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Abstract

In a liar game we have two players, the Questioner and the Responder. The Responder
thinks of an integer x between 1 and n and the Questioner attempts to identify x in q
questions, however, when the Responder replies to the questions they are allowed to tell
up to k lies. This project discusses strategies for which it is possible to solve the liar
game using the minimum number of questions and further shows links between the liar
game and coding theory.

The project begins by highlighting the different types of liar games and the particular
liar game that is of focus within this project. The basic concepts of coding theory are
introduced in the second chapter using the work of Welsh [11]. In particular, we will
see that there is a code which optimally solves the liar game with one lie and n = 106.
Using Spencer [8], in Chapter 3 it is shown that it is possible to solve asymptotically
a general version of the liar game for the parameters n,q,k, which represent the size of
the search space, the number of questions and the number of lies respectively. Chapter
4 first provides various different strategies of solving the liar game with one lie and
n = 106, one of which is optimal. This chapter further discusses a result by Pelc [3]
regarding the minimum number of questions required to solve the liar game with one
lie and arbitrary n. For n, where n is a power of 2, we give a simple proof of a result
of Pelc which determines the minimum number of questions required by the Questioner
when 1 lie is allowed.
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Chapter 1

Introduction

Consider a game between two players, known as the Questioner and the Responder,
where the Responder chooses an integer x from a search space of size n and within
q questions the Questioner must determine what the value of x is to win the game,
otherwise the Responder wins. In the twentieth century two mathematicians, Rényi
[5] and Ulam [10], independently discussed the above two player game except with a
variation - what happens if the Responder is allowed to lie when answering some of the
questions? This type of game is referred to as a liar game or a searching game with
errors1.

In [4], Pelc sets out four principles in which the Questioner and the Responder must
agree upon before play of the liar game begins. These are:

1. The size of the search space, denoted by n, and the number of questions q in which
the Questioner must determine the integer x to win the game,

2. The form of limitation on the way in which the Responder is permitted to lie,

3. The format of the questions that the Questioner asks,

4. The degree of interactivity between the Questioner and Responder during play2.

For different variations of the liar game, we consider different limitations on the lies
permitted and the format of the questions asked.

Referring to item 2, there exist several different ways in which it is possible to define
limitations upon the number of lies the Responder is permitted to tell. One option is
to fix an upper bound on the number of lies k the Responder can use. For example, in
Ulam’s description of the liar game, Ulam fixes k such that the Responder is allowed to lie
once or twice. Rényi’s most common description of the liar game provides an alternative
limitation on the number of lies permitted. Rényi suggests that the Responder lies at
most a given percentage of the total number of questions i.e. if the game lasts q questions,
as agreed in item 1, the Responder can lie at most pq times, where 0 ≤ p < 1, such that
p is fixed. A slight variation of this limitation could be to specify that the Responder is
allowed to lie p times within the first j questions and must tell the truth thereafter i.e.
the Responder is allowed to lie pj times in the first j questions, where 0 ≤ p < 1, and

1We will refer to this type of game as the liar game throughout this project.
2We will assume that the Questioner receives a reply to each question from the Responder before

asking the next question.
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must not lie to the Questioner in the remaining q−j questions. The study of this type of
limitation and Rényi’s limitation were initially discussed by Pelc [2] and were then later
discussed by Spencer and Winkler in [9]. Alternatively, the Responder could adopt a
strategy of random lies. This type of limitation on the liar game was the earliest studied
way of limiting the lies permitted, which was also proposed by Rényi [5]. Suppose that
the Responder has a biased coin, such that the probability p of tossing a tail is p < 1

2 .
The Responder’s lying strategy could now be if the coin, when tossed, displays a tail the
Responder can choose to lie or not, but must not lie if the coin displays a head i.e. each
lie is independent of the other lies and occurs with probability p < 1

2 . Here we consider
a search space of size n, which is divided into the subsets Ai and the Questioner asks
questions of the form “Is x ∈ Ai?”. Rényi’s interest in this form of the liar game was
to determine the minimum number of questions q that was sufficient to determine x. In
[5], Rényi showed

q =
log n+ o(log n)

1− I(p)
,

where3 I(p) = −p log(p)− (1− p) log(1− p) is the entropy of the probability distribution
(p, 1− p). This is analogous to Shannon’s Noisy Coding Theorem, discussed in Chapter
2 Section 2.2.5. Note also that if p = 0, then this reduces to q = log n, the number of
questions which suffice to solve the liar game if no lies are told.

Similarly, as there exist variations in the limitations of lying, there also exist varia-
tions in which the Questioner can ask questions. The most obvious form of questioning
is asking questions of the form “Is x ∈ Ai?”, where Ai forms part of some partition of n.
These types of questions require answers of the form “Yes” or “No”. A further variation
to this type of questioning is adding in the requirement that each question can not be
asked more the once. Alternatively, variable cost questions could be adopted. The idea
behind variable cost questions is such that the Questioner receives a fixed budget and
the answers “Yes” and “No” are given weights. Each time one of these answers appears,
its weight is removed from the budget. For example, every “Yes” answer the Questioner
receives, they are charged for it, but they are not charged for “No” answers and the Re-
sponder wins if the Questioner uses more than q questions or if the Questioner exceeds
the budget. This form of questioning was discussed by Sereno [6].

The liar game that is focused on within this project is the one described by Ulam
[10]. We shall consider a two player game, with the players the Questioner and the
Responder. In the most restricted version, the Responder chooses an integer x from
the set {1, . . . , 106} i.e. n = 106, and during play of the game is allowed to lie at most
once i.e. k ≤ 1. It will be shown that the Questioner can find x using at most q = 25
questions, that provide answers of the form “Yes” or “No”(In the well known “Twenty
Questions” game, which has n = 106 with k = 0 i.e. the liar game with out the use of
any lies, one needs at most 20 questions to identify x). In Chapter 4, we aim to show
why the value of q is minimal and formulate strategies in which the Questioner should
adopt in order to win the game. In 1984, Spencer [7] commented that “it seems very
difficult to determine whether the answer to Ulam’s original problem is twenty-five or
twenty-six”. The main aim of this chapter is to provide a strategy which determines
that q = 25 is the answer using a result which is shorter than that given by Pelc [3].

3Note that all of the logarithms discussed within this project are to the base 2.
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Further, the liar game is generalised to one lie and to a search space of size n, where n is
defined to be a power of 2. Again we aim to give a simple optimal strategy for this case
and give a proof of its optimality, which is considerably shorter than existing proofs.

As an alternative approach to solving the liar game, it is possible to use error-
correcting codes to identify the integer x. By considering the lies as equivalent to errors
in a code, one is able find the integer x using coding theory and its applications. Chapter
2 provides an introduction to the theory of coding and as an application, discusses the
maximal number of questions in which it is possible to identify x using error-correcting
codes. This chapter aims to find the existence of a 1 error-correcting code that can be
used to optimally solve the liar game with one lie and n = 106.

As an extension to the liar game discussed in Chapter 1, in Chapter 3 we con-
sider a game in which one has the parameters n, q, k, where n is the size of the search
space, q represents the number of questions allowed and k the number of lies the Re-
sponder is allowed to tell. Amongst other results, we describe the proof of a result of
Spencer [8], which implies that the minimum number of questions q required to iden-
tify the answer x (using an optimal strategy) lies between log n+ k log(log n)− c′′ and
log n+ k log(log n) + c′, where c′ and c′′ are constants dependent only on the number of
lies k. Note that if n is large and k is small, this gives an asymptotic solution to the
game.
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Chapter 2

Coding Theory

This chapter will discuss the effects and results of communication through noisy chan-
nels. This chapter is based upon the book ‘Codes and Cryptography’ by Welsh [11].

It is possible to link liar games with results from coding theory, where communication
occurs through a noisy channel. By using error correcting codes it is possible to find a
winning strategy for the Questioner in the liar game.

When a coded message is sent by Person A, for some reason the coded message
maybe distorted in places by the channel it passes through, so that the message received
by Person B contains errors. This channel is known as a noisy channel.

Source
message

s1, . . . , sk
→ Encoder

Noisy
channel

Decoder Receiver→
@

@
@@

�
�

��
codeword
x1, . . . , xn

distorted
codeword
y1, . . . , yn

Figure 2.1: Noisy communication channel

In a liar game, the distortion in the received message would be considered as lies told
during the play of the game. Hence, by considering the lies of a liar game as errors, it is
possible to apply aspects of coding theory to find a winning strategy for the Questioner.

2.1 Some definitions

To begin with it is important to provide a series of definitions to help understand the
concepts of coding theory that are discussed within this chapter.

Definition 2.1.1 Given a random variable X, that takes a finite set of values with
probabilities p1, . . . , pn, the uncertainty or entropy of X is

H(X) = −
n∑

k=1

pk log pk (0 < pk < 1) and
k∑

i=1

pi = 1,

where we are using logarithms to base 2.
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Example 1 Determine which scenario has the greater uncertainty:
i) An eight lane athletics race, in which five runners have the probability of 1

10 of winning
and three runners have the probability of 1

6 of winning;
ii) A six lane swimming race, where two swimmers have the probability of 1

4 of winning
and four swimmers have the probability of 1

8 of winning.

Solution:
i) Define the athletes probability of winning the race by the random variable X. Then

H(X) = 3×
(
−1

6
log

(
1
6

))
+ 5×

(
− 1

10
log

(
1
10

))
=

1
2

log 6 +
1
2

log 10

=
1
2

log 60

≈ 0.859.

ii) Define the swimmers probability of winning the race by the random variable Y. Then

H(Y ) = 2×
(
−1

4
log

(
1
4

))
+ 4×

(
−1

8
log

(
1
8

))
=

1
2

log 4 +
1
2

log 8

=
1
2

log 32

≈ 0.753.

Since H(X) > H(Y ), the outcome of the athletics race is more uncertain than the
outcome of the swimming race.

Suppose that U and V are random vectors. The conditional entropy of U given V
is defined

H(U|V) =
∑

j

H(U|V = vj)Pr(V = vj),

where the sum is over the finite range of values vj that V has a positive probability of
taking. The information about U conveyed by V is defined to be the quantity

I(U|V) = H(U)−H(U|V)

i.e. I(U|V) measures the amount of uncertainty about U that is removed by V.

Example 2 Suppose that the weather affects the ability of an athlete to win the race in
Example 1 i). On the day of the race the temperature is 29◦C. Now six runners have
the probability 1

12 of winning and two runners have the probability 1
4 of winning.

Define the affects of weather on the athletes ability by the random variable Z. Then we
have

H(X|Z) = 6×
(
− 1

12
log

(
1
12

))
+ 2×

(
−1

4
log

(
1
4

))
=

1
2

log 12 +
1
2

log 4

≈ 0.841.
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Therefore, the information is

I(X|Z) = H(X)−H(X|Z)
≈ 0.859− 0.841 = 0.018.

A source is a stream of symbols from some finite alphabet. Let Xi denote the ith

symbol produced by a source. For each symbol aj , the probability

Pr(Xi = aj) = pj ,

is independent of i and is independent of all other symbols emitted. Thus the random
variables X1, X2, . . . , Xn are independently identically distributed. This is known as a
memoryless source. By Definition 2.1.1, the entropy of a memoryless source is

H = −
∑

j

pj log pj ,

where 0 < pj < 1.
If ϕ is a memoryless source that emits symbols from a known alphabet

S = {s1, . . . , sN}, with the corresponding probabilities {p1, . . . , pN}, then the elements
of S are called source words. A message is any finite string of source words thats are
successively encoded, transmitted and then decoded.

A code f , over a finite alphabet Σ, is a collection of sequences of symbols from
Σ. An encoding is a map f from {s1, . . . , sN} into Σ∗, where Σ∗ is a collection of
finite strings of symbols from the alphabet Σ. The code f is uniquely decipherable
if any finite string from Σ∗ is the image of at most one message i.e. f is injective. The
strings f(si) are called codewords and the integers |f(si)| are the word lengths of f .
Further, the average length of a code f is

〈
f
〉

=
N∑

i=1

pi|f(si)|.

We describe f as an instantaneous or prefix code if there exist no distinct si and sj ,
such that f(si) is a prefix of f(sj). It follows by definition that instantaneous codes are
uniquely decipherable.

Example 3 Suppose Σ = {0, 1} and that there exist three source words s1, s2, s3. An
instantaneous code is

f(s1) = 1 f(s2) = 01 f(s3) = 001

The message 00101101001101 would be decoded as s3s2s1s2s3s1s2, since

001︸︷︷︸ 01︸︷︷︸ 1︸︷︷︸ 01︸︷︷︸ 001︸︷︷︸ 1︸︷︷︸ 01︸︷︷︸
s3 s2 s1 s2 s3 s1 s2

This type of code is known as a comma code, where the 1 indicates the end of a word.
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2.2 Communication through a noisy channel

2.2.1 Discrete Memoryless Channel

A communication channel is essentially a channel that accepts strings of symbols from
an input alphabet1 and ejects strings of symbols from an output alphabet.

