PATH AND CYCLE DECOMPOSITIONS OF DENSE GRAPHS

ANTONIO GIRAO, BERTILLE GRANET, DANIELA KUHN, AND DERYK OSTHUS

ABSTRACT. We make progress on three long standing conjectures from the 1960s about path
and cycle decompositions of graphs. Gallai conjectured that any connected graph on n vertices
can be decomposed into at most [%W paths, while a conjecture of Hajds states that any Eulerian
graph on n vertices can be decomposed into at most L%’lj cycles. The Erdés-Gallai conjecture
states that any graph on n vertices can be decomposed into O(n) cycles and edges.
We show that if G is a sufficiently large graph on n vertices with linear minimum degree,
then the following hold.
(i) G can be decomposed into at most % + o(n) paths.
(ii) If G is Eulerian, then it can be decomposed into at most % 4 o(n) cycles.
(iii) G can be decomposed into at most 2 4 o(n) cycles and edges.

If in addition G satisfies a weak expansion property, we asymptotically determine the required
number of paths/cycles for each such G.

(iv) G can be decomposed into max{%@), %} + o(n) paths, where odd(G) is the

number of odd-degree vertices of G.

A(G)

(v) If G is Eulerian, then it can be decomposed into =5~ + o(n) cycles.

All bounds in (i)—(v) are asymptotically best possible.

1. INTRODUCTION

1.1. Background. Graph decomposition is a central field of graph theory, which encompasses
some of the oldest and most famous problems in combinatorics. For example, the decomposition
of complete graphs into Hamilton cycles or Hamilton paths was attributed to Walecki and dates
back to 1883 [30] (see [2] for a description in English of Walecki’s construction). Extensive
research has also been done on decompositions of graphs into (not necessarily Hamiltonian)
paths and/or cycles. One of the most famous results in this area is due to Lovész.

Theorem 1.1 ([29]). Let G be a graph on n vertices. Then G can be decomposed into at
most L%J paths and cycles.

We observe that this result is sharp. Indeed, a vertex of odd degree in a graph G must be the
endpoint of at least one path in a path and cycle decomposition of GG. Thus, n-vertex graphs
with at most one vertex of even degree cannot be decomposed into fewer than L%J paths and
cycles.

The result of Lovédsz was inspired by the following conjecture of Gallai (see [29]).

Conjecture 1.2 (Gallai). Any connected graph on n vertices can be decomposed into at most {%]
paths.

Complete graphs show that the conjecture of Gallai would be best possible. Lovéasz [29]
observed that Theorem 1.1 implies that any graph can be decomposed into at most n — 1
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paths. This was later improved by Donald [12] who showed that L%"J paths are sufficient. It
was subsequently shown by Dean and Kouider [11] and independently by Yan [33] that L%”J
paths suffice. The covering version of Gallai’s conjecture (where the paths are not necessarily
edge-disjoint) was solved by Fan [15].

Although the conjecture of Gallai remains open, it has been verified for several classes of
graphs. We direct the readers to [5,7,17,21,24,29,32] for some of these results.

The analogous problem for cycle decompositions was posed by Hajds (see [29]). We note that
the original problem suggested by Hajos asked for a decomposition of Eulerian n-vertex graphs
into at most L%J cycles, but Dean [10] observed that this is equivalent to the following.

Conjecture 1.3 (Hajés). Any Eulerian graph on n vertices can be decomposed into at most L”T_lj
cycles.

Eulerian graphs with maximum degree n — 1 demonstrate that the conjecture of Hajés would
be best possible. Conjecture 1.3 has only been verified for specific classes of graphs. See [18] for
some of these results. Again, the analogous covering problem was resolved by Fan [16].

Jackson [22] conjectured the analogue of Conjecture 1.3 for Eulerian oriented graphs. However,
Dean [10] observed that this conjecture is false and conjectured instead that any Eulerian
oriented graph on n vertices can be decomposed into L%”J dicycles and any Eulerian digraph on
n > 1 vertices can be decomposed into 8?” — 3 dicycles.

Very little progress has been made on Conjecture 1.3 for general graphs. In particular, the
related problem of decomposing Eulerian graphs into O(n) cycles is still open and is equivalent
to a problem posed in [14] which is known as the Erdés-Gallai conjecture (see [13]).

Conjecture 1.4 (Erdés-Gallai). Any graph on n vertices can be decomposed into O(n) cycles
and edges.

Observe that given any n-vertex graph G, by repeatedly removing cycles until no longer
possible, we obtain a forest F' such that G\ F' is Eulerian. Since this forest contains at most n— 1
edges, the problem of decomposing graphs into O(n) cycles and edges reduces to decomposing
Eulerian graphs into O(n) cycles. Conversely, given a decomposition of an Eulerian graph G
into O(n) cycles and edges, one can easily obtain a decomposition of G into O(n) cycles. Thus,
Conjecture 1.4 is equivalent to the problem of decomposing Eulerian graphs into O(n) cycles.
Also observe that Conjecture 1.3 would imply that any graph can be decomposed into at
most @ cycles and edges. Thus, the Erdds-Gallai conjecture holds for all classes of graphs
for which Conjecture 1.3 has been verified. Additionally, the Erdés-Gallai conjecture was verified
for graphs of linear minimum degree by Conlon, Fox, and Sudakov [8]. More precisely, they
showed the following.

Theorem 1.5 ([8]). For any a > 0, if G is a graph on n vertices with minimum degree 6(G) > an,
then G can be decomposed into O(a~'2n) cycles and edges.

Conjecture 1.4 remains open for general graphs, while the covering version was proved by
Pyber [31].

It is not hard to show that mng(n) + O(n) cycles and edges are sufficient to decompose any
graph (see [13]). An example of Erdés [13] shows that at least (3 — o(1))n cycles and edges are
necessary for some graphs. It was recently shown in [8] that O(nloglogn) cycles and edges are
sufficient, and this is currently the best known result for general graphs. More precisely, they
proved the following.

Theorem 1.6 ([8]). Let G be a graph on n vertices with average degree d. Then G can be
decomposed into O(nloglogd) cycles and edges.

Progress on Conjectures 1.2 and 1.4 was also made for random graphs. As proved in [8],
for any edge probability p := p(n), the binomial random graph G(n, p) satisfies Conjecture 1.4
asymptotically almost surely. More details about decompositions of random graphs into cycles and
edges can be found in [26], where Korandi, Krivelevich and Sudakov provided an asymptotically
tight result for a large range of edge probabilities p(n).
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For constant edge probability 0 < p < 1, Glock, Kiithn, and Osthus [20] strengthened the
bounds of [8,26] to obtain precise results for decompositions of G(n,p) into paths or cycles and
into matchings. In fact, they obtained their results for quasirandom graphs. More precisely, they
used the following notion of quasirandomness. An n-vertex graph G is lower-(e, p)-regular if for
any disjoint S, T C V(G) with |S|,|T| > en, we have eq(S,T) > (p —€)|S||T|. Given a graph G,
we denote by odd(G) the number of odd-degree vertices of G.

Theorem 1.7 ([20]). For any 0 < p < 1, there exist ,m,n9 > 0 such that for any n > ng the
ollowing hold. Let e a lower-(e, p)-reqular graph on n vertices wit — < nn. en,
foll hold. Let G be al l h h A(G)—6(G Th
1 can be decomposed into max < ——, | —5— paths, an
e be d J oddQ(G) A(G2)+1 L d

(ii) of G is Fulerian, then it can be decomposed into A(zG) cycles.

These bounds are best possible for each G, but do not hold in general (some examples can be
found in Section 6).
Bienia and Meyniel [3] conjectured the analogue of Conjecture 1.4 for Eulerian digraphs.

Conjecture 1.8 (Bienia and Meyniel). There exists a € R such that any Eulerian digraph on n
vertices can be decomposed into at most an dicycles.

As mentioned in [3,10], unions of complete symmetric digraphs K} which are all sharing a
common vertex show that, if Conjecture 1.8 is true, then o > %. Conjecture 1.8 is also discussed
in [4]. Tt is still open but some progress was recently made by Knierim, Larcher, Martinsson,
and Noever [25].

Theorem 1.9 ([25]). Let D be an Eulerian digraph on n vertices and with mazimum degree A.
Then D can be decomposed into O(nlog A) dicycles.

1.2. New results. First, we prove approximate versions of Conjectures 1.2 and 1.3 for sufficiently
large graphs of linear minimum degree (see Theorems 1.10(i) and 1.10(ii)). Theorem 1.10(ii)
easily implies Theorem 1.10(iii), which improves Theorem 1.5 and gives (asymptotically) the
best possible constant.

Theorem 1.10. For any o, > 0, there exists ng such that if G is a graph on n > ng vertices
with §(G) > an, then the following hold.

(i) G can be decomposed into at most 5 + én paths.
(ii) If G is Eulerian, then it can be decomposed into at most § + dn cycles.

iii) G can be decomposed into at most 22 + dn cycles and edges.
» ] y g

Secondly, we prove approximate versions of the bounds in Theorem 1.7 for sufficiently large
graphs with linear minimum degree which satisfy a weak version of quasirandomness. More
precisely, we say an n-vertex graph G is weakly-(g, p)-quasirandom if for any partition AU B
of V(G) with |A|,|B| > en we have eq(A, B) > p|A||B|. This notion of weak quasirandomness
implies that the reduced graph obtained after applying the regularity lemma to a dense graph is
connected. This is the only property required to obtain the bounds in the following theorem.

Theorem 1.11. For any o, 6,p > 0, there exists ng such that if G is a weakly-(5, p)-quasirandom
graph on n > ngy vertices with 6(G) > an, then the following hold.

%(G)7 %} + dn paths.

i1) If G is Eulerian, then it can be decomposed into at most AlG) + dn cycles.
(ii) If , p 5 y

(i) G can be decomposed into at most max{

In particular, the following holds.

Corollary 1.12. For any 0, > 0, there exists ng such that if G is a graph on n > ng vertices
with §(G) > § +en then the following hold.

(i) G can be decomposed into at most max {%(G), #} + 0n paths.
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(ii) If G is Eulerian, then it can be decomposed into at most % + dn cycles.

Note that, if in addition G is regular, then the error terms of en and dn can be removed in
Corollary 1.12(ii), see [9].

The next result shows that one can drop the linear minimum degree condition in Theorem 1.11(i)
if the quasirandomness covers a larger range of partition class sizes.

Theorem 1.13. For any p,d > 0, there exist €,ng > 0 such that the following holds. If G is
a weakly-(e, p)-quasirandom graph on n > ngy vertices, then G can be decomposed into at most

x{%@), %} + dn paths.

For Theorem 1.10, the linear minimum degree condition is likely to be an artefact of our
proof. On the other hand, in Section 6, we will give some examples to show that neither
the linear minimum degree condition (or even the stronger assumption of linear connectivity),
nor the Weakly—(%, p) -quasirandom property is sufficient on its own to obtain the bounds in
Theorem 1.11. However, Theorem 1.13 shows that, in the case of path decompositions, the linear
minimum degree condition can be dropped if we assume G to be weakly-(e, p)-quasirandom for
a sufficiently small constant € > 0. Surprisingly, it turns out that the Erdés-Gallai conjecture
is equivalent to the following analogue of Theorem 1.13 for cycle decompositions of Eulerian
graphs (see Proposition 6.3).

Conjecture 1.14. For any §,p > 0, there exist €,ng > 0 such that the following holds. If G is

an Eulerian weakly-(e, p)-quasirandom graph on n > ng vertices, then G can be decomposed into
AG)

at most =5 + dn cycles.

We can prove Conjecture 1.14 if weak-(g, p)-quasirandomness is replaced by weak-(
quasirandomness (see Proposition 6.4).

We note that Theorems 1.11 and 1.13 differ from Theorem 1.7 in the following way. Firstly, we
have no restriction on the difference between the maximum and minimum degree. Secondly, weak-
(e, p)-quasirandomness is a significantly weaker property than lower-(e, p)-regularity. Moreover,
the e-parameter in Theorem 1.7 is much smaller than the p-parameter. We do not require this in
Theorem 1.11, and while this is necessary in Theorem 1.13, there we do not require the minimum
degree to be linear. On the other hand, Theorems 1.11 and 1.13 have an additional o(n) term in
the number of paths/cycles compared to Theorem 1.7.

Finally, we observe that the following is immediately implied by Corollary 1.12.

e
loglogn’p)_

Corollary 1.15. For any € > 0, there exists ng such that the conjecture of Hajos is true for all
Eulerian graphs G on n > ng vertices with 6(G) > 5§ +en and A(G) <n —en.

We remark that by Theorem 1.11, Corollary 1.15 holds more generally for sufficiently large
weakly-quasirandom graphs with maximum degree bounded away from n.

A key tool in our proofs will be the main technical result of [27], which generates a Hamilton
decomposition of a graph satisfying certain robust expansion properties (see Section 4.4 for the
statement). This was developed originally in [27] to give a proof of Kelly’s conjecture (which
states that every large regular tournament has a Hamilton decomposition), and applied e.g. in
[9] to prove the 1-factorisation conjecture (see also [28] for some early applications).

1.3. Organisation of the paper. The paper is organised as follows. We start by providing a
proof overview of our main theorems in Section 2. Notation and probabilistic tools are introduced
in Section 3, and preliminary results are collected in Section 4. Theorems 1.10(i), 1.10(ii), 1.11,
and 1.13 are proved in Section 5. Finally, we derive Theorem 1.10(iii) and make some concluding
remarks in Section 6.

2. PROOF OVERVIEW OF THE MAIN THEOREMS

The proofs of Theorems 1.10(i), 1.10(ii), 1.11 and 1.13 follow a similar strategy, and so, for
simplicity, we only sketch the proof of Theorem 1.10(ii).
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Fix additional constants ¢, (, 5, and ng such that 0 < n—lo Lek (K pfKa,d<1. Let G be
a graph on n > ng vertices with 6(G) > an. We decompose G by repeatedly constructing cycles.
For simplicity, whenever edges are used to form a cycle, they are implicitly deleted from the
graph (so all the cycles constructed below are edge-disjoint, as desired). We obtain the bulk of
our cycles in Step 3, all other cycles will contribute to the error term. In Step 3, we need to
be very efficient (i.e. the average length of the cycles needs to be large), while there is room to
spare in the other steps.

Step 1: Applying Szemerédi’s regularity lemma and setting aside some random
subgraphs I' and I'. We start by applying Szemerédi’s regularity lemma and a cleaning
procedure similar to the one used to prove the degree form of the regularity lemma. We
will thus obtain a subgraph H C G of small maximum degree and a partition of V(G) into
clusters Vi,...,V; and an exceptional set V. Moreover, in each non-empty pair of clusters
of G\ H, almost all vertices have degree close to the density of the pair, while the few other
vertices are isolated. Moreover, in each pair, the vertices of positive degree span an e-regular
bipartite graph.

We also set aside two sparse edge-disjoint random spanning subgraphs I'; Y C G\ H such
that, in I", each non-empty pair of clusters has density close to 3, while in I each such pair

has density close to (. By Theorem 1.1 and by splitting clusters if necessary, we may assume

that the reduced graph R’ of I' can be decomposed into at most @ = g cycles of even length

(this will be needed in Step 5). Let G* :== G\ (H UT'UT"). Denote by G7; the e-regular (almost
spanning) subgraph of the pair G*[V;, V;], and define T';; similarly. I' and I will be used to tie
together given sets of paths of G* into cycles.

Step 2: Covering the edges of G[Vj]. Apply Theorem 1.1 to G[Vj]. The paths obtained
are extended to paths with endpoints in V(G) \ Vp and then closed into cycles using edges of T.
Since Vj is small, this results in only a few cycles and we can use edges of I' sparingly so that its
properties are not destroyed.

Step 3: Covering most of G* with at most roughly 5 cycles. The idea is to decompose
the edges of G* into paths and then link some of these paths together using the edges in ' U T’
to form cycles. The bipartite graph G*[Vp, V(G) \ Vo] is decomposed into paths of length 2 with
midpoints in Vp, called exceptional paths, while e-regular pairs ij are approximately decomposed
into long but not spanning paths, so that a few vertices are set aside for tying up paths. We then
use edges of ['UI” to link these paths into cycles. More precisely, we proceed as follows. Suppose
first that the reduced graph R of G is connected. We construct an auxiliary reduced graph R
such that the multiplicity of the edges between V; and Vj in Ris proportional to the density of

corresponding pair Gj; of G*. We optimally decompose R into matchings. Given a matching M

of ]?i, we form sets P of paths consisting of exactly one path of G;kj for each V;V; € M, and of
exceptional paths which cover vertices of Vy with highest degree. Since M is a matching of
clusters and our non-exceptional paths do not span entire clusters, we can ensure that each
set P of paths obtained in this way consists of vertex-disjoint paths and does not span entire
clusters. Thus, after this step, we still have some uncovered vertices, called reservoir vertices,
which can be used to link the paths in each set P into a cycle using edges of I' U .

Since the edge multiplicity between two clusters in R is proportional to the density of the
corresponding pair of G* and at each stage we cover exceptional vertices of highest degree, we
obtain an upper bound of roughly %G*) cycles in total. In general, R may be disconnected and,
by construction, I' U I” contains no edges between the different components of R. Thus, we
cannot tie together paths from different components and we need to apply the above argument to
each component of R separately. But, if a component of R contains n’ vertices of G* (say), then
the subgraph of G* induced by this component has maximum degree at most n’ and we obtain
at most roughly %/ cycles from that component. Thus, we get an upper bound of roughly 5
cycles in total.
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By alternating which vertices are used as reservoir vertices, we ensure that the leftover graph H’
has small maximum degree. Moreover, we use edges of I" sparingly so that the properties of I'
are maintained. Since the density ¢ of IV is small, we can add the remaining edges of I" to H'
without significantly increasing the maximum degree of H'.

We remark that in Step 2 it was possible to tie together paths using only I' because we had
some room to spare (in the sense that the number of cycles produced might be fairly large
compared to the number of edges covered). But in Step 3, we need to use edges of both I and T”
in order to be efficient and obtain the desired number of cycles. (The reason that using T UT” is
more efficient is that the reduced graph of I' UT” equals that of G*. We cannot guarantee this
property for I' alone since for Step 4 the non-empty pairs I';; of I' need to be fairly dense.)

Step 4: Covering the leftovers. By construction, H U H' has small maximum degree and
so can be decomposed into few small matchings. We tie the edges of each matching into a cycle
using edges of I'. Once again, we make sure that the relevant properties of I' are preserved.

Step 5: Fully decomposing I'. It only remains to decompose (the remainder of) I'. The

@Q

M M

(A) Pair of matchings (M,M’) in the ) We set aside an edge from each pair

reduced graph. in M " (dashed grey) and replace them by
a fictive edge in each pair of M (dashed
black).

(¢) We find a Hamilton cycle of each ) We remove the fictive edges from the

pair of M containing a single fictive edge cycles of pairs of M and insert back the

(dashed black). edges set aside from pairs of M’ (dashed
grey).

Ficure 1. Construction of a cycle of T'.

idea is to initially decompose the reduced graph of I' into % cycles of even length (as discussed
in Step 1). For each such cycle C, the subgraph I'c of I' corresponding to the blow-up of C' is
first approximately decomposed into Hamilton cycles of I'c that “wind around” C. The leftover
is then decomposed using the main technical result of [27] as follows.

The cycle C is initially decomposed into a pair (M, M') of matchings. For each V;V; € MUM’,
we first set aside a small set &;; of edges of I';; and then decompose the remaining edges into
a set H;; of Hamilton paths. We make sure the set of endpoints of the paths in UVZ VeM Hij
equals the set of endpoints of the edges in Uw Ve &ij, and similarly for M and M’ exchanged.
Thus we can tie together a path of H;; for each V;V; € M using exactly one edge of & for
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each V;;V;» € M'. We proceed similarly to tie paths of U% Ve H;j into cycles. We thus obtain
a Hamilton decomposition of I'¢.

In order to prescribe the endpoints of the Hamilton paths, we add some suitable edges to I'¢,
called fictive edges, and then actually find a Hamilton decomposition of each pair I';; \ &;
such that each cycle in the decomposition contains exactly one fictive edge (see Figure 1).
Such decompositions are guaranteed by the “robust decomposition lemma” of [27]. Since by
construction all pairs of I' have density close to 3, we obtain, in total, about %n & dn cycles.

3. NOTATION, DEFINITIONS, AND PROBABILISTIC TOOLS

3.1. Notation. Let G be a graph. If X C V(G) is a set of vertices of G we write G[X] for the
subgraph of G induced by X and G — X for G[V(G) \ X]. Given a set F' C E(G) of edges of G,
we write G \ F for the graph obtained from G by deleting all edges in F. Similarly, given a
subgraph H C G, we write G \ H for G\ E(H). If F is a set of non-edges of G, we write GU F'
for the graph obtained from G by adding all edges in F'. If G and H are edge-disjoint graphs we
write G U H for the graph with vertex set V(G) U V(H) and edge set E(G)U E(H).

Assume G is a graph. For any x € V(G), we denote by Ng(z) the set of neighbours of z and
by dg(z) the degree of z in G. Given z,y € V(G), we define dg(z,y) == |Ng(z) N Ng(y)|. The
subscripts may be omitted if this is unambiguous. We say G is Eulerian if all its vertices have
even degree. (Note that G is not necessarily connected.)

