ≤ di ≤ d for all i ∈ [n]. Let G ∼ Cn,d and let A,B ⊆ [n] be any (not
necessarily disjoint) sets of vertices such that 2|A| < (1−δ)n. Then, the random variable eG(A,B)
is stochastically dominated by a random variable X ∼ Bin(

∑
a∈A da, |B|/((1− δ)n− 2|A|)).

Proof. Let t :=
∑

a∈A da. Let X , A′ and B′ be the expanded sets of [n], A and B, respectively.
Label the points of X so that all the points in A′ come first, that is, A′ = {x1, . . . , xt}. Generate
a random configuration M ∼ C∗n,d following this labelling. Then, eG(A,B) is the number of

pairings in M with one endpoint in A′ and the other in B′, and we will estimate the probability
that each pairing added to M contributes to eG(A,B).

First, note that all pairings added after Mt do not contribute to eG(A,B), as they do not
have an endpoint in A′. For each i ∈ [t], define an indicator random variable Xi which takes
value 1 if Mi 6= Mi−1 and e = xiy ∈ Mi \Mi−1 is such that y ∈ B′, and 0 otherwise, so that
eG(A,B) =

∑
i∈[t]Xi. Observe that, in the above process, the bound

P[Xi = 1 |Mi 6= Mi−1] ≤ |B|
(1− δ)n− 2|A|

holds for all i ∈ [t] since at every step of the process there are at most |B|d points available in
B′ and at least (1− δ)nd− 2|A|d points available in X \ (V (Mi−1) ∪ {xi}). On the other hand,
P[Xi = 1 |Mi = Mi−1] = 0, so given M0,M1, . . . ,Mi−1, each Xi is stochastically dominated by a
Bernoulli random variable Yi with parameter |B|/((1− δ)n− 2|A|). By summing over all i ∈ [t],
we conclude that eG(A,B) is stochastically dominated by X ∼ Bin(t, |B|/((1− δ)n− 2|A|)). �

4. On the existence of a sparse 3-expander

Definition 4.1. An n-vertex graph G is called a 3-expander if it is connected and, for every
S ⊆ [n] with |S| ≤ n/400, we have |NG(S)| ≥ 3|S|.

In order to give bounds on the distribution of edges in Gn,d we will use an edge-switching
technique, first introduced by McKay and Wormald [29]. We will consider the following switching.

Definition 4.2. Let G = (V,E) and G′ = (V,E′) be two multigraphs on the same vertex
set such that |E| = |E′|. We write G ∼ G′ if there exist u1u2, v1v2 ∈ E such that E′ =
(E \ {u1u2, v1v2}) ∪ {u1v1, u2v2}.

The following lemma bounds the probability that certain variables on configurations deviate
from their expectation.

Lemma 4.3. Let d = (d1, . . . , dn) be a degree sequence with di ≤ log2 n for all i ∈ [n], and such
that

∑n
i=1 di is even. Let ∆ := maxi∈[n]{di}. Let c > 0 and let X be a random variable on C∗n,d

such that, for every pair of configurations M ∼M ′, we have |X(M)−X(M ′)| ≤ c. Then, for
all ε > 0,

P[|X − E[X]| ≥ εE[X]] ≤ 2e−
ε2E[X]2

2∆nc2 .
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Proof. Let m :=
∑n

i=1 di. Fix any labelling x1, . . . , xm of the expanded set of [n]. Let M ∼ C∗n,d
be generated following this labelling. Let the partial configurations of M be M0, . . . ,Mm. For
each i ∈ [m] ∪ {0}, let

Yi(M) := E[X(M) |Mi] = E[X(M) |M0, . . . ,Mi].

It follows that the sequence Y0(M), Y1(M), . . . , Ym(M) is a Doob martingale, where Y0(M) =
E[X] and Ym(M) = X(M). We will now show that the differences of this martingale are bounded
by c.

For any i ∈ [m], if Mi = Mi−1, then Yi(M) = Yi−1(M) and there is nothing to prove,
so assume that Mi 6= Mi−1, that is, when generating the i-th partial configuration, the i-th
point does not lie in any of the previous pairings. For each j ∈ [m] \ (V (Mi−1) ∪ {i}), let
Mj be the set of configurations which contain Mi−1 as well as ij. It is easy to see that
for each k ∈ [m] \ (V (Mi−1) ∪ {i}) there is a bijection gj,k between Mj and Mk so that
gj,k(M

′) ∼ M ′ for all M ′ ∈ Mj . Let N := |Mj |. Fix j ∈ [m] \ (V (Mi−1) ∪ {i}) and label
the configurations in Mj as Mj,1, . . . ,Mj,N . For all k ∈ [m] \ (V (Mi−1) ∪ {i, j}), label Mk

by Mk,` := gj,k(Mj,`) for each ` ∈ [N ]. By assumption, we have |X(Mj,`) −X(Mk,`)| ≤ c for
all distinct j, k ∈ [m] \ (V (Mi−1) ∪ {i}) and ` ∈ [N ]. Using this, it is easy to conclude that
|Yi(M)− Yi−1(M)| ≤ c.

The statement now follows by Lemma 3.3. �

The following proposition implies that the distribution of edges in Gn,d behaves roughly as in
a binomial random graph Gn,d/n, even after conditioning on the containment of some ‘sparse’
subgraph.