Definition 2.2.1 Define the input alphabet to be Σα = {α1, . . . , αr} and the output al-
phabet Σβ = {β1 . . . , βs}. Further, define the channel matrix
P = (pij : 1 ≤ i ≤ r, 1 ≤ j ≤ s). These three conditions form the definition of a dis-
crete memoryless channel.

We note that the input alphabet is certainly discrete since |Σα| = r 6= ∞. Similarly,
this can be shown for the output alphabet.

The channel operates by taking a sequence (x1, . . . , xn) of symbols from Σα and
inputting them into the channel. The output sequence is a string of symbols (y1 . . . , yn)
of the same length with yk ∈ Σβ. This has the associated probability

Pr(yk = βj |xk = αi) = pij (1 ≤ i ≤ r, 1 ≤ j ≤ s),

independently for all k. As with all probabilities
∑

j pij = 1. A matrix with only non-
negative entries and with row sum equal to 1 is called a stochastic matrix. Since none
of the entries of the channel matrix P will be negative and the summation of the row is
equal to one, the channel matrix P is a stochastic matrix.

It helps to represent the channel of communication in diagrammatic form. The bi-
nary symmetric channel is often used when representing the model of communication
we are interested in.

The binary symmetric channel . . . is a discrete memoryless channel with
input and output alphabets Σ = {0, 1} and with channel matrix P given by

P =
[

1− p p
p 1− p

]

��
���

���
���

����HHH
HHH

HHH
HHH

HHH1

0

1

0
1− p

1− p

p

p

→

→

In other words, there is a common probability p of any symbol being trans-
mitted incorrectly, independently for each symbol transmitted. 2

1The input alphabet is regarded as a source.
2[11] page 29.
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Suppose that we have a memoryless source ϕ that emits source words s1, s2, . . . , sN ,
with the respective probabilities p1, p2, . . . , pN . Encode these source words into binary,
assuming that encoding into binary is noiseless3. Connect the encoded source to a binary
symmetric channel with the error probability p. Figure 2.2 represents this diagrammat-
ically.

source ϕ −→ Encode source
words into
binary

−→

��
���

����HHH
HHH

HHH1

0

1

0
1− p

1− p

p

p

→

→

−→ Decode

Figure 2.2: Connecting the source to a binary symmetric channel

Suppose that we have a source with 8 source words, such that

s1
↓

000

s2
↓

001

s3
↓

010

s4
↓

100

s5
↓

011

s6
↓

110

s7
↓

101

s8
↓

111

Figure 2.3: A possible encoding for 8 source words

By the above encoding and the fact that 1 − p represents the probability of a source
word being transmitted correctly, the probability that any source word is transmitted
correctly is (1 − p)3. It follows that a message of n source words being transmitted
correctly is (1− p)3n.

It is possible to improve the probability of the correct transmission of a message.
Suppose that we have the same source words s1, . . . , s8, as in Figure 2.3, and assume
that they all have equal probability of being used by the channel i.e. Pr(s1) = . . . =
Pr(s8) = 1

8 . Consider the same encoding as before but instead now “double up” the
encoding to give:

s1
↓

000000

s2
↓

001001

s3
↓

010010

s4
↓

100100

s5
↓

011011

s6
↓

110110

s7
↓

101101

s8
↓

111111

Figure 2.4: “Double up” encoding

The decoder now applies the rule that they only decode when the first three symbols and
the second three symbols of the codeword agree. If they do not agree, then the decoder
asks for “help”4. The probability of an error occurring and remaining unnoticed is
reduced, however, the rate at which transmission occurs is also reduced. Therefore, the
decoder must decide whether the accuracy of a message or the rate in which they receive
it, is of greater importance to them.

3Noiseless means that there exists no error when encoding, during transmission or decoding.
4“Help”, for example, could be asking the source to resend the message.
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2.2.2 Codes and decoding rules

Definition 2.2.2 Given a code ψ of length n with codewords c1, . . . , cN , a decod-
ing rule is any partition of the set of possible received sequences into disjoint sets
R1, . . . , RN . If the received sequence y ∈ Rj, then it is decoded as the codeword cj.

The choice of the decoding rule adopted by the decoder is important to the success of a
communication system. The decoder should aim to use a decoding rule that attempts
to minimise the chance of error. This implies decoding any received vector y into a
codeword cj , such that

Pr(cj sent| y received) ≥ Pr(ci sent| y received)

i.e. take the codeword cj with the largest probability of being decoded correctly given
that the decoder received vector y. This is known as the Ideal Observer or Minimum
Error rule. It is important to highlight that this rule cannot be used without prior
knowledge of the probabilities of the codewords cj . Furthermore, the Minimum Error
rule is not easy to use for a large number of codewords. Thus the Minimum Error
decoding rule is quite difficult for the decoder to use as a method of decoding. Therefore,
we consider using a rule known as Maximum Likelihood decoding rule. This rule
decodes a received vector y into a codeword cj , such that it maximises

Pr(y received|cj sent).

This rule only requires us to look for the codewords that differ slightly from the vector
received i.e. it reduces the number of codewords in which the decoder was previously
required to look at when using the Minimum Error rule. We note that if the codewords
all have equal probability, then the Maximum Likelihood decoding rule is the same as
the Minimum Error rule.

2.2.3 Hamming Distance

Definition 2.2.3 Let Vn denote the set of all n-sequences of 0’s and 1’s. Consider Vn

as an n-dimensional vector space over the field of integers modulo 2. Let x,y ∈ Vn. The
Hamming distance d(x,y) between x and y is defined to be the number of places in
which the vectors x and y differ.

Consider the Minimum Distance decoding rule. The Minimum Distance decoding
rule decodes any received vector y into a codeword cj that has a minimum Hamming dis-
tance from y. If there exists more than one such codeword, pick one of these codewords
arbitrarily. When considering the binary symmetric channel, the Minimum Distance
decoding rule is the obvious choice of decoding rule to apply.

Theorem 1 For a binary symmetric channel, with error probability p ≤ 1
2 , the Mini-

mum Distance decoding rule is equivalent to the Maximum Likelihood decoding rule.

Proof Let x,y ∈ Vn with the Hamming distance d(x,y) = d, 5

Pr(y received| x sent) = pd(1− p)n−d.

5The probability describes how the received vector differs from the sent vector by looking at the error
probability, which occurs d times, and the probability of the vector being sent correctly which occurs
n− d times.
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When p ≤ 1
2 , 6 the above probability is maximised when d is the minimum Hamming

distance. Therefore, the Minimum Distance decoding rule is the same as the Maximum
Likelihood decoding rule. �

2.2.4 Capacity of a channel

The capacity of a communication channel is a measure of the channel’s ability to
transmit information.

Suppose that our communication channel is a discrete memoryless channel with
input alphabet Σα = {α1, . . . , αr} and output alphabet Σβ = {β1, . . . , βs}, with the
channel matrix P = [pij ] = Pr(βj received| αi sent). Attach a memoryless source ϕ to
this channel, which emits symbols α1, . . . , αr with the respective probabilities p1, . . . , pr.
Then the output of this channel can be seen as the memoryless source ζ. ζ emits the
symbols β1, . . . , βs with the respective probabilities q1, . . . , qs where,

qj =
s∑

i=1

Pr(βj received| αi sent)Pr(αi sent)

=
s∑

i=1

pipij .

The information about ϕ given ζ is I(ϕ|ζ), where

I(ϕ|ζ) = H(ϕ)−H(ϕ|ζ)
= H(ϕ) +H(ζ)−H(ϕ, ζ)

is a function of the source distribution (p1, . . . , pr) and the channel matrix P.

Definition 2.2.4 The capacity C of the channel is

C = sup I(ϕ|ζ) (2.1)

The supremum is taken over all possible input distributions (p1, . . . , pr).

Note that (2.1) can be rewritten as C = max I(ϕ|ζ) 7.

Theorem 2 The capacity of the binary symmetric channel, in which there is probability
p of error, is given by

C(p) = 1 + p log p+ (1− p) log(1− p) (2.2)

Proof See Appendix A.
6Take the logarithm of pd(1− p)n−d, such that we have d log p + (n− d) log(1− p). Now differentiate

with respect to d and set the equation equal to 0. This implies p = 1
2
. This is the maximum value p can

take, hence p ≤ 1
2
.

7C is well defined in the sense that we are seeking the supremum of f(p). f is a continuous function
on a closed and bounded subset (the code is discrete and the supremum bounds) of Rr. Using a
fundamental theorem of analysis, any continuous function on such a set attains its supremum on the set
i.e. the maximum of the set equals the supremum. Hence, (2.1).
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2.2.5 Shannon’s Noisy Coding Theorem

Definition 2.2.5 Given a code ψ and any decoding scheme for ψ, the maximum error
probability is defined

ê(ψ) = max
i
Pr( error| ci transmitted),

where ci’s are the codewords of ψ.

Obviously we want codes with small error probability and large transmission rate, Shan-
non’s theorem tells us that such codes exist.

Shannon’s Theorem Given a binary symmetric channel of capacity C and any R, such
that 0 < R < C, then if (Mn; 1 ≤ n <∞) is any sequence of integers satisfying

1 ≤Mn ≤ 2Rn (2.3)

and ε > 0, there exists a sequence of codes (ψn : 1 ≤ n <∞) and an integer N0(ε), with
ψn having Mn codewords of length n and with the maximum error probability

ê(ψn) ≤ ε for all n ≥ N0(ε).

How does Shannon’s theorem work? Suppose that we have an error probability such
that the channel has capacity C(p) = 0.70. Further, suppose that we have a message
that we wish to send, which consists of a string of 0’s and 1’s. By Shannon’s theorem, for
n sufficiently large and taking R = 3

5 , it follows that there exists a set of 2
3
5
n codewords

of length n that have an error probability less than the one given to begin with. In order
to encode the message stream from the source, one should use the following steps:

1. Take the message stream and split it into blocks of length m, where m is an integer,
such that

3
⌈

1
5
n

⌉
= m ≥ 3

5
N0(ε),

2. Using a codeword of length 5
3m, encode each m-block into the code ψn,

3. Transmit the encoded stream through the channel.

What does Shannon’s theorem tell us? Shannon’s theorem shows, provided the rate
of transmission R is below the channel capacity C, it is possible to achieve arbitrarily
high reliability. Hence, by using Shannon’s theorem it is possible to obtain a marked
reduction in the error probability i.e. Shannon’s theorem show that such codes with
small maximum error probability exist. The theorem provides a more theoretical result,
rather than a practical one. The theorem sets bounds but it only tells us that good
codes do exist.

2.3 Error-correcting codes

Although Shannon’s theorem tells us that good codes exist8 it does not tell us how to
find them. This section indicates possible different approaches to the problem of finding
these codes.

8i.e. they have small maximum error probability.
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Without loss of generality, assume that the channel has the same alphabet Σ of size
q, for both the input and output alphabets. Let ψ be a code over Σ and assume that all
the codewords of ψ are of equal length 9. The use of this type of code makes decoding
easier.

2.3.1 Some preliminaries

If the codewords of ψ have length n and |Σ| = q, then the code is known as a q-ary
code of length n. We will only consider q = 2 i.e. binary codes of length n. The set
of all n-sequences of symbols from the alphabet Σ is denoted Vn(Σ). The elements of
Vn(Σ) are called vectors or words.

Theorem 3 If a code has minimum distance d, then the Minimum Distance decoding
rule will correct up to 1

2(d− 1) errors.

Proof Let e = b1
2(d − 1)c and consider a sphere of radius e about x, where x is a

codeword. This is the set Se(x) given by

Se(x) = {y : d(x,y) ≤ e}.

If x and z are distinct codewords, the minimum distance hypothesis implies

Se(x) ∩ Se(z) = ∅

i.e. x and z are at least 2e apart. This implies that minimum distance decoding will
correct up to e errors. �

Definition 2.3.1 If a code has M codewords of length n and has a minimum distance
d, then it is called an (n,M , d)-code.

Let A(n, d) denote the maximum number of codewords M , such that there exists a
binary (n, M, d)-code.

Theorem 4 When d is an odd integer,

A(n, d) = A(n+ 1, d+ 1) (2.4)

Proof Assume that d is an odd integer. Firstly we wish to show that

A(n, d) ≤ A(n+ 1, d+ 1) (2.5)

Suppose we take a code ψ that has the parameters n+1 and d+1. By deleting the last
digit from all of the codewords of ψ, clearly we reduce the length of the code by one and
we at most reduce the minimum distance by 1. Hence (2.5) holds.

Further, we wish to show that

A(n, d) ≥ A(n+ 1, d+ 1) (2.6)

Suppose we take a code ψ that has the parameters n and d. By adding a parity check
digit to all of the codewords of ψ we obtain the new code ψ′. All the codewords of ψ′

9Such codes are known as block codes.
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have even weight, which implies that the minimum distance d must be even. Since d is
odd, we have shown that (2.6) holds. Since (2.5) and (2.6) both hold, this implies (2.4).

�

Suppose that you have a code ψ that is an (n,M , d)-code. ψ can be represented by an
M × n array, whose rows are distinct codewords. If a code ψ′ can be obtained from a
code ψ by a sequence of permutations, then ψ′ is called an equivalent code.