Given a graph G and A, B C V(G), we write eg(A, B) for the number of edges of G which
have an endpoint in A and an endpoint B. If A, B are disjoint then we write G[A, B] for the
bipartite subgraph of G with vertex classes A and B and all edges of G with an endpoint in A
and an endpoint in B.

Let 8 be a digraph. Given vertices z,y € V(a), we write xy for the edge directed from x
to y. The vertex z is called the initial vertexr of xy and y the final vertex of xy. Given a

vertex x € V(g), the outneighbourhood of x, denoted Ng@), is the set of vertices y such
that zy € E(a) Similarly, the inneighbourhood Né(w) of a vertex = € V(B) is the set of

vertices y such that yx € V(é) We say G is r-regular if for any vertex x € V(G), we have
\Ng(xﬂ = \Né(x)| = r. For any A, B C V(G), we write ez (A, B) for the number of edges

of 8 whose initial vertex belongs to A and whose final vertex belongs to B. For any disjoint
A, BC V(B), we write B[A, B] for the bipartite subdigraph of 8 with vertex classes A and B

and whose edges are all the edges of 8 whose initial vertex belongs to A and whose final vertex
belongs to B.

The length of a path is number of edges it contains. An (x,y)-path is a path whose endpoints
are x and y. Given a path P and z,y € V(P), we write Py for the (x,y)-path induced by P.
We use the terms set of vertex-disjoint paths and linear forest interchangeably. In particular, by
slightly abusing notation, given a set P of vertex-disjoint paths, we write V' (P) for the set of
vertices of the paths in P and define E(P) similarly.

We write N for the set of natural numbers (including 0) and N* for the set of positive natural
numbers. For any k € N*, we write [k] = {1,2,...,k}, [kloaqa = {i € [k] | k is odd}, and,
similarly, [k]even == {7 € [K] | k is even}.

Let a,b,c € R. We writea =b+tcif b—c < a < b+ c. For simplicity, we use hierarchies
instead of explicitly calculating the values of constants for which statements hold. Namely, if
we write 0 < a K b < ¢ <1 in a statement, we mean that there exist non-decreasing functions
f:(0,1] — (0,1] and g: (0,1] — (0, 1] such that the statement holds for all 0 < a,b,c < 1
satisfying b < f(c) and a < g(b). Hierarchies with more constants are defined in a similar way.
We assume large numbers to be integers and omit floors and ceilings, provided this does not
affect the argument.

Let G be a graph. A decomposition of G is a set D of edge-disjoint subgraphs of G such
each edge of G belongs to exactly one subgraph in D. A path decomposition (respectively, cycle
decomposition) is a decomposition D of G such that each subgraph in D is a path (respectively,
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a cycle). We say G can be decomposed into d paths (respectively, decomposed into d cycles)
if G has a path (respectively, cycle) decomposition D of size d. Similarly, we say G can be
decomposed into d paths and cycles (respectively, decomposed into d cycles and edges) if G has a
decomposition D of size d such that each subgraph in D is either a path or a cycle (a cycle or
an edge, respectively).

3.2. Regularity. Let G be a bipartite graph on vertex classes A, B. The density of G is
dg(A, B) = eﬁéﬁj’;). We may write d(A, B) instead of dg(A, B) if this is unambiguous. For any
e >0, we say G is e-reqular if, for any A’ C A and B’ C B with |A’| > ¢|A| and |B’| > ¢|B|, we
have |d(A', B") — d(A, B)| < e.

Let d € [0,1]. We say G is (e,d)-regular if G is e-regular and has density d. We write G is
(e, > d)-regular is G if e-regular of density at least d. We say G is [e, d]|-superreqular if G is
e-regular, for all @ € A, d(a) = (d £ ¢)|B|, and, for all b € B, d(b) = (d £ ¢)|A|. We say G is
[e, > d]-superregular if there exists d’ > d such that G is [e, d']-superregular.

We also define a sparse version of e-(super)regularity to allow for d < . Let G be a bipartite
graph on vertex classes A, B of size m. We say G is {e, d}-reqular if for any A’ C A and B’ C B
with |A'[,|B’| > em, we have d(A’, B') = (1+¢)d. For any 0 < ¢ < 1, we say G is (e, d, ¢)-regular
if the following hold:

(Reg 1) G is {e,d}-regular;
(Reg 2) For any distinct a,a’ € A we have |[N(a)NN(a')| < ¢?m, and similarly [N (b)NN (V)| <
c?m for any distinct b,b’ € B;

(Reg 3) A(G) < cem.
For any 0 < d* < 1, we say that G is (e,d, d*, ¢)-superregular if it is (e, d, ¢)-regular and the
following holds:

(Reg 4) 0(G) > d*m.

Given a bipartite digraph 8 with vertex classes A, B, recall that B[A, B denotes the bipartite
subgraph of 8 whose edges are all the edges directed from A to B in 8 We often view G[A, B|
as an undirected bipartite graph. In particular, we say 8[14,3] is e-regular if this holds

when 8[14, B] is viewed as an undirected graph. We define (g, d)-regularity, (g, > d)-regularity,
[e, d]-superregularity, and [, > d]-superregularity for directed bipartite graphs similarly.

Let G be a graph and Vp, Vi,..., V) be a partition of V(G) into k clusters Vi,..., V) and
an exceptional set V. The vertices in Vj are called the exceptional vertices of G and an edge
of G is called exceptional if it has an endpoint in Vp. The reduced graph of G (with respect
to the partition Vp, Vi,...,V}) is the graph R with V(R) == {Vi,...,V}} and E(R) := {V;V} |
e(G[V;,V;]) > 0}. For clarity, we sometimes abuse notation and denote by 1,...,k the vertices
of R. If C is a connected component of R, we let Vg(C) = JC, i.e. Vg(C) is the set of

vertices x € V(G) such that « € V; for some V; € V(C). The reduced digraph R of a digraph G
is defined similarly.

Let G be an n-vertex graph. Let Vj,Vi,..., Vi be a partition of V(G) and R be the
corresponding reduced graph. For any distinct 4, j € [k], the support cluster of V; with respect
to V; is the set Vj; == {z € V; | Ng(z) NV; # 0}. We also say Vj; and Vj; are the support
clusters of the pair G[V;,V;]. Let ij € E(R) and x € V;. We say x belongs to the superregular
pair G[V;, Vj] if « belongs to the support cluster Vi;. Let Vi, V{,...,V/, be a partition of V(G)
such that, for all i € [£], there exists j € [k] such that V/ C V;. We say the support clusters of
the partition Vi, VY, ..., V), are induced by the partition Vo, V1,..., V; if, for all 7/, j’ € [K'], the
support cluster V, i of V., with respect to Vj’, satisfies V, o =Viyn V., where i, j € [k] are such
that V) C V;, V], C Vj, and Vj; == 0 if i = j. Let G’ be a graph on V(G) with reduced graph R’
(with respect to the partition Vg, Vi, ..., Vy). We say G and G’ have the same support clusters if
for any ij € E(R)N E(R’), the support clusters of the pairs G[V;, V;] and G'[V;, V;] are the same.

We say Vo, Vi,..., Vi is an (e, > d, k, m, R)-superregular partition of G if the following hold.
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(SRP1) [Vi| =--- = [Vi| = m.
( ) Vol < en.
(SRP3) G[V;] is empty for all i € [k].
(SRP4) R is the reduced graph of G.
(SRP5) For any ij € E(R), let Vij, V}; be the support clusters of G[V;, V;]. Then, G[Vij, Vji]
is [e,> d]-superregular and |V;;], |Vji| > (1 —e)m.
We say Vo, Vi,..., Vi is an (g,> d, k, m,m’, R)-superreqular equalised partition of G if (SRP1)-
(SRP5) are satisfied and, moreover, the following holds.
(SRP6) m' > (1 — e)m and, for any ij € E(R), |V;;| = |Vjil =m/

We say Vo, Va,..., Vi is an (g,d, k, m, R)-superreqular partition of G if (SRP1)—(SRP5) hold,
except that [e, > d]-superregularity is replaced by [e, d]-superregularity in (SRP5). We define an
(e,d,k,m,m’, R)-superreqular equalised partition of G analogously.

We say a graph G admits a superreqular (equalised) partition if there exist Vo, Vi,..., Vi,
e,d, k,m,R (and m') such that Vp,Vi,...,V} is an (e, > d, k, m, R)-superregular (equalised)
partition.

3.3. Probabilistic estimates. Let X be a random variable. We write X ~ Bin(n,p) if X
follows a binomial distribution with parameters n,p. Let N,n,m € N be such that max{n,m} <
N. Let " be a set of size N and IV C T" be of size m. Recall that X has a hypergeometric
distribution with parameters N,n,m if X = |I';, NT|, where I, is a random subset of T’
with |I',| = n (i.e. ' is obtained by drawing n elements of I" without replacement). We will
denote this by X ~ Hyp(N,n,m).

We will use the following Chernoff-type bound.

Lemma 3.1 (see e.g. [23, Theorem 2.1 and Theorem 2.10]). Assume X ~ Bin(n,p) or X ~
Hyp(N,n,m). Then the following hold for any 0 <& < 1:

(i) P[X < (1 —&)E[X]] < exp (_§ [X]);

(i) P[X > (1 +&)E[X]] < exp (—j [X]).

4. PRELIMINARY RESULTS

In this section, we introduce some preliminary results which will be useful in the proof of our
main theorems. In Sections 4.1 and 4.2, we collect some useful properties of e-regular pairs and
prove some lemmas for tying paths together. These results will be used repeatedly in the rest of
the paper. In Sections 4.3 and 4.4, we introduce some tools for regularising superregular pairs
and state the robust decomposition lemma of [27], which will be needed in Section 5.5.

4.1. Regularity. The first lemma follows easily from the definition of e-regularity.

Lemma 4.1. Let 0 < % < e<d<1andassumee <n<1. Let G be a (g,d)-reqular bipartite
graph on vertex classes A, B of size m. If A* C A, B’ C B have size at least nm, then G[A’, B']
18 %—regular of density > d — ¢.

The following lemma states that e-regularity is preserved if only few vertices and edges are
removed. This result will be used repeatedly in the rest of the paper.

Lemma 4.2 ([27, Proposition 4.3]). Let 0 < L < e <d' <d <1 and G be a bipartite graph on
vertez classes of size m. Suppose G' is obtained from G by removing at most d'm vertices from
each vertex class and at most d'm edges incident to each vertex from G.

() If G is (g, d)-regqular, then G is (2V/d',> d — 2v/d')-regular.
(ii) If G is [e, d]-superregular, then G’ is [2v/d', d]-superreqular.

An analogous result holds for the sparse version of regularity.
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Lemma 4.3 ([27, Proposition 4.8]). Let 0 < % < d <e,d,d*,c<1. Let G be an (g,d,d*, c)-
superreqular bipartite graph on vertex classes of size m. Suppose G’ is obtained from G by
removing at most d'm edges incident to each vertexr from G. Then G' is (2¢,d,d* —d',c)-
superreqular.

The following proposition states an e-regular bipartite graph of linear minimum degree has
small diameter.

Proposition 4.4. Let 0 < —— i ,m < e <d<1. Let G be an e-reqular bipartite graph on

vertex classes A and B of size ma and mp. Suppose that each x € A satisfies dg(x) > dmp and
each y € B satisfies dg(y) > dma. Then, for any x € A and y € B, G contains an (x,y)-path
of length at most 3. In particular, for any distinct x,y € V(G), G contains an (x,y)-path of
length at most 4.

The following lemma states that balanced e-regular bipartite graphs of large minimum degree
are Hamiltonian.

Lemma 4.5 (see for instance [20, Lemma 3.3]). Let 0 < 2 < e < a < 1. If G is an e-regular
bipartite graph on vertex classes of size m such that 6(G) > am, then G contains a Hamilton
cycle.

Corollary 4.6. Let 0 < % ek a<l. IfGis an e-reqular bipartite graph on vertex classes
of size m such that §(G) > am, then G contains a perfect matching.

The next lemma states that any superregular pair contains a sparse superregular pair as a
subgraph.

Lemma 4.7 ([27, Lemma 4.10]). Let 0 < £ < e,d’ < d < 1 and suppose ¢ < d. Let G
be cm [e, d]-superregular bipartite graph on vertex classes of size m. Then G contains an

(e12 v ', ‘é , 32‘3) superreqular spanning subgraph.

By considering a random partition of the edges, one can show that the edges of an e-regular
pair can be partitioned without destroying the e-regularity (see e.g. the proof of [27, Lemma
4.10]).

Lemma 4.8 (Partitioning the edges of a regular pair). Assume 0 < % LekKdy,...,dy<d<1
with Zle d; < d. Let G be a bipartite graph on vertex classes A, B of size m. Then G can be
decomposed into edge-disjoint spanning subgraphs Go,G1,...,G¢ C G such that Go is empty if
Zle d; = d, and the following hold for each i € [{].

(i) If G is (g,d)-regular, then G is (55, d; £ sﬁ)—regular.
(i) If G is [e, d]—superregular then Gj is [5T12 d;]-superregular.
Corollary 4.9. Suppose 0 < .- < e < d < 1. Let G be an [g, d]-superregular bipartite graph on

vertex classes A and B of size m. Then there exists an orientation 8 of the edges of G such
that both 8[14, B] and 8[3,14] are [512 41-superregular.

Using Lemma 3.1 and a result of [1] which characterises e-regularity in terms of co-degree, one
can show that the vertex classes of superregular pairs can partitioned into superregular subpairs.

Lemma 4 10 (Partitioning the vertices of a regular pair). Assume 0 < i Kexd<1
and L - << T,n Let G be a bipartite graph on vertex classes A and B of size m. Let A’ and B’
be the support clusters of A and B, respectwely Assume that m' .= |A'| = |B'| > (1 —¢)m
and G[A', B'] is [e,d]-superregular. Let my,...,m, € N* be such that > icfy)™i = m and, for
each i € [r], m; = Tt &£ 1. Assume A and B are randomly partitioned into r subsets Ay, ..., A,
and By, ..., By such that for all i € [r], |A;| = |B;i| = m;. Then, with high probability, all of the
following hold.

(i) For any i € [r], we have |A'N A4;| = (1 :i:e)mT/ and similarly |B' N B;| = (1 £¢)™
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(i) G[X,Y] is [ﬁ,d]—superregular for any X € {A'NA;,A\A; |i€r]} andY € {B'N
B;,B'\ B; | i € [r]}.

(i) For any X e {A'NA;lier]} andY € {B'NB;|i€e]r]}, A(GX,Y]) < w and
5(G1X, Y]) > G-

Finally, the following simple fact will be needed in Section 5.5.

Proposition 4.11. Suppose 0 < % Kekd<1landkeN*. LetG bea graph and Vi,..., Vi
be a partition of V(G) into k clusters of size m. Let R be the corresponding reduced graph of G
and assume that for each ij € E(R), the pair G[V;,V}] is [e, > d]-superregular. If R is a cycle
of length k, then G contains em vertex-disjoint cycles of length k which intersect each of the
clusters Vi,..., V.

4.2. Tying paths together. Throughout the proof of our main theorems, we will form linear
forests and aim to tie together some of the paths in each forest to form cycles. This section
gathers several tools to achieve this. Lemma 4.12 will be used to efficiently reduce the number
of components of linear forests (i.e. to merge paths), from a linear number of components to
bounded number, while Lemma 4.13 will be used to further reduce the number of components,
from a large constant to a smaller one. Lemma 4.16 will be used to turn linear forests with few
components into small sets of vertex-disjoint cycles. Finally, we will use Lemmas 4.14, 4.15,
and 4.19 to turn small linear forests into a cycle each.

Let ' be a graph and P, ..., P; be vertex-disjoint paths with endpoints in V(I"). By tying
the paths P, ..., Py together into a path P (a cycle C') using the edges of T, we mean forming a
path P (a cycle C) such that for each i € [¢], the path P; is a subpath of P (of C), the other
edges of P (of C) are edges of I' and the endpoints of P are in ;¢4 V(F;). A subpath P’ of P
(of C) is called a link path if E(P") N E(P;) = () for each i € [¢] and the endpoints of P’ are
in Uie[é} V(P;). In particular, we say P’ links P; and P; if the endpoints of P’ are an endpoint
of P; and an endpoint of P;. Moreover, if A, B are distinct clusters, we say P’ is an (A, B)-link
path if E(P’) C E(T'[A, B]) and both endpoints of P’ belong to A.

The idea behind the next lemma is to iteratively tie two paths which have an endpoint in a
common cluster using a single superregular pair of I'.

Lemma 4.12. Suppose 0 < % < % Le< (K p <1 LetT be a graph on vertex set V of
size n such that the following hold.

(i) Vo, Vi,..., Vi is an (g, B, k,m, R)-superreqular partition of T.

(ii) Any x € V' \ Vj belongs to at least Bk superregular pairs of T.
Let Py, ..., Py be sets of paths satisfying the following.

(iii) For each i € [{], P; is a set of vertex-disjoint paths with endpoints in V \ V.

(iv) For each i € [{] and j € [k], |[V(P;) NV;| < (m. In particular, |P;| < (n.

(v) For any x € V, there are at most en paths in Py U- - U Py which have x as an endpoint.
Then, there exist disjoint E1, ..., E; C E(T') such that the following hold.

(a) For any i € [{], by using each edge in E; exactly once, we can tie together some of
the paths in P; to form a set Q; of vertex-disjoint paths such that, for any j € [k], at
most 2672 paths in Q; have an endpoint in V.

(b) For any distincti,j € [k] and x € V;, E1U---UEy contains at most 3etm edges of T'[V;, Vj]
which are incident to x.
(c) For any i€ [f) and j € [k], |V(P; U E;) NV;| < /Cm.

To prove Lemma 4.12, we will use edges of I' to tie together some of the paths in P;, for
each i € [¢{]. We will only tie together paths which have an endpoint in a common cluster and
use a single superregular pair of I' to do so.
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Proof. Let Ey,...,E; C E(T') be (possibly empty) disjoint sets of edges of I' and assume
inductively that for each @ € [¢], by using each edge in E; exactly once, we can tie together some
of the paths in P; to form a set Q; of vertex-disjoint paths such that the following is satisfied.
(1) f Pe QuU---UQy and P’ is a link path of P, then P’ is an (A, B)-link path of length

at most 4, for some clusters A, B.

(2) For any clusters A, B and any = € A, there are at most eam (A, B)-link paths in Q; U
-+ U Qy which have z as an endpoint.

(3) For any clusters A, B and any x € AU B, Q1 U---U Qy contains at most eim (A, B)-link
paths which have x as an internal vertex.

(4) For any cluster A and i € [¢], there are at most @ tuples (B, P) such that B # A is a
cluster and P is a (B, A)-link path in Q.

(In (2)-(4) and below, by a link path in Q;, we mean a link path of some path in Q;.)

If for any i € [¢(] and j € [k], the set Q; contains at most 2372 paths with an endpoint in V},
then (a) holds. Moreover, (2) and (3) imply (b), while (c) follows from (1), (4), and (iv), and we
are done.

We may therefore assume that there exist ¢ € [¢] and j € [k] such that Q; contains more
than 2372 paths with an endpoint in Vj. Then, we claim that there exist distinct P, P’ € Q;,
each with an endpoint in Vj, such that the following hold. There exists j' € [k] such that

(I) € Vj is an endpoint of P and 2’ € Vj is an endpoint of P’;
(I) z, 2" € Vjjr, where Vj;s is the support cluster of V; with respect to Vj/;

(ITI) Q1 U---U Qy contains fewer than eim (V}, Vjr)-link paths which have x as an endpoint,
and similarly for z/;
(IV) there are fewer that @ tuples (A, Q) such that A # Vs is a cluster and @ is an (A, Vj/)-
link path in Q.
Indeed, for any = € Vj, there are at least Sk indices j' € [k| such that = € V}; (by (ii)). By (v),
there are at most 262k such indices j' € [k] such that Q; U---U Qp contains eim (Vj, Vjr)-link
paths with z as an endpoint. Moreover, by (iv), there are at most 51/Ck indices j' € [k] such
that there exist @ tuples (A, Q) where A # VJ; is a cluster and @ is an (A, Vj)-link path
B2k

in Q;. Thus, for any x € V}, there are at least =5~ indices j' such that z satisfies (II)~(IV).

Therefore, since by assumption Q; contains more than 2372 paths with an endpoint in Vi, we
can find P, P, x,2’, and j' satisfying (I)~(IV).

We can now find an (z,2')-path in T'[V};, Vj;] to tie P and P’ together as follows. Let
I =T\ (EiU---UE). By (2) and (3), Lemma 4.2 implies that I"'[V};/, Vj/;] is still [5%,5]—
superregular. Let Vj’ be obtained from V};s by deleting the following vertices:

e vertices in V(Q;) \ {z,2'} (by (1), (iv), and (4), there are at most /{m such vertices);
e vertices in Vj; \ {x, 2’} which are an internal vertex of cim (V}, Vj)-link paths of Q1 U
-+ U Qyp (by (1) and (2), there are at most e1m such vertices).
Note that the number of deleted vertices is [V \ V]| < v/(m + etm < 2/(|Vjj|- Define V7,

similarly. Then, by Lemma 4.2, TV[V!, V] is [C%,ﬁ]—superregular. Thus, by Proposition 4.4,

N
vy, Vj’,} contains an (z, x’)-path P” of length at most 4. Add the edges of P” to E; and replace
in Q; the paths P and P’ by the concatenation of P, P”, and P’. By construction, (1)-(4) are
still satisfied, as desired for the induction step. O

After applying Lemma 4.12, we obtain linear forests with few components. One can then be
less economical and use several superregular pairs of I' to tie paths together. This is achieved in
the next lemma.
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Lemma 4.13. Suppose 0 < % < % Ke< (< pB<1. LetT be a graph on vertex set V of
size n and P1,..., Py be sets of paths. Assume I' and P1,..., Py satisfy properties (i)—(v) of
Lemma 4.12, as well as the following.