Proposition 4.4. For every 0 < ε ≤ 1/2 there exists δ > 0 such that the following holds. Let
d ≤ log2 n be a positive integer and let G = Gn,d. Let R be a graph on vertex set [n] with

∆(R) < δd. Moreover, let A ⊆ [n] and, for each a ∈ A, let Za ⊆ [n](2) \ E(R) be a collection of
edges incident to a such that z :=

∑
a∈A |Za| satisfies z > εn2. Then,

P

[∣∣∣∣∑
a∈A
|Za ∩ E(G)| − zd

n

∣∣∣∣ ≥ εzdn
∣∣∣∣∣R ⊆ G

]
≤ e−(ε/10)4nd.

Proof. Let 0 < δ � ε. For each i ∈ [n], let di := d− dR(i) > (1− δ)d, and let d := (d1, . . . , dn).
Let M ∼ C∗n,d and let F = ϕ(M), so that F ∼ Cn,d and R + F is a d-regular multigraph.

By Lemma 3.6, for each a ∈ A, the random variable Ya ∼ Bin(da, (n − |Za|)/((1 − δ)n − 2))
stochastically dominates eF (a, [n] \ (V (Za) \ {a})). Let Z(F ) :=

∑
a∈A |Za ∩ E(F )|.

Note that E[Ya] < (1 + ε3)da(n− |Za|)/n for all a ∈ A. It then follows that E[|Za ∩E(F )|] ≥
da − E[Ya] ≥ (1 + ε3)|Za|da/n− ε3da. Therefore, we have E[Z(F )] ≥ (1− ε2)zd/n. Now, note
that |Z(F )−Z(F ′)| ≤ 8 when F ∼ F ′. Let Z ′ : C∗n,d → Z be such that Z ′(M) = Z(F ) whenever

ϕ(M) = F . It follows that |Z ′(M)−Z ′(M ′)| ≤ 8 when M ∼M ′. Moreover, E[Z ′(M)] = E[Z(F )].
Therefore, we can apply Lemma 4.3 to obtain

P
[
Z ′(M) ≤ (1− ε)zd

n

]
≤ 2e−ε

4nd/512.

By definition, the same bound holds for Z(F ). It now follows from Proposition 3.5 that

P
[
Z(F ) ≤ (1− ε)zd

n

∣∣∣∣R+ F is simple

]
≤ 2e3d2

e−ε
4nd/512. (4.1)

By a similar argument we can show that

P
[
Z(F ) ≥ (1 + ε)

zd

n

∣∣∣∣R+ F is simple

]
≤ 2e3d2

e−ε
4nd/512. (4.2)

The result follows by combining (4.1) and (4.2). �

Lemma 4.5. For every 0 < δ < 10−5 there exists D ∈ N such that for any D < d ≤ log2 n we
have that a.a.s. the random graph Gn,d satisfies the following properties.
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(i) For every S ⊆ [n] with δ2d ≤ |S| ≤ 5δ2n, we have eGn,d
(S) ≤ δd|S|/25.

(ii) For every S ⊆ [n] with 5δ2n ≤ |S| ≤ n/100, we have eGn,d
(S) ≤ d|S|/25.

Proof. Let 1/D � δ. For any D ≤ d ≤ log2 n, let G ∼ Cn,d. For each S ⊆ [n] such that δ2d ≤
|S| ≤ 5δ2n and any multigraph F on [n], let g(S, F ) be the event that eF (S) ≤ δd|S|/25. It follows
by Lemma 3.6 that the variable eG(S) is stochastically dominated by Y ∼ Bin(d|S|, 5|S|/(4n)).

We denote by P̂ the probability measure associated with the configuration model and let P be
the measure associated with the space of (simple) d-regular graphs. Therefore, by Lemma 3.2
we have

P̂[g(S,G)] ≤ P̂ [eG(S) ≥ δd|S|/25] = P̂
[
eG(S) ≥ (4δn/(125|S|))5d|S|2/(4n)

]
< (|S|/en)2|S|.

It follows by Proposition 3.5 that

P
[ ∨

S⊆[n]
δ2d≤|S|≤5δ2n

g(S,Gn,d)
]

= P̂
[ ∨

S⊆[n]
δ2d≤|S|≤5δ2n

g(S,G) | G is simple
]

≤ e3d2
∑
S⊆[n]

δ2d≤|S|≤5δ2n

P̂[g(S,G)]

≤ e3d2
5δ2n∑
i=δ2d

(
n

i

)(
i

en

)2i

= o(1).

Thus, property (i) in the statement holds with probability 1− o(1). Similarly, we can show that
property (ii) also holds with probability 1− o(1). �

Proposition 4.6. For every 0 < δ < 10−5 there exists D ∈ N such that for any D < d ≤ log2 n
we have that a.a.s. the random graph G = Gn,d satisfies the following properties.

(i) Let R ⊆ G be a spanning subgraph with δ(R) > δd. Then, for every S ⊆ [n] with
|S| ≤ δ2n, we have |NR(S)| ≥ 3|S|.

(ii) For every S, S′ ⊆ [n] with δ2n ≤ |S| ≤ |S′| ≤ 3|S| ≤ 3n/400, we have eG(S, S′) ≤ d|S|/5.

Proof. Let 1/D � δ and condition on the statement of Lemma 4.5 holding, which occurs a.a.s.
We first prove (i). For each S ⊆ [n] such that |S| < δ2d, the fact that every vertex has degree
at least δd ensures that |NR(S)| ≥ δd > 3δ2d. Now let S ⊆ [n] with δ2d ≤ |S| ≤ δ2n. Suppose
|NR(S)| < 3|S|. Let Y ⊆ [n] be such that |Y | = 3|S| and NR(S) ⊆ Y . We have by Lemma 4.5(i)
that

4|S|δd/25 ≥ eG(S ∪ Y ) ≥ eR(S ∪ Y ) ≥ eR(S, Y ) ≥ |S|δd− eG(S) > |S|δd/2,
a contradiction. The result follows.