Definition 2.3.2 Suppose ψ is a code over Vn(Σ), such that for some t > 0, the t-
spheres around the codewords of ψ are disjoint but their union contains every vector in
Vn(Σ). A code such as this is called a perfect code.

Suppose ψ is a code which has minimum distance d = 2e + 1. By Theorem 3 it
is possible to correct up to e errors by the nearest neighbour decoding rule. If |ψ| is
large, this method can be time consuming, since it requires comparing a large number
of codewords with the received vector. Linear codes offer a solution to this.

Definition 2.3.3 A linear code ψ over Σ is defined to be any subspace of Vn(Σ). If
ψ is a k-dimensional subspace, then the code is known as [n, k]-code or if the minimum
distance d is known, ψ is known as an [n, k, d]-code.

Definition 2.3.4 A generator matrix, for a linear [n, k]-code ψ, is any k×n matrix,
whose rows constitute of k linearly independent codewords of ψ.

Theorem 5 If ψ is any linear [n, k]-code, then there exists an equivalent code ψ′ with
generator matrix [Ik, A], where Ik is the k × k identity matrix.

Proof Omitted.

By using the generator matrix G of the linear [n, k]-code ψ, we are able to encode the
source words s of ψ into codewords c by

c = sTG (2.7)

The first k digits of a codeword are often the message digits and the remaining n− k
are the parity check digits.

Example 4 Suppose that ψ is a [7,4]-linear code with generator matrix

G =


1 0 0 1 0 0 1
0 1 1 1 0 0 1
0 0 1 0 0 1 1
1 0 1 0 1 0 1


By performing a finite sequence of operations10 on the rows and columns of the generator
matrix, by Theorem 5, we obtain11

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


10The operations that are performed are i) Permuting rows/columns, ii) Multiplying rows/columns

by a non-zero scalar iii) adding to a row a scalar multiple of another row.
11See Appendix B.
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Consider the source words ( 0 1 1 0 ), ( 0 1 0 1 ), ( 1 0 1 1 ). Using our generator matrix G
and (2.7), we obtain the codeword ( 0 1 1 0 1 1 0 ) from the source word ( 0 1 1 0 ) i.e.

[
0 1 1 0

] 
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 =
[

0 1 1 0 1 1 0
]

Similarly, ( 0 1 0 1 ) is encoded into the codeword ( 0 1 0 1 0 1 0) and ( 1 0 1 1 ) is encoded
into the codeword ( 1 0 1 1 0 1 0).

Suppose that we wish to send the message

0 1 0 1 1 0 1 1 0 1 1 0

By splitting the message up into blocks of size 4, such that

0 1 0 1 | 1 0 1 1 | 0 1 1 0

and encoding these blocks, we send the encoded message

0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0

This increases the length of the message, which decreases the rate of transmission, how-
ever, it increases the reliability of the message sent.

Theorem 6 The minimum distance of a linear code ψ is the minimum weight of a
non-zero vector in ψ.

Proof Let d be the minimum distance of ψ and suppose that x and y are codewords,
with d(x,y) = d. Since ψ is a linear subspace, the vector x− y is also a codeword of ψ.
But the weight of x− y is w(x− y) = d, showing that the minimum weight is at most
d. However, it can not be strictly less than d since, if z 6= 0, such that the w(z) < d

⇒ w(z) = d(z,0) < d,

which is a contradiction to d being the minimum distance of the linear code ψ. �

Definition 2.3.5 The matrix
H = [−AT , In−k]

is called the parity check matrix.

Claim: A vector z is a codeword of ψ if and only if

HzT = 0.

Proof Let G be the generator matrix for a linear [n, k]-code ψ. Since permuting the
rows and columns of G does not affect the codewords, it is possible to rewrite G such
that

G =

 r1
...
rk

 = [Ik, A],
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where r1, . . . , rk are the linearly independent vectors of ψ and A is a k× (n−k) matrix.
Suppose that the message sequence is given by s = (s1, . . . , sk). Encode s by the

codeword c = (c1, . . . , cn) i.e.

c = sTG = sT [Ik, A] = [sT , sTA] (2.8)

Thus ci = si, for all i ≤ k. So[
c1 . . . ck

]
A =

[
s1 . . . sk

]
A

(2.8)
=

[
ck+1 . . . cn

]
.

Rearranging gives [
ck+1 . . . cn

]
−

[
c1 . . . ck

]
A = 0.

But [
ck+1 . . . cn

]
=

[
ck+1 . . . cn

]
In−k.

Hence we obtain
c [In−k,−A] = 0

Taking the transpose of this gives[
−AT , In−k

]
cT = 0.

The parity check matrix H, is defined H = [−AT , In−k]. �

Thus the parity check matrix clearly defines the code equally as well as the generator
matrix.

2.3.2 Binary Hamming codes

Definition 2.3.6 Let r be a positive integer and take n = 2r − 1. Take H to be the
r × (2r − 1) matrix, whose columns are the distinct non-zero vectors of Vr. Then H is
the parity check matrix of a binary [n, k]-code, where

n = 2r − 1 and k = n− r.

This code is called the [n, k] Hamming code.

Lemma 2.3.7 Let z be a codeword of a code ψ i.e. for a parity matrix H of ψ

HzT = 0.

Suppose we receive a vector z∗ such that, z∗ = z + ej, where the error vector

ej = (0 . . . 1 . . . 0),

where the 1 appears in the jth position i.e. one error was made during transmission.
Then HzT

∗ = jth column of H. This implies we can use the Minimum Distance decoding
rule, which works if there is exactly one error.
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Proof

HzT
∗ = H(y + ej)T

= HyT +HeT
j

= 0 +HeT
j . �

Example 5 Let r = 3, then we obtain a [7,4] - Hamming code, which has the parity
check matrix

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


If we know during transmission a coded message becomes distorted by a noisy channel
in precisely one place, it is possible to find the error and correct it. Consider that you
receive the vector

z∗ = (1 0 0 0 1 0 1).

For z∗ to be a codeword we require HzT
∗ = 0. However,

HzT
∗ = (0 1 1).

We notice that (0 1 1) is identical to the 3rd column in the parity check matrix. By using
Lemma 2.3.7 we conclude that the error occurs in the 3rd place of z∗. Hence we decode
z∗ as

z = (1 0 1 0 1 0 1),

which satisfies HzT = 0.
We know from Definition 2.3.5 that a vector z is a codeword of [7,4] - Hamming

code if and only if

HzT = 0.

For the [7,4] - Hamming code, there exist 16 codewords, since 12

27

1 +
(
7
1

) =
27

23
= 24.

Suppose that z = (a b c d e f g) is a codeword. Therefore, solving HzT = 0 implies
solving

a+ b+ d+ e = 0
a+ c+ d+ f = 0
b+ c+ d+ g = 0,

12Suppose we have a [n, q]-Hamming code and we wish to find out the number of codewords that exist
for this code. There are 2n possible codewords. For each codeword z there exist

`
n
1

´
other words x of

length n with Hamming distance d(x,z) = 1. Hence the total number of codewords is expressed by the
equation

2n

1 +
`

n
1

´ .
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remembering that we are working in modulo 2.
This gives the following 16 codewords

z0 = (0 0 0 0 0 0 0)
z1 = (1 1 1 1 1 1 1)
z2 = (1 1 1 0 0 0 0)
z3 = (1 1 0 0 0 1 1)
z4 = (1 0 0 1 0 0 1)
z5 = (1 0 1 1 0 1 0)
z6 = (1 0 1 0 1 0 1)
z7 = (1 0 0 0 1 1 0)
z8 = (1 1 0 1 1 0 0)
z9 = (0 1 1 1 0 0 1)
z10 = (0 1 0 1 0 1 0)
z11 = (0 1 1 0 1 1 0)
z12 = (0 1 0 0 1 0 1)
z13 = (0 0 1 1 1 0 0)
z14 = (0 0 0 1 1 1 1)
z15 = (0 0 1 0 0 1 1).

Example 6 Suppose that r = 4, then we have a [15,11] - Hamming code, which has the
parity check matrix

H =


1 1 1 0 0 0 1 1 1 0 1 1 0 0 0
1 0 0 1 1 0 1 0 1 1 1 0 1 0 0
0 1 0 1 0 1 1 1 0 1 1 0 0 1 0
0 0 1 0 1 1 0 1 1 1 1 0 0 0 1


For the [15,11] - Hamming code there exist 2048 codewords, since

215

1 +
(
15
1

) =
215

24
= 211.

Suppose that

z = (a b c d e f g h i j k l m n p)

satisfies HzT = 0. This implies solving the equations

a+ b+ c+ g + h+ i+ k + l = 0
a+ d+ e+ g + i+ j + k +m = 0
b+ d+ f + g + h+ j + k + n = 0
c+ e+ f + h+ i+ j + k + p = 0
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Clearly it will take a long time to obtain all the codewords for [15,11] - Hamming code,
so listed below are a sample of codewords.

z0 = (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
z1 = (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)
z2 = (1 1 1 0 0 0 1 1 1 0 1 1 0 0 0)
z3 = (1 0 0 1 1 0 1 0 1 1 1 0 1 0 0)
z4 = (0 1 0 1 0 1 1 1 0 1 1 0 0 1 0)
z5 = (0 0 1 0 1 1 0 1 1 1 1 0 0 0 1)
z6 = (0 0 0 0 0 0 0 0 0 0 1 1 1 1 1)
z7 = (1 1 1 1 1 1 1 1 1 1 0 0 0 0 0).

The following theorem is an important property of Hamming codes.

Theorem 7 Any Hamming code is a perfect single error correcting code.

Proof Since ψ is a linear code, by Theorem 6, the minimum distance d(ψ) equals the
minimum weight vector in ψ. Suppose that ψ has a codeword u of weight 1, with a
non-zero entry in the ith position. Then

HuT = 0,

which implies that the ith column of the parity check matrix H has all zero entries.
However, H does not contain a column of zero entries, hence the codeword does not
have a weight of 1.

Suppose that ψ has a codeword of weight 2, with non-zero entries in the ith and jth

positions (where i 6= j). Then this implies that

hi + hj = 0,

where hi denotes the ith column of H. However, this implies H has two identical columns,
which is not possible since i 6= j 13. Thus d(ψ) ≥ 3 i.e. the minimum distance of a
Hamming code is at least 3.

A sphere of radius 1 surrounding any codeword x ∈ ψ will contain 1 + n = 2r vectors.
Since ψ contains 2k = 2n−r codewords, the union of the spheres of radius 1 is the
complete set of 2n vectors in Vn i.e. the Hamming code is a perfect code. �

2.4 The liar game using coding theory

Consider the liar game with one lie and search space of size n = 106. The Responder
chooses an integer x from the set {1, . . . , 106} and we will see that coding theory tells
us that within 25 questions it is possible for the Questioner to win the game14. We can
use applications of coding theory to solve the liar game, since if we consider the lie told
in the liar game as an error, it is possible to use error-correcting codes to find x.

13Remember since we are working in binary, this implies we are working in modulo 2 i.e. 1 + 1 = 0.
14It is shown in Chapter 4 Section 4.4 that the value q = 25 is the maximal number of questions

required to solve this liar game.
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Firstly, we consider all integers in the set {1, . . . , 106} in their binary representation.
We wish encode each of these numbers into a codeword by using a code ψ, such that
ψ is an (n, M, d)-code. This means that we require M ≥ 106 to ensure that all of the
binary numbers can be encoded. Further the code ψ must be able to correct one lie i.e.
ψ must be a 1 error-correcting code. As a consequence of the (n, M, d)-code ψ being
an 1 error-correcting, the code must have minimum distance d ≥ 3. We note that the
questions from the Questioner take the form “What is the ith digit of the codeword?”.

We have seen that a binary Hamming code is a type of error-correcting code, however,
it is not suitable for solving this liar game. When using binary Hamming codes we notice
that when r = 4, we have a binary [15, 11]-code that has 2048 codewords15, which is
insufficient. If we consider r = 5, this implies we have a binary [31, 26]-code which has
226 codewords 16. Clearly 226 > 106, however, by using the binary Hamming code with
r = 5 to solve the liar game implies we require 31 questions to identify x, thus the code
is inefficient.

If we assume that d = 3, we apply Theorem 2.4 to obtain d = 4. Hence we are
looking for a (n, M, d)-code ψ, which has M ≥ 106 and d = 4, but we are yet to
determine the value of n. [12] provides a table of values for the best known bounds on
A(n, d). The table states A(26, 4) ≥ 1048576 17. We note that d = 4 implies such a
code is certainly 1 error-correcting. Hence there exists a code such that the liar game
can be solved using at most 26 questions with d = 4. However, Theorem 2.4 tells us
that A(n, d) = A(n+ 1, d+ 1), where d is odd. Therefore, there even exists a 1 error-
correcting code ψ with n = 25 and d = 3 that contains more than 106 codewords. Hence,
it is possible using 1 error-correcting codes to solve the liar game, using 25 questions to
identify the integer x.