(vi) £ <n.

(vii) For any i € [{] and j € [k], P; contains at most 2872 paths with an endpoint in V; (and
thus at most 2B~2k paths in total).

Then, there exist disjoint E1,...,E; C E(T') such that the following hold.

(a) For any i € [{], by using each edge in E; exactly once, we can tie together some of
the paths in P; to form a set Q; of vertex-disjoint paths such that for any connected
component C' of R, Q; contains at most one path with an endpoint in Vp(C).

(b) For any distincti,j € [k] and x € V;, E1U---UE, contains at most 3eim edges of I'[V;, Vj]
which are incident to x.

(c) For any i€ [f) and j € [k], |V(P; U E;) NV;| < /Cm.

This is proved similarly to Lemma 4.12 but since we now have fewer paths to link, we can
use several superregular pairs of I' to tie together paths whose endpoints are not necessarily
in a same cluster. Thus, the main difference to the proof of Lemma 4.12 is that, in order to
link two paths, we no longer need to find a suitable superregular pair of I' but a suitable walk
in the reduced graph of I'. Moreover, since we have few paths to tie together, we no longer
need to ensure that no superregular pair is used too many times (condition (4) in the proof of
Lemma 4.12). Finally, note that since link paths may now intersect several superregular pairs
of ', it no longer makes sense to talk about (A, B)-link paths, so we only use the generic term
link path (defined at the beginning of Section 4.2).

Proof. Let E1,...,E; C E(I') be (possibly empty) disjoint sets of edges of I' and assume
inductively that for each i € [¢], by using each edge in E; exactly once, we can tie together some
of the paths in P; to form a set Q; of vertex-disjoint paths such that the following is satisfied.

(1) T Pe Qi U---UQyand P’ is a link path of P, then P’ contains at most 3 vertices from
each cluster and at most 4 edges from each superregular pair of I'.

(2) For any clusters A and B, and any = € A, the set Q; U---U Qy contains at most E%m
link paths which have z as an endpoint and whose edge incident to = belongs to I'[A, B].

(3) For any = € V(I'), there are at most e1m link paths in Q1 U --- U Qp which contain z as
an internal vertex.

If for any ¢ € [¢] and any connected component C of R, the set Q; contains at most one path
with an endpoint in Vr(C), then (a) holds. Moreover, (2) and (3) imply (b), while (c) follows
from (1), (iv), and (vii), and we are done.

We may therefore assume that there exist i € [¢], a component C of R, distinct paths P, P’ € Q;
and distinct vertices x, 2’ € Vp(C) such that x and 2’ are endpoints of P and P’, respectively.
We find an (x,2’)-path in I to link P and P’ as follows. Let IV :=T\ (E1 U---U Ey). By (2)
and (3), Lemma 4.2 implies that for any jj’ € E(R), I'[V};, Vj/;] is still [5%,,8]—superregular,
where Vj; and Vj/; are the support clusters of I'[V}, Vj/].

Let ¢/,i" € [k] be such that € Vi and 2’ € Vj». Choose j* € [k]| such that z € Vi

and Q1 U ---U Qy contains fewer than £3m link paths which have x as an endpoint and whose
edge incident to  belongs to I'[Vir, Vj/]. The existence of such an index j' is guaranteed by
(ii) and (v). Indeed, by (v), there are at most 2e2k < Bk indices j' such that Q; U---U Q,
contains £2m link paths which have x as an endpoint and whose edge incident to x belongs
to I'[Vir, Vjy]. The existence of the desired index j' now follows from (ii). Similarly, pick j” € [k]

such that 2’ € Vjrj» and Q1 U - -- U Qy contains fewer than e3m link paths which have 7’ as an
endpoint and whose edge incident to =’ belongs to I'[V;r, Vjr].
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Let Vi, ... Vi, be a (Vj, Vjn)-path in R, where iy := j" and 4, := j”. Let ip := ' and i, = i".
Then, Vi, Vi, ... V;, Vi ., is a (Vir, Vin)-walk in R where the clusters Vi» and Vj» appear at most
twice and all other clusters occur at most once. For 0 < s <r+1, let Vz’s be obtained from V;,
by deleting the following vertices:

o vertices in V;, \ (Vi,_,s, N Vii.y,) (by (i), there are at most 2em such vertices);
e vertices in V(Q;) \ {z, 2’} (by (1), (iv), and (vii), there are at most 3CTm such vertices);

e vertices in V;, \ {z, 2’} which are an internal vertex of e1m link paths in Oy U---U Qg

(by (1) and (vi), there are at most em such vertices).
Then, |V/ | > m — 2¢m. So for any s € [r + 1], by Lemma 4.2, T'[V/ ,V/] is still [C%,ﬁ]—
superregular. We can therefore find an (z,2’)-path P” in T containing exactly one edge of
L[V, Vi ] for each s € [r] and at most 3 edges of I"[V], V| ]. We add the edges of P" to E;
and replace in Q; the paths P, P/ by the concatenation of P, P”, and P’. By construction, (1)—(3)
are still satisfied, as desired. O

The methods used to prove the previous lemma can be used to close a path P into a cycle
provided the endpoints of P lie in a same connected component of I'. More generally, one can
show the following.

Lemma 4.14. Suppose 0 < % < % Ke< (<< pB<1. LetT be a graph on vertex set V of
size n and P, ..., Py be sets of paths. Assume I' and P, ..., Py satisfy properties (1)—(vii) of
Lemmas 4.12 and 4.13. Suppose moreover that the following holds.

(viil) For each i € [{], there exists an ordering Piq,..., Py, of the paths in P;, and, for
each j € [4;], an ordering x; j, x;J of the endpoints of P;; such that the following holds.
For eachi € [(] and j € [(;], there exists a component C' of R such that xi ;,; j+1 € Vr(CO),
where T; ¢, 41 = T; 1.
Then, there exist disjoint E1,...,E; C E(T') such that the following hold.
(a) For any i € [{], P; UE; forms a cycle.

(b) For any distincti,j € [k] and x € V;, E1U---UEy contains at most 3eim edges of I'[V;, Vj]
which are incident to x.

Proof. The idea is to link the paths P; ; and P; j41 together for each i € [¢] and j € [¢;], where
P; ¢, +1 = P;1. This can be done by using the arguments of Lemma 4.13 to find an (x;’j, Tij41)-
path in I" for each ¢ € [¢] and j € [¢;]. O

In general, our sets of paths will not satisfy property (viii) of Lemma 4.14. In that case, we
need to add suitable edges to our sets of paths before applying Lemma 4.14. This is achieved in
the next lemma.

Lemma 4.15. Suppose 0 < % < % LKex (< p <1 LetT be a graph on vertex set V' of
size n and Pi,..., Py be sets of paths. Assume I' and Pi,..., Py satisfy properties (i)—(vi) of
Lemmas 4.12 and 4.13, as well as the following.

(vii") For any i € [{] and any connected component C of R, P; contains at most one path with
an endpoint in Vp(C).

Let TV be a graph on'V such that T’ and I are edge-disjoint and the following hold.
(ix) Vo, Vi,..., Vi is an (g,(, k,m, R")-superregular partition of T".
(x) RUR' is connected.

Then, there exist disjoint E1,...,E, C E(I') and EY,...,E; C E(I') such that the following
hold.

(a) For any i €[], P; UE; UE! forms a cycle.
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(b) For any distincti,j € [k] and x € V;, E1U---UEy contains at most 3etm edges of T'[V;, Vj]
which are incident to x and E{ U---U Ej, contains at most em edges of I'[V;, V;] which
are incident to x.

Proof. We add some edges of I” to each P; in order to satisfy property (viii) of Lemma 4.14 as
follows. For any i € [¢], denote P; := {Pj1,..., P} and, for each j € [¢;], denote by z; ;, l’;J the
endpoints of P; ;. For each i € [¢], indices ranging in [¢;] are taken modulo ¢;, in particular £;+1 :=
1.

Assume inductively that for some 0 <1i < ¢, E},...,E! C E(I") are disjoint and satisfy the

following.

(1) For each j € [i], the edges in E; are vertex-disjoint from each other and from paths in P;.
In particular, 77]’- =P; U E; is a set of vertex-disjoint paths.

(2) For any distinct j, j’ € [k] and € Vj, E1U- - -UE! contains at most em edges of I [V}, V}/]
which are incident to x.

(3) For any x € V, there are at most en paths in Py U---U P/ UPjpq U---U Py which have x
as an endpoint.

(4) For each j € [i], there exists a partition £, U---U E}’éj of E} such that the following
holds. For each j' € [(;], there exist an ordering y1y,. .., y:y; of the edges in E;.J,, and,
distinct connected components Cy, ..., C; of R such that x;j, € Vr(Co), xj 141 € Vr(Cy)
and, for each s € [t], ys € Vr(Cs_1) and v, € Vp(Cs).

Assume i = ¢. Then, by (2), the second part of property (b) holds. Also note that Pj,...,P;
satisfy conditions (i)—(viii) of Lemma 4.14, with 2¢ playing the role of ¢. Indeed, (i)—(iii) and (vi)
are clearly satisfied. Moreover, by (ii), R has at most 37! connected components and thus (4)
and (vii’) imply |P!| < (1 + B71)|Pi| < 2872 Therefore, (vii) holds. By (4), for each i € [/]
and j € [k], we have |V (P)) N V;| < [V(P;) N V;| +2|P;| < 2¢m, so (iv) holds with 2¢ playing the
role of ¢. Finally, (v) holds by (3) and (viii) follows from (4). Thus, we can apply Lemma 4.14
and we are done. We may therefore assume that i < /.

We construct Ej; as follows. Consider the auxiliary reduced graph R with the connected
components of R as vertices and an edge between C' and C’ if R’ contains an edge between C
and C’. Note that by (x), R is connected. For each j € [{;11], let Cj, C} be the connected
components of R such that z;11; € Vr(Cj) and z},,; € Vp(C}). For each j € [(iy1], fix
a (C},Cj+1)-path Q; in R.

Let I'” be obtained from I by deleting the following edges:

e edges in Ej U---UE! (by (2), we delete at most em? such edges from each superregular
pair of I');

e edges incident to some vertex x such that P; U--- U P/ U Py1 U--- U P, contains en
paths which have x as an endpoint (by (vi) and since for all i € [¢], |P;| < |P!| <2872,
we delete at most em? such edges per superregular pair of I');

e edges incident to some vertex in V(P;11) (by (iv) and (ix), we delete at most 3¢?m?
such edges from each superregular pair of I");

e for each i, € [k], edges of I"'[Vj/, V;»] which are incident to some vertex z such that
E{ U---U E! contains em edges of I''[Vy/, Vi»] incident to x (by the fact that R has at
most 47! connected components (by (ii)) as well as (4), (vi), (vii’), and (ix), we delete

at most 2e¢m? such edges from each superregular pair of I").
Then, note that by (ix), for any i'i” € E(R'), e(T"[Vir, Vin]) > (¢ — €)(1 — &)?*m? — em? — em? —
3¢*m? — 2e¢m?* > em?®. Thus, there exists a set E/ ; C E(I'"") of vertex-disjoint edges of "
such that (1)—(4) are still satisfied for ¢ = i + 1, where, for j =i+ 1 and each j’ € [(;11], the
components in @ play the roles of Cy,...,Cy in (4). O

We will not always be able to add suitable edges to our sets of paths in order to apply
Lemma 4.14. This problem can be circumvented by splitting paths and forming new sets of
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paths. This is achieved in the next lemma. Note that the cost of this approach is that we may
obtain more cycles than in Lemma 4.15, as well as a few leftover edges. Thus, Lemma 4.16 will
only be used when we have some room to spare.

Lemma 4.16. Suppose 0 < % < % Ke< (kg pB <1 LetT be a graph on vertex set V
of size n. Let Pi,..., Py be sets of paths on V. Assume I' and Pi,..., Py are all pairwise
edge-disjoint and satisfy properties (1)—(iv) of Lemma 4.12, property (vii') of Lemma 4.15, as

well as the following.

(V') For any x € V\ Vo, E(PLU---UPy) contains at most en edges incident with x.
(vi") €< ¢n.

(xi) For any x € Vy, if zy and xy' are distinct edges in E(P1U---UPy) then y € Vp(C)
and y' € Vr(C") for some distinct components C and C' of R.

Then, there exists E C E(I") such that the following hold.

(a) (PLU---UPy)UE can be decomposed into a set C of at most Bn edge-disjoint cycles and
a set E' of at most B2 edges.

(b) For any distinct i,j € [k], and x € V;, E contains at most eTm edges of I'[V;, V;] which
are incident to x.

To prove Lemma 4.16, we need the following results.

Theorem 4.17 (Vizing’s theorem (see e.g. [6, Theorem 17.5])). Let G be a multigraph with
multiplicity i(G). Then the edge-chromatic number X' (G) of G satisfies X' (G) < A(G) + u(G).
In particular, if G is simple, then x'(G) < A(G) + 1.

Lemma 4.18. Assume G is a multigraph with mazimum degree A, multiplicity p, and |E(G)|
even. Then, G can be decomposed into at most w matchings of even size and at most %

paths and cycles of length 2.

Proof. Let My, ..., M, be an optimal matching decomposition of G . By Theorem 4.17, r < A+p.
Let S be the set of indices i € [r] such that |M;| = 1 and T be the set of indices ¢ € [r]| such
that |M;] is odd and at least 3. If |S| is odd, remove some i € S and add it to T so that |S] is
now even. Note that since |E(G)| is even, |T'| must also be even.

For any distinct 4, j € S, by minimality of r, M; U M; is either a path of length 2 or a pair of
parallel edges. Therefore, |J;cg M; can be decomposed into at most # paths and cycles of
length 2. For each distinct ¢, j € T, since |M;| and |M;| are odd and at most one of |AM;| and |M;|
is equal to 1, we can find vertex-disjoint e; € M; and e; € M, and thus decompose M; U M;
into at most 3 matchings of even size: M; \ e;, M; \ ¢;, and {e;,e;}. Thus ;g\ s Mi can be

3(A+p)
2

decomposed into at most matchings of even size. O

Proof of Lemma 4.16. Start with C := (). Note that by (i) and (ii), R has ¢ < 7! connected
components C1, ..., C.. For each i € [c], colour each x € Vp(C;) with colour i. We say a path in
some P; is monochromatic if its endpoints are coloured with the same colour, and bichromatic
otherwise. We say a monochromatic path is coloured ¢ if its endpoints are coloured ¢, and we
say a bichromatic path is coloured with {i,4'} if one of its endpoint is coloured i and the other
is coloured 4'. Observe that exceptional vertices are left uncoloured but, by (iii), all paths in
P1U---UPy have coloured endpoints. A path of length 2 with internal vertex in Vj is called an
exceptional path.

By (vii’), for each i € [¢], |P;| < ¢ < B~L. Moreover, (iii) and (xi) imply that no path in
P1U---UPy contains an edge inside V. Thus, by repeatedly taking maximal monochromatic
subpaths, each path in P; U - -+ U P, admits a decomposition Dyono U Dpi, where Dyono i a set
of at most ¢ < 7! monochromatic paths of distinct colours and Dy; is a set of bichromatic
edges and exceptional paths such that, if P, P’ € Dy; are distinct, then they are coloured with
distinct pairs of colours. This induces a decomposition of P; U --- U Py into

e /' < 372¢ monochromatic subpaths P, ..., Py; and
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e for each 1 < i < ¢ < ¢, a set Q;i of at most S~/ bichromatic edges and exceptional
paths coloured with {7,'}.

Each monochromatic path P; will be tied into a cycle. In order to cover the bichromatic paths,
we partition each Q;; as follows. Observe that, by (xi), the following holds.

(f)  For any 1 <i <14 <c, the exceptional paths in Q;y have distinct internal vertices.

By removing at most one edge or exceptional path from each Q;, we may assume |Q;y| is
even for any 1 <i < i’ < c. Let E’ be the set of deleted edges. Then, |E'| < 372, as desired for

Let 1 <i < i’ < c. Define a multiset QF, of bicoloured edges coloured with {4, i’} by replacing
each exceptional path in Q;; by a fictive edge between its endpoints. Since V| < en, each edge
in Q?, has multiplicity at most en+1. Then, by (v/), we can apply Lemma 4.18 with QF, playing
the role of G, A < en, and p < en + 1 to obtain £}, < 4en matchings of even size, £;; < 2en
monochromatic paths of length 2, and ¢, < 2en cycles of length 2. Denote the matchings
by M}, with s € [£%,]. Replace, in the paths and cycles of length 2, the fictive edges by their
corresponding exceptional paths. By (}), we thus obtain ¢;; edge-disjoint monochromatic paths,
which we denote by Pjirs, with s € [¢;], and £}, edge-disjoint cycles which we add to C. Note
that [C| = > 1 <;cp<.liy < VEn. Each monochromatic path P will be tied into a cycle.

For each 1 <i < i’ < cand j € [¢},], if there exists j' € [k] such that [V (M) N Vj| > (m,
then randomly partition M, j into 2¢~! submatchings whose sizes are even and approximately
equal. By Lemma 3.1, we may assume that each of the submatchings obtained contains at
most (m edges with an endpoint in Vj, for each j' € [k]. Denote by Q,ys, with s € [¢],], the
el < 8%" sets of paths obtained from these submatchings by replacing the fictive edges by their

corresponding exceptional paths. By construction and (f), the following hold.
(1) For any j' € [k], [V(Qsirj) N Vj| < (m.
(2) Qi is even.
(3) All paths in Q;;/; are pairwise vertex-disjoint, bichromatic, and coloured with {7,'}.
(4)

4) The paths in Qjy, for all s € [¢7,], and the paths P, for all s € [¢;;], are all pairwise
edge-disjoint.

Each set Q;;s will be tied into a cycle.

We now aim to apply Lemmas 4.12 and 4.14. Note that all the edges that we still need to
cover with cycles belong to one the monochromatic paths F;, or one of the monochromatic
paths Py, or one of the sets Q;;7s. As mentioned above, the goal is tie each of these into a
cycle, i.e. the sets Py, ..., Py in Lemmas 4.12 and 4.14 will consist of the sets of the form {P;},
{Pyis}, or Qs. Formally, proceed as follows. Let ¢ := ¢/ + Yi<ici<eliir + ¢%,). Then, by

(vi'), 0" < B2+ 372 (25n + 8%”) < ?n. Denote by Py, ..., P}, the sets in

{P}licll]}U{{Pi} |1 <i<i' <c, jeliy]} U{Qu;|1<i<i <e jelli]}.

By construction, we can successively apply Lemmas 4.12 and 4.14 to tie up the paths in
each P/ into a cycle as follows. First, let Ey,..., Ep be the sets of edges of I" obtained after
applying Lemma 4.12 with P1, ..., P}, and ¢” playing the roles of Py, ..., Py, and ¢, respectively.
Let Qi,..., Qu be the sets of paths as in part (a) of Lemma 4.12. Note that, for any i € [¢’]
and j € [k], by part (c) of Lemma 4.12, |V(Q;) NV;| < y/{m. Moreover, condition (viii) of
Lemma 4.14 holds for the sets Q, ..., Qp since, by construction, each P/ either contains a
single monochromatic path or, an even number of bichromatic paths coloured with the same

pair of colours. Let IV :=T'\ (E1 U---U Epr) and note that, by Lemma 4.2 and part (b) of
Lemma 4.12, Vy, V4,...,V} is an (55,5, k,m, R)-superregular partition of I'V. Thus, we can now
apply Lemma 4.14 with Qy,..., Qu, ¢, I",sé, and 1/ playing the roles of Py,..., Py, L, T, ¢,
and ¢, respectively. Add all cycles obtained to C and note that |C| < v/en + 3?n < Bn. Denote
by Ef,...,E}, the sets of edges of I'" obtained. Define F := E1U---UEpw UE{ U---UE}, and
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observe that property (b) of Lemma 4.16 holds by part (b) of Lemmas 4.12 and 4.14. This
completes the proof. O

Finally, in Step 5 of the proof of Theorem 1.10(ii) (see the proof overview), we will need to
cover a few excess edges. This will be achieved using Lemma 4.19. The idea is similar to the
approach described in Figure 1. An even cycle in the reduced graph can be decomposed into
two matchings M and M’. We can then use a few of the edges of the pairs in M’ to tie together
a path from each pair in M, and similarly for M and M’ exchanged. More precisely, we prove
the following.

Lemma 4.19. Let 0 < % < e, € d <1 and suppose k € N* is even. Let G be a graph
on vertex set' V and Vy,..., Vi be a partition of V into k clusters of size m. Suppose that for
any i € [k], the pair G[V;, Viy1] is [e, d]-superregular (where Vi1 == Vi ). Suppose that P1,..., Py
are sets of paths on V' satisfying the following.
(i) £<¢m.
(ii) For each i € [¢], there exists I; C [kload or Ii C [k]even Such that we can write P; = {P;; |
J € I}, where, for each j € I;, P;; is a path of length at most dl—’(’} with an endpoint in Vj,
an endpoint in Vji1 and V(P; ;) C V; U V.
(iii) Any vertex x € V is an endpoint of at most 4 paths in Py U --- U Py.
Then there exist disjoint En,...,E; C E(G) such that the following hold.