In order to prove (ii), let S ⊆ [n] with δ2n ≤ |S| ≤ n/400. Suppose there exists S′ ⊆ [n] with
|S| ≤ |S′| ≤ 3|S| and such that eG(S, S′) > d|S|/5. We have by Lemma 4.5 that

4|S|d/25 ≥ eG(S ∪ S′) ≥ eG(S, S′) > d|S|/5,
a contradiction. The result follows. �

Proposition 4.7. For every 0 < δ < 10−5 there exists D ∈ N such that for any D < d ≤ log2 n
we have that a.a.s. the random graph G = Gn,d has the following property. Let H ∈ H1/2(G)
and let G′ := G \H. Then, there exists a spanning graph R ⊆ G′ such that ∆(R) < δd and, for
every S ⊆ [n] with |S| ≤ n/400, we have that |NR(S)| ≥ 3|S|.

Proof. Let 1/D � δ and let δ̂ := δ/8. Condition on the event that the statements of Lemma 4.5

and Proposition 4.6 hold with δ̂ playing the role of δ, which happens a.a.s. Suppose G satisfies
these events and H ∈ H1/2(G), and let G′ := G \H. We now construct a suitable R for this G′.
Consider a random subgraph R of G′ where each edge is chosen independently and uniformly at
random with probability 4δ̂. Consider the following events.

(G1) For all v ∈ [n] we have δ̂d < dR(v) < 8δ̂d.
(G2) For every S ⊆ [n] with |S| ≤ n/400, we have |NR(S)| ≥ 3|S|.
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Note that, if both (G1) and (G2) hold, then R is a subgraph which satisfies the properties in the
statement of the lemma.

For each v ∈ [n], let Av be the event that dR(v) /∈ (δ̂d, 8δ̂d). By Lemma 3.1, we have

P[Av] < 4e−δ̂d/6

for all v ∈ [n]. Observe that G′ is itself a dependency graph for {Av}v∈[n], and it has degree at
most d. By Lemma 3.4, it follows that

P[R satisfies (G1)] = P
[ ∧
v∈[n]

Av
]
≥ (1− 12e−δ̂d/6)n ≥ 2−n.

Next, for S, S′ ⊆ [n], let g(S, S′) be the event that NR(S) ⊆ S′. Let (G3) be the event that

for no pair of subsets S, S′ ⊆ [n] with S′ ⊆ NG′(S) and δ̂2n ≤ |S| ≤ |S′| ≤ 3|S| ≤ 3n/400 the
event g(S, S′) occurs. We have by Proposition 4.6(ii) and Lemma 4.5 that

eG′(S, [n] \ S′) ≥ d|S|/2− eG′(S, S′)− eG′(S) ≥ d|S|/2− d|S|/5− d|S|/25 ≥ d|S|/5.
Therefore, we have

P[g(S, S′)] ≤ (1− 4δ̂)d|S|/5 ≤ e−4δ̂d|S|/5 ≤ 2−4n.

A union bound implies that P[R fails to satisfy (G3)] ≤ 22n2−4n < 2−n. Therefore, there exists
an instance of R which satisfies both (G1) and (G3) simultaneously. Furthermore, since R

satisfies (G1), it follows by Proposition 4.6(i) that for every S ⊆ [n] with |S| ≤ δ̂2n we have
that |NR(S)| ≥ 3|S|. Combining this with (G3) we see that R also satisfies (G2). Thus, R is a
subgraph of the desired form. �

Proposition 4.8. For every ε > 0 there exists D > 0 such that for any D < d ≤ log n2 we have
that a.a.s. the random graph G = Gn,d has the following property. Let H ∈ H1/2−ε(G) and let
G′ := G \H. Let R ⊆ G′ be a spanning graph such that for every S ⊆ [n] with |S| ≤ n/400, we
have |NR(S)| ≥ 3|S|. Then, there exists a spanning 3-expander R′ ⊆ G′ with e(R′) ≤ e(R) + 400.

Proof. Let 1/D � ε. We first note that a.a.s., for any A,B ⊆ [n] with |A| = n/400 and
|B| = (1/2 − ε/10)n, we have

∑
a∈A eG(a,B) > (1/2 − ε/5)|A|d. Indeed, this follows by an

application of Proposition 4.4 with R := ∅ and Za being the star with centre a whose leaves are
all the vertices in B \ {a}. We now claim that for any A ⊆ [n] with |A| ≥ n/400 we have that

|NG′(A)| ≥ (1/2 + ε/10)n. (4.3)

To see this, note that if there exists A ⊆ [n] with |A| ≥ n/400 and |NG′(A)| < (1/2 + ε/10)n
then we may take subsets A′ ⊆ A with |A′| = n/400 and B ⊆ [n] with |B| = (1/2 − ε/10)n
such that eG′(A

′, B) = 0. However, we have already noted that for such A′ and B we have that∑
a∈A′ eG(a,B) ≥ (1/2−ε/5)|A′|d. It follows that there exists a ∈ A′ with eG(a,B) > (1/2−ε/5)d

and therefore eG′(a,B) > 0. Thus, no such A and B exist.
In particular, this implies that G′ is connected. Indeed, assume that G′ is not connected and

let A  [n] be a (connected) component of size |A| ≤ n/2. We must have that |NG′(A)| ≤ |A|,
but (4.3) and the statement hypotheses imply that |NG′(A)| > |A|, a contradiction.