However, it is not always the case that 1 error-correcting codes are the best way to
solve the liar game with one lie. Using [12] we see that with q = 27 questions, we can dis-
tinguish between 4194304 and 4793472 codewords (since 4194304 ≤ A(27, 3) ≤ 4793472)
18. However, using a result described in Chapter 4 Section 4.419, if

2q

q + 1
> n,

where n refers to the number of codewords, then there exists a better strategy to solve
the liar game than by using 1 error-correcting codes. Since

227

28
> 4194304,

there exists a better strategy to solve the liar game than that which uses the best existing
15See Example 6.
16Since

231

1 +
`
31
1

´ =
231

25
= 226.

17Although the lower bound is larger that 106, we note that if n = 25 and d = 4 the code would
contain at most 599184 codewords, which is significantly less than 106.

18The result in [12] refers to q = 28, but we apply Theorem 2.4 to obtain q = 27.
19This result is also analogous to Theorem 8 described in Chapter 3.
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codes. Further we note that

227

28
> 4793472.

Hence in this case the desired codes cannot exist so it is inappropriate to use 1 error-
correcting codes to solve the liar game with one lie and q = 27.
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Chapter 3

An asymptotic solution for the
liar game

In this chapter we are concerned with finding a winning position for the Questioner
when playing a general version of the liar game, where we consider the three parameters
n,q,k 1. The results discussed in this chapter follow the results discussed by Spencer in
[8].

3.1 The liar game in terms of chips

When evaluating the general version of the game we consider three parameters: n -
the size of the search space; q - the number of rounds in the game i.e. the number of
questions the Questioner is allowed to ask; and k - the number of lies the Responder is
permitted to tell 2. The values of each of these parameters are known to both players.
The Responder thinks of an integer x that lies within the search space of size n and the
Questioner has q questions in which to correctly guess the integer x. The questions asked
by the Questioner must take the form “Is x ∈ Ai?”, where Ai ⊆ {1, . . . , n}. This type of
game is fully adaptive game i.e. the Questioner learns the answer to each question before
asking the next one. This means that the Questioner is able to use the results of previous
questions before asking the next one. The Responder is allowed to apply an adversary
strategy to the game when replying to questions. This is where the Responder does not
actually pick an integer x at the beginning of the game but answers the questions so
that there exists at least one x that they could have picked from the search space. By
this condition and given n, q, k, we can conclude that either the Questioner will win
the game, if they identify x correctly within q rounds, or the Responder wins, if the
Questioner is unable to identify correctly the value of x. This type of game is known as
a [n, q, k]-game.

In order to analyse the above game, we consider a more general game, where we
replace the search space with a sequence of nonnegative integers x0, x1, . . . xk. Define
Ai, 0 ≤ i ≤ k, to be disjoint sets, such that |Ai| = xi, and let these sets be known to both
the Questioner and the Responder. The Responder initially chooses x ∈ A0∪A1∪. . .∪Ak

and if x lies in Ai, then the Responder is allowed to lie about the value of x at most
1Where n represents the size of the search space, q denotes the number of questions the Questioner

is allowed to ask and k denotes the number of lies the Responder is permitted to tell.
2We will consider k as a fixed integer, with n and q which are considered to be much larger than k.
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k − i times in subsequent questions3.
In [8], Spencer introduces the game in terms of chips, where we consider a board with

positions marked 0, 1, . . . , k from left to right. There exists one chip for each integer x.
If a chip representing x is placed on position i, where 0 ≤ i ≤ k , then the Responder
can lie about that chip k − i more times. We can represent the number of chips on
each position by xi, for each i. The Questioner selects a set Ai of chips and asks the
question “Is x ∈ Ai?”. If the Responder replies “No”, but x was an element of Ai, then
this corresponds to x being lied about one more time. This is equivalent to moving all
of the elements of Ai one position to the right. The chips in Ai that were on position
k are removed from the board, since they have been lied about more than k times. If,
however, the Responder replied “Yes”, this is equivalent to moving all of the elements
not in Ai one position to the right. The Responder is not allowed to remove all chips
from the board i.e. there must remain at least one chip on the board, which represents
the true value of x. The Questioner wins the game if, after q questions, there is exactly
one chip remaining on the board.

The state of the game is defined to be the vector P = (x0, . . . , xk), which in terms
of the chips is the picture with xi chips on the ith position shown in Figure 3.1. Note
that with every response to a question the state of the game changes.

m} m
m
}
}

m
m
m
}

m
}

m
m
}

Figure 3.1: An example of the chips on the board, P = (1, 4, 4, 2, 3). Suppose we have
this state, where the black chips are the elements of set Ai.

m
m
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m
m
m
}

m
}
}

m
m
}

Figure 3.2: If the Responder says that x is not an element of Ai, move all chips in Ai

one position to the right to obtain the above position P = (0, 4, 3, 3, 3).
3Note that the Responder is still adopting the adversary strategy.
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Define the weight of an individual chip on the ith position by

p∗i = Pr[B(q, 0.5) ≤ k − i] =
k∑

i=0

(
q

k − i

)
× 2−q, (3.1)

where B(q, 0.5) denotes a random variable that has a binomial distribution with param-
eters q, 1

2 . The weight of a state can be defined by the summation of the weights of the
individual chips i.e.

w∗ =
k∑

i=0

xip
∗
i (3.2)

The motivation to discuss the weight of a chip arises from the fact that if in each step
Pr[a chip moves to the right] = 1

2 , then the weight of a chip is equal to the expectation
of the number of the chips left on the board after q steps 4.

Theorem 8 If a state has weight greater than 1 then the Responder has a winning
strategy.

Proof The Questioner asks “Is x ∈ Ai?”. Suppose the Responder decides to use a
random strategy i.e. the Responder flips a fair coin to decide whether to move all of
the chips in Ai one position to the right or all of the chips not in Ai one position to the
right5. The coin is flipped after each question has been asked. Let c be a chip. For each
c, we define Xc to be the indicator random variable for c to remain on the board by
the end of the game. Regardless of the choice of the strategy used by the Questioner, if
c ∈ Ai, then c will move forward with the probability of 0.5 each round. Each movement
of the chips is independent from all the previous movements of the chips. If c begins the
game at position j, it follows that by the end of the game c will have moved to

1. position j +B(q, 0.5) if j +B(q, 0.5) ≤ k

2. off of the board if j +B(q, 0.5) > k 6.

m
kj

→

Figure 3.3: Chips moving towards the kth position

Since Xc is an indicator random variable, E[Xc] is the probability of chip c remaining
on the board.

E[Xc] = Pr[chip remains on the board]
= Pr[q coin tosses yield ≤ k − j heads]

= Pr[B
(
q,

1
2

)
≤ k − j] = p∗i .

4Refer to the proof of Theorem 8 for more details of this.
5If the Responder removes all of the chips from the board using the random strategy then we conclude

that the Responder has lost.
6This would occur if a chip had been lied about more than k − j times.

27



Define X =
∑
Xc to be the sum over all the chips c. E[X] is defined to be the expected

number of chips that remain on the board. Now

E[X] = E
[ ∑

Xc

]
=

∑
E[Xc].

But
∑

E[Xc] is defined to be the weight of the state, therefore, by assumption

E[X] > 1.

The expectation value of X is an average value of X over all possible outcomes, so there
must exist an outcome where X takes a value greater than 1. X is integer valued, hence
there exists an outcome such that X ≥ 2 i.e. there are at least 2 chips on the board at
the end of the game. Since each outcome of X corresponds to a strategy, this implies
that there exists a strategy which leaves at least 2 chips on the board regardless of the
strategy that the Questioner chooses to follow. Since the Questioner and the Responder
are playing a perfect information game7 , either the Questioner or the Responder will
win. Since there exists no strategy with which the Questioner will always win, there
does exist a strategy with which the Responder will always win. �

We introduce the following notation, which will help us when evaluating the main result
of [8]. (

j

≤ s

)
=

s∑
t=0

(
j

t

)
, (3.3)

where
(

j
≤0

)
= 1 and if s ≥ j then

(
j
≤s

)
= 2j . This implies that (3.1) can be expressed as

Pr[B(j, 0.5) ≤ s] =
(
j

≤ s

)
2−j (3.4)

Let j ≥ 0. We define the weight function

wj(x0, x1, . . . , xk) =
k∑

i=0

xi

(
j

≤ k − i

)
(3.5)

In a game with j questions this is 2j times the weight that was defined by (3.2). Note
that the weight function is expressed as an integer.

By definition we have q to be the total number of questions in the game. We now
define j to be the number of questions remaining at some point during the game.

3.2 The Main Theorem

If we consider the initial state of the game, we have the search space of size n and q
questions remaining, then the weight function of this initial state is defined to be

wq(x0, x1, . . . , xk) =
k∑

i=0

xi

(
q

≤ k − i

)
(3.6)

7See Appendix C.
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By Theorem 8, if the state has a weight more than 1 the Responder wins. Since (3.6) is
2q times greater than the weight defined before by (3.2), this implies that the Responder
would win the game if the weight function of the initial state is greater than 2q i.e.

If wq(x0, x1, . . . , xk) > 2q, then the Responder wins.

It is possible to see by the above statement that if the weight function of the initial
state is less than or equal to 2q it might be possible for the Questioner to win. Hence
the converse of Theorem 8 would be

If wq(x0, . . . , xk) ≤ 2q, then the Questioner wins.

This condition, although necessary, is not sufficient. This is shown in Example 7, where
we suppose that the converse holds.

Example 7 Let k = 1, n = 5 and q = 5. This yields the initial state (x0 = 5, x1 = 0).
The weight of the initial state is

w5(5, 0) = 5×
(

5
≤ 1

)
+ 0

= 5× 6
= 30

< 25.

The Responder chooses a number between 1 and 5. The Questioner’s best strategy is to
split the size of the search space as evenly as possible. Suppose the Questioner asks the
Responder “Is x ≤ 3?” and receives the answer “Yes”. The new state is (3, 2), which
has weight

w4(3, 2) = 3×
(

4
≤ 1

)
+ 2

= 15 + 2
= 17

> 24.

Therefore, the Responder wins by Theorem 8.

So clearly the converse of Theorem 8 does not hold. We need to add the condition that
the Questioner must survive the first k rounds of the game to ensure certainty of winning
the game. Therefore, we consider a partial converse of Theorem 8, which is shown by
Theorem 9. The focus for the rest of this chapter is on proving Theorem 9, which is the
main result of Spencer [8], and evaluating its consequences.

Theorem 9 There exist constants c, q0, such that for all q ≥ q0, if

wq(x0, x1, . . . , xk−1, xk) ≤ 2q

and
xk > cqk,
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then the Questioner wins.8

Proof If the Questioner is able to win for some (x0, x1, . . . , xk−1, xk), then they win if
xk is reduced to any x′k < xk. Therefore, we only need to show that the Questioner wins
under the assumption

wq(x0, x1, . . . , xk−1, xk) = 2q (3.7)

Define P = (x0, x1, . . . , xk−1, xk) and ν = (ν0, ν1, . . . , νk−1, νk), where both P and ν are
vectors. Define

Y es(P, ν) = (ν0, ν1 + x0 − ν0, . . . , νk + xk−1 − νk−1)
No(P, ν) = Y es(P, P − ν) = (x0 − ν0, x1 − ν1 + ν0, . . . , xk − νk + νk−1)

When P is the current state of the game, the Questioner selects a set of chips consisting
of νi chips on the ith position. This implies that Y es(P, ν) is the new position if the
Responder replies “Yes”. Similarly, if the Responder replies “No”, then the new position
is No(P, ν).

Let j > 0 and for all P and ν, we are able to calculate9

wj(Y es(P, ν)) + wj(No(P, ν)) = wj(Y es(P, ν) +No(P, ν))
= wj(x0, x0 + x1, . . . , xk−1 + xk)

= x0

(
j

≤ k

)
+ (x0 + x1)

(
j

≤ k − 1

)
+ . . .

+ (xk−2 + xk−1)
(
j

≤ 1

)
+ (xk−1 + xk)

(
j

≤ 0

)
=

k∑
i=0

xi

((
j

≤ k − i

)
+

(
j

≤ k − i− 1

))

=
k∑

i=0

xi

(
j + 1
≤ k − i

)
.

Hence,

wj(Y es(P, ν)) + wj(No(P, ν)) =
k∑

i=0

xi

(
j + 1
≤ k − i

)
= wj+1(P ),

where the last equality follows by definition.
We also define

∆j(P, ν) = wj(Y es(P, ν))− wj(No(P, ν)), (3.8)

which will be evaluated later on in the proof.
At the start of play, by assumption (3.7), we have wq(P ) = 2q. When playing the

game if, with j moves remaining, we have wj(P ) > 2j , then the Responder has won10.
Suppose if we have j + 1 moves remaining and assume that wj+1(P ) = 2j+1. The
Questioner now selects ν and the Responder now has the choice of where the new
position of the chip should be by choosing either Y es(P, ν) or No(P, ν). If ∆j(P, ν) 6= 0,
this implies that either

wj(Y es(P, ν)) > 2j

8[8] page 310.
9Refer to Appendix D for proof of the final line.

10See Theorem 8.
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or
wj(No(P, ν)) > 2j .

Hence, the Responder selects the weight greater than 2j and thus wins the game by
Theorem 8. Therefore, the Questioner, with j + 1 moves remaining, should select the ν
with ∆j(P, ν) = 0. If the Questioner is able to do this, then wj(P, ν) = 2j , where P is
the state of the game with j questions remaining.