(a) Each x € V is an endpoint of at most 6 edges in E1 U ---U Ej.
(b) For each i € [{], P; U E; forms a cycle.

Proof. Assume inductively that for some 0 < ¢ < £, we have constructed disjoint sets F1, ..., F; C
E(G) such that the following hold.

(1) For each j € [i], P; U E; forms a cycle Cj.
(2) Each x € V is an internal vertex of at most one link path in Cy U --- U C;.
(

3) Let j € [i] and 41 < --- < is be an enumeration of I;. Let @ be a link path in Cj.
Then there exists ¢ € [s] such that the following hold. The path @ links P;;, and P;;, ., ,,
where i541 :=i1. Moreover, V(Q) C V;,41U---UV;,, . Finally, Q contains at most 3 edges
of G[Vi, 41, Vi,+2] and at most one edge of G[Vjs, Vjr11] for each j' = ;42,4 +3, ... 441 —1.

Observe that by (2) and (iii), a vertex x € V is an endpoint of at most 6 edges in E3 U---U E;.
Thus, if ¢ = ¢, we are done. We may therefore assume that i < /.

Let i1 < ia < --- < is be an enumeration of [;;1. For each ¢ € [s], denote by z;, and z;,4+1
the endpoints of P;, in V;, and V; 1, respectively. Define G’ := (G \ U E5) — (V(Pit1) U
V(Ujep E5) \ {zie, w1 | t € [s]}). For any j € [k], let V] be obtained from V; by removing
the vertices in V(Piy1) UV (E1 U---UE;) \ {x;,, zi,+1 | t € [s]} and note that, by (3) and (iii),
Vi\Vj| < % +20 < dTm. Thus, by Lemmas 4.1 and 4.2, G'[V}, V] is sé-regular. Moreover,
each x € V] satisfies |[Ng/(z) NV 4| > (d —e)m — 6 — dm > ?’5—d\Vj’+1] and, similarly, each
a' € Vi, satisfies [Ng/(2') N V]| > %d]V]’\

Then, for each t € [s], we find an (xj,41,zi,,,)-path Q;, in G’ as follows. First, we find
a path Qj, = Tj,42...2;,, in G’ where z; € Vj’ for each j = iy + 2,...,9t41. Then, we
/ !

apply Proposition 4.4 (with G'[V}, |, Vi, 5], 5%, and %d playing the roles of G, ¢, and d) to find
an (4,41, T, +2)-path Q7 of length at most 3 in G'[V;} 1, V| |,]. Let Qi, = 2i, 11Q] 24, 12Q, i, -
Setting Eit1 = e[y E(Qi,) completes the proof. O

4.3. Making superregular pairs Eulerian and regular. As discussed in the proof overview,
in Step 5 of the proof of Theorem 1.10(ii), we will need to decompose superregular pairs into
Hamilton cycles. Thus we will need to ensure that our superregular pairs are Eulerian and
regular. In this section, we introduce efficient tools for achieving this.
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Lemma 4.20. Let 0 < % < % < e < d<1. Then there exists a constant ¢ = c¢(d, k) such that
the following holds. Let G be an Eulerian graph and Vo, Vi, ..., Vi be an (g,> d,k,m,m’, R)-
superreqular equalised partition of G. Suppose that Vy is a set of isolated vertices in G. Then,
there exists a spanning subgraph G' C G such that the following hold. For any ij € E(R),
G'|V;,Vj] is Bulerian. Moreover, G' can be obtained from G by removing at most ¢ edge-disjoint
cycles. In particular, by Lemma 4.2, Vo,V1,..., Vi is an (2\/,> d,k,m,m’, R)-superreqular
equalised partition of G'.

Proof. For simplicity, we assume that R is connected. If R is not connected, we can proceed
similarly, but apply our arguments to each component of R separately. For any AB € E(R), we
write AP for the support cluster of A with respect to B. Let H C G, i € [k], and = € V;. We define
the oddity of  in H, denoted Op (), as the number of indices j € [k] such that | Ny (2)NV}| is odd.
The oddity of H is defined as O(H) =} cy(g) On(x). Let S(H) = {z € V(H) | Opn(z) > 0}
and N (H) := |S(H)|. Thus, G[V;,V;] is Eulerian for all ij € E(R) if and only if N(G) = 0, or,
equivalently, if and only if O(G) = 0. Our argument relies on the two following observations:

(i) any graph contains an even number of odd degree vertices, and,

(ii) in an Eulerian graph, the oddity of each vertex is even.

Our proof splits into three steps. In Step 1, we significantly reduce the number of vertices of
positive oddity by removing cycles of linear length. Then, in Step 2, we will proceed similarly
but optimise the number of vertices whose oddity is reduced in order to decrease N (G) to a
bounded number. Then, in Step 3, we will be able to use a greedy approach.

Step 1: Decreasing the number of vertices with positive oddity to fewer than dTm/.

IEN(G) < %’”l, let Gy := GG and go to the next step. Otherwise, we claim that there exists G C G
such that N (G;) < dTm/ and G can be obtained from G by removing at most ¢, = % cycles.
Consider the following algorithm. Pick z¢p € S(G) and let Py be the path z( of length 0.
Suppose that after ¢ > 0 steps, we have extended Fy to an (o, x;)-path P;. Let A; be the cluster
such that z; € A;. Let G' == G — (V(P,) \ {z;}) and G*0 .= G — (V(P;) \ {xi,70}).
Case 1: P; has length less than dTm/.
(a) If there exist a cluster B; and a vertex x;41 € (4;UB;)N(S(G)\ V(F;)) such that both x;
and x;+1 have odd degree in (G \ P;)[A;, B;], pick such B; and ;.
Note that |V (F;)| < dTm/, so 6((G* — V(PZ-))[AlB",BZAi]) > %m,. Moreover, by Lemma 4.1,
(G =V (P))[AB, B is \/e-regular. Apply Proposition 4.4 (with (G —V (P;))[AP:, B,
Ve, and %d playing the roles of G, ¢, and d) to find an (z;, z;41)-path @ of length at most
4in G'[A;, B;]. Let Piyq == xoPiz;Qx;11. Finally, observe that for any = € V(G),

(4.1a) Oc\py, () = Oc\py(w) — 1, if @ € {wi, wiga };
(4.1b) Oc\p,;, (7) = O\ p, (), otherwise.

(b) Otherwise, pick any z;+1 € S(G) \ V(F;). Let A;+1 denote the cluster which contains
riy1. We claim that there exists an (z;, z;11)-path @ of length at most 2k in G* —
(V(P) \ {zs,7i11}). Indeed, observe that for any UW € E(R), 6((G* — (V(P) \
{zi,2i11})[U,W]) > (d —e)m' — d’;f, > %m/ and, by Lemma 4.1, (G* — (V(P;) \
{zi,2i11}))[U, W] is y/e-regular. Thus, if A; = A;y1, we can let U € Ng(4;) and apply
Proposition 4.4 (with (G* — (V(P,) \ {zi,zi41}))[4;, U], V¢, and % playing the roles
of G,e, and d) to obtain an (z;,z;+1)-path @ of length at most 4 in G* — (V(F;) \
{zi,xiy1}). Similarly, if A;4,1; € E(R), then we can apply Proposition 4.4 (with
(G — (V(P)\ {zi,zi41}))[Ai, Aiya], e, and 2 playing the roles of G,e, and d) to
obtain an (x;, ;+1)-path @ of length at most 4 in G* — (V(P;) \ {x;,xi4+1}). Suppose
that A; # A;4q and A;A;+1 ¢ E(R). Let Q' be an (A;, Aj11)-path in R. (This is
possible since, by assumption, R is connected.) Note that @’ is a path of length at most
k —1. Denote Q' = A;Uy...UpA;+1. (Note that, by assumption, £ > 1.) By the above,
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there exists a path x;u;...up in G* — (V(P;) \ {zi, zi41}) such that, for each j € [f],
u; € U;. Apply Proposition 4.4 (with (G* — (V/(P) \ {zs, 2i+1}))[Us, Ait1], V&, and %
playing the roles of G, ¢, and d) to obtain a (ug, z;+1)-path Q" of length at most 4 in
(G = (V(P) \ {zs, zix1}))[Ur, Aiy1]. Then, Q := zsuy ... uQ"xi11 is a path of length at
most (k —2) +4 < 2k in G* — (V(P;) \ {zi, zi+1}), as desired.

Let P11 :== xoPjz;Qx;+1. Note that (ii) implies that there exists a cluster B; such that z;
has odd degree in (G \ P;)[A;, B;]. Thus, Case 1(b) can only occur at most |E(R)| < k?
times in total. Finally, observe that for any =z € V(G),

(4.2a) Og\pi (r) —1< Og\le (x) < OG\PZ- (x)+1, ifze {.%i,.l‘lurl};
(12b)  Ogp(e) ~2 < Ocup,, () < Ocyp (@) +2. ifa € V(Pa\V(P) U (w1
(4.2c) Oa\p,.. () = O\ p,(z), otherwise.

Case 2: P, has length at least dTm/. Note that, by Case 1, P; has length at most dTml + 2k.
Thus, by similar arguments as above, there exists an (z;, zg)-path @ in G*Y of length at most 2k.

Output the cycle C' := zgP;x;Qxo and observe that C' has length at least dTm/. Moreover, for
any = € V(G),

(4.3a) Oa\p,(7) =1 < Oc\co(7) < Og\p,(7) +1, if z € {zi,20};
(4.3D) Ocm(1) — 2 < O\e(x) < O () + 2, if o € VIC\V(P):
(4.3c) Oc\c(7) = O\p,(z), otherwise.

We claim that O(G \ C) < O(G) — dQ—’gl. Indeed, as observed above, Case 1(b) can only occur
fewer than k% times, and, clearly, Case 2 can only occur at most once. Thus, Case 1(a) occurs
at least dg’g times and, therefore, (4.1)—(4.3) imply O(G\ C) < O(G) — 2 - d?’g, (2k +1)k? <
O(G) — .

IENG\C) < dTm/, let G; = G\ C. Otherwise, repeatedly run the algorithm (where, in
each iteration, the current graph plays the role of G) and delete the resulting cycle until a
graph G with N (Gp) < dﬂ is obtained. Note that we need to run the algorithm and delete

the cycle obtained at most 1 = % times. Indeed, assume we repeatedly ran the algorithm
and deleted the resulting cycle ¢; times and let G; be the graph obtained. First, observe that
we have delete at most 2¢; edges incident to each vertex, so e-regular pairs still have minimum
degree at least (d — 2¢)m’ and, thus, in each iteration, the algorithm is always well defined.

Since O(G) < m'k?, we have O(G1) < m'k? — d;g/ : % < dTm/ and in particular N'(G;) < dTm/.

Thus G can be obtained from G by removing at most ¢; cycles, as desired.

Step 2: Decreasing the number of vertices of positive oddity to fewer than 100k*.
If N(G1) < 100k*, let G5 := G1 and go to the next step. Otherwise, we claim that there
exists G2 C G such that G2 can be obtained from G by removing at most cs : 21k cycles and
such that NV(Ga) < 100k*.

We proceed similarly as above, but since the number of vertices of positive oddity has now
been significantly reduced, we can proceed more carefully. Indeed, we observe that, in the
above algorithm, oddity may be created whenever Case 1(b) occurs (as well as in Case 2).
Note that Case 1(b) occurs at stage i if, for all B; as in Case 1(a), all vertices of odd degree
in G1[A4;, B;] already belong to V(P;). Thus, in order to make our algorithm more efficient,
we shall add the extra condition that the internal vertices of the short path used to extend
the paths P; have oddity 0. Namely, we now let G := G1 — ((S(G1) UV(P)) \ {z;}) and
G0 =Gy — ((S(G1) UV (P)) \ {zi,70}). We note that this improvement could not have been
1mplemented in Step 1 since N'(G) was large. Moreover, we observe that Case 1(b) may still
occur. We proceed as in Case 1 of Step 1 if P; has length less than 27 and S(G) € V(P;) and

as in Case 2 of Step 1 if P; has length at least dT (Case 2(a)) or S(Gl) C V(F;) (Case 2(b)),
with G playing the role of G.
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By similar arguments as above, |S(G1)| < %m/ implies the desired short paths always exist
and so the algorithm is well defined. Using similar arguments as in Step 1, one can show that
N(G1\ C) < N(G1) + (2k + 1)k?. Moreover, if the algorithm terminates in Case 2(a) (i.e. if P;
has length at least dTm/), then, as before, O(G1 \ C) < O(Gy) — dTTSI. If the algorithm terminates
in Case 2(b) (i.e. if S(G1) C V(C)), then we note that, since Cases 1(b) and 2 occur at most k>
times in total, by (4.1a), (4.2a), and (4.3a), we have Og,\¢(7) = Og,(z) — 2 for all but at
most 2k? vertices x € S(G1).

If V(G1\ C) < 100k%, then let Gy := G\ C. Otherwise, repeatedly run the algorithm
(where, in each iteration, the current graph plays the role of G1) and delete the resulting cycle
until a graph Gy C G with AV (Gs) < 100k* is obtained. We claim that we need to run the
algorithm and delete the cycle obtained at most ¢y = % times. Indeed, assume we ran the
algorithm and deleted the resulting cycle co times and let G2 be the graph obtained. Note that,
in each iteration of the algorithm, the current graph has fewer than dTm/ + 5e0k3 < %m/ vertices
of positive oddity, so the algorithm is well defined in each of the iterations. If the algorithm
terminates in Case 2(b) in at least % of the iterations, then we note that all but at most 2cek? of
the vertices in S(G1) now have oddity 0. Therefore, N (G2) < 2cok? + 5eak® < 100k, as desired.
Otherwise, the algorithm terminates in Case 2(a) in at least 10k of the iterations. Therefore,
O(Gy) < O(G1) — 10k - ‘%Ll < 0 and so N(G3) = 0. Thus G2 can be obtained from Gp by

removing at most co cycles.

Step 3: Removing all oddity. If V'(G2) = 0, we set G’ := G5. Otherwise, we claim that
there exists G’ C G5 such that G’ can be obtained from G5 by removing at most c3 = 25k4(k —1)
cycles and such that N (G’) = 0.

Consider the following algorithm. Pick a vertex z¢ € S(G2) and let Py be the path zg of
length 0. Suppose that after |S(G2)| > i > 0 steps we have extended Py to an (zo,x;)-path P,
of length at most 4i such that x; € S(G2), Og,\p,(7:) = Og, (7)) — 1 and Og,\p, (7) < Og, ()
for all z € V(G) \ V. Denote by A; the cluster such that z; € A;. Let z;41 € S(G2) \ {z;}
be such that there exists a cluster B; # A; such that both z; and x;;1 have odd degree in
(G2 \ P;)[A;, B;]. Observe that such cluster and vertex exist by (i) and (ii).

Since |V (P;) U S(G2)| < 6|S(G2)| < 600k*, Lemma 4.2 implies that (Go — ((V(P;) U S(G2)) \
{z;, :cHl}))[Afi, BZAi] is [24/€, > d]-superregular. Apply Proposition 4.4 (with (G2 — ((V(P;) U
S(G2)) \ {1’i,l’7j+1})[AiBi,B,z4i], 2/e, and d — 24/ playing the roles of G,e, and d) to obtain
an (z;, x;+1)-path Q;+1 of length at most 4 in (Go — ((V(P;) U S(G2)) \ {l’i,$i+1}))[AiBi, BlAi].
Then,

(1) if 2341 € V(F;), output the cycle C = x; 11 Pi7iQit17i41;
(2) if wip1 & V(P), let Py = 20 PziQiv1%i41.
Note that if i = S(G2), then S(G2) C V(F;). Thus, if we are in case (2), then i + 1 < |S(G2)|,

as desired.
Clearly, this algorithm eventually terminates, and, for each x € V(G), we have

0 (2) = Og,(x) — 2, if £ € V(C)NS(Ge),;
@GR ™ Og, (), otherwise.

Moreover, |V (C) N S(G2)| > 2 and, thus, O(G2 \ C) < O(G2) — 4.

If N(G2\ C) =0, then let G’ := G2\ C. Otherwise, repeatedly run the algorithm (where,
in each iteration, the current graph plays the role of G2) and delete the resulting cycle until a
graph G’ with N'(G’) = 0 is obtained. By the above, we clearly need to run the algorithm and
delete the cycle obtained at most ¢ = 25k%(k — 1) times. Let ¢ := ¢1 + c2 + c3. This completes
the proof. O

To regularise an Eulerian e-regular pair, we adapt an argument of [20]. The idea is to
repeatedly remove cycles covering all vertices of maximum degree. By ensuring that each vertex



22 ANTONIO GIRAO, BERTILLE GRANET, DANIELA KUHN, AND DERYK OSTHUS

of minimum degree is covered by at most half of the cycles, we are able to regularise the pair by
deleting only a few cycles.

Lemma 4.21. Suppose 0 < L < n,e < d <1 and let & = max{2\/e,4,/n}. Let G be an
Eulerian (e, d)-reqular bipartite graph on vertex classes A, B of size m. Let © = A(G)—(G) and
suppose © < nm. Then there exists a spanning subgraph H C G such that H is reqular, '-reqular,
and can be obtained from G by removing at most 20 edge-disjoint cycles of length at least 277”
In particular, H is r-reqular for some r > A(G) — 40.

Proof. First note that §(G) > %, Let Gy :== G. We proceed inductively to build
e spanning subgraphs G; D G2 D --- D Gy of G;
e sets of vertices AOA QAIA C... gAf_l C A and BOA QBIA - ...BKA_1 C B;
e sets of vertices A?’l, A?’Q C A and B;S’l, B?Q C B for each even j € {0,1,...,0—1};
e sets of vertices Sf C A and S]B C B for each j € {0,1,...,¢/—1}; and
e edge-disjoint cycles Cy, C1,...,Co_1;
such that G, is regular, £ < 20, and, for each i € {0,1,...,¢ — 1}, the following hold.

(i) A2 ={a € A|dg,(a) = A(G;)} and B® = {b € B | dg,(b) = A(G;)}.

(ii) If 4 is even, Af’l and A?’2 are disjoint and such that Af’IUAf’Q ={ac Aldg,(a) =06(Gi)},
and, similarly, Bf’l and Bf’Q are disjoint and such that Bf’l U Bf’2 ={be B |dg(b) =
6(Gi)}-

(iiii) If 4 is even, then A® C SA C A\ AY', BA C SP C B\ B)' and [S{| = [SP| > m.

(iv) If i is odd, then A2 C SA C A\ (A%% NSA)), BA C S8 C B\ (B” NnSE)) and
157 =1SP| = %.

(v) C; is a Hamilton cycle of G;[SA U SP].

(Vi) Gi+1 = Gz \ CZ

Assume that for some even 0 < i < 20, we have already constructed subgraphs G; for
each j € [i], sets AjA and BjA for each j € {0,1,...,i — 1}, sets Aj.’l, Aj-’2 and B}S’l, B;m for each
even j € {0,2,...,7— 2}, sets Sf and SJB for each j € {0,1,...,7 — 1}, and cycles C; for each
j €40,...,i— 1} such that (i)—(vi) are satisfied with j playing the role of i for all 0 < j < 3.
If G; is regular, let ¢ := . Otherwise, proceed as follows.

Let A® := {a € A | dg,(a) = A(G;)} and B2 := {b € B | dg,(b) = A(G;)}, so that (i) is
satisfied for i. Also define A% := {a € A | dg,(a) = 6(G;)} and BY := {b € B | dg,(b) = 6(G;)}.
We will now construct Af’l,Af’2 and Bf’l,Bf’Q, but, first note that, by (ii)—(vi), §(G;) >
0(Go) —i > ‘%m —2nm > dTm. A simple application of Lemma 3.1 shows that there exists a
partition A‘;’l U A?’2 of A? such that all of the following hold.

g 5
(a) If \Aﬂ > dTm, then ‘AT"' < ]A;m’ < |Af’1 < @_

m 5, A 5, A2
(b) If |A%| < 97 then |A%t| = [%} and |A%?| = {%J

4,1 6,2 dm
(c) For any b € B, |Ng,(b) \ A;"|,|Ng,(b) \ 477 > 95

Similarly, there exists a partition Bf 1y Bf 2 of Bf satisfying analogous properties. Note that,

in particular, (ii) holds for i. We will now construct sets S, SZ such that (iii) is satisfied
and G;[S# U SP] is Hamiltonian (in order to satisfy (v)).

We may assume without loss of generality that \A\Af’ll > |B\ Bf 1| (the other case is similar).
Clearly, [A2| < m — |B?|. Thus,

(4.4) m — |BY'| — |A2| > |BY?
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Let S8 = B\Bf’1 and T4 C A\ (A?’1 UAZL) be a set of size \B\Bf’1| — | A2 chosen uniformly
at random. Let S{' := T/ U A2, By construction, (iii) holds for i. Thus, by (vi), Lemmas 4.1
and 4.2 imply that G;[S# U SP] is 3¢'-regular.

Claim 1. With positive probability, G;[S#* U SP] is Hamiltonian.