Finally, note that R consists of at most 400 components, since each connected component has
order at least n/400. Since G′ is connected, we may choose a set E ⊆ E(G′) with |E| ≤ 400
such that the graph R′ := ([n], E(R) ∪ E) is connected, and thus is a spanning 3-expander. �

Lemma 4.9. For every ε > 0 and 0 ≤ δ ≤ 10−5 there exists D > 0 such that for any
D < d ≤ log2 n we have that a.a.s. the random graph G = Gn,d has the following property. Let
H ∈ H1/2−ε(G) and let G′ := G \H. Then, there exists a spanning 3-expander R ⊆ G′ with
∆(R) < δd.

Proof. Let 1/D � δ, ε and condition on the statements of Propositions 4.7 and 4.8 both holding
with δ/2 playing the role of δ, which happens a.a.s. By Proposition 4.7 we may find a spanning
subgraph R′ ⊆ G′ with ∆(R′) < δd/2 and such that, for all S ⊆ [n] with |S| ≤ n/400, we have
|NR′(S)| ≥ 3|S|. Then, by Proposition 4.8 we may find a spanning 3-expander R ⊆ G′ with
∆(R) < ∆(R′) + 400 < δd. �
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5. Finding many boosters

The following proposition provides an upper bound on the expected number of ‘thin’ subgraphs
that Gn,d contains.

Proposition 5.1. Let 1/n� 1/d, δ � 1, where n, d ∈ N, and let G = Gn,d. Let R be a family
of graphs R on vertex set [n] with e(R) ≤ δdn for all R ∈ R. Then,∑

R∈R
P[R ⊆ G] ≤ e2δdn log(1/δ).

Proof. For each R ∈ R, let XR be an indicator random variable where XR(G) = 1 if and only if
R ⊆ G. Let XR :=

∑
R∈RXR. Then E[XR] =

∑
R∈R P[R ⊆ G]. Moreover, note that we always

have XR ≤
∑δdn

i=1

(
dn/2
i

)
≤ e2δdn log(1/δ) and, therefore,

∑
R∈R P[R ⊆ G] = E[XR] ≤ e2δdn log(1/δ),

as desired. �

The following result can easily be proved using “Pósa rotations” (see e.g. [24]).

Lemma 5.2. Let R be a 3-expander and let P be a longest path in R, with endpoint v. Then,
there exists a set A ⊆ V (P ) with |A| > n/104 such that for each a ∈ A there exists a path Pa in
R with endpoints v and a, and such that V (Pa) = V (P ).

Definition 5.3 (Booster). Let H be a graph and let E ⊆ V (H)(2). Let F := (V (H), E). We
call E a booster for H if the graph H + F contains a longer path that H does, or if H + F is
Hamiltonian.

We will often be interested in the case where E consists of a single edge e /∈ E(H). In this
case we refer to e as a booster for H.

Given any path P with endpoints u and v, assume an orientation on its edges (say, from u to
v). Given any vertex x ∈ V (P ) \ {v}, we call the vertex that follows x in this orientation its
successor, and we denote this by sucP (x).

Lemma 5.4. For all 0 < ε < 1/105 there exist δ,D > 0 such that for D ≤ d ≤ log2 n the
random graph G = Gn,d a.a.s. satisfies the following.

Let H ∈ H1/2−ε(G) and let G′ := G \ H. Let R ⊆ G′ be a spanning 3-expander with

∆(R) ≤ 2δd, and let S ⊆ [n] with |S| ≤ δn. Then, there exists a set VR ⊆ [n] with |VR| ≥ n/104

with the following property: for each v ∈ VR, there exists a set Uv ⊆ [n] with |Uv| ≥ (1/2 + ε/8)n
such that, for each u ∈ Uv, there exists a set Ev,u as follows:

(a) Ev,u ⊆ E((G′ \R)[[n] \ S]) with |Ev,u| ≥ 50/(εδ),
(b) {uv, e} is a booster for R for every e ∈ Ev,u,
(c) Ev,u1 ∩ Ev,u2 = ∅ for all u1 6= u2.

Proof. Let 1/D � δ � ε < 1/105. Let R be the set of all n-vertex 3-expander graphs R on [n]
with ∆(R) ≤ 2δd. It follows by Lemma 5.2 that for each R ∈ R there exists a set VR ⊆ [n] of
size |VR| ≥ n/104 such that for every v ∈ VR there exists a longest path in R terminating at v.

For each R ∈ R, v ∈ VR and S ⊆ [n] with |S| ≤ δn, let f(R,S, v) be the event that, for every
H ∈ H1/2−ε(G) such that R ⊆ G′, there exists a set of vertices Uv ⊆ [n] with |Uv| ≥ (1/2+ε/8)n
and such that for each u ∈ Uv there exists a set Ev,u satisfying (a)–(c). With this definition, the
probability p∗ that the assertion in the lemma fails is bounded by

p∗ ≤
∑

S⊆[n]:|S|≤δn

∑
R∈R

∑
v∈VR

P[f(R,S, v) | R ⊆ G]P[R ⊆ G]. (5.1)

For fixed R ∈ R, v ∈ VR and S ⊆ [n] with |S| ≤ δn, we shall now estimate P[f(R,S, v) |
R ⊆ G]. Let P be a longest path in R with endpoint v. As R is a 3-expander, by Lemma 5.2
there must exist a set A ⊆ V (P ) \ S of size |A| = εn/20 such that for each a ∈ A, there is
a longest path Pa in R starting at v and ending at a with V (Pa) = V (P ) (if there is more
than one such path, fix one arbitrarily). Assume that each Pa is oriented from v to a. Let
B := [n] \ (A ∪ S ∪ {v}). For each u ∈ B ∩ V (P ), let Xu := {ab : a ∈ A, b ∈ B, u = sucPa(b)}.
Observe that {uv, ab} is a booster for R for any ab ∈ Xu. Clearly, |Xu| ≤ |A| and Xu ∩Xu′ = ∅
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for all distinct u, u′ ∈ B ∩ V (P ). Furthermore, for each u ∈ B \ V (P ), let Xu := {au : a ∈ A}.
Note that au ∈ Xu is a booster since its inclusion would result in a longer path in R. We shall
now show that, for most vertices u ∈ B, there is a ‘large’ set of boosters, that is, Xu is ‘large’.
We will then use this to show that many of these boosters must lie in G′ \R.