So we refer back to (3.8) and expand this expression.

∆j(P, ν) = wj(Y es(P, ν))− wj(No(P, ν))
= wj(ν0 − (x0 − ν0), ν1 + x0 − ν0 − (x1 − ν1 + ν0), . . . , νk−1 + xk−2 − νk−2

− (xk−1 − νk−1 + νk−2), νk + xk−1 − νk−1 − (xk − νk + νk−1))

= (ν0 − (x0 − ν0))
(

j

≤ k

)
+ (ν1 + x0 − ν0 − (x1 − ν1 + ν0))

(
j

≤ k − 1

)
+ . . .

+ (νk−1 + xk−2 − νk−2 − (xk−1 − νk−1 + νk−2))
(
j

≤ 1

)
+ (νk + xk − 1− νk−1 − (xk − νk + νk−1))

(
j

≤ 0

)
= 2ν0

(
j

≤ k

)
− x0

(
j

≤ k

)
+ 2ν1

(
j

≤ k − 1

)
+ x0

(
j

≤ k − 1

)
− 2ν0

(
j

≤ k − 1

)
− x1

(
j

≤ k − 1

)
+ . . .+ 2νk−1

(
j

≤ 1

)
+ xk−2

(
j

≤ 1

)
− 2νk−2

(
j

≤ 1

)
− xk−1

(
j

≤ 1

)
+ 2νk

(
j

≤ 0

)
+ xk−1

(
j

≤ 0

)
− 2νk−1

(
j

≤ 0

)
− xk

(
j

≤ 0

)
= 2ν0

(
j

k

)
− x0

(
j

k

)
+ 2ν1

(
j

k − 1

)
− x1

(
j

k − 1

)
+ . . .+ 2νk−1

(
j

1

)
− xk−1

(
j

1

)
+ 2νk

(
j

0

)
− xk

(
j

0

)
=

k∑
i=0

(2νi − xi)
(

j

k − i

)
.

∴ ∆j(P, ν) =
k∑

i=0

(2νi − xi)
(

j

k − i

)
(3.9)

The Questioner should now think in terms of deciding, for each chip c, whether to place
the chip in Ai or not. Suppose that the chip c is in position i. If the Questioner places
c in Ai, then they add

(
j

k−i

)
to ∆j . If the Questioner leaves c out of Ai, then they

subtract
(

j
k−i

)
from ∆j . The Questioner’s objective is to make his decisions such that

their effects balance out.

Definition 3.2.1 The chips placed at position k are known as pennies (See Figure 3.4).

Pennies have an important function, if the Questioner places a penny in or out of Ai,
they will either add or subtract 1 from ∆j .

We now introduce two types of play: Fictitious play and Perfect play. Assume that
there are j + 1 moves remaining in the game.
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Figure 3.4: Pennies

Fictitious Play
The basic idea is to split the number of chips in play in half where possible. When you
have an odd number of chips, throughout the game you should alternate between the
choice of ⌈xi

2

⌉
or

⌊xi

2

⌋
,

the first of which is known as the ceiling choice and the second is known as the floor
choice. During fictitious play the Questioner alternates between their choice of floor and
ceiling, for those i, where xi is odd. The Questioner picks νk, such that ∆j = 0.

Example 8 Let k = 2, j = 6 and consider the position P = (1, 3, 75) which has

w7(1, 3, 75) = 1×
(

7
≤ 2

)
+ 3×

(
7
≤ 1

)
+ 75×

(
7
≤ 0

)
= 1× (21 + 7 + 1) + 3× (7 + 1) + 75× (1)

= 128 = 27.

Suppose the Questioner selects ν0 = 2 and ν1 = 3. We now wish to find the value for
ν2, such that ∆6 = 0. Using (3.9) we have

∆6((1, 3, 75), (2, 3, ν2)) = (2 + 1)
(

6
2

)
+ 3

(
6
1

)
+ (2ν2 − 75) = 0

0 = 45 + 18 + (2ν2 − 75)

∴ ν2 = 6.

In general the Questioner will have to solve an equation of the form ∆j = 2νk −A = 0,
where A will always be an even integer. This is true since, for all ν

wj(Y es(P, ν)) + wj(No(P, ν)) = 2j+1,

which is even. Hence the value of wj(Y es(P, ν))− wj(No(P, ν)) is also even. Therefore,
A must be even.

However, with fictitious play, a problem arises. Although we have the condition that
A is even, it may not necessarily be positive i.e. it is possible that the number of pennies
will be negative11.

11However, the other co-ordinates remain positive.
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Figure 3.5: An example of what could occur during fictitious play

Example 9 Let k = 2, j = 6 and consider the position P = (1, 6, 51).

w7(1, 9, 51) = 1×
(

6
≤ 2

)
+ 6×

(
6
≤ 1

)
+ 51×

(
6
≤ 0

)
= (1× 29) + (6× 8) + (51× 1)
= 128.

If ν0 = 3 and ν1 = 7 then,

∆6((1, 6, 51), (3, 7, ν2)) = 5
(

6
2

)
+ 8

(
6
1

)
+ (2ν2 − 51) = 0

0 = 75 + 48 + 2ν2 − 51

∴ ν2 = −36.

Let
fic(j) = (fic0(j), fic1(j), . . . , fick−1(j), fick(j))

denote the state P when there are j rounds left in the game. fic(q) is defined to be
the initial state of the original game. The values of fic(j) are dependent upon the
Questioner’s choice of floor or ceiling and the Responder’s reply of Yes or No, hence
fic(j) can take many possible values12. It will be shown later that under the conditions
of play we will not end up with negative numbers fick(j) of pennies.

Perfect Play
In perfect play you exactly halve the search space, so it is possible to obtain half chips,
quarter chips and so forth. When the state is P , the Questioner selects ν = P

2 . In
perfect play it is clear that Y es(P, ν) = No(P, ν) and we can define the state

pp(j) = (pp0(j), pp1(j), . . . , ppk−1(j), ppk(j)),

when there are j rounds left in the game. pp(q) is the initial state of the original game
and is equal to fic(q). We define pp(j) such that

pp(j) = Y es
(
pp(j + 1),

pp(j + 1)
2

)
.

12When using inequalities involving fici(j) they will hold regardless of the choices by the Questioner
or the Responder.
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Since we are playing under the conditions of perfect play, the number of chips that move
to the right is exactly the same as the expected number if you had flipped an unbiased
coin. Therefore,

ppk(j) =
k∑

i=0

xiPr[B(q − j, 0.5) = k − i] (3.10)

We will show that fictitious play is relatively close to that of perfect play.
For 0 ≤ i ≤ k and 0 ≤ j ≤ q, define the error function

ei(j) = |ppi(j)− fici(j)| (3.11)

Lemma 3.2.2 There exists a constant c2 such that, for all j ≥ 1,

ek(j) ≤ c2j
k.

Proof We know that

ppk(j) =
k∑

i=0

xiPr[B(q − j, 0.5) = k − i]

=
k∑

i=0

xi

(
q − j

k − i

)
2−(q−j).

Hence
pp0(j) = x02−(q−j)

i.e in perfect play the zeroth position is x02−(q−j). With fictitious play the zeroth
position is either ⌊

x02−(q−j)
⌋

or
⌈
x02−(q−j)

⌉
,

since at the end of each round of fictitious play we have to choose between the floor and
ceiling integers. At the initial stage, we notice that ei(q) = 0. Let 1 ≤ i < k. By the
inductive definition of perfect play

ppi(j) =
1
2
(ppi(j + 1) + ppi−1(j + 1)),

which holds since Yes(P,ν) = No(P, ν). This implies, whether the Responder lies or not,
the size of the search space remains the same, by the definition of perfect play.

For 1 ≤ i < k,

|fici(j)−
1
2
(fici(j + 1) + fici−1(j + 1))| ≤ 1 (3.12)

This is holds since νi differs by at most 1
2 from xi

2 and similarly νi−1 differs by at most
1
2 from xi−1

2 .
By the definition of the error function

ei(j) = |ppi(j)− fici(j)|

≤
∣∣∣1
2
ppi(j + 1) +

1
2
ppi−1(j + 1) + 1−

∣∣∣1
2
fici(j + 1) +

1
2
fici+1(j + 1)

∣∣∣∣∣∣
≤ 1

2
ei(j + 1) +

1
2
ei−1(j + 1) + 1
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∴ ei(j) ≤
1
2
ei(j + 1) +

1
2
ei−1(j + 1) + 1 (3.13)

Define Mi = 2i+1 − 1, such that M0 = 1 and Mi ≥ 1 + 1
2Mi + 1

2Mi−1 for i ≥ 1 13 . Let
0 ≤ i < k and 0 ≤ j ≤ q, then

ei(j) ≤Mi (3.14)

Claim Inequality (3.14) holds.

Proof By using reverse induction we can prove that (3.14) holds. We start with j = q
i.e. at the beginning of the game. We wish to show ei(j) ≤Mi. We know

ei(q) = 0
⇒ ei(q) ≤Mi,

since Mi ≥ 1 by definition.
Now consider the case when j < q and assume that (3.14) holds for j + 1.

⇒ ei(j + 1) ≤Mi for all 0 ≤ i < k (3.15)

By using (3.15) we wish to show that ei(j) ≤Mi. From (3.13)

ei(j) ≤ 1 +
1
2
ei(j + 1) +

1
2
ei−1(j + 1)

≤ 1 +
1
2
Mi +

1
2
Mi−1

≤Mi if i ≥ 1.

If i = 0, the inequality still holds since

e0(j) ≤ 1 = M0. �

Recall Definition 3.2.1, which defines pennies to be the chips on the kth position on
the board. During fictitious play we have seen that it is possible for a state to con-
tain a negative number of pennies 14. When playing fictitiously, once you have chosen
ν0, . . . , νk−1, it is possible to determine the value of νk by using (3.16)15.

∆j(P, ν) =
k∑

i=0

(2νi − xi)
(

j

k − i

)
= (2νk − xk)−

k−1∑
i=0

(xi − 2νi)
(

j

k − i

)
︸ ︷︷ ︸ (3.16)

(†)
13

1 +
1

2
Mi +

1

2
Mi−1 = 1 + 2i − 1

2
+ 2i−1 − 1

2
= 2i + 2i−1.

However, for all i ≥ 1
Mi = 2i+1 − 1 = 2i + 2i − 1 ≥ 2i + 2i−1

as required.
14Refer to Example 9.
15(3.16) is an expanded form of (3.9).
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In fictitious play we are able to find an upper bound for the summation (†) shown in
(3.16). When xi is odd, our alternating choices of floor and ceiling imply

xi − 2νi = ±1

i.e. the difference in size between Y es(P, ν) and No(P, ν) positions is one chip. When
xi is even, this implies

xi − 2νi = 0

i.e. the number of chips in Y es(P, ν) and No(P, ν) positions are identical. As a result
of the above two equations, the summation (†) is less than or equal to

∑k−1
i=0

(
j

k−i

)
,

implying that

|2νk − xk| ≤
k−1∑
i=0

(
j

k − i

)

≤
k−1∑
i=0

jk−i

≤ jk.

Thus ∣∣∣νk −
xk

2

∣∣∣ < jk.

So it is possible to bound (3.12), when k = i, such that

|fick(j)−
1
2
(
fick(j + 1) + fick−1(j + 1)

)
| ≤ jk + 1.

It is possible to do this, since when we have evaluated (3.16) it was evaluated it under the
conditions of fictitious play i.e. the alternating choices of floor and ceiling have allowed
us to determine of the number of pennies at a point in the game with j questions
remaining. Thus it follows

ek(j) ≤ jk + 1 +
1
2
ek−1(j + 1) +

1
2
ek(j + 1).

If i = k − 1 (which is possible since i = k − 1 < k), then ek−1(j + 1) is bounded from
above by (3.14). It is therefore possible to absorb ek−1(j + 1) into a constant, say c1,
dependant only upon the value of k, such that

ek(j) ≤ jk + c1 +
1
2
ek(j + 1) ≤ c1j

k +
1
2
ek(j + 1) (3.17)

Further, it is possible to write 1
2ek(j+1) in terms of a summation using (3.17) repeatedly.

1
2
ek(j + 1) ≤ 1

2
(c1(j + 1)k +

1
2
ek(j + 2))

≤ 1
2
c1(j + 1)k +

1
4
c1(j + 2)k +

1
4
ek(j + 3)

≤ . . .
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i.e. we can carry on this expansion until we reach the point when ek(q) = 0. Hence we
can write the right hand side of (3.17) in terms of the following summation

q∑
m=j

c1m
k2j−m = c1j

k +
1
2
c1(j + 1)k +

1
4
c1(j + 2)k + . . . ,

which implies

ek(j) ≤
q∑

m=j

c1m
k2j−m.

By setting y = m− j,
q∑

m=j

c1m
k2j−m = c1

q∑
y=0

(y + j)k2−y

= c1j
k

q∑
y=0

(y + j

j

)k
2−y

≤ c1j
k
∞∑

y=0

(y + j

j

)k
2−y

This implies

ek(j) ≤ c1j
k
∞∑

y=0

(y + j

j

)k
2−y.