Proof of Claim. By Lemma 4.5, it suffices to show that §(G;[S# U SP]) > ‘%’l with positive

probability. By construction, for any a € SZA, we have dSiB(G/) > dl—Tg, as needed. It remains to
show that, with high probability, dga(b) > L for all b € SP. If |BYY — |AP!| < 42 then

|AN (A2T U SA)| < 4 and thus, by (c), dga(b) > %2 for all b € SP.
We may therefore assume that |Bf’1] - |A?’1| > dm Then, |Bf’1| > dm and, by (a) and (b),

24
§,1
1B > Bl > dm 16 e SB. Then,
(c), (4.4) g2
E [dsa ()] > E [dpa ()] + daa (0) ]
i i 5 800

Thus, by Lemma 3.1, P [dsA (b) < %} < #, and, a union bound over all b € SP gives that,
with positive probability, dSZA(b) > df—’? for all b € SP. O

Thus, we can let C; be a Hamilton cycle of G;[S{* U SP] and Gi11 == G; \ C;. Then, (v)
and (vi) are satisfied for i.

If Gi41 is regular, let £ = ¢ 4+ 1. Otherwise, proceed as follows. Let AiA-i-l = {a € A |
da,.,(a) = A(Giy1)}, BS, = {b € B | dg,,,(b) = A(Giz1)}, so that (i) is satisfied for i + 1.
We will now proceed similarly as above to construct S{il, Sﬁl, Cit1 and Gjya.

If A(G;) — 6(G;) = 2, we have |AD| = |BA|, |A| = |BY|, A= AU A®, and B = B} U BA.
Then, by construction of G;11, we have A%, = A U A?’l U (A?’2 \ §#) and BS, = BA U Bf’l.
Moreover, all vertices of A \ AZ»A_H and B\ Bﬁrl are vertices of minimum degree in G;41. Thus
we can let S{il = AiAJrl and Si]il = Bﬁ1 in order to satisfy (iv). We can then proceed as above
to define C;y1 and Gj42 satisfying (v) and (vi) (and, in particular, G4 is regular). We may
therefore assume that A(G;) — d(G;) > 2. Note that

i 4,2 5,2
(4.5) o B IAN A [AN AT > B B,
1A+ |B£H ) otherwise.

We construct S}, 55, Ci1, and Gip similarly as above, but, we now let A%y, C S, C
A\ A, By, € Sf}y © B\ B}, and use (4.5) instead of (4.4).

We now show that we eventually obtain a regular graph Gy, with £ < 20. Assume i is
even and Gj is not regular. By (i) and (iii)—(vi), A(Gi) = A(Go) — 2i. Moreover, by (ii)—(vi),

(5(Gz) > (5(G0) — 1. Thus,
0< A(GZ) — 5(Gl) < (A(Go) — 2i) — ((S(Gg) — Z) <O - 7,

and, therefore, i < ©. Thus, £ < © + 1 < 20, as desired.

Let H := Gy . Clearly, H is regular. Moreover, G — H = Uf;tl) C;, with ¢ < 20, and so H
can be obtained from G be removing at most 20 cycles. Moreover, by (iii)—(v), the cycles
Co,...,Cp_1 have length at least 277”, as desired. Finally, by Lemma 4.2, H is ¢’-regular. This
completes the proof. O

4.4. Robust decomposition lemma. Note that the contents of this section will only be used
in Section 5.5 and so the reader may skip it and return to it later on.

A key tool in our proofs will be the robust decomposition lemma of [27], which implies the
existence of a “robust” Hamilton decomposition of superregular pairs. More precisely, given
a graph G consisting of suitable superregular pairs, it guarantees the existence of a spanning
superregular graph G™ such that G™ U H has a Hamilton decomposition for any very sparse H,
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i.e. G is “robustly” Hamilton decomposable. (The graph H will be the “leftover” of an
approximate decomposition of G\ Gmb.) Moreover, we can prescribe that a given Hamilton
cycle in this decomposition contains a given set of edges. These edges will be the “fictive edges”
discussed in the proof overview (see Figure 1 for example). To formalise the latter property, we
need the notion of special path systems and special factors defined below. The fictive edges are
extended into such special path systems prior to applying the robust decomposition lemma. It
turns out to be more convenient to consider digr%ahs rather than graphs.

Given a digraph 8 and a partition P of V(G) into k clusters Vi,...,V} of equal size, a
partition P’ of V(B) is an £-refinement of P if P’ is obtained by splitting each V; into /¢
subclusters of equal size. Let R be the reduced digraph of 3 with respect to P and assume that
for any VW € E(ﬁ), the pair B[V, W] is [e, d]-superregular. We say P’ is an e-superreqular ¢-
refinement of P if the following holds. For any V,W € P and V/,W' € P’ with V! C V
and W/ CW,if VIV e E(ﬁ) then 8[V’, W] is [e, d]-superregular.

We say (8, P, P, ﬁ, ﬁ’, C) is an (¢, k,m,e,d)-bi-setup if the following properties are satisfied.

(BST1) G is a directed graph.

(BST2) P is a partition of V(G) into k clusters of size m, where k is even, and, R is the
reduced digraph of 8 with respect to P.

BST3) C is a Hamilton cycle of ﬁ

( )
(BST4) P’ is an f-refinement of P, and, B’ is the reduced digraph of G with respect to P’.

(BST5) R and R’ are complete balanced bipartite digraphs.

(BST6) For each VW € E(ﬁ) UE(ﬁ’), the corresponding pair B[V, W1 is [e, d]-superregular.
This is a special case of the setting in [27], which also requires the existence of a “universal
walk” U in the reduced digraph ﬁ This is trivially implied by assumption (BST5).

Let 8 be a digraph, P be a partition of V(a) into 2k clusters Aq,..., A, B1,..., By of
size m, and ﬁ be the corresponding reduced digraph of 8 Let C := A1By...ApBy be a
Hamilton cycle of ﬁ Suppose f € N divides k.

The canonical interval partition T of C into f intervals consists of the intervals

I = A(i—1)§+1B(i—1)§+1A(i—1)§+2 e Bi§Ai§+1

for all i € [f], where A1 = Aj.

Let P’ be an f-refinement of P and for each V € P denote by V1, ..., V¥ the partition of V
induced by P’. Suppose % > 3. Let i € [f],h € [¢]. Denote I; by V;1...V, 240 A special path
system SPS of style h in 8 spanning the interval I; consists of % matchings M, ... ,M% such
that the following hold.

(SPS1) For all j € [%], M; is a perfect matching between Vlhj and V;ZH,
h
7j+1‘

(SPS2) SPS contains a fictive edge fsps € M%_l such that E(SPS)\ {fsps} C E(a)

with all edges
oriented from V;hj to V;

A special factor SF with parameters (¢, f) with respect to C' and P’ in 8 is a 1-regular digraph
on V(a) consisting of £f special path systems SPS}, ;, one for each (h, i) € [¢] x[f], where SPS}, ;

is a special path system of style h in 8 spanning the interval I;. We denote the set of fictive
edges of SF by Fict(SF) == {fsps,, | h € [¢],i € [f]}.

More generally, we will use the term fictive edges to refer to auxiliary edges that are artificially
added to graphs. Whenever we add a set F of fictive edges to a (di)graph G, we view them
as being distinct from those in G, even if they create multiple edges. Similarly, we also allow
multiple edges within F and view these edges as being distinct from each other. We are now
ready to state the (bipartite version of the) robust decomposition lemma. As indicated above, it
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FIGURE 2. A special factor with parameters (2,4) with respect to C =
A1B1As...Bg and P = {A}, A3, A} ... A3, Bi,..., B2}. The fictive edges are
represented by dashed edges. The gray edges form a special path system of style 2
spanning the first interval in the canonical interval partition of C' into 4 intervals.

guarantees the existence of a robustly decomposable digraph 8“"3 which consists of a “chord

oy
absorber” C'A(r) and a “parity extended cycle absorber” PC A(r), as well as a prescribed set of
special factors (which contain the fictive edges).

Lemma 4.22 (Robust Decomposition Lemma [27]). Let 0 < 2 < 1 < ¢ < % < % <l
d < %, é < 1 and that rk* < m. Let
2 Tfk o o
ro = 96lg“kr, r3:=——, r°=r1+ro+r—(q—1)r3, s=rfk+Tr
q
and suppose that £ &k a m fm 2k L N [et (8,?,7”,2,?’,0) be an (0, k, m,e,d)-
bi-setup and C = Vi... V). Suppose that P* is a %-reﬁnement of P and that SFy,...,SF,,
are edge-disjoint special factors with parameters (%,f) with respect to C' and P* in 8 Let

SF =SFU---USF,,. Then there exists a digraph CTZl(r) for which the following hold.

(i) CTZl(r) is an (r1 + ra)-reqular spanning subdigraph of G which is edge-disjoint from SF.

(ii) Suppose that SFY,...,SF/. are special factors with pammeters_>(1, 7) with respect to C
and P in G which are edge-disjoint from each other and from CA(r)USF. Let SF =
SF{U---USF/,. Then there exists a digraph FC’—Z(T) for which the following hold.

(a) P_C'A)%l(r) s a 5r°-reqular spanning subdigraph Ofa which is edge-disjoint from
C—fl(r) USFUSF.

(b) Let SPS be the set consisting of all the s special path systems contained in SF U
SF'. Let Veyen denote the union of all V; over all i € [k]even and define Vyqq
similarly. Suppose that ﬁ is an r-regular bipartite digraph on V(G) with vertex
classes Viyen and Voaq which is edge-disjoint from G = CTZl(’I“) U 17574(@ U
SFUSF'. Then H U G™ has a decomposition into s edge-disjoint Hamilton

cycles C, ..., Cs. Moreover, C; contains one of the special path systems from SPS,
for each i € [s].
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5. PROOF OF THE MAIN THEOREMS

In Sections 5.1-5.5, we prove the main lemmas that will be needed for the proof of our
theorems. These intermediate results are organised according to the structure of the proof
overview. Theorems 1.10, 1.11, and 1.13 are proved in Section 5.6.

5.1. Applying Szemerédi’s regularity lemma and setting aside random subgraphs I
and I"”. This section corresponds to Step 1 of the proof overview. The proof of Lemma 5.1
relies of a straightforward application of Szemerédi’s regularity lemma and a cleaning procedure
similar to the one used to prove the degree form of the regularity lemma. For details, see the
appendix of the arXiv version.

Lemma 5.1. Let 0 < ; <K e < (< d < B <a<land §; <+ <d Letr e N
Then there exist M',ng € N* such that the following holds. Let G be a graph on vertex
set V with |V| = n > ng, and 6(G) > an. Then G can be decomposed into edge-disjoint
graphs G',T'.,T', H, and, V can be partitioned into k clusters Vi,...,V; of size m and an
exceptional set Vi such that the following properties are satisfied.

() M <k< M.
(ii) ™ € N*.
(iii) Vo, Vi,..., Vi is an
e (¢,>d,k,m,m', R)-superreqular equalised partition of G';
e (¢,8,k,m,m’', R')-superregular equalised partition of T';
e (2,¢,k,m,m', R")-superreqular equalised partition of T".
) R and R" are edge-disjoint and R = R' U R".
) G',T and, T' have the same support clusters.
(vi) Each x € V '\ Vp belongs to at least Bk superregular pairs of T.
i)

There exists a decomposition Dg: of R into at most % cycles whose lengths are even and
at least L and such that for any distinct i, 3,5 € [k], if V;ViV} is a subpath of a cycle
in Dgr then the support clusters of V; with respect to V; and Vj are the same.

(viii) Vj is a set of isolated vertices in I',T', and H.
(ix) A(H) < 4dn.
5.2. Covering the edges inside the exceptional set. This section corresponds to Step 2 of

the proof overview.

Lemma 5.2. Suppose 0 < % < % KekKdg pf<<a<l. Let G be a graph on vertex set V
with |V| =n and let T be edge-disjoint from G. Assume G and T' satisfy the following.

(i) Vo,Va,..., Vi is an (g, B, k,m,m’, R')-superreqular equalised partition of T.
(ii)
(iii) Vo, Vi,..., Vi is an (e,> d, k,m,m’, R)-superreqular equalised partition of G.
(iv) For any x € Vp, dg(x) > an.

Let & == 7. Then there evists H C GUT such that the following hold.

(a) G[Vo] = H[Vo).

(b) Vo, Va,..., Vi is an (¢',> d, k,m,m’, R)-superreqular equalised partition of G\ H.
(c
(d

Any x € V' \ Vj belongs to at least Sk superregular pairs of T

)
)
) Vo, Vi,.... Vi is an (¢/, B, k,m,m', R)-superreqular equalised partition of T'\ H.

) There exists a decomposztzon DUTD of H where D is a set of at most n cycles and D’
is a set of at most B2 edges.

Proof. This can be proved in a similar way as Lemma 4.16, so we only provide a sketch of the
proof. Let D := (). Let Cy,...,C. be the connected components of R’, where, by (ii), ¢ < 7.
For each x € Vjp, by (iii) and (iv), |[Ng(z) \ Vo| > (a — €)n and thus there exists i € [c] such that
|NG(z) N VR(C;)| > B%n. Colour each x € Vi with such a colour i € [c].
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Apply Theorem 1.1 to decompose G[Vy] into ¢ paths Pi,..., P, and £* cycles. Add the ¢*
cycles to D and note that |D|,¢ < en. We apply the arguments of the proof of Lemma 4.16
with P; = {P;} for each i € [¢]. The only difference is that we now have paths with endpoints
in V5. We adapt to this setting as follows.

Partition the paths Pi,..., P, into monochromatic subpaths and bichromatic edges as in
Lemma 4.16. Let 1 < i < ¢/ < ¢. We may assume that the set Q;; of bichromatic edges coloured
with {4,4'} is a matching. Indeed, if Q;; contains distinct edges e and ¢’ with a common endpoint,
then we can delete e and €’ from Q;; and consider e Ue’ as a monochromatic path instead. Since
for each 1 <i < ¢ < ¢, we have |Q;;/| < ¢, we obtain, in total, at most (S)g < v/en additional
monochromatic paths.

For each i € [¢], extend each monochromatic path coloured i to a path with internal vertices
in Vj and endpoints in V(C;). Similarly, for each 1 < i < i’ < ¢, extend Q;i to a set of vertex-
disjoint paths of length 3 with internal vertices in Vj, an endpoint in V(C;) and an endpoint
in Vp(Cy). Then, one can easily show that we can proceed as in the proof of Lemma 4.16.

One can easily verify that, in the end, we have covered all but at most 372 edges of G[V{]
with at most 8n cycles, as desired. O

5.3. Main step of the decomposition. This section corresponds to Step 3 of the proof
overview. Lemma 5.3 will be used to obtain a cycle decomposition in the proof of Theorem 1.10(ii)
and Lemma 5.4 will be used to obtain a path decomposition in the proof of Theorem 1.10(i).
Lemma 5.5 will play a similar role in the proof of Theorem 1.11.

Lemma 5.3. Suppose 0 < % < % LekK(Kd< pB<1. Let G,I',TV be edge-disjoint graphs
on the same vertex set V. of order n. Assume Vy,Vi,..., Vi is a partition of V such that the
following hold.
(i) Vo,V1,..., Vi is
e an (g,> d,k,m,m’, R)-superreqular equalised partition of G,
e an (g,B3,k,m,m’', R")-superreqular equalised partition of T,
e an (g,(, k,m,m’, R")-superregular equalised partition of T".
(ii) R' and R" are edge-disjoint and R' U R" = R.
(iii) G,T, and T” have the same support clusters.

)
)
(iv) Vo is a set of isolated vertices in T' and T'. Moreover, G|V, is empty.
(v) Any x € V' \ Vp belongs to at least Bk superregular pairs of T'.

)

(vi) For any x € Vy, dg(x) is even.

Then, GUT UT" can be decomposed into edge-disjoint graphs G',T, and H such that G,T' C
G'UH, T CT, and the following hold.

(a) A(H) < 13¢n and Vp is a set of isolated vertices in H.
(b) Vo, Vi,..., Vi is a (¢, B, k,m,m/, R')-superreqular equalised partition of T.

(c) There exists a decomposition D U Dexe of G’ such that D is a set of at most § + 20n
cycles and Dexe is a set of at most B2 exceptional edges.

H should be thought of as a sparse “leftover” and I' is a graph which we want to use as little
as possible. An analogous result can be obtained for path decompositions.

Lemma 5.4. Suppose 0 < % < % Ke<k(xd< p<1. Let G,T, and T' be edge-disjoint
graphs on the same vertex set V of order n. Assume Vi, Vi,...,Vy is a partition of V' such that
properties (1)—~(vi) of Lemma 5.3 hold. Let U C V' \ Vi have even size. Then, GUT UT" can

be decomposed into edge-disjoint graphs G',T, and H such that G,I' C G’ UH, T C T, and
properties (a) and (b) of Lemma 5.3 are satisfied. Moreover,

(') there exists a path decomposition D of G’ such that |D| < § + 40n and, for any x €
V\ Vo, D contains an odd number of paths with x as an endpoint if and only if x € U.
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The next lemma shows that stronger results can be obtained if the reduced graph R of G is
assumed to be connected.

Lemma 5.5. Suppose 0 < % < % Kek(xd< p<1. Let G,T, and T' be edge-disjoint
graphs on the same vertex set V of order n. Assume Vi, Vi,...,Vy is a partition of V' such that

properties (1)—(vi) of Lemma 5.3 hold. Suppose furthermore that R is connected. Then, the
following hold.

(a) GUT UT' can be decomposed into edge-disjoint graphs G',T, and H such that G,T" C
G'UH,T CT, and properties (a) and (b) of Lemma 5.3 hold. Furthermore, G' can be

decomposed into at most % + 7¢n cycles.

(b) Let U C V \ Vi have even size. Then GUT UT’ can be decomposed into edge-disjoint
graphs G'.T, and H such that G,T' C G'UH, T' C T, and properties (a) and (b) of
Lemma 5.4 hold. Furthermore, there exists a path decomposition D of G’ such that

AG) U]

|D| < max {T, 7} +8¢n and each vertex x € V' \ Vy is an endpoint of an odd number

of paths in D if and only if x € U.

Lemmas 5.3-5.5 will be proved simultaneously. To obtain a path decomposition, the idea is
to insert suitable fictive edges and then construct a cycle decomposition such that each cycle in
the decomposition contains exactly one fictive edge.

We will need the following result of [19].

Theorem 5.6 ([19]). Let 0 < 1 <« e < d < 1 and assume G is a bipartite graph on vertex

. . . d—1 L. .
classes A, B of sizem. If G is [e, d|-superreqular then G contains # edge-disjoint Hamilton
cycles.

Proof of Lemmas 5.3-5.5. Define
1 1 1 1 1 i
€1:=€12, eyi=¢g], €3 =65, €4:=6€5°, €E5:=¢€5°, Epi=E37,

1
eri=e) T, g =elT, gg=elT, (=2, C=+/(.
Let i,j € [k] be distinct. Denote by V;; and Vj; the support clusters of G[V;, V;]. If G[V;,V}]
is empty let d;; := 0. Otherwise, by (SRP4), (SRP5), and definition of the reduced graph,
G[Vij, Vji] is [e,> d]-superregular and so we can let d;; be a constant such that G[Vj, V};]
is [e, d;j|-superregular. We let G’ and H be empty graphs on V. Throughout this proof, we will
repeatedly add edges to G’ and H, and, whenever we do so, these edges are deleted from GUT'UI".

Let Gexc == (0. For each connected component C' of R and z € Vj, if |[Ng(z) N Vg(C)| is odd,
add exactly one edge of G[{z}, Va(C)] to Gexe. Delete the edges in Gexe from G. Observe that
we may now assume that for each connected component C of R, any x € Vj has even degree
in G[VoUVg(C)]. The graph Gex will be covered in Step 8. Observe that, by (vi), Gexc is empty
in the proof of Lemma 5.5.

We now assume R is connected. If it is disconnected, we will apply Steps 1-7 to each connected
component of R separately and then cover the potentially remaining edges (i.e. the edges of Gexc)
in Step 8. Fix A = A(G), A¢ = max{dg(z) | € Vu}, and A’ := max{dg(z) | = ¢ Vp}. In
particular, in what follows, A, A/, and Ag are left unchanged when we delete some edges from G.

Step 1: Partitioning the edges of G and constructing reservoirs of vertices. We
will partition each superregular pair of G into subgraphs of small comparable density. Each
subgraph will be assigned a reservoir, that is a small number of vertices that will be set aside to
tie paths together later on. To do so, we will partition each cluster into small subclusters of
equal size and, in each subgraph, one of these subclusters will play the role of the reservoir.

Let 7 := [(™!] (r will be the number of reservoirs). For each ij € E(R), let £;; == |('d;;]
and apply Lemma 4.8 to partition G[V;;, Vj;] into r¢;; spanning edge-disjoint [e1, (?]-superregular
graphs GY,, ..., Gll{&jv Gy, ngij and a leftover graph G which we add to H. Note that,
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for each ij € E(R), A(ng) < (dij +&)m — (¢? — e)mrl;; < 3¢m and thus
(5.1) A(H) < 3(¢n.

For each ¢ € [k], randomly partition V; into r subclusters Vil, ..., VI of size ¢m. (If ¢m ¢ N*,
then the subclusters will only have sizes roughly (m, but this does not affect the argument
below.) Let V¢ := Uier V£, Also define U* := V!N U for the proof of Lemmas 5.4 and 5.5(b).