For every a ∈ A, there are at least |V (P )| − 2|A| − 2|S| − 2 vertices b ∈ V (P ) such that
neither b nor its successor on Pa belong to A ∪ S ∪ {v}. It follows that |

⋃
u∈B∩V (P )Xu| ≥

|A|(|V (P )|−2|A|−2|S|−2). We also have that |
⋃
u∈B\V (P )Xu| = |A|(n−|V (P )∪S|). Therefore,

the following holds:∣∣∣∣ ⋃
u∈B

Xu

∣∣∣∣ ≥ |A|(|V (P )| − 2|A| − 2|S| − 2) + |A|(n− |V (P ) ∪ S|)

≥ |A|(n− 2|A| − 3|S| − 2) ≥ (1− ε/9)|A|n.

For each u ∈ B, let Yu := Xu \ E(R). It follows that∣∣∣∣ ⋃
u∈B

Yu

∣∣∣∣ ≥ (1− ε/9)|A|n− e(R) ≥ (1− ε/8)|A|n.

For each a ∈ A, let Za be the set of edges in
⋃
u∈B Yu with a as an endpoint. It is easy to see

that
∑

a∈A |Za| = |
⋃
a∈A Za| = |

⋃
u∈B Yu| ≥ (1− ε/8)|A|n. Consider now the following events:

F1: |
⋃
a∈A(Za ∩ E(G))| ≥ (1− ε/4)|A|d.

F2: For any U ⊆ B with |U | ≤ (1/2 + ε/8)n we have |
⋃
u∈U Yu ∩ E(G)| < (1/2 + ε/4)|A|d.

From two applications of Proposition 4.4 we obtain that P[F1 ∧ F2 | R ⊆ G] ≥ 1− e−(ε/500)4dn.
To finish the proof we must show that if F1 ∧ F2 holds, then f(R,S, v) also holds. Consider
any G ∈ Gn,d which satisfies both F1 and F2 and such that R ⊆ G. Fix any H ∈ H1/2−ε(G)
such that R ⊆ G′. For each u ∈ B, let Eu := Yu ∩ E(G′). As we have seen above, for each
e ∈ Eu, the set {uv, e} is a booster for R. Furthermore, none of the endvertices of e lies in S, by
construction. Let U ⊆ B be the set of vertices u ∈ B for which |Eu| ≥ 50/(εδ). Observe that,
by F2, if |

⋃
u∈U Yu ∩ E(G)| ≥ (1/2 + ε/4)|A|d, then |U | ≥ (1/2 + ε/8)n. But∣∣∣∣ ⋃

u∈U
Yu ∩ E(G)

∣∣∣∣ ≥ ∣∣∣∣ ⋃
u∈U

Eu

∣∣∣∣ =

∣∣∣∣ ⋃
u∈B

Yu ∩ E(G)

∣∣∣∣− ∣∣∣∣ ⋃
u∈B

Yu ∩ E(H)

∣∣∣∣− ∑
u∈B\U

|Eu|

≥
∣∣∣∣ ⋃
a∈A

Za ∩ E(G)

∣∣∣∣− ∣∣∣∣ ⋃
a∈A

Za ∩ E(H)

∣∣∣∣− 50

εδ
|B \ U |

(F1)

≥
(

1− ε

4

)
|A|d−

∑
a∈A

(
1

2
− ε
)
dG(a)− 50

εδ
n

≥
(

1− ε

4

)
|A|d−

(
1

2
− ε
)
|A|d− 103 |A|d

ε2dδ

≥
(

1

2
+
ε

4

)
|A|d.

Hence, by F2 we have that |U | ≥ (1/2 + ε/8)n, as we wanted to show. Since H was arbitrary, it
follows that f(R,S, v) holds. Thus,

P[f(R,S, v) | R ⊆ G] ≥ P[F1 ∧ F2 | R ⊆ G] ≥ 1− e−(ε/500)4dn.

We can now use this bound in equation (5.1) to obtain

p∗ ≤ 2nne−(ε/500)4dn
∑
R∈R

P[R ⊆ G] ≤ 2nne−(ε/500)4dne2δdn log(1/δ) = o(1),

where the second inequality follows from Proposition 5.1. This shows the statement in the lemma
holds a.a.s. �
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Definition 5.5. Given graphs H and H ′ with V (H) = V (H ′) = V and E(H) ∩ E(H ′) = ∅,
we say H has ε-many boosters with help from H ′ if there are at least ε|V | vertices v ∈ V for
which there exists a set Uv ⊆ V \ {v} of size at least (1/2 + ε)|V | with the property that for every
u ∈ Uv there exists e ∈ E(H ′) so that {uv, e} is a booster for H. We call uv the primary edge
and we call e the secondary edge.

Corollary 5.6. For all 0 < ε < 1/105 there exist δ,D > 0 such that for D ≤ d ≤ log2 n the
random graph G = Gn,d a.a.s. satisfies the following.