The errors that occurred in the initial rounds of the game effectively disappear due to

the halving process of the game. We observe that
∑∞

y=0

(
y+j

j

)k
2−y is convergent for all

j. We are therefore able to absorb the summation into a constant c2, such that

ek(j) ≤ c2j
k.

�

The Questioner’s Strategy
The Questioner plays fictitious play until there exists at most one nonpenny on the
board (see Figure 3.6).

m m
m
m

Figure 3.6: An example of where the Questioner wishes to be by the time they reach
the Endgame Steps Stage

It is at this point the Questioner begins using a strategy known as the Endgame
Strategy, which the Questioner uses until the end of the game. The analysis of this
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Endgame Strategy requires us to show that fictitious play doesn’t leave the Questioner
with a negative number of pennies. To work through the strategy, we split the analysis
into several stages:

1. FIRST STEPS 0 ≤ q − j < k for the first k rounds;

2. MIDDLE STEPS k ≤ q − j and j > (ln q)2;

3. LATE MIDDLE STEPS
√

ln q < j ≤ (ln q)2;

4. EARLY END STEPS 1
2

√
ln q ≤ j ≤

√
ln q;

5. ENDGAME STEPS 0 ≤ j ≤ 1
2

√
ln q.

Note that we are using logarithms to base 2.
To show that the Questioner is able to play fictitious play, we must show that for all

j, fick(j) ≥ 0. This can be done by showing the inequality

ek(j) ≤ ppk(j) (3.18)

We will prove this separately for the different stages of the Questioner’s strategy.

First steps stage
We know by Lemma 3.2.2, ek(j) ≤ c2j

k. Since j ≤ q

⇒ ek(j) ≤ c2j
k ≤ c2q

k

In this stage it is our aim to show

ppk(j) ≥ ppk(q)2−(q−j) > xk2−k > c2−kqk, (3.19)

where c is the constant referred to in the theorem and is sufficiently large. However, by
(3.10)

ppk(j) =
k∑

i=0

xi

(
q − j

k − i

)
2−(q−j) ≥

k∑
i=0

xi2−(q−j) = ppk(q)2−(q−j),

since ppk(q) =
∑k

i=0 xi. Also

ppk(q)2−(q−j) ≥ xk2−(q−j) > xk2−k,

since the First Steps Stage condition specifies 0 ≤ q − j < k i.e. 0 ≥ −(q − j) > −k

⇒ ppk(j)2−(q−j) > xk2−k.

Using the initial assumption xk > cqk, stated in the theorem, we clearly have

xk2−k > cqk2−k.

Hence we achieve the inequality (3.19). Thus if we select c such that c2−k ≥ c2, we can
assure that the Questioner will survive the first k rounds of the game.

Middle steps Stage
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In this stage the aim is to show

ek(j) ≤ c2j
k <

2j

qk
≤ ppk(j) (3.20)

We know

Pr[B(q − j, 0.5) = k − i] =
(
q − j

k − i

)
2−(q−j) ≥ 2−(q−j).

Combining this with (3.10) we have

ppk(j) =
k∑

i=0

xiPr[B(q − j, 0.5) = k − i] ≥
k∑

i=0

xi2−(q−j),

where
∑k

i=0 xi equals the maximum numbers chips at beginning of game. Recall Defi-
nition 3.5, which defines the weight of a state. It tells us

wj(x0, x1, . . . , xk) =
k∑

i=0

xi

(
q

≤ k − i

)
= x0

(
q

≤ k

)
+ x1

(
q

≤ k − 1

)
+ . . .+ xk

(
q

≤ 0

)
,

from which it is easily seen that the weight of any chip is at most
(

q
≤k

)
. Further,

(
q

≤ k

)
=

k∑
t=0

(
q

t

)
≤ qk

k!
≤ qk (3.21)

We know by assumption wj(x0, x1, . . . , xk) = 2q, which represents the total weight of
the chips. Hence (3.21) implies that the total number of chips is at least 2q

qk i.e.

k∑
i=0

xi ≥
2q

qk

∴ ppk(j) ≥ 2−(q−j)
k∑

i=0

xi ≥
2j

qk
.

We now wish to show that

c2j
k <

2j

qk
, (3.22)

which is equivalent to showing
c2(jq)k < 2j .

We note that

c2(qj)k ≤ c2q
2k (3.23)

≤ q2k+1 (3.24)

≤ qln q = 2(ln q)2 (3.25)

< 2j (3.26)
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(3.23) is by fact j ≤ q and (3.24) uses c2 << q. (3.25) holds since k is a small fixed
integer, which implies 2k+ 1 ≤ ln q. By condition of the Middle Steps Stage (ln q)2 < j
and we get (3.26). Hence (3.22) follows. We know by Lemma 3.2.2 that ek(j) ≤ c2j

k,
so (3.20) follows.

Late Middle Steps Stage
Recall the formula for perfect play derived by (3.10)

ppk(j) =
k∑

i=0

xiPr[B(q − j, 0.5) = k − i].

We now give a lower bound on this using the two inequalities (3.27) and (3.28). If q is
sufficiently large we claim that

Pr[B(q − j, 0.5) = k − i] >
1
2
Pr[B(q − j, 0.5) ≤ k − i] (3.27)

Pr[B(q − j, 0.5) ≤ k − i] ≥ 1
2
Pr[B(q, 0.5) ≤ k − i]2j (3.28)

Firstly we show (3.27). For this, note that for all n, l,

Pr[B(n, 0.5) = l] =
(
n

l

)
2−n

Pr[B(n, 0.5) ≤ l] =
l∑

s=0

(
n

s

)
2−n.

Further, for all s < n, (
n
s

)(
n

s+1

) =
n!

s! (n−s)!

n!
(s+1)! (n−s−1)!

=
s+ 1

(n− s+ 1)
≤ 1

2
.

Thus for all s ≤ l, (
n

s

)
≤ 1

2

(
n

s+ 1

)
≤ 1

4

(
n

s+ 2

)
≤ . . .

⇒
(
n

s

)
≤ 2−(l−s)

(
n

l

)
.

Hence

l∑
s=0

(
n

s

)
≤ 2−n

(
n

l

) l∑
s=0

2−(l−s)

< 2−n

(
n

l

) ∞∑
i=0

2−i = 2× 2−n

(
n

l

)
= 2Pr[B(n, 0.5) = l]

⇒ Pr[B(n, 0.5) = l] >
1
2
Pr[B(n, 0.5) ≤ l],
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which completes the proof of (3.27), by substituting q− j for n and k− i for l. Now we
need to show (3.28). This equivalent to

2−(q−j)
l∑

i=0

(
q − j

i

)
≥ 1

2
2j2−q

l∑
i=0

(
q

i

)
.

We see that 16 (
q−j

i

)(
q
i

) =
(q − j)!

i! (q − i− j)!
× i! (q − i)!

q!

=
q − i

q
× q − i− 1

q − 1
× . . .× q − i− j

q − j

≥
(q − i− j

q − j

)j
=

(
1− i

q − j

)j

≥
(
1− i

q

)j

≥ 1− ij

q

≥ 1
2

⇒ 2−(q−j)
l∑

i=0

(
q − j

i

)
≥ 1

2
2j2−q

l∑
i=0

(
q

i

)
,

which completes the proof of (3.28). Thus by (3.27) and (3.28) we obtain

Pr[B(q − j, 0.5) = k − i] >
1
4
2jPr[B(q, 0.5) ≤ k − i]. (3.29)

Using (3.29) we can show

ppk(j)
(z)
>

1
4
2j > c2j

k ≥ ek(j). (3.30)

For this first note that by (3.5), (3.10) and the assumption that the initial weight is
equal to 2q, we see that

k∑
i=0

xiPr[B(q, 0.5) ≤ k − i] =
k∑

i=0

xi

(
q

≤ k − i

)
2−q

= 2−qwq(x0, . . . , xk) = 1

⇒
k∑

i=0

xiPr[B(q, 0.5) ≤ k − i] = 1 (3.31)

16See Appendix E to see that “
1− i

q

”j

≥ 1− ij

q
.
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Indeed, to see the first inequality (z), note that by (3.29), (3.10) and then (3.31) we
obtain

ppk(j) =
k∑

i=0

xiPr[B(q − j, 0.5) = k − i]

>
1
4
2j

k∑
i=0

xiPr[B(q, 0.5) ≤ k − i]

≥ 1
4
2j .

By the Middle Steps Stage assumption on q and j it follows that 1
42j > c2j

k and similarly
from Lemma 3.2.2 we know c2j

k ≥ ek(j). Hence (3.30) follows.

Early End Steps Stage
By the end of this stage we aim to have at most one nonpenny remaining on the board.
We begin by showing that there are a bounded number of chips in each position s < k.
This implies that there exists a bounded number of nonpennies.

We know by Lemma 3.2.2 that ek(j) ≤ c2j
k, and es(j) is bounded too for s < k

by (3.14). Further, we need to show that pps(j) is also bounded from above. We know
from (3.29) that

pps(j) =
s∑

i=0

xiPr[B(q − j, 0.5) = s− i] (3.32)

and by (3.31)

1 =
k∑

i=0

Pr[B(q, 0.5) ≤ k − i] (3.33)

We claim
Pr[B(q − j, 0.5) = s− i] ≤ c3

q
Pr[B(q − j, 0.5) ≤ k − i], (3.34)

where c3 is a constant dependant only on k.
This is equivalent to showing for arbitrary n, l, that

Pr[B(n, 0.5) = l] ≤ c4
n
Pr[B(n, 0.5) ≤ l + 1] (3.35)

To prove (3.35) we observe the following two equations

Pr[B(n, 0.5) = l] = 2−n

(
n

l

)
Pr[B(n, 0.5) ≤ l + 1] ≥ Pr[B(n, 0.5) = l + 1] =

(
n

l + 1

)
2−n

But (
n

l + 1

)
=
n× (n− 1)× . . .× (l + 1)

(l + 1)!

=
(
n

l

)
n− l

l + 1
≥

(
n

l

)
n

2l
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Let c4 = 2l, then we obtain
c4
n

(
n

l + 1

)
≥

(
n

l

)
.

It follows
Pr[B(n, 0.5) = l] ≤ c4

n
Pr[B(n, 0.5) ≤ l + 1].

Hence we obtain (3.34).
Further, it is possible to bound

Pr[B(q − j, 0.5) ≤ k − i] ≤ 2jPr[B(q, 0.5) ≤ k − i], (3.36)

since if q− j flips of a coin give k− i heads, with the probability 2−j , the next j flips of
the coin will all be tails. More formally, note that

Pr[B(q − j, 0.5) ≤ k − i] =
k∑

i=0

(
q − j

k − i

)
2−(q−j)

2jPr[B(q, 0.5) ≤ k − i] =
k∑

i=0

(
q

k − i

)
2−q × 2j

=
k∑

i=0

(
q

k − i

)
2−(q−j).

But clearly (
q

k − i

)
2−(q−j) ≥

(
q − j

k − i

)
2−(q−j),

which implies (3.36). From (3.36), we see

pps(j)
(3.32)
=

s∑
i=0

xiPr[B(q − j, 0.5) = s− i]

(3.36)

≤ c3
q

2j
k∑

i=0

xiPr[B(q, 0.5) ≤ k − i]

(3.33)
<

c32j

q
,

which is less than one in the Early End Steps Stage.
We have shown that one can apply fictitious play. So in the original game, the

position i is the same as in fictitious play. Thus altogether, using Lemma 3.2.2, this
shows that with j questions remaining17

17Note that
Pk−1

i=0 xi is equivalent to the number of nonpennies. Further recall by definition

ei(j) = |ppi(j)− fici(j)|.

In addition, (3.14) bounds ei(j), such that ei(j) ≤ Mi.
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k−1∑
i=0

xi ≤
∑
s<k

fics(j)

≤
∑
s<k

pps(j) + |fics(j)− pps(j)|

≤
∑
s<k

1 + es(j)

≤Mi.

i.e. the number of nonpennies is altogether bounded i.e. it only depends upon the value
of k.

Define the nonpenniness of a state (x0, x1, . . . , xk−1, xk) as
∑k−1

i=0 xi(k − i− 1). This
represents the number of moves to the right required to make all of the nonpennies into
pennies i.e. nonpennies are moved into the kth position. Let Mi be the bound on the
nonpenniness at the end of the Early End Steps Stage, where by above we can take Mi to
be a constant solely dependent upon k. At each round, assuming that there are at least
2 nonpennies left on the board, the nonpenniness must decrease by at least one. This
is due to the alternating choices between floor and ceiling of the Questioner in fictitious
play, which assured that if there exists more than one nonpenny they could not all be in
the set Ai nor could they all not be in Ai

18. Within M rounds, the Questioner reaches
the stage where there is a most one nonpenny19.

Endgame Steps Stage
For the following lemma there does not exist any asymptotics i.e. j, and k can be
considered as an arbitrary number. The lemma is known as the Endgame Lemma. The
lemma deals with the case when there is at most one nonpenny left on the board, which
occurs due to the alternating floor and ceiling choices that are made during fictitious
play.