We claim that the following hold with positive probability.
(1) For any ij € E(R), ¢ € [r], and ¢ € [¢;;],
(1a) GZ Z/[X Y] is [e2, (}-superregular for each X € {Vi; \ VI, V;; NV} and YV €
(Vi \ V. Vi n Vi
(1b) if ij € E(R'), then Ty, := T[V;; NV, VN Ve] is [e2, B]-superregular;
(lc) if ij € E(R"), then I, := I"[Vi; N VE VN Ve] is [e9, (]-superregular.
2) For any ij € E(R) and £ € [r], |[Vi; N V| = (1 £ &1)¢m.
( ) y ] y [ Vig
(3) For each ¢ € [r] and = € Vp, |[Ng(z) N V| = |NG($)| +en.
Additionally, for the proof of Lemmas 5.4 and 5.5(b), the following holds with positive probability.
(4) For each £ € [r], |U!| = @ +en.

Indeed, by Lemma 4.10, (1) and (2) hold with high probability, and, a simple application of
Lemma 3.1 shows that (3) and (4) hold with high probability. Therefore, by a union bound, we
may assume that (1)—(4) are satisfied.
For each ij € E(R),¢ € [r], and ¢ € [{
edges of G,/ [Vi; V£, V;inV/] to H. By (
edges incident to each vertex, so, by (5.1

ij], define G oo = Ge ' [Vig \ VE Vi \ V] and add all
la), we add, in total, at most ((?4e2)(m-¢ "1k < 2¢%n
),

(5.2) A(H) < 4¢n.

Step 2: Equalising the support cluster sizes. For any distinct i, j € [k] and ¢ € [r] in
turn, we now construct a subset Vi C V;; \ V)£ of size m” := (1 — ( — £)m/ by removing exactly
|Vi; \ Vi¥| — m” vertices. We build these sets one by one and, in each step, we only remove
vertices which have already been removed fewer than ,/e1k times in the construction so far. This
is possible since in each step, by (2), we need to remove at most 2¢;m vertices, and so, in each
step, there are at most (m vertices which we are not allowed to remove anymore. On the other
hand, by (2), |Vi; \ V| > (1 — 2¢)m for any distinct i, j € [k:] and ¢ € [r]

For any ij e E(R),£ € [r], and ¢' € [l;;], define GK = G; ol [V”g, ‘/ﬂg] By (la) and
Lemma 4.2, G co 18 [2¢/E2, (?]-superregular. Add to H all edges of Ge o\ GM" Since @ZE’ is
obtained from G e]e' by deleting at most 2e1m vertices from each cluster, for each x € Vjj,
has degree at most 2¢;m in ézje, \ @%, Moreover, for each i € [k] and = € V,, there are at
most /21k pairs (j,¢) € [k] x [r] such that z € V(G M/) \V(G “,) Thus, we have added to H
at most 2,/1n edges incident to each vertex and, thus, by (5. 2)

(5.3) A(H) < 5¢n.

Step 3: Decomposing non-exceptional edges of G into long paths with endpoints

in reservoirs. For each ij € E(R),{ € [r], and ¢’ € [(;;], apply Theorem 5.6 with G/, (?,
.. 2 1z

and 2,/g5 playing the roles of G,d, and € to obtain a set H,,, of h := % edge-disjoint

Hamilton cycles of Gg Iz We turn each cycle in szz' into a path one by one by deleting an

edge xy such that no edge incident to x or y has already been deleted from sze" This is possible

. i 2. 11
since [H | < < e

and each cycle in sze' is of length 2m”. We add all these edges as well as
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all the edges in E(ngf,) \ E(Hé £'> to H. Thus, we add at most (1 + 40\/e2m”)r(" 'k < (n
edges incident to each vertex, and so, by (5.3),
(5.4) A(H) < 6¢n.

We now extend the paths in 7—[@ v to paths with internal vertices in V;;, U V};, and endpoints
in Ve U Ve one by one as follows. Given an (z,y)-path P in ’Héjé, with x € Vjj, and y € VM,
pick #' € Vg and y' € Vé such that z2/,yy’ € E(GZ Z') and ”H,Z o contains fewer than £2m
paths with 2’ as endpomt and similarly for 3. Replace P in %u/ by the path 2’z Pyy’ and
delete z2’,yy’ from GZ - Note that the existence of 2’ and y’ is guaranteed by (1a) and (2),
and the fact that |7—l€ €,| < 42

Once all paths in He v have been extended as above, add all remaining edges of GY I [Vij N
V£, Vi \ V{1 and G;JK,[V;J \ V£, Vji N V{] to H. Note that by (la), if z € V then Gu/[Vw N
VY, V]Z\Vf] contains at most 2¢?m edges incident to z, and if x € V;\ V¥, G Mf [Vz] \ V£, Vi ﬂVZ]

contains at most 2¢>m edges incident to x. This holds for any ij € E(R),£ € [r], and ¢’ € [(;}]
so, in total, we have added to H at most 4(n edges incident to each vertex and thus, by (5.4)

(5.5) A(H) < 10¢n.

Moreover, for each ij € E(R), ¢ € [r], and ¢’ € [¢;;], add all edges of Héjg, to G'. Note that all
(remaining) edges of G now have exactly one endpoint in V.

Step 4: Combining the paths into sets of vertex-disjoint paths. Let R be the
multigraph obtained from R by replacing each edge ij € E(R) by ¢;; parallel edges denoted

1 Lij
eij,...,eijj.
Claim 1. A(R) < +\fk

Proof of Claim. Let i € [k] and recall that the graphs G, G', and H at the end of Step 1 form a
decomposition of the original graph G. Clearly, we have
eauarunr(Vi, V\ Vo) < A'm
Moreover, by (i),
eccuarur(Vi, VA VD) =) (dij —e)(1—2)’m® > > (Clij — 4e)m? > (dp(Vi)m? — dem?k
J#i JFi
and the claim holds. &

Note that there are at most ¢(~! parallel edges between any two vertices of R. Thus, we
can apply Claim 1 and Theorem 4.17 to fix a decomposition Dy of R into at most gAT; + 2/ek

matchings. For each M € Dp and each / € [r], we decompose Uet e s ’Héj » into h disjoint sets
ij ’

of paths containing exactly one path of He » for each e e M.
Let & be the collection of all the [Dg|rh linear forests obtalned. Note that for each 2z € V'\ 1},
all non-exceptional edges incident to x are covered by paths in | Z2, apart from those lying

in H. Thus, ——6Cn< | 2| <rh( +2fk> <& 5- ++/en. We also note that for each P € &

there exists r(P) € [r] such that P is a set of vertex—d18301nt paths with endpoints in V"(P) and
internal vertices in V'\ V"(P). For each £ € [r], let & .= {P € & | r(P) = {}. By construction,
(2| = =2 = T

Step 5: Including exceptional edges. For each ¢ € [r], we add exceptional edges to the
linear forests in & as follows. If possible, pick P € &y such that we have not yet added
exceptional edges to P and such that G contains a set of paths Pey. satisfying the following.

(I) Pexc is a set of vertex-disjoint paths of G of length of 2.
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(IT) The paths in Peye have their endpoints in V*\ V(P) and internal vertex in Vp.
(ITT) V (Pexc) N Vp is the set of vertices z € Vj such that |Ng(z) N V*| is maximum.
(IV) |V (Pexc) N V| < ¢?m for each i € [k].

Fix such a set Pey. and add the paths in Pey. to P. Add the edges of Pexe to G'. We repeat
this procedure until there is no such P. Then, we claim that the following holds.

Claim 2. For each x € Vp, dg(z) < max{Ag — A’ +13(n,(n}.

Proof of Claim. Note that it is enough to show that for each ¢ € [r] and = € Vj, we have
|NG(z) N V¥ < max{1(Ag — A’ +13¢n), Ven}.

Let ¢ € [r]. Suppose first that we have added a set Pexc satisfying (I)-(IV) to each P € 2.
By (3), each vertex in V} initially had at most 0 + en neighbours in V*. Thus, by (II) and (IIT),
we now have [Ng(z) N V¥ < 8¢ + en — 2| 2| g B0 4 en — 2(80 —6¢n) < L(Ag — A+ 13¢n)
for each = € Vj.

Suppose now that there exists P € &, which does not contain any exceptional edges. We
claim that for any z € Vj, we have |[Ng(z) N V¢ < \/en. Suppose not. Let z1,...,zs be an
enumeration of the vertices x € Vj such that | Ng(z) N V*| is maximum. By assumption, we have
|Ng(2;) NV¥| > \/en. Suppose inductively that, for some 0 < i < s, we have constructed a set of
paths P! . satisfying (I), (II), and (IV) and such that |V (PZ,.) ﬂVo\ ={z;|jeli} Ifi<s, we
construct PH! as follows. Let X be the set of indices j € [¢] such that |V(P§XC) ﬁVf| = (*m. Let

exc

Y = (Ng(zi1) N V) \ (V(P)UV(PL.) U UgeX VE). Then, |Y| > \/en — k — 2i — A Cm > 2.
Let y,y' € Y be distinct. Set P! = PL U {yr;11y'}. By construction, Pé;fcl sat1sﬁes (1),

(I1), and (IV) and |V(PEL) N Vo| = {x; | j € [i + 1]}. Therefore, we can construct a set Ps

exc exc

satisfying (I)-(IV), a contraction. Thus, |[Ng(z) N V*| < /en for all z € Vj. &

We now split most of the remaining exceptional edges into sets of vertex-disjoint paths, in a
similar way as above. Let &’ := (). Assume there exists a set of paths Pex. satisfying (I) and
the following.

(IT") The paths in Pey. have their endpoints in V' \ V and internal vertex in Vj.
(IIT") V(Pexe) NV is the set of vertices x € Vj such that |Ng(z) NV \ V5| is maximum.
(IV") |V (Pexc) N Vi| < ¢m for each i € [k].

Then add such a set Peye to &’ and add the edges of Peye to G'. We repeat this procedure until
we cannot find any Peyx as above. Then, one can show using similar arguments as in the proof
of Claim 2 that dg(z) < \/en for each x € V.

We will now form at most 4./en sets of linear forests which cover all remaining exceptional
edges of G. Assume that Py,..., Py sz, are (possibly empty) edge-disjoint sets of paths such
that for each i € [4y/en] the followmg are satisfied and such that >,y /z, [Pi| is maximal.

(I”) P; is a set of vertex-disjoint paths of G of length 2.
(IT"”) The paths in P; have their endpoints in V' \ Vj and internal vertex in Vj.
(IV") [V(P;) N V;| < ¢{m for each j € [k].

Add all edges of PyU---UPy sz, to G'. If dg(z) = 0 for all x € Vp, add P1,..., Py z, to &’
and we are done. We may therefore assume that there is z € Vj with dg(x) > 2. Pick
distinet y, 2z € Ng(x) and let 4,7 € [k] be such that y € V; and z € V;;. By maximality, we
only need to find j € [4y/en] such that (I”), (II”), and (IV”) are still satisfied if we add yzz
to P; and thus obtain a contradiction. By construction, z belongs to fewer than /en of the P;,
and, since |Vp| < en, each of y and z belong to fewer than en of the P;. Moreover, there are
at most £ < y/en indices j € [4y/en] such that [V (P;) N Vi| > ¢m — 2 and similarly, there
are at most y/en indices j € [4y/en] such that |V (P;) N V| > (m — 2. Thus, there are at least
4y/en — \/en — 2en — 2 /en > 0 indices j such that we can add the path yzz to P; and (I”),
(IT"), and (IV") are still satisfied.
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To summarise, we have constructed sets &y, for each £ € [r], and a set & satisfying the
following.

(A) For each £ € [r] and P € &, P is a set of vertex-disjoint paths with endpoints in &
and internal vertices in V' \ V;. Moreover, |P| < & +en and [V/(P) N VY| < k + (?m for
each i € [k].

(B) For each P € &', P is a set of vertex-disjoint paths with endpoints in V'\ V) and internal
vertices in Vj. Moreover, |P| < en and |V (P)NV;| < ¢m for each i € [k].

(C) For each z € V' \ Vj, there are at most 2en paths in |J(£ U &?’) which have x as an
endpoint (recall & = 2, U---U Z,).

(D) By Step 4, Claim 2, and the above construction, |Z U 2’| < % + 7¢n. Moreover, G is
now empty.

Indeed, in order to check (C), recall from Step 3 that, for each x € Vf , each ’Héj p contains at
most £2m paths with 2 as an endpoint.

Step 6: Including fictive edges. We ignore this step for the proof of Lemmas 5.3 and 5.5(a).
For the proof of Lemmas 5.4 and 5.5(b), we construct a multiset Eg¢ of fictive edges on V' \ V.
As discussed in Section 4.4, we view edges in Fge as distinct from each other and from edges
in G,G',T",T', and H. We will add a fictive edge to each linear forest in & U £’. Moreover,
in order to satisfy (¢’), we make sure that for any z € V'\ 1, Ej¢t contains an odd number of
edges incident to z (counting multiplicity) if and only if z € U.

Start with Eg = (0. In what follows, we denote by Ueyen the set of vertices in U which
are incident to an even number of edges in Efe; and, for each ¢ € [r], we denote by UZ,.,
the set Uwen N UL In what follows, we will update Usyen and vaen at each step of our
algorithm. For each ¢ € [r], we add a fictive edge to each linear forest in %, as follows.
Assume P € &, does not contain a fictive edge yet. If there exist distinct z,y € U, \ V(P),
add the edge zy to Egy and to P. If there are no such x and y, then note that, by (A),
|Uben] < IV(P)N VY +1 < 2/P|+1 < 3en and proceed as follows. If P is the only linear
forest in &y which does not contain a fictive edge, we remove P from &7, add all its edges
to H and we are done. We note that this increases the maximum degree of H by at most 2.
Otherwise, pick P’ € £, \ {P} such that P’ does not contain a fictive edge. Note that, by (A),
[VENV(PUP)| < \/en. Moreover, by (D), there are at most % < 2¢7! vertices in V; which
are incident to at least en edges in Ege. Thus, we can choose distinct z,y € V\ V(P UP’)
such that Fg.; contains fewer than en edges incident to x and fewer than en edges incident to y.
Add the edge xy to both P and P’, and, add two edges between z and y to Fxe. We repeat
this procedure until each linear forest in &7, contains a fictive edge.

We then proceed similarly to add a fictive edge to each linear forest in &', now using (B)
instead of (A) and allowing fictive edges to have endpoints in V'\ V; instead of V* for some ¢ € [r].
Once each linear forest in 22’ contains a fictive edge, observe that we have added at most r + 1
linear forests to H, so, by (5.5),

(5.6) A(H) < 11¢n.
Moreover, the following holds.
Claim 3. The set Uoyen has even size. Moreover, |Ueyen| < max{|U|=2(|2UZ’'|—(r+1)),/en}.

Proof of Claim. By construction and since |U| is even, |Ueyen| is even. For the second part of
the claim, we distinguish three cases.
Firstly, assume that for any distinct P, P’ € 22U &', the fictive edge of P is vertex-disjoint
from the fictive edge of P’. Then we clearly have |Ueyen| < |U| —2(|2 U &'| — (r + 1)).
Secondly, assume there exists £ € [r] such that there exist distinct P, P’ € & and z,y € V*
such that both P and P’ contain a fictive edge between x and y. Then, by construction,
|UL .| < 3en, and so |UY| < 2|22| + 3en. By (4), for any ¢ € [r], we have |UY| < 2|2y + ben

and, thus, UL, | < 5en. Therefore, |Usyen| < vEn, as desired.
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Thirdly, assume that there exist distinct P, P’ € &’ and z,y € V '\ V{ such that P and P’
both contain a fictive edge between x and y. Then by construction |Ueyen| < 3en. &

Pair all vertices in Ugyen and for each pair (x,y), add zy to Eg and {zy} to &'. By
construction, (4), (A)—(D), and Claim 3, the following hold.

(A’) For each £ € [r] and P € &, P is a set of vertex-disjoint paths with endpoints in V*
and internal vertices in V' \ V. Moreover, |P| < % +en+1and |[V(P)N VY| < 2¢%m for
each i € [k].

(B’) For each P € &', P is a set of vertex-disjoint paths with endpoints in V' \ Vj and internal
vertices in V. Moreover, |P| < en+ 1 and |V(P) N V;| < 2¢m for each i € [k].

(C') For each x € V' \ Vp, there are at most 4en paths in |[J(Z2 U &’) which have z as an
endpoint.

(D’) By (D), Claim 3, and construction, | £ U 2’| < max{%, @} + 8¢n. Moreover, G is

now empty.
(E') Each set in P € & U &’ contains exactly one edge of Fge. Moreover, for each x €
V' \ Vo, Efet contains an odd number of edges incident to z if and only if z € U.

Step 7: Tying each set of paths into a cycle. We now tie each linear forest P € 22U 2’
into a cycle using edges of I' UT". This is achieved by successively applying Lemmas 4.12, 4.13,
and 4.15 several times as follows.

For each ¢ € [r], we tie the paths of each linear forest in & as follows. Let I'; be the
graph on vertex set Vo U V¥ and edge set UijeE(R,) E(T';;0). Note that by (1b), Vo, V¥, ..., V}f
is an (g2, 8, k, (m, R})-superregular partition of I'y, where Vf‘/f € E(R)) if and only if V;V; €
E(R'). Define I} similarly. Moreover, by (1c), Vo, Vi, ..., V{ is an (g2, (, k, (m, R}))-superregular
partition of I"y, where Vfo € E(Ry) if and only if V;V; € E(R").

For each ¢ € [r], we can then successively apply Lemmas 4.12, 4.13, and 4.15 as follows. Write
Py ={P1,...,Pp}. First, we apply Lemma 4.12 with T'y,(m, V{, ..., Vf,ea, R}, 0/, P, ..., Po,
and 2¢ playing the roles of I', m, V1,..., Vi, e, R, £, P1, ..., Py, and (, respectively. We thus obtain
disjoint Fy, ..., Ey C E(Ty) such that the following hold. For any distinct 4,5 € [k], and = € V,
the set £ := E1U---UEy contains at most eg{m edges of Iy [Vf, Vje] which are incident to z, and,
thus, by Lemma 4.2, it follows that Vo, V{, ..., V,f is an (e4, B3, k, ¢m, R))-superregular partition
of Ty \ E. Moreover, for any i € [¢] and j € [k], \V(PiUEi)ﬂVﬂ < ¢1¢m. Finally, for any i € [¢'],
by using each edge in E; exactly once, we can tie some of the paths in P; to form a set of
vertex-disjoint paths Q; such that, for any j € [k], at most 2372 paths in Q; have an endpoint
in Vf.

We then apply Lemma 4.13 with Ty \ E,(m, VY, ..., V,f, g4, Ry, U, Q1,...,Qp, and (; playing
the roles of I',m,V4,..., Vi, e, R, £, P1,..., Py, and (, respectively. We thus obtain disjoint
El,...,E, C E(T'y)\ E satisfying the following. For any distinct ¢, j € [k], and = € Vi, the set
E' = E{U---UE), contains at most e5(m edges of L[V, Vf] which are incident to z, and,
thus, by Lemma 4.2, it follows that Vo, V{, ..., V,f is an (eg, B3, k, ¢m, R))-superregular partition
of Ty \ (E'U E'). Moreover, for any i € [('] and j € [k], [V(Q; U E}) N V/| < (o¢m. Finally, for
any i € [('], by using each edge in E! exactly once, we can tie the paths in Q; to form a set of
vertex-disjoint paths Q] such that, for any component C of Rj, Q) contains at most one path
with an endpoint in Vi, (C).

We then apply Lemma 4.15 with I'y \ (B U E'),(m, Vi, ...,V e6, R}, €, Q)y ..., Qp, (o, TY,
and R playing the roles of I',m,Vi,..., Vi, e, R, {,P1,..., P, ¢, IV, and R, respectively. We
thus obtain disjoint EY,...,Ej C E(I'y UT%) \ (E U E’) satisfying the following. For any
distinct 4,5 € [k], and = € VU Vje, the set E” := E{ U---U E}, contains at most e7(m edges
of T'y[VY, Vf] which are incident to  and at most e7(m edges of I'}[V}¢, Vf] which are incident
to z. Moreover, QU E! forms a cycle, i.e. 2, U (EUE’UE") admits a cycle decomposition Dy
of size |Z|. Add all edges in E U E'U E” to G'. Proceed in this way for each ¢ € [r].
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Observe that by construction and since the reservoirs are pairwise disjoint, Lemma 4.2 implies
that Vo, V1,..., Vi is now an (eg, 3, k, m,m’, R')-superregular equalised partition of I" and an
(es, ¢, k,m,m’, R")-superregular equalised partition of I".

We proceed similarly to obtain a set E* C E(I' UT) such that £’ U E* admits a cycle
decomposition D' of size |#’|. Add the edges in E* to G’. Then, Lemma 4.2 implies
that Vp,Vi,..., Vi is an (eg, B, k,m,m’, R')-superregular equalised partition of T'. Add all
remaining edges of IV to H. By (i), we add at most (¢ 4+ &)n edges incident to each vertex. Thus,
by (5.6), A(H) < 13(n, as desired for (a).

Let D := Uyep, De Y D’. Observe that for the proof of Lemmas 5.3 and 5.5(a), by (D) and
construction, D is a cycle decomposition of G’ of size at most | U P'| < % +7¢n. For the proof

of Lemmas 5.4 and 5.5(b), remove all fictive edges from D. Then, by (D’) and (E'), D is now a

path decomposition of G’ of size at most max {%, %} + 8(n. Moreover, each vertex x € V'\ Vj
is an endpoint of an odd number of paths in D if and only if z € U. This completes the proof of

Lemma 5.5 (where we set I' :=T).