Let H ∈ H1/2−ε(G) and let G′ := G \ H. Let R ⊆ G′ be a spanning 3-expander with
∆(R) ≤ 2δd, and let S ⊆ [n] with |S| ≤ δn. Then, there exists some subgraph F ⊆ G′ \ R
satisfying ∆(F ) ≤ 2δd, such that R has ε/16-many boosters with help from F , with the property
that the set of secondary edges is vertex-disjoint from S.

Proof. Let 1/D � δ � ε < 1/105. Condition on the event that G satisfies all the properties in
the statement of Lemma 5.4, which happens a.a.s. Let H,G′, R, S be as in the statement of
Corollary 5.6. By Lemma 5.4, we may find a set VR ⊆ [n] of size |VR| ≥ n/104 such that, for
each v ∈ VR, there exists a set Uv ⊆ [n] with |Uv| ≥ (1/2 + ε/8)n such that, for each u ∈ Uv,
there exists a set Ev,u ⊆ E((G′ \ R)[[n] \ S]) with |Ev,u| ≥ 50/(εδ) and such that, for every
e ∈ Ev,u, {uv, e} is a booster for R, and such that Ev,u1 ∩ Ev,u2 = ∅ for all u1 6= u2. Note that
each such edge e is vertex-disjoint from S, by construction.

Let F be a random subgraph of G′ \R where every edge in G′ \R is chosen independently at
random with probability δ/2. For each v ∈ VR, let U ′v ⊆ Uv be the set of vertices u ∈ Uv for
which Ev,u ∩ E(F ) 6= ∅. For every u ∈ Uv, we have that

P[u /∈ U ′v] ≤ (1− δ/2)50/(εδ) ≤ e−25/ε ≤ ε/32.

Let A be the event that |U ′v| ≥ (1/2 + ε/16)n for every v ∈ VR. Since for different u ∈ Uv the
sets Ev,u are disjoint, by Lemma 3.1 we have

P[|U ′v| ≤ (1/2 + ε/16)n] ≤ P[|U ′v| ≤ (1− ε/16)|Uv|] ≤ e−ε
2n/106

for each v ∈ VR. Therefore,

P[A] ≤ ne−ε2n/106 ≤ e−ε3n.
Now, let B be the event that ∆(F ) ≤ 2δd. For each v ∈ [n], let Bv be the event that

dF (v) > 2δd. By Lemma 3.2, we have

P[Bv] < e−δd/8

for all v ∈ [n]. Now observe that G′ \ R is itself a dependency graph for {Bv}v∈[n], and every
vertex in this graph has degree at most d. It follows by Lemma 3.4 that

P[B] = P

 ∧
v∈[n]

Bv

 ≥ (1− e1−δd/8)n ≥ e−ε4n > P[A].

Therefore, the probability both events A and B occur is strictly positive, implying that there
exists some F ⊆ G′ \R satisfying the required properties. �

We have now shown that a.a.s. if the random graph Gn,d contains a sparse 3-expander subgraph
R after deleting some H ∈ H1/2−ε(Gn,d), then G′ = Gn,d \H must also have a sparse subgraph
F with the property that R has ‘many’ boosters with help from F . Our next goal is to prove
that some primary edge of these boosters must actually be present in G′.

Lemma 5.7. For all 0 < ε < 1/105 there exist δ,D > 0 such that for D ≤ d ≤ log2 n the
random graph G = Gn,d satisfies the following a.a.s. Let S ⊆ [n] with |S| ≤ δn and let R,F ⊆ G
be two spanning edge-disjoint subgraphs such that

(P1) ∆(R),∆(F ) ≤ 2δd,
(P2) R has ε-many boosters with help from F , such that every secondary edge is vertex-disjoint

from S.
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Then, for any H ∈ H1/2(G), the graph G′ := G\H contains an edge e for which there exists some
edge e′ ∈ E(F ) with the property that {e, e′} is a booster for R, and such that V ({e, e′})∩S = ∅.

Proof. Let 1/D � δ � ε < 1/105. Let P be the set of all triples (R,F, S) where R and F are
edge-disjoint graphs on [n] which satisfy (P1) and (P2) and S ⊆ [n] with |S| ≤ δn.

Fix a triple (R,F, S) ∈ P. For every x ∈ [n], let Vx be the set of vertices v ∈ [n] \ (S ∪ {x})
for which there exists some edge e ∈ E(F ) such that none of the endvertices of e lies in S and
{xv, e} is a booster for R. Let X ′ := {x ∈ [n] : |Vx| ≥ (1/2 + 3ε/4)n}. By assumption on the
triple (R,F, S) and using Definition 5.5, we must have that |X ′| ≥ εn.

Let X := X ′ \ S. Let f(R,F, S) be the event that
∑

x∈X eG\(R+F )(x, Vx) ≥ (1 + ε)d|X|/2. It
follows by Proposition 4.4 that

P[f(R,F, S) | R+ F ⊆ G] ≤ e−(ε/30)4dn. (5.2)

It follows that the probability that (R + F ⊆ G) ∧ f(R,F, S) for some triple (R,F, S) ∈ P is at
most∑

(R,F,S)∈P

P[f(R,F, S) | R+ F ⊆ G]P[R+ F ⊆ G]
(5.2)

≤ 2ne−(ε/30)4dn
∑
K⊆Kn

e(K)≤2δdn

P[K ⊆ G]

≤ 2ne−(ε/30)4dne4δdn log 1/(2δ) ≤ e−(ε/50)4dn,

where the second inequality follows by Proposition 5.1.
We conclude that a.a.s. for all (R,F, S) ∈ P with R+ F ⊆ G we have∑

x∈X

(
eG\(R+F )(x, Vx)− 1

2
dG(x)

)
≥ (1 + ε)

d|X|
2
− d|X|

2
> 0.