Lemma 3.2.3 Let (x0, . . . , xk) be a position with x0 ≤ 1, x1 = . . . = xk−1 = 0 and
wj+1(x0, . . . , xk) = 2j+1. Then the Questioner wins in the j + 1-move game.

Proof By induction on j we just need to find a move ν for the Questioner s.t. ∆j(P, ν) =
0, since Y es(P, ν) and No(P, ν) remain in this form i.e

0 = ∆j(P, ν) = wj(Y es(P, ν))− wj(No(P, ν)) =
k∑

i=0

(2νi − xi)
(

j

k − i

)
.

If x0 = 0 then the condition wj+1(x0, . . . , xk) = 2j+1 implies xk = 2j+1, which is simply
the liar game without the lies, so the Questioner takes ν = (0, . . . , 0, 2j).

Otherwise, x0 = 1. We know that

wj+1(x0, . . . , xk) =
k∑

i=0

xi

(
j + 1
≤ k − i

)
.

18We note that this is the only point in which we use the condition of the alternating choices between
floor and ceiling.

19This certainly occurs by the end of the Early End Steps Stage.
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By assumption of the lemma 20

2j+1 = wj+1(x0, 0, . . . , 0, xk)

= x0

(
j + 1
≤ k

)
+ xk

(
j + 1
≤ 0

)
=

(
j + 1
≤ k

)
+ xk

=
(

j

≤ k

)
+

(
j

≤ k − 1

)
+ xk.

If j + 1 ≤ k,

⇒ 2j+1 =
(
j + 1
≤ k

)
+ xk

= 2j+1 + xk

∴ xk = 0.

This holds since we know, by (3.3), if k ≥ j then
(

j
≤k

)
= 2j . This result implies that the

Questioner has already won. Note that the number of subsets of the j-element set is 2j

and
(

j
≤k

)
counts the subsets of size almost k. So(

j

≤ k

)
,

(
j

≤ k − 1

)
≤ 2j (3.37)

Since (3.37) holds, there exists integers x and y with the condition 0 ≤ y ≤ x, such that(
j

≤ k

)
+ y =

(
j

≤ k − 1

)
+ x− y = 2j .

The Questioner then plays ν = (1, 0, . . . , 0, y) to win. �

This completes the proof of Theorem 9 since we have shown that at the start of the
Endgame Steps Stage there exists only 1 nonpenny, so it is possible to apply Lemma
3.2.3 and hence the Questioner can win. �

Example 10 Let k = 6 and j = 9. Consider the state (1,0,0,0,0,176). Then

w10(1, 0, 0, 0, 0, 176) =
(

10
≤ 6

)
+ 176

= (1 + 10 + 45 + 120 + 210 + 252 + 210) + 176
= 1024

= 210.

Therefore the Questioner solves

29 =
(

9
≤ 6

)
+ y

= (1 + 9 + 36 + 84 + 126 + 126 + 84) + y

= 466 + y

∴ y = 46.
20Refer to Appendix D for proof of the final line.
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The Questioner then selects ν = (1, 0, 0, 0, 0, 46). If the Responder says “Yes”, then the
new position is ν = (1, 0, 0, 0, 0, 46) and if the Responder says “No”, the new position is
(0, 1, 0, 0, 0, 130). For each new position, whether “Yes” or “No”, we have w9 = 29.

3.3 Consequences of Theorem 9

Suppose that we have the original [n, q, k]-game with initial position P = (n, 0, . . . , 0),
where q is sufficiently large. By using the result of Spencer’s main theorem we wish
to show that it is possible for the Questioner to win the [n, q, k]-game. By showing
that the Questioner is able to win a much harder version of the liar game with position
P ′ = (n, 0, . . . , 0, nqk) using Spencer’s theorem, it follows that the Questioner is able
to win the original [n, q, k]-game.

Theorem 10 For all k, there exists a constant c5, such that if

n ≤ 2q(
q
≤k

) − c5, (3.38)

then the Questioner can win the game.

Proof Recall that a penny is defined to be a chip at the kth position. The weight of
a penny is clearly 1, since a penny can only be lied about once more, where it is then
removed from the board. Thus by adding a penny to the game increases the weight by
1. If you were to add cqk pennies to the game, the weight therefore increases by cqk.

We claim that if c5 is sufficiently large, adding cqk pennies only increases the weight
slightly. Hence we obtain the new position

P ′ = (n, 0, . . . , 0, cqk),

which still has weight wq(P ′) ≤ 2q and so we can apply Theorem 9.
We know the initial weight of P is

wq(P ) = n

(
q

≤ k

)
(3.39)

Substituting (3.38) into (3.39) gives

n

(
q

≤ k

)
≤

( 2q(
q
≤k

) − c5

)(
q

≤ k

)
= 2q − c5

(
q

≤ k

)
.

So for the claim to hold we need

cqk ≤ c5

(
q

≤ k

)
, (3.40)

since this implies that the total weight is less than or equal to 2q after the addition of
cqk pennies to the game, and hence we will be able to apply Theorem 9. To prove (3.40),
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remembering k � q, we know that(
q

≤ k

)
≥

(
q

k

)
=
q × (q − 1)× . . .× (q − k + 1)

k!

≥ (q − k)k

kk
≥

( q
2

)k

kk
=

( q

2k

)k
(3.41)

If we take (2k)k as part of a constant21 we obtain (3.40). Hence for the position P ′, we
can apply the main theorem and the Questioner wins the game. Adding cqk pennies to
the game only makes it harder for the Questioner to win the game. This implies that the
Questioner wins the simpler game with k lies and q questions, with the initial position
P = (n, 0, . . . , 0). �

3.4 The bound on the number of questions q

By using previous results about q, it is possible to give a good bound on q if n is large
in comparison to the value of k.

Theorem 11 For all k, there exists constants c′ and c′′, such that the following holds:
Consider a liar game with search space of size at most n and with at most k lies. Let
q be the smallest number of questions such that there exists a winning strategy for the
Questioner. Then

log n+ k log(log n)− c′′ ≤ q ≤ log n+ k log(log n) + c′ (3.42)

Proof It is easy to see that

q ≤ (2k + 1) log n (3.43)

(Note that the value log n determines how many questions the Questioner needs to
ask to win the liar game with k = 0) 22. In the “worst” way of solving the problem,
suppose the Questioner asks every question 2k times. If the answers are consistent then
the Questioner asks the next question. However, if the answers are inconsistent the
Questioner must ask the question once more and take the majority answer. Hence the
Questioner must ask at most (2k + 1) log n questions, which implies (3.43).

Further, (
q

≤ k

)
=

k∑
t=0

(
q

t

)
≤ qk (3.44)

By (3.38) we obtain

n ≥ 2q(
q
≤k

) − c (3.45)

Rearranging (3.45) and substituting in (3.44), we obtain

n+ c ≥ 2q

qkk

⇒ log(n+ c) ≥ q − k log q − log k,

21Further, we see that c5 is dependent purely upon the value of k
22Remember you need to take the next greater integer if log n is not an integer.
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which implies

q ≤ log(n+ c) + k log q + log k
(3.43)

≤ log n+ log c+ k log((2k + 1) log n) + log k
= log n+ k log(2k + 1) + log k + k log(log n) + log c.

This gives

q ≤ log n+ k log(log n) + c′, (c′ > 0) (3.46)

where c′ is a constant that is solely dependent on the value of k.
It is also easy to see that

q ≥ log n, (3.47)

since log n represents the minimum number of questions required for the Questioner to
win the liar game with no lies.

Now (
q

≤ k

)
=
q × . . . (q − k + 1)

k!
(3.41)

≥
( q

2k

)k
(3.48)

We know

n ≤ 2q(
q
≤k

) .
Substituting (3.48) into this gives

n ≤ 2q(
q
2k

)k

⇒ log n ≤ q − k log q + k log 2k
(3.47)

≤ q + k log 2k − k log(log n).

This gives

q ≥ log n+ k log(log n)− c′′, (c′′ > 0) (3.49)

where c′′ is a constant solely dependent on the value of k. By combining (3.49) and
(3.46), we obtain (3.42). �
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Chapter 4

Strategies for the Liar game with
1 lie

This chapter discusses a strategy with which one can solve the “Twenty Questions”
game and provides three strategies which solve the liar game with 1 lie and n = 106.
Using Pelc [4] we are able to show that 25 questions is sufficient to win the liar game
with 1 lie and n = 106 and provide a strategy in which one can win the game using at
most 25 questions. In addition, by considering the liar game in terms of chips, as in
Spencer [8], and by using results of Chapter 3, we shall find an optimal strategy for the
Questioner in the liar game with one lie and n = 106 and the case where n = 2l, where
l is a natural number.

4.1 The strategy for the “Twenty Questions” game

When considering the “Twenty Questions” game i.e. the liar game with k = 0 and
n = 106, there are two possible strategies we could adopt to determine the integer x.
The first strategy involves splitting the search space asymmetrically, whereas the second
strategy adopts the approach of splitting the search space symmetrically. We wish to use
the strategy that reduces the number of questions in which it takes to find the integer
x.

Consider splitting the search space asymmetrically, for example, split 106 such that
you obtain two sets A1 = {1, . . . , 250, 000} and A2 = {250, 001, . . . , 106}, and ask a ques-
tion with regard to these smaller sets, for example, “Is x ∈ A1?”. Clearly if the Re-
sponder replies “Yes”, then the Questioner has to ask less questions to determine x in
comparison to the Responder replying “No”.

Now consider splitting the search space symmetrically i.e. split 106 such that you
obtain two sets A1 = {1, . . . , 500, 000} and A2 = {500, 001, . . . , 106}, and ask a question
with regard to these sets, for example, “Is x ∈ A1?”. Regardless of the Responder’s reply,
the Questioner has to determine x from sets of equal size, so the number of questions
required to determine x from either set is equal.

If we compare the two strategies after the first question is asked, it is evident that
if, in the asymmetric strategy, the Responder states x is in the smaller set, then it will
take less questions to identify x than it will to identify x using the symmetric strategy.
However, if the Responder states that x lies in the larger set, then it will require more
questions to identify x than in comparison with the symmetric strategy. Since we are
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playing to always minimise the number of questions the Questioner is required to ask,
we adopt the symmetric strategy. So how many questions will it take to find x in a
search space of size 106? Remembering that we are asking questions of the form “Is
x ∈ Ai?”, we obtain either “Yes” or “No” answers, hence

2q = 1000000
⇔ q = 19.93156857.

Thus by following the strategy of splitting the search space symmetrically, we will require
at most 20 questions to identify x. The strategy to solve the “Twenty Questions” game
is described as follows:

Take the search space n = {1, 2, 3, . . . , 106}, and split it into two sets of equal size A1

and A2, where A1 = {1, . . . , 500, 000} and A2 = {500, 001, . . . , 1, 000, 000}. The first
question the Questioner asks is then “Is x ∈ A1?”. If the Responder replies “Yes”, then
the Questioner takes A1 and splits this set into two sets of equal size and asks another
question of the form “Is x ∈ Ai?”, where Ai represents one of the smaller sets contained
within A1. If the Responder, however, replies “No” then the Questioner takes A2 and
splits this set into two sets of equal size and similarly asks another question of the form
“Is x ∈ A′i?”, where A′i represents one of the smaller sets contained within A2. The
game continues play in this fashion, splitting the sets as equally as possible, maintaining
integer numbers i.e. if the set is of odd size then take one set to hold one integer more
than the other set1. After 20 questions the Questioner will have narrowed the original
search space down to one integer, namely x. Hence the Questioner wins and the game
ends since x has been identified.

4.2 Strategies for the liar game with one lie

Although the liar game is similar to the above “Twenty Questions” game, our strategy
has to change. Consider the liar game with at most one lie in the search space n =
{1, . . . , 106}. It is clear that 20 questions will not suffice to find out the integer chosen
by the Responder. Described beneath are three possible strategies to follow to obtain x.
One strategy requires a relatively large number of questions to identify x in comparison
to the other two strategies.

4.2.1 Strategy One - 41 questions

As in the original “Twenty Questions” game the Responder picks a number x from the
search space n = {1, 2, 3, . . . , 106}. The Questioner now has to use a strategy which
identifies x, remembering that the Responder is allowed to lie at most once. As before,
split the search space symmetrically into two sets and ask the question “Is x ∈ Ai?”,
where Ai is a partition of the search space n. To make sure the Responder has not lied,
the Questioner could ask each question twice. If the answers the Questioner receives
are consistent i.e. they get two Yes’s or two No’s, then the Questioner knows that the
Responder has told the truth, since they can only lie once. The Questioner then splits
this set into two equally sized smaller sets and continues to ask questions of the form
“Is x ∈ Ai?”. If, however, the Questioner obtains two inconsistent answers i.e. one Yes

1Note that n = n+1
2

+ n−1
2

.
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and one No, then they must ask the question for a third time and take the majority
answer. The Questioner then splits the relevant set into two equally sized smaller sets
and continues to ask questions of the form “Is x ∈ Ai?”, but they only need to ask the
question once from here on, since the lie has been expended. This strategy requires at
most 41 questions, since it could one the final question in which the Responder lies. We
note that 41 questions is quite large in comparison with the number of questions used
to identify x in “Twenty Questions” game.