Step 8: Covering the remaining exceptional edges. If R is disconnected, we apply the
above argument to each component of R. More precisely, for each connected component C
of R, we apply Steps 1-7 with R[C] and G[Vp U V5(C)] playing the roles of R and G, and, for
the proof of Lemma 5.4, U N V5 (C) playing the role of U. In particular, observe that for each
component C' of R, A(G[Vp U Vg(C)]) < |[Va(C)| + en. Moreover, by (ii) and (v), R has at
most 37! components. Therefore, we obtain, in the proof of Lemma 5.3 (Lemma 5.4), a cycle

(path) decomposition D of G of size at most § + 8% + £ < § + Bn. Then, there only remains

to decompose Gexe into at most An cycles and 372 exceptional edges for Lemma 5.3, or, 35n
paths for Lemma 5.4.

Recall that Gex. was introduced at the beginning of the proof. By construction, all edges
of Gexc are exceptional and for any = € Vp, if 2y, 2y’ € F(Gexc) are distinct then there exist
distinet components C' and C” of R such that y € Vg(C) and 3 € Vg(C'). Decompose Gexe
into s < (n paths of length 2 with endpoints in V' \ Vj and an internal vertex in Vj. Note
that, by construction, each path has endpoints in clusters which lie in different connected
components of R. Apply Lemma 4.16, with g and s playing the roles of € and ¢, and, each P;
consisting of exactly one of the paths constructed above. We thus obtain E° C E(I") such
that Geyxe U E® admits a decomposition D” U Dey. where D” is a set of at most An cycles and Dexc
is a set of at most 372 exceptional edges. Add all edges in E° and Gexe to G’. By part (b) of
Lemma 4.16, Vp, Vi, ..., Vi is a ((, B, k,m,m’, R')-superregular equalised partition of T.

Set T := I'. For the proof of Lemma 5.3, add all cycles in D” to D. By construction, D U Dexc
satisfies the desired properties. For the proof of Lemma 5.4, split each cycle in D" into two
paths and add them to D. Add the edges in Dey. to D. This completes the proof of Lemmas 5.3
and 5.4. (]

5.4. Covering the leftovers. This section corresponds to Step 4 of the proof overview. We
will need the following fact.

Fact 5.7. Assume G is Eulerian and e € E(G). Then G contains a cycle C' such that e € C.

Lemma 5.8. Suppose 0 < % < % <d< pf<1landd = dlo%. Let G and T" be edge-disjoint
graphs on vertex set V' of size n such that GUT is Eulerian and A(G) < dn. Assume Vo, Vi,..., Vi
is an (d, B, k,m,m’', R)-superregqular equalised partition of T' such that any z € V' \ V belongs
to at least Bk superreqular pairs of I'. Moreover, suppose that Vi is a set of isolated vertices
in G. Then there exists E C E(T") such that G U E can be decomposed into at most 23n cycles.
Moreover, Vo, Vi, ..., Vi is a (d', 8, k,m,m’, R)-superreqular equalised partition of T\ E.

Proof. Fix an additional constant ¢ such that d < {( < . The idea is to decompose G into
matchings and then apply Lemmas 4.12, 4.13, and 4.16 to tie the edges in each matching together
to form cycles using I'.
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By Vizing’s theorem (Theorem 4.17), we can decompose G into ¢ < dn+1 < 2dn matchings M,
..., M;. Randomly split each matching M; into 2¢~! submatchings Miq, ..., Mo, by
including each edge of M; to M;; independently with probability % for each j € [2(‘1].
By Lemma 3.1, we may assume that for each i € [{] and ¢ € [2¢™!], we have [M; ;| < (n and
for each j € [k], we have |V(M; /) N'V;| < {m. For simplicity, set ¢’ := %K < (¢n and relabel
Mg, ..., Myge-1,... s Mgy, .., Myoe—1 to My, ..., My. We successively apply Lemmas 4.12,
4.13, and 4.16, starting with d, My, ..., My playing the roles of €, Py, ..., Py in Lemma 4.12. We
thus obtain E; C E(T) such that G U F; admits a decomposition D U D’ where D is a set of
at most Bn cycles and D’ is a set of at most 372 edges. Moreover, by Lemma 4.2 and part (b)
of Lemmas 4.12, 4.13, and 4.16, Vp, V1,..., Vi is a (dﬁ,ﬁ, k,m,m’, R)-superregular equalised
partition of I\ E;. By Fact 5.7 and Lemma 4.2, there exists Fo C T'\ Ej such that E(D') U Es
can be decomposed into at most 572 cycles and Vp, Vi, ..., Vi is a (d', B, k, m, m’, R)-superregular
equalised partition of '\ (E7 U E»). Let E := FE;y U E3. This completes the proof. O

5.5. Fully decomposing I'. This section corresponds to Step 5 of the proof overview.

Lemma 5.9. Let 0 < + < % < % L e K % < % < d << %,é < 1 and suppose that

m
%, %, %, %, R {;—?, %, % € N*. Let G be an Eulerian graph on n vertices. Assume that
Vo, Vi, ..., Vi is a partition of V(G) into an exceptional set Vi consisting of at most en isolated
vertices and k clusters Vi, ..., Vi of size m such that the corresponding reduced graph R of G is
a cycle of even length, and for each ij € E(R), the pair G[V;,V;] is [e,d]-superregular. Then G

admits a cycle decomposition D of size at most dm + ei6m.

To prove Lemma 5.9, we will use the robust decomposition lemma (Lemma 4.22). In order to
apply this result, m needs to satisfy certain divisibility conditions and we need to find several
refinements of the partition Vg, V4, ..., V.. This would not be possible if, for example, m was
prime. This explains why it is necessary to introduce the parameters K, ¢, f, £, and ¢ in the
statement of Lemma 5.9.

Corollary5.10.Let0<i<<%§%<%<<6<<l<<%<<d<<11<<1and

m q lg
K 2K 2K q¢ m' fm/ _4fK ¢ .
suppose that =, RN 1R K 3g(=1) 2 € N*. Let G be an n-vertex Fulerian graph and
assume Vo, V1,..., Vi is an (e,d, k,m,m’, R)-superreqular equalised partition of G such that Vj

is a set of isolated vertices in G. Assume R admits a decomposition Dg satisfying the following
properties. Dr consists of at most % cycles whose lengths are even and at least L. Moreover, for
any distinct i, 3,7 € [k], if VJVZVJ’ s a subpath of a cycle in Dg, then the support clusters of V;
with respect to V; and Vy are the same. Then G admits a cycle decomposition D of size at most
%” + S%n.
Proof. Let D := (). First apply Lemma 4.20 and add the cycles obtained to D and delete
their edges from G. Then, for each cycle C' = V; ...V, , in Dg, apply Lemma 5.9 with
2v/e, Viys ooy Vi s i, m/ [Vo| +ipm” and GV U Vg (C)] playing the roles of e, Vi, ..., Vi, k,m,n
and G, respectively, and add the cycles obtained to D. O
To prove Lemma 5.9, we will find an approximate decomposition of G using Lemma 5.12
and cover the leftover using the robust decomposition lemma (introduced in Section 4.4). The

approximate decomposition will be obtained be repeatedly applying the following lemma, which
is a special case of [27, Lemma 6.4].

Lemma 5.11. Let 0 < % <d Kegd<k C,% < % and k > 3. Let G be a graph and V1,..., Vi
be a partition of V(G) into k clusters of size m. Suppose that the following hold.

e For each i € [k — 1], G[V;, Vit1] is a perfect matching M;.

o G[V1, V] is (e,d', ¢d, %)—superregular.
Then, G[V1, Vi contains a perfect matching M such that M U (Ui:ll Ml) 1s a Hamilton cycle
of G.
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Lemma 5.12. Suppose 0 < % < % <d <egd<1. Let
_ 18d'm
- d
and assume that r, %,dm € N*. Let G be an n-vertex graph with vertex set V. Assume that
Vo, Vi,..., Vi is a partition of V into an exceptional set Vi consisting of at most en isolated
vertices and k clusters Vi, ...,V of size m such that the corresponding reduced graph R of G
is a cycle, and, for each ij € E(R), the pair G[V;,Vj| is e-reqular and dm-regular. Then there
exists H C G such that, for each ij € E(R), H[V;,V;] is r-regular and G' := G\ H admits a
decomposition D into h Hamilton cycles of G' —Vj.

T and h:=dm —r,

Proof. Let H be the empty graph on V. Let

1 1

€1 = €12, g9 :1=¢g25,

We may assume without loss of generality that E(R) = {V;Vi41 | i € [k]}, where V41 == V4.
For each i € [k], denote G; == G[V;, Vit1].

Let i € [k]. Apply Lemma 4.7 to obtain an (g1, d’, %,, %—Cg)—superregular spanning subgraph I'; C
Gi. Let G} := G; \T';. One can easily verify that G} is j-regular and that, for each x € V;U V41,
we have dg/(z) = (d + %—Cg)m.

In order to apply Lemma 5.11, we need to decompose each G} into perfect matchings. Thus,
we will first ensure that the pairs G are Eulerian and then apply Lemma 4.21 to regularise
them.

Let i € [k]. Apply Lemma 4.5 to obtain a Hamilton cycle z ... xoy, of G}. Let i3 < --- <
be the indices of the odd-degree vertices of G. For each s € {1,3,...,¢ — 1}, add the edges of
the path x;,x;,4+1... %, to H and delete them from G}. By construction and Lemma 4.2, G}
is now Eulerian and ez-regular. Moreover, we have dg; () =(d+ 2le)m for each x € V; U V1.
Apply Lemma 4.21 to obtain a regular spanning subgraph G/ of G. By removing perfect
matchings if necessary, we may assume G/ is ( %h)-regular. Apply Hall’s theorem to obtain a
decomposition of G/ into edge-disjoint sets D7, with s € [k]\ {¢}, each containing % edge-disjoint
perfect matchings. Add all edges of G\ G to H.

Let ¢ € [k]. Let G* be the graph on vertex set V \ V with B(G*) = (Uieppgar E(DH)uTy.
We construct % edge-disjoint Hamilton cycles C1,...,C % of G* such that, for each s € [%] and

i € [k]\ {¢}, Cs contains a perfect matching in DY. In particular, observe that this implies that
Cs[Vi, Viy1] is a perfect matching of G[Vy, V1] = T

Assume inductively that we have already constructed C1, ..., Cs for some 0 < s < % Delete
from G* all edges of C1, ..., Cy. Note that since % < e1,d’, by Lemma 4.3, the pair G*[Vp, Vi 1]

is still (2eq,d, dzl, 3é—cg)—supemregular. Let F be a spanning subgraph of G* such that, for each
i € [k]\ {¢}, F[V;, Vis1] is a perfect matching in Df which has not been used for C1, ..., Cs and
F[Vy, Viy1] = G Vi, Vig1]. Then, Lemma 5.11 gives a Hamilton cycle Cy, 1 of F C G satisfying
the desired properties.

Proceed as above for each ¢ € [k] and add all cycles obtained to D. Add to H all remaining
edges of Uie[k} I';. This completes the proof. O

We are now ready to prove Lemma 5.9, using the robust decomposition lemma. Recall the
terminology introduced in Section 4.4.

Proof of Lemma 5.9. Let D := (). We will repeatedly add cycles to D. Whenever a cycle is
added to D, it is removed from G so that all cycles in D are always pairwise edge-disjoint, as
desired. In Steps 7 and 8, we will construct at most dm edge-disjoint Hamilton cycles of G. The
additional cycles will be created during the regularising step (see Step 6).

Note that k is even. We may assume without loss of generality that E(R) = {V;Vi41 | i € [k]},
where Vi1 := Vj. For each i € [k], denote G; := G|V}, V;11]. Decompose R into two perfect
matchings M = {V;Vi41 | i € [kloaa} and M’ := {V;Viq1 | i € [k]even}. As explained in Step 5
of the proof overview, the idea is decompose each superregular pair of G into Hamilton paths
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using the robust decomposition lemma and suitable fictive edges. We will then form Hamilton
cycles of G — Vj by tying together a Hamilton path of each pair in M using an edge from each
pair in M’, and similarly for M and M’ exchanged.

Step 1: Choosing the constants. Fix additional constants such that

1 1, 1 1 1 nK 11
1< " <K<K KK =<K ek " K=K —<dx -, - 1.
m k K q f m l g

Let

and,

1 1 1 _1 _1
55 =e7, 5:”; =15, 51 =€31, g5 =125, g5 =¢85, g7 i=glisl,

w»—'

e] =

e:
Let ¢ == ¢(d, k:) be the constant in Lemma 4.20 and define

N 9d"m
d=d—11}, r:= —
Observe that r(2K)* < . Let
2rfK
ro == 19206°Kr, 1rs:= rf , r=ritreot+r—(¢—1rs, s=2rfK-+T7rc.
q

Note that r,r,r3 < 71 and r® < 2r;. By adjusting ¢, d, and d” slightly, we may assume that

(d—10e3)m  d'm d'm—2
22 ’ 2Tn7 mk T,T‘,T?’EN*.

Step 2: Constructing the bi-setups. Let i € [k]. Apply Corollary 4.9 to obtain an
orientation 82 of G; such that both BZ[VQ, Vit1] and 8Z~[V2+1, Vi] are [e1, %]—superregular (here
and below, the index is taken modulo k).

For each ¢ € [k], randomly partition V; into K subclusters V;1,...,V; ik of equal size. This

induces, for each i € [k], a partition P; of V(az) into 2K clusters of size %z. By Lemma 4.10,
we may assume that for each ¢ € [k], the partition P; is an eg-superregular K-refinement
of {V;,Viy1}. Let ﬁl be the reduced digraph of G; with respect to P;. (Thus, ﬁl is the
complete bipartite digraph with vertex classes of size K.) Proceed similarly to obtain, for
each i € [k], an ez-superregular (-refinement P/ of P;. Let ﬁ; be the reduced digraph of 81
with respect to P;.

For each i € [k], let C; == V;1Viy11Via ... Vit1 k and observe that C; is a Hamilton cycle of ﬁ .
Thus, by construction, for each i € [k], (81,732, ﬁ ﬁ ,Cy) is an ({,2K, %, €3, 2) -bi-setup.

Step 3: Selecting the fictive edges. In this step, we will set aside a set £ of edges which
will enable us to tie together the Hamilton path obtained with the robust decomposition lemma.
Then, we will construct a corresponding set F of fictive edges which will prescribe the endpoints
of the Hamilton paths (recall Figure 1). These fictive edges will then be incorporated in the
special path systems. Thus, in order to satisfy (SPS2), we will need to ensure that the endpoints
of the edges in & lie in the appropriate subclusters (see Figure 2). We start by choosing the
fictive edges which will be included in the special factors required for finding the chord absorbers
(see part (i) of Lemma 4.22).

First, proceed as in Step 2 to construct, for each i € [k], an e3-superregular %—reﬁnement P
of P;. For each i € [k] and V;; € P;, denote by V;1,... Vlj ¢ the partition of V; ; induced
by Pr.

For each i € [k], denote by Z; :== {I; 1,...,I; s} the canonical interval partition of C; into f

intervals of length 2]{( For each i € [k], j € [f] and h € [ |, apply Corollary 4.6 to obtain a

set 5 it h of r3 vertex-disjoint edges of 8 [Vij*.hs Vig1,57 ), where j' = JK Let € jn1s---s€ijhrs
be an enumeration of the edges in 5Z b
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We construct fictive edges as follows. Let ¢ € [k],j € [f], and h € [ﬂ For each t € [rs],

let f; jn: be a fictive edge from x to y, where x is the endpoint of e;_; ;5 which belongs
to V; and y is the endpoint of e; 1 ;5 which belongs to V;;1. Let ]-"Z(’;“}L be the set of all these

fictive edges. Observe that each edge in ijA will be a suitable fictive edge for a special path

system of style h spanning the interval I; ;. Indeed, by construction of 501 gk and 51 1

]—“lc;f‘}b C E(a [Vij' b Vig1,5,]), where j’ J}If L.e. each edge in .7:0]‘% lies in the “Ath subpair”

of the penultimate pair along the interval I; ;, as desired for (SPS2). Let £ be the union of
the sets EZCA for each i € [k],j € [f], and h € [ ]. Let £94 be the union of the sets EZC’% for

each j € [f] and h € []. Define FCA and FEA Slmllarly

Note that for all j € [f], h € [?], and ¢ € [r3], the graph (UiE[k]odd fi7j7h7t) U <Uie[k]even ei,j,h,t>

is a (directed) cycle of length k& which intersects each of the clusters Vi, ..., Vi. The same holds
with [k]oqq and [k]even exchanged. Therefore, in particular, the following property is satisfied.

ECA U FOA can be decomposed into edge-disjoint (directed) cycles of length k, each
containing either

e an edge of ECA between V; and Viyy for each i € [k]oaqa and an edge of FC4
() between V; and Viy1 for each i € [k]eyen, OT

e an edge of FC4 between V; and Viyy for each i € [k]oaqa and an edge of
between V; and Vi1 for each i € [k]even-

gCA

Property (1) will eventually enable us to construct Hamilton cycles of G — Vj by tying together
a Hamilton path of each pair in M using an edge from each pair in M’, or vice versa (recall
Figure 1).

We now select the fictive edges which will be included in the special factors required for finding
the parity chord absorbers (see part (ii) of Lemma 4.22). We proceed as above to construct,
for each i € [k] and j € [7], a set SZ-JZCA of 5r° vertex-disjoint edges of 81[%7]-/, Vit1,57], where

j = % For each i € [k], since EZ-CA is a matching, by Lemma 4.2, we can ensure that EZCA

and EZZCA are edge-disjoint. Let £FC4 be the union of the sets EZZCA, for i € [k] and j € [7].
For each ¢ € [k] and j € [7], we construct a set ]:Z-}Z-CA of fictive edges as above and let FF¢4
be the union of these sets. Importantly, the edges in £X¢4 and FFC4 satisfy (the analogue of)
property (ff).

Define £ = 64U EPCA and F == FCA U FPCA, Delete from 8 (and G) all the edges in £.

For each i € [k], note that we have deleted form 8 at most 2 edges incident to each vertex

so, by Lemma 4.2, (81,77@,77{, ﬁ ﬁ ,Cy) is still an (4,2K, 2, €4, 2) -bi-setup and P} is still a
€4-superregular %—reﬁnement of P;.

Step 4: Constructing the special factors. In this step, we will construct, for i € [k],
edge-disjoint special factors SF; 1, ..., SF;,, with parameters (%, f) with respect to C;, P} in
such that, for all ¢ € [r3], Fict(SFi¢) = {fijne | 7 € [f],h € [$]}. (Recall Figure 2.)

Let i € [k], j € [f], and h € [ |. Suppose inductively that for some 0 < t < r3, we have

constructed edge-disjoint special path systems SPS; ;51,...,SPS; n: of style h in é spanning

the interval I; and such that, for each ¢’ € [t], fi jni is the ﬁcmve edge contained in SPS; j, .

If t < r3, we construct SPS; jpn¢+1 as follows. For simplicity, denote I; j = Uy ... Usk ; and, for
7

each i’ € [%—l—l], let Uy 1, denote the A" subcluster of Uy in P;. Let 8‘ = B\U el SPS; -
By Lemma 4.2 and since r3 < €4fK = e4|Uy p| = €a|Uirg1 4l 8 Ui hy Uirg1 p) s [24/E4, > ]
superregular for each 7 € [%] and 8 [sz 1 h\V(fw hit+1), U2K h\V(fw ht+1)] 18 [2¢/E1, > ]
buperregular For each i € [ K] \{2K 1} apply Corollary 4.6 Wlth 8 (Ui by Uir41 1), 24/€4, and
playlng the roles of G, ¢, and « to obtain a perfect matching M, in 8 Ui h,Uir41.8)- Apply
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Corollary 4.6 with G Uz \V(Fiint1): Ui y\V(fiini+1))s 2y/53, and § playing the roles of
G, e, and « to obtain a perfect matching 1\42}K | in 8 U2K 1 h\V(fw hitt1)s U2K h\V(fm’h t+1)]-
Let MQK = MQK Y {fijht+1}. Then, SPS; ;11 = U,,E[zx} M; is a spemal path system of
style h in 8 spanning the interval I; which is edge-disjoint from SPS;1,...,SPS;; and which

contains the fictive edge f; jn 141
Thus, we can construct, for each i € [k], j € [f], and h € [}], edge-disjoint special path

systems SPS; ;jn1,...,SPS;jnr, of style hin Z:) spanning the interval I; such that, for each
t € [rs], fijnt is the fictive edge contained in SPS; ;. For each i € [k:] and t € [r3], let
SF;; = Uje[f] Uhe[%} SPS;jnt. Then, for each i € [k], SF;1,...,SF;,, are edge-disjoint

)

FiCt(SFZ‘,t) = {fi,j,h,t | jEe [f],h c [%]} For each i € [k’], let SF; = SFi’l U---u SFi,T‘3-

special factors with parameters (%, f) with respect to C;, P¥ in 81 such that, for all t € [rs],

Step 5: Finding the robustly decomposable digraphs. For any ¢ € [k], we apply
Lemma 4.22 with 2, 2K, ¢4, §, 81, P, P, ﬁ 6 ﬁ , Cy, and P} playing the roles of m, k, €, d,

8 P, P, ﬁ ﬁ C’ and P* to obtain a digraph CTZI (r) satisfying the properties described in
Lemma 4.22.

Since CA;(r) USF; is (r1 + ro + r3)-regular and r1 + 7o + 13 < 3rq, Lemma 4.2 implies
that one can proceed similarly as in Step 4 to construct special factors SF),,...,SF] o with

p;ar)ameters (1,7) with respect to C;, P; in 8 which are edge-disjoint from each other and from
Let PCA,(r) and 8“)'0 be as in Lemma 4.22. For each i € [k], delete the edges of 8“"0

from G; (and G). Since 8“"3 is (r1 + ro + 73 + 5r° + r°)-regular, we have deleted at most
2(r1 +ro + 13 4+ 5r° +1r°) < 30r; < em edges incident to each vertex in V; U V;11. Moreover,
recall that, at the end of Step 3, we have already deleted from G the edges in &£, which contains
at most two edges incident to each vertex in G;, for each i € [k]. Thus, Lemma 4.2 implies
that G; is still [}, d]-superregular. Furthermore, (1) and its analogue for £7¢4 and FF¢4
ensure that G is still Eulerian.