Hence, there must exist some x ∈ X with eG\(R+F )(x, Vx) > d/2. Therefore, for anyH ∈ H1/2(G),
there is some vertex x ∈ X such that eG′(x, Vx) ≥ eG(x, Vx)− dH(x) > 0. That is, there must
be some v ∈ NG′(x) ∩ Vx. By the definition of Vx, there is some e ∈ E(F ) such that {xv, e} is a
booster for R. Furthermore, by construction, we have V ({xv, e}) ∩ S = ∅, and this completes
the proof of the lemma. �

Armed with the previous lemmas, we are now in a position to complete the proof of The-
orem 1.2.

Proof of Theorem 1.2. Let 1/D � δ � ε < 1/105 be such that Corollary 5.6 holds for ε,
Lemma 5.7 holds for ε/16 and Lemma 4.9 holds for ε. Condition on each of these holding.

Let H ∈ H1/2−ε(G) and let G′ := G \ H. By Lemma 4.9, there exists a subgraph R ⊆ G′

which is a spanning 3-expander with ∆(R) ≤ δd.
Let R0 := R. We now proceed recursively as follows: for each i ∈ [n], choose ei,1, ei,2 ∈ E(G′)

such that {ei,1, ei,2} is a booster for Ri−1, and let Ri := Ri−1 + ei,1 + ei,2. In order to show
that there exist such ei,1, ei,2 for all i ∈ [n], consider the following. Assume that Ri−1 satisfies
∆(Ri−1) ≤ 2δd. Let Si ⊆ [n] be the set of vertices v ∈ [n] with dRi−1(v) ≥ 2δd−1. For all i ∈ [n]
we have |Si| ≤ 2e(Ri−1\R0)/(δd−1) ≤ 4n/(δd−1) < δn. By applying Corollary 5.6 with Si, Ri−1

playing the roles of S and R, respectively, there exists some subgraph Fi ⊆ G′ \Ri−1 such that
Ri−1 has (ε/16)-many boosters with help from Fi, where each secondary edge is vertex-disjoint
from Si. Furthermore, we have ∆(Fi) ≤ 2δd. Therefore, by applying Lemma 5.7, there are some
ei,1, ei,2 ∈ E(G′) such that {ei,1, ei,2} is a booster for Ri−1 and where V ({ei,1, ei,2})∩ Si = ∅. It
follows that ∆(Ri) ≤ 2δd.

By the end of this process, we have added n boosters to R to obtain Rn ⊆ G′. Therefore Rn,
and hence G′, is Hamiltonian. �

6. Graphs of small degree with low resilience

In this section we prove Theorem 1.3. For this, we will require a crude bound on the number
of edges spanned by any set of n/2 vertices in Gn,d. To achieve this, we shall make use of the
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following result, which follows from a theorem of McKay [28] (see e.g. [38]). We denote by α(G)
the size of a maximum independent set in G.

Theorem 6.1. For every fixed d ≥ 3, a.a.s. we have that α(Gn,d) ≤ 0.46n.

Lemma 6.2. For every fixed d ≥ 3, a.a.s. we have that eGn,d
(A) > n/100 for all A ⊆ [n] with

|A| = bn/2c.
Proof. By Theorem 6.1, every set of size n/2 must span at least n/100 edges, as otherwise it
would contain an independent set of size n/2− n/50 > 0.46n. �

Alternatively, this lemma can be proved directly using a switching argument.
In order to prove Theorem 1.3 we will use a switching argument. Given a graph G ∈ Gn,d

and any integer ` ∈ [d], let u ∈ [n] and let Λ+
u,` = (e1, . . . , e`, f1, . . . , f`) be an ordered set of

2` edges from E(G) such that ei = uvi with vi 6= vj for all i 6= j, and {fi : i ∈ [`]} is a set
of independent edges such that, for each i ∈ [`], the distance between fi and ei is at least
2. We call Λ+

u,` a (u, `)-switching configuration. For each i ∈ [`], choose an orientation of

fi and write fi = xiyi, where fi is oriented from xi to yi. Let λ+
u,` := {e1, . . . , e`, f1, . . . , f`},

Λ−u,` := (uy1, . . . , uy`, x1v1, . . . , x`v`) and λ−u,` := {uy1, . . . , uy`, x1v1, . . . , x`v`}. We say that the

graph G′ := ([n], (E(G) \ λ+
u,`) ∪ λ

−
u,`) ∈ Gn,d is obtained from G by a u-switching of type `.

Observe that, given such a setting, we also have that G is obtained from G′ by a u-switching of
type `, interchanging the roles of Λ+

u,` and Λ−u,`.

Proof of Theorem 1.3. Fix any odd d > 2. Let Ĝn,d ⊆ Gn,d be the collection of graphs for which

the statement of Lemma 6.2 holds. We have by Lemma 6.2 that |Ĝn,d| = (1− o(1))|Gn,d|. Let

G′n,d ⊆ Ĝn,d be the collection of all graphs G ∈ Ĝn,d which are not (d− 1)/2-resilient with respect

to Hamiltonicity. Let p := |G′n,d|/|Ĝn,d|. We will prove that p is bounded from below by a positive
constant which does not depend on n.

For each G ∈ Ĝn,d, consider a maximum cut M with parts AM and BM , where |AM | ≤ |BM |
(thus M = EG(AM , BM )). By abusing notation, we also use M to denote the bipartite graph
G[AM , BM ]. Note that for all x ∈ AM we have dM (x) > d/2, as otherwise we could move x
from AG to BG to obtain a larger cut; similarly, dM (y) > d/2 for all y ∈ BM .