4.2.2 Strategy Two - 26 questions

As in Strategy One, the Questioner has to identify x remembering the Responder may
have lied at most once. The Questioner now asks the Responder to translate the integer
x into binary. Since we know that 106 < 220, we know the number we eventually obtain
will have at most twenty digits. The Questioner now phrases their first question as
“Is the value of x in the first position a 1?”. The Responder replies “Yes” or “No”.
The Questioner now asks the question “Is the value in the second position a 1?” and
continues to ask questions of this form until they obtain a twenty-digit number consisting
of 0’s and 1’s. We know that the Responder has lied at most once by this point i.e.
at most one digit in this twenty-digit number may be wrong, so there are 21 possible
integers that x could be. It is possible to identify x by using a binary search on the
number i.e the Questioner splits the digit into two sets and ask questions with regard to
each set. The Questioner considers the digits from positions 1 to 10 separately from the
digits in positions 11 to 20. The Questioner counts up the number of 1s in the positions
1 to 10, say there are m, and asks “Are there m 1’s in the first ten digits?”. We need to
consider the case where the Responder replies “Yes” and the case where the Responder
replies “No” separately.

Case 1: The Responder answers “Yes”
Consider first that the Responder replies “Yes”. We know the Responder has not lied
about these ten digits. Since if they had lied at this point it means that there were not
m 1’s in the first ten digits. However, this implies that the Responder had lied about
one of the first ten digits, which in turn implies that they have lied twice, which is not
possible. Hence the Questioner should write these digits down and consider the second
ten-digit number. Similarly, as above, the Questioner must now count up the number of
1’s that appear in this ten-digit number and ask the question with regard to the number
of 1’s that appear in this number. If the Responder replies “Yes” to the question, then
these ten digits were also correct and you can conclude that the Responder did not lie.
If, however, the Responder answers “No” the remaining analysis is similar to Case 2.

Case 2: The Responder answers “No”
Consider that the Responder replies “No” to the initial question2. We do not know if
this answer is a lie, but we know that they have used up the one lie that they were
allowed at this point. This is simple to see as, if they answered this question truthfully
it means that the Responder had previously lied. Alternatively, if the Responder had
lied when answering this question, it means that these ten digits were correct and the
one lie they were allowed to use has been expended. In either situation it means that
the questions the Questioner continues with must all be answered truthfully. So if the

2i.e. referring to the question regarding the first ten-digit number.
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Responder replied “No”, the Questioner must then split up this ten-digit number into
two five-digit numbers. For each of these five-digit numbers the Questioner counts the
number of 1’s and asks question with regard to the number of 1’s in each digit, as
before, in the knowledge that all answers from now on are truthful. This means that the
Questioner should continue separating the numbers3 into smaller numbers and asking
questions with regard to the number of 1’s in each number until they identify the digit
that has been lied about. At this point the Questioner changes this digit from a 0 to a
1 or vice versa and thus has obtained x.

Using this strategy to determine x only requires at most 26 questions. This occurs,
since when splitting the original binary number into smaller numbers we assume that the
Responder answers “No” to the larger of the smaller numbers at each division4, which
results in the Questioner asking an additional 6 questions to the 20 questions they had
already asked. We note that 26 questions is significantly less than the 41 required in
Strategy One.

4.2.3 Strategy Three - 25 questions

Pelc [3] proves that the minimum number of questions that the Questioner has to ask to
identify x in the liar game with one lie and n = 106 is in fact 25 questions5. Here we give
a strategy, which is simpler than that of Pelc, which also achieves this. This strategy,
which requires 25 questions, is very similar to the strategy used for Strategy Two. The
Responder chooses an integer x between 1 and 106 and the Questioner asks them to
translate it into binary. The Questioner phrases their questions “Is the value at the
first position a 1?” and so forth. The answers the Responder gives form a twenty-digit
number consisting of 0’s and 1’s. At this point we have used twenty questions and we
have five left to use. Now we split the twenty-digit number into two numbers. How many
digits should these two numbers contain? We know from Strategy Two that splitting
the search space evenly into two sets requires 26 questions to identify the integer x. So
assume that we split the twenty digit-number into two numbers, one containing more
digits than the other. We now ask a question with regard to the larger number, so
we use one question and hence have four remaining questions left to ask. Suppose the
larger number contains 14 digits and the smaller number contains 6 digits. In the worst
possible case we have to perform a binary search on 14 digits. So we split this number
into two numbers each containing 7 digits. As explained in Section 4.2.2, we know that
the Responder has expended their lie by this point, hence the answers to all questions
from this point will be truthful. The Questioner continues asking questions regarding
the number of 1’s in the numbers and at worst will use four questions from the point
where they asked about the number of 1’s in the fourteen-digit number and thus they
only require 25 questions to identify x. Notice that if the fourteen digit-number did

3When separating the numbers into smaller numbers keep them as even as possible. In the case of a
number of odd length, n say, split it such that one number contains n+1

2
digits and the other number

contains n−1
2

digits.
4i.e. the 20 digit-number splits into two numbers of length 10. The 10 digit-number splits into two

numbers of length 5. The 5 digit-number splits into two numbers, one of length 3 and the other of
length 2. Taking the number of greater length i.e the 3 digit-number, this splits into two numbers, one
of length 2 and the other length 1. Again taking the number of greater length i.e. the 2 digit-number,
this splits into two numbers of length 1.

5See Section 4.4 for the proof of this.

52



contain the correct number of 1’s then the Questioner need only ask a maximum of 3
questions in regard to the six-digit number and hence only uses 24 questions at the most
to identify x. Hence we have found a strategy that uses 25 questions or less to determine
x in the liar game with one lie and n = 106.

4.2.4 The Algorithm for Strategy Three

The following algorithm describes precisely the strategy the Questioner should follow to
identify the Responder’s chosen x within 25 questions.

The Setup: Ask the Responder to choose an integer x between {1, . . . , 106} and convert
this number into binary, so that they have a twenty-digit number.

Step One:
For m = 1 to 20.
Ask the Responder: Is the value of x in position m a 1?

IF The Responder replies YES write 1 in position m.

ELSE Write 0 in position m.

Step Two:
Split the twenty-digit number into two smaller numbers. The first number of length
14 should contain the digits from positions 1 to 14. Label this number y. The second
number of length 6 should contain the digits from positions 15 to 20. Label this number
z. Do not alter the order of the digits. Count the total number of 1’s in y. Write this
number down, say y′. Count the total number of 1’s in z. Write this number down, say
z′.
Ask the Responder: Are there y′ 1’s in y?

IF YES the digits of y are correct. Write these digits down.
Ask the Responder: Are there z′ 1’s in z?

IF YES the digits of z are correct. Write these digits
down. You have now obtained the Responder’s
original number, which is identical to the one you
originally obtained in Step One i.e. the Responder
did not use their lie.

ELSE Let a = z. Go to Step Three.

ELSE The digits of z are correct. Write these digits down. Let a = y.
Go to Step Three.

Step Three:
Let n denote the length of a. Split a into two smaller numbers both of length n

2 . Label
one of these numbers b and label the other c. Count the total number of 1’s in b, say
there are b′. Count the total number of 1’s in c, say there are c′.
Ask the Responder: Are there b′ 1’s in b?
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IF YES the digits of b are correct. Write these digits down. Let a = c.

IF |a| 6= 1

IF n is even repeat Step Three.

ELSE Go to Step Four.

ELSE

IF a is the number 1, change it to 0 and
write it down. You have now obtained the
Responder’s original number. The
Responder lied in the ath position.

ELSE Change a to a 1 and write it down. You
have now obtained the Responder’s
original number. The Responder lied in
the ath position.

ELSE The digits of of c are correct. Write these digits down. Let a = b.

IF |a| 6= 1

IF n is even repeat Step Three.

ELSE Go to Step Four.

ELSE

IF a is the number 1, change it to 0 and write
it down. You have now obtained the
Responder’s original number. The
Responder lied in the ath position.

ELSE Change a to a 1 and write it down. You
have now obtained the Responder’s
original number. The Responder lied in
the ath position.

Step Four:
Let n denote the length of a. Split a into two smaller numbers one of length n+1

2 and one
of length n−1

2 . For example, if a is equivalent to the seven-digit number representing the
positions 1 to 7, it splits into the two numbers, one containing the numbers of positions
1 to 4 and the other containing the numbers of positions 5 to 7. Label the number of
length n+1

2 by b. Count the total number of 1’s in b, say there are b′. Label the number
of length n−1

2 by c. Count the total number of 1’s in c, say there are c′.
Ask the Responder: Are there b′ 1’s in b?

IF YES the digits of b are correct. Write these digits down. Let a = c.

IF |a| 6= 1 repeat Step Four.

ELSE

IF a is the number 1, change it to 0 and write
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it down. You have now obtained the
Responder’s original number. The
Responder lied in the ath position.

ELSE Change a to a 1 and write it down. You
have now obtained the Responder’s
original number. The Responder lied in
the ath position.

ELSE The digits of c are correct. Write these digits down. Let a = b.
Repeat Step Three.

4.3 Identifying x using the concept of Spencer’s chips

Consider Step One of the algorithm described in Section 4.2.4. The Questioner asks the
Responder to translate their chosen integer x into binary and the Questioner proceeds
to ask questions of the form “Is the value of x at position m a 1?”, until they obtain
a twenty-digit number 6. Considering that the Responder may have lied at most once
when responding to these questions, the Questioner obtains 21 possible binary numbers
which represent x, 20 of which are pennies7 and one that is a nonpenny. Call this state
P , where P = (1, 20) and has weight8

w5(1, 20) =
(

5
≤ 1

)
+ 20 = 26.

Clearly 26 is not a power of 2, so we add pennies to our state P until the weight is equal
to a power of 2 9. In this case we add 6 pennies to P , such that P = (1, 26) and the
weight of this P is w5(1, 26) = 32 = 25. The Questioner now needs to ask a question
about a set A, such that, regardless of the Responder’s reply, the weight of the new
state, say P ′, is exactly half the weight of P i.e. the weight of P ′ is equal to 24. Suppose
that A contains the one nonpenny still on the board and y pennies. Using the Endgame
Lemma10, we solve (

p− 1
≤ 1

)
+ y =

(
p− 1
≤ 0

)
+ r − y

⇔ r − y + 1 = p+ y

⇔ y =
1
2
(r + 1− p),

where r represents the total number of pennies on the board, it is possible to determine
the value of pennies that appear in A. With 5 questions remaining and 26 pennies, we
determine that y = 11 i.e. 11 pennies should be contained in A along with the one
nonpenny. The Questioner asks “Is x ∈ A?”. If the Responder replies “No”, this implies
we obtain the state P ′ = (0, 16), with weight w4(0, 16) = 24. The Questioner has 4

6We note at this point that we have used 20 questions and have 5 remaining in which to identify x.
7Recall Definition 3.2.1.
8See equation (3.5).
9Recall from the proof of Theorem 10 that the addition of pennies only makes the game harder for

the Questioner to win.
10Lemma 3.2.3.
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questions left to ask, by performing a binary search on these chips we obtain x using
these four questions. If, however, the Responder replies “Yes”, the Questioner obtains
the new state P ′ = (1, 11) with weight w4(1, 11) = 24. The Questioner now needs to ask
a question about a new set A, where A has the same properties as before11. Redefining
r, such that r = y = 11, and taking p = 4, we obtain y = 4. So A now contains the one
nonpenny and four pennies. Similarly as before the Questioner asks “Is x ∈ A?” and
as before if the Responder replies “No”, we perform a binary search on the pennies in
the new state to find x, or if the Responder replies “Yes”, we calculate the number of
pennies in the new set A along with the one nonpenny and ask the question of the form
“Is x ∈ A?” 12, repeating the process until we identify x. We note that assuming that
the Responder replies “Yes” to x being contained in A, when p = 3, we end up with the
state with one nonpenny and two nonpennies in which we can easily determine x within
two questions.

So altogether, this gives us another optimal strategy which identifies x in 25 questions
when n = 106 and one lie is permitted (actually it is quite similar to Strategy 3 - one
can see that the use of the chip terminology makes the analysis and description a lot
simpler).

In Section 4.5 we will deduce the same bound from Theorem 13, which uses a similar
argument to give an optimal strategy for the case of the liar game with at most one lie
and n = 2l, where l is a natural number.

4.4 Pelc’s lower bound

Pelc [3] gives three lemmas which use general results to find an exact solution to Ulam’s
problem i.e. the minimum number of questions required to solve the liar game with
one lie and n = 106. The focus of this section will be looking at the first lemma Pelc
describes, which discusses a lower bound on the number of questions required so that
the Questioner can win the liar game with one lie. The lemma splits into two cases, one
for even n and one for odd n, where n is the size of the search space.

If the idea of a game is to identify an element x from search space {1, . . . , n} within
q questions, the game is known as an [n, q] game. The Questioner wins the [n, q] game
if they are able to identify x using at most q questions. The Responder wins the [n, q]
game if they use an adversary strategy13, and the Questioner is unable to identify x
within q questions. Hence, either the Responder wins or the Questioner wins the [n, q]
game.

At each stage of the liar game, when the Questioner