Step 6: Regularising the superregular pairs. In order to apply Lemma 5.12, we need
to regularise each superregular pair of G. We will first apply the tools of Section 4.3 to each G;
separately, but, we will see that this yields too many cycles. We will therefore use a few further
edges of G to tie together some of the cycles obtained to form longer cycles. We make sure that,
when tying some of the cycles together, we use only a bounded number of edges incident to each
vertex. Thus, applying the tools of Section 4.3 once again will only yield a few additional cycles.

First, apply Lemma 4.20 (to the current graph G) with £} and m playing the roles of € and m/.
Add the resulting cycles to D and delete their edges from G. Note that we have added at most ¢
cycles to D. Moreover, for each i € [k], the pair G; is now Eulerian and [3, d]-superregular.

For each i € [k], apply Lemma 4.21 with G, €5, and 2e5m playing the roles of G, e, and © in
order to obtain a set €; of at most 4e5m edge-disjoint cycles of length at least QT’" such that the
following holds. Delete the edges of €; from G;. Then, G is regular and [e}, d]-superregular.
By adding additional edge-disjoint Hamilton cycles to %; if necessary, we may assume that G;

is (d — 10e3)m-regular and |%;| < 10e5m. We observe that (J;c; ¢i may contain up to 10e5mk
Cycles so we need to split each of these cycles into paths and tle them together to form fewer
cycles.

Let i € [k]. Split one by one each cycle in %; into at mos paths of length at most dl’g,
each with an endpoint in V; and an endpoint in V1, and such that each vertex in V; UV, is
an endpoint of at most 2 paths. This is possible since the cycles in %; have length at least 27”‘
while, on the other hand, in each step there are at most %|‘€i| < e53m vertices in each cluster
which are already endpoints of 2 paths. Let &Z; be the set of paths obtained at the end of this
procedure and observe that || < eim.

t30
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Decompose Uie[k}odd Z; into at most e5m sets of paths, each containing at most one path
in &; for each i € [k]oqq. Decompose Uie[k]cvcn Z; similarly. Let 2,..., 2, be the sets of
paths obtained. Thus, ¢’ < 2e§m. Apply Lemma 4.19 with €%, 25, ¢/, and 27, ..., 2}, playing
the roles of €,(, ¢, and Zy,..., P to obtain E C E(G) such that (Z]U---U Z),)UFE can be
decomposed into ¢’ cycles. Add these cycles to D and delete from G all the edges in E. Note
that, for each i € [k], by Lemma 4.2 and part (a) of Lemma 4.19, G; is now [e}, d]-superregular
with maximum degree at most (d — 10e5)m and minimum degree at least (d — 10e3)m — 6.

We now need to regularise the superregular pairs of G once again. First, we apply Lemma 4.20
and add the resulting cycles to D. Then, we apply Lemma 4.21 to G}, for each i € [k], and add
all cycles obtained to D. Using similar arguments as above, we may assume that, for each i € [k,
the pair G; is now [e}, d]-superregular and d'm-regular. We note that |D| < 3eim < e%ﬁm, as
desired.

Step 7: Approximately decomposing (the remainder of) G. Apply Lemma 5.12 with
ef,d',d", and 2r playing the roles of ¢,d,d’, and r to obtain H C G such that, for each i € [k],
H; == H[V;,V;;1] is 2r-regular and G \ H can be decomposed into d'm — 2r cycles. Add these
cycles to D.

Step 8: Decomposing the leftover and robustly decomposable graphs. Let i € [k].

Since H; is 2r-regular, there exists an orientation ﬁz of H; such that ﬁl[VZ UV;41] is an r-regular
bipartite oriented graph with vertex classes V; and V; 1. Let D; be the Hamilton decomposition
of H; U gOb guaranteed by Lemma 4.22. Note that, in particular, each cycle in D; contains
exactly one fictive edge and thus corresponds to a Hamilton path of the original graph G[V;, V;11].
Moreover, |D;| = s.

We form 2s cycles by removing the fictive edges in F and inserting back the edges in £ as
follows. Fix a decomposition of £ U F into edge-disjoint cycles of length k satisfying the property
described in (11). Let C be a cycle in this decomposition and assume without loss of generality
that the fictive edges in C lie between V; and Vj;q for i € [k]oqq. Let f1,e2, f3,...,ex be an
enumeration of the edges of C' where, for each i € [k], the edge f; (respectively e;) lies between V;
and Vj;1. For each i € [k]oqq, let C; € D; be the cycle which contains f;. Then, by construction,
(Uictigoua Ci \iH) U (Uict)oven €3) 18 @ cycle and we add this cycle to D. We proceed in this way
for every cycle C' in the cycle decomposition of £ U F. This gives a cycle decomposition D of
our original graph G of size at most (d'm — 2r) + 2s + e16m <dm + e16m. O

5.6. Proof of the main theorems. We are now ready to prove Theorems 1.10(i), 1.10(ii),
1.11 and 1.13.

Proof of Theorem 1.10(ii). Let D := (). We will repeatedly add cycles to D. The set D will
eventually be the set of cycles for our final decomposition of G. The proof is structured as
described in Section 2.

Fix additional constants such that 0 < nio < ﬁ e K (KdK K a6 <1and

11 o1 1.1 11 o K 2K 2K g AfK 0 o pg
0< S < <A< ;< F <P g, <1, with F25 28 4 27§ € N Let G be

a graph on n > ng vertices with §(G) > an. Let V := V(G) and

1 1 1 =
5’125757 C/::C37 dy = d17, dg::df?’.

Step 1: Applying Szemerédi’s regularity lemma and setting aside some random
subgraphs I' and I'. Apply Lemma 5.1 with parameters M, L,¢,(,d, 3, and with 4¢/K
playing the role of r to obtain parameters M’,m’ € N*, a decomposition of G into four edge-
disjoint graphs G*,T',T”, and H, and a partition of V into k clusters V1, ..., V) and an exceptional
set V) satisfying the properties described in Lemma 5.1. In particular, the following property is
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satisfied.

The reduced graph R’ of T' admits a decomposition Dg: such that the following hold. Dgs
consists of at most % cycles whose lengths are even and at least L. Moreover, for any
distinct i, 7,5 € [k], if V;ViV} is a subpath of a cycle in Dgs then the support clusters
of Vi with respect to V; and Vj are the same.

1)

Step 2: Covering the edges of G[Vp]. Apply Lemma 5.2 with G* playing the role of G to
obtain a graph Hy C G* UT satisfying properties (a)—(d) of Lemma 5.2. In particular, there
exists a decomposition Dy U D} of Hy such that Dy is a set of at most Sn cycles and Dy is a set of
at most 372 edges. Add the cycles in Dy to D. Since G is Eulerian, by Fact 5.7, we can cover the
edges in D} with at most 372 edge-disjoint cycles. Add these cycles to D and delete the edges
in all these cycles from G, G*,T', and I"". Observe that by Lemmas 4.2 and 5.2, Vp, V4, ...,V is

e an (¢/,> d, k,m,m’, R)-superregular equalised partition of G*;

e an (¢/, 3, k,m,m’, R')-superregular equalised partition of T'; and

e an (¢/,(, k,m,m/, R")-superregular equalised partition of I",
where R and R” are edge-disjoint and satisfy R’ U R” = R. Moreover, G[Vp] is now empty, as
desired.

Step 3: Covering most of G* with at most roughly 7 cycles. We now apply Lemma 5.3
with G* and ¢ playing _the roles of G and ¢ to obtain a decomposition of G* UT'U I into
edge-disjoint graphs G, T', and H’ such that G*,T" C G’ U H', ' C T, and properties (a)—(c) of
Lemma 5.3 are satlsﬁed In particular, there exists a decomp0s1t10n D' UD.,. of G’ such that D’
is a set of at most § + 2671 cycles and DL is a set of at most 372 edges. Add all cycles in D’

to D. Apply Fact 5.7 with TUH UH' UD.,. playing the role of G to cover the edges in Dexe with
at most B2 edge-disjoint cycles. Add these cycles to D and delete the edges in all these cycles
from I', H, and H'. By Lemmas 4.2 and 5.3, Vo, V4,..., Vi is a (¢', B, k,m, m/, R)-superregular

equalised partition of I'. Also note that A(H U H') < 4dn + 13¢n < 5dn.

Step 4: Covering the leftovers. We now cover the edges of HUH " by applying Lemma 5.8
with H U H', F and 5d playing the roles of G,I', and d to obtain a subgraph H C T and
a decomposition D of HU H' U H into at most 26n cycles. Add all cycles in D to D and
let IV =T \ H. By Lemma 5.8, Vo, Vi,..., Vi is a (d1, B,k,m,m’, R')-superregular equalised
partition of I".

Step 5: Fully decomposing I'. Finally, observe that I’ is an Eulerian subgraph of I' with
the same reduced graph and the same support clusters, so property (i) holds for . Thus, we
can apply Corollary 5.10 with I',R',dy, and B playing the roles of G, R, e, and d to obtain a
decomposition of I’ into at most ’B— + don cycles. Add these cycles to D. Then, D forms a cycle
decomposition of G and |[D| < § —|— dn, as desired. O

Proof of Theorem 1.10(i). We modify the proof of Theorem 1.10(ii) to get a path decomposition
as follows. Step 1 is identical. For Step 2, we simply apply Theorem 1.1 to obtain a path
decomposition of G[Vp] into at most en paths. For Step 3, first remove an edge incident to
each exceptional vertex of odd degree in G* so that property (vi) of Lemma 5.4 holds. We view
these edges as individual paths in our decomposition. We can thus apply Lemma 5.4 instead of
Lemma 5.3, with the set of odd degree vertices of G*UH UT UT” playing the role of U. Then, by
Lemma 5.4(¢), HU H' UT is Eulerian at the end of Step 3. Thus, we can apply the arguments
of Steps 4 and 5 and split each cycle obtained in these steps into two paths in order to obtain a
path decomposition of H U H' U . One can easily verify that we obtain at most § + dn paths
in total. O
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The weak quasirandomness assumed in the next two proofs allows for a more efficient
decomposition. The critical property implied by weak quasirandomness is that the reduced
graph R is connected.

Proof of Theorem 1.11. We use the same arguments as in the proof of Theorems 1.10(i) and
1.10(ii) with 8 < «, d, p and applying Lemma 5.5 instead of Lemmas 5.3 and 5.4. This is possible
since the reduced graph R of G* is connected.

Indeed, assume for a contradiction that R is disconnected and let C' be a component of R.
Let A :=Vg«(C) and B := V(G) \ A. Since 6(G) > an, it is easy to see that |A|,|B| > 5. But,
by Lemma 5.1,

6G(A7 B) = EH(A, B) +6F(A7 B) + ef’(AvB) + CG*(A,%)
< |A|(4dn+ (B+e)n+ ((+e)n+en)
< plA[|B],

contradicting the fact that G is weakly-(§,p)-quasirandom.

Also observe that in the path decomposition case, we have odd(G*UHUT'UT”) < odd(G)+|Vp|
at the point where we apply Lemma 5.5 (recall the proof of Theorem 1.10(i)), so we obtain a
decomposition of the desired size. O

Proof of Theorem 1.13. First observe that since G is weakly-(g, p)-quasirandom, G has fewer
than en vertices of degree less that 5. Let X be the set of these vertices. We modify the proof
Theorem 1.11(i) as follows. Apply the arguments of Step 1 with G — X and £ playing the roles
of G and «. Add the vertices in X to the exceptional set and all edges incident to these vertices
to G*. The remainder of the proof is identical. O

6. CONCLUDING REMARKS
We conclude by deriving Theorem 1.10(iii) and providing some remarks on our results.

6.1. Proof of Theorem 1.10(iii). We now show how Theorem 1.10(iii) can be derived from
Theorem 1.10(ii). Let G be a graph. We saw in the introduction that one can remove at
most n — 1 edges of G to obtain an Eulerian graph. However, in order to apply Theorem 1.10(ii),
we also need to make sure that the resulting Eulerian graph still has linear minimum degree.

Proof of Theorem 1.10(iii). Fix ¢ := odd(G). Let Vyqq be the set of odd-degree vertices of G.
We repeatedly remove short paths with endpoints in Vyqq (but £ is left unchanged). Fix a
maximum matching M of G[V,qq]. Delete the edges of M from G and remove the vertices
in V(M) from V,qq. We observe that V,qq is now an independent set of G.

If there exists a path zyz in G such that x,z € Vyqq are distinct and fewer than <* edges
incident to y have been deleted so far, remove the edges zy and yz from G and the vertices z, z
from V,4qq. We repeat this procedure until there exists no such path of length 2.

Then, we claim that |Voqq| < % Indeed, at each stage, there are at most % vertices y € V' \ Voaq
such that we have deleted at least %* edges incident to y. By construction, for each x € Viqq,
no edge incident to = has been deleted from G and, thus,  has more than %* neighbours y such
that fewer than %" edges incident to y have been deleted so far. Thus, we must have |Voqq| < %

Pair all remaining vertices of V,qq such that, in each pair, the vertices belong to a same
connected component of G. By construction, §(G) > 32 — 1. Thus, for each pair (z,y) in turn,
we can find a path of length at most g between = and y, which we delete from G. Let P be the
set of edge-disjoint paths deleted. Note that |E(P)| < % Moreover, we have deleted at most
{+ % <n+ %" edges in total. Finally, G is Eulerian and 6(G) > %*. Applying Theorem 1.10(ii)

with § and % playing the roles of a and § completes the proof. O

6.2. Some remarks on Theorem 1.11. As discussed in the introduction, we now show
that neither the linear minimum degree condition (or even the stronger assumption of linear
connectivity), nor the Weakly—(%, p) -quasirandom property is sufficient on its own to obtain the
bounds in Theorem 1.11.
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Proposition 6.1. For any odd integer n > 20, there exists an LI"—OJ -connected Fulerian graph G
on 2n vertices such that the following hold.

{ odd(G) A(G)
2

(i) G cannot be decomposed into fewer than max vT} + 1p paths.

(ii) G cannot be decomposed into fewer than % + 15 cycles.

Proof. Assume G1, G4 are two vertex-disjoint cliques of size n and let V1 C V(G1) and Vo C V(G3)
with [Vi],|Va| = |{5]|. Let G be obtained from G; U G2 by adding two edge-disjoint perfect
matchings between Vi and V. Note that G is an L%J—connected Eulerian graph on 2n vertices
with A(G) =n+ 1.

Since there are at most ¥ edges between G1 and G2, any cycle decomposition of G will contain
at most 15 cycles with edges of both G and G2 and these will cover at most ¢ edges incident

to each vertex of G. Thus any cycle decomposition of G will contain at least 4”+5

4n+5
10

? +1> % + 15 cycles. Similar arguments show that G cannot be decomposed into fewer
than 32 + 1 > max {Odd(G) A }+ 1o Daths. O

cycles of G

and at least cycles of GGo. Therefore, any cycle decomposition of G will contaln at least

Proposition 6.2. For all0 < a <1, and all ng € N*, the following hold.

(i) There ezists a weakly—(%, f‘—oi]) -quasirandom graph G on n > ng vertices such that G

odd(G) A(G) }

cannot be decomposed into fewer than max{ + 90 paths.

(ii) There exists an Eulerian weakly- (2, 1060) quasirandom graph G on n > ng vertices such

that G cannot be decomposed into fewer than % + 95 cycles.

3 ; — 20m+-4
Proof. Let m be a sufficiently large odd integer, § := {5, and £ := 2742,

For part (i), let Sy be a star with ¢ leaves and K,,, be a complete graph on m vertices such
that V(Sy) N V(K,,) = {x} for some leaf x of Sy. Let G := K,, US,. Then G is graph of
order n := m+ ¢, with A(G) = m and at least ¢ vertices of odd degree. Let AU B be a partition
of V(G) with \A| |B\ > %*. Then, both A and B contain at least 93 vertices of K,,. Thus,

eq(A,B) > 0‘10’}) > %OIAHB\ and G is weakly-(§, ﬁ)—quasnrandom. But, one can easily show

that G cannot be decomposed into fewer than m‘H + E_TQ > max {%(G), {%1 } + 95 paths.

For part (ii), let G be obtained from K, by appending % vertex-disjoint triangles with
exactly one endpoint in V(K,,). Clearly, G is an Eulerian graph on n := m + ¢ vertices
with A(G) = m + 1. Now let AU B be a partition of V(G) with [A|,|B| > %*. Then, similarly
as before, it follows that G is weakly—(%, %)—quasirandom. But G cannot be decomposed into
fewer than ™= + > (G) + g cycles. O

6.3. Some remarks on Conjecture 1.14. As discussed in the introduction, we show that the
Erdés-Gallai conjecture is equivalent to Conjecture 1.14.

Proposition 6.3. Conjecture 1.14 is equivalent to the Erdds-Gallai conjecture (Conjecture 1.4).

Proof. (<) Assume Conjecture 1.4 holds and let ¢ be a constant such that any N-vertex graph
can be decomposed into at most cN cycles and edges, for each N € N*. Let ¢ < ¢, p. Let G
be as in Conjecture 1.14 and D = (). We repeatedly add cycles to D until it forms a cycle
decomposition of G. Weak-(e, p)-quasirandomness implies that fewer than en vertices of G have
degree less that 7. Let S be the set of these vertices and apply the arguments of Step 1 of the
proof Theorem 1. 10(11) with G — S and & playing the roles of G and « to obtain a decomposition
of G into G*,I',T", and H. Add the vertlces in S to the exceptional set Vj and all edges incident
to these vertices to G*. Note that we now have |Vj| < 2en. Moreover, by similar arguments as
in the proof of Theorem 1.11, the reduced graph R of G* is connected.
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Decompose G[Vp] into at most 2cen cycles and edges. Add the cycles obtained to D and
delete their edges from G. By choosing a decomposition where the number of edges is minimal,
we may assume G[Vj] is now a forest and, thus, contains at most 2en edges.

Then, we can decompose G[Vp] into ¢ < 2en edge-disjoint paths P, ..., Py such that the
following hold. For each i € [¢], the endpoints z; and y; of P; have odd degree in G[Vj] and,
moreover, each x € V{ is an endpoint of at most one of the P;. Let i € [¢]. Since G is Eulerian,
there exist z; € Ng(z;) \ Vo and ¢, € Ng(vi) \ Vo. If 2 = y., add the cycle z}z; Py, to D.
Otherwise, let P! := zlx; Py;yl.

Apply Lemma 4.15 with 2¢ playing the role of € and each P; consisting of exactly one of the
paths P; constructed above. Add all the cycles obtained to D and delete their edges from G*, I', T,
and H. Thus, G*[V] is now empty. By Lemma 4.2 and part (b) of Lemma 4.15, Vo, Vi, ..., Vj
is now an (5%, B, k,m,m’, R")-superregular equalised partition of I" and an (5%, ¢, k,m,m', R")-
superregular equalised partition of IV. Decompose the remainder of G as in Theorem 1.11(ii)
(see Steps 3-5 of the proof of Theorem 1.10(ii)).

(=) Assume Conjecture 1.4 does not hold and assume for a contradiction that Conjecture 1.14
is true. Fix 6 > 0 and % >p>0. Let 1 > ¢ > 0 and ng be as in Conjecture 1.14 and fix a
constant ¢ such that ¢ > §(1 + %) Let H be an Eulerian graph on m > eng vertices such that
any cycle decomposition of H contains more than c¢m cycles. Note that such graph exists since,
as mentioned in the introduction, the Erdds-Gallai conjecture is equivalent to the problem of
decomposing Eulerian graphs of order n in O(n) cycles, and, by assumption, the Erdés-Gallai
conjecture is false.

Assume without loss of generality that Q?m is an odd integer. Let GG be the disjoint union of H
and Ksz Note that G is a graph on n = (14 2)m > ng vertices. Moreover, A(G) = A(Ksz)

Thus, any cycle decomposition of G will contain more than % +cm > # + dn cycles. But,
for any partition A, B of V(G) with |A|,|B| > en, we have |A,|B| > (1 + 2)m > 2m and thus
ANV (Kzm)| 2 2l and |B N V(Kzm)| 2 Bl Therefore, eq(A, B) > | A||B| > p|A||B| and G
is weakly-(e, p)-quasirandom, a contradiction. O

Using Theorem 1.6 and the arguments of the proof of Proposition 6.3, one can show the
following.

Proposition 6.4. For any é,p > 0, there exist €,n9 > 0 such that the following hold. If G is an
Fulerian weakly—(m,p)—quasimndom graph on n > ng vertices, then G can be decomposed

A(G)

into at most =5~ + dn cycles.
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