Given G ∈ Ĝn,d, suppose there exists a maximum cut M for G such that |AM | < |BM |. Let
H := ([n], EG(AM ) ∪ EG(BM )). It is then clear that M = G \H is not Hamiltonian, as it is an
unbalanced bipartite graph. Furthermore, we have that ∆(H) ≤ (d− 1)/2, so we conclude that
G is not (d− 1)/2-resilient with respect to Hamiltonicity and, thus, G ∈ G′n,d. (Below we will use

that the same conclusion holds if there is any cut M of G such that |AM | < |BM |, dM (x) > d/2

for all x ∈ AM , and dM (y) > d/2 for all y ∈ BM .) Therefore, for every G ∈ Ĝn,d \ G′n,d we have

that |AM | = |BM | for every maximum cut M of G.

For each G ∈ Ĝn,d \ G′n,d, fix a maximum cut MG of G which partitions [n] into AG and BG.

Then, for each x ∈ AG there exists k ∈ [dd/2e] such that dMG
(x) = bd/2c+ k. Let ` ∈ [dd/2e]

be such that there exist at least (1− p)|Ĝn,d|/d graphs G ∈ Ĝn,d \ G′n,d with the property that

there are at least n/(2d) vertices x ∈ AG with dMG
(x) = bd/2c+ `. Let D := bd/2c+ `. Denote

the collection of all such graphs G by Ω.
For each G ∈ Ω and for each x ∈ AG such that dMG

(x) = D, we consider all possible
x-switchings of type D where the (x,D)-switching configuration Λ+

x,D = (e1, . . . , eD, f1, . . . , fD)

satisfies that {e1, . . . , eD} = EMG
(x,BG) and {f1, . . . , fD} ⊆ EG(AG). We say that any G′ ∈ Gn,d

which can be obtained from G by such an x-switching of type D, is obtained by an out-switching
from G, and we call Λ+

x,D an out-switching configuration. Let Ω′ denote the set of all graphs

G′ ∈ Gn,d which can be obtained by out-switchings from some graph G ∈ Ω. In particular,
note that for each G′ obtained from G by an out-switching we may define A′ := AG \ {x} and
B′ := [n] \ A′, so that |A′| < |B′|, eG′(u,B′) > d/2 for all u ∈ A′, and eG′(v,A

′) > d/2 for all
v ∈ B′, which means, as observed previously, that G′ is not (d− 1)/2-resilient with respect to

Hamiltonicity. Therefore, Ω′ ⊆ (Gn,d \ Ĝn,d) ∪ G′n,d and Ω ∩ Ω′ = ∅.
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To show that Ω′ is large, we consider an auxiliary bipartite graph Γ with parts Ω and Ω′. We
place an edge between G ∈ Ω and G′ ∈ Ω′ if G′ is obtained from G by an out-switching. First,
let G ∈ Ω. We will now provide a lower bound on the number of out-switchings from G. Since
G ∈ Ω, by construction there are at least n/(2d) vertices x ∈ AG be such that dMG

(x) = D. For
each such x, the number of out-switching configurations is given by the different choices for the
edges in (e1, . . . , eD, f1, . . . , fD), chosen sequentially. There are D! choices for (e1, . . . , eD). For
all i ∈ [D], as each of the fi has to be independent from the previously chosen edges, at distance
at least 2 from ei, and spanned by AG, by Lemma 6.2 we conclude that the number of choices
for fi is at least n/100− 4d2. Finally, once the out-switching configuration is given, there are
2D possible switchings, one for each possible orientation of the set of edges {fi : i ∈ [D]}; on
the other hand, D! different out-switching configurations result in the same outcome G′. We
conclude that

dΓ(G) ≥ n

2d
2D
( n

100
− 4d2

)D
. (6.1)

Now consider any G′ ∈ Ω′. It is easy to see that

dΓ(G′) ≤ n2D
(
d

D

)(
nd

2

)D
. (6.2)

Therefore, by double-counting the edges in Γ, from (6.1) and (6.2) we have that

|Ω| ≤ 2d

(
d

D

)(
101d

2

)D
|Ω′|.

It follows that there exists a constant p which does not depend on n for which a p fraction of the
graphs in Ĝn,d are not (d− 1)/2-resilient with respect to Hamiltonicity. The result follows. �
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[35] N. Škorić, A. Steger and M. Trujić, Local resilience of an almost spanning k-cycle in random graphs, arXiv

e-prints (2017), 1709.03901.
[36] B. Sudakov and V. H. Vu, Local resilience of graphs, Random Structures Algorithms 33 (2008), 409–433.
[37] K. Tikhomirov and P. Youssef, The spectral gap of dense random regular graphs, Ann. Probab. 47 (2019),

362–419.
[38] N. C. Wormald, Models of random regular graphs, Surveys in combinatorics, 1999 (Canterbury), vol. 267 of

London Math. Soc. Lecture Note Ser., 239–298, Cambridge Univ. Press, Cambridge (1999).

1710.00505
1901.09605
1709.03901

	1. Introduction
	1.1. Hamilton cycles in random graphs
	1.2. Local resilience
	1.3. New results
	1.4. Organisation of the paper

	2. Outline of the proof of thm: main
	3. Preliminaries
	3.1. Notation
	3.2. Probabilistic tools
	3.3. The configuration model

	4. On the existence of a sparse 3-expander
	5. Finding many boosters
	6. Graphs of small degree with low resilience
	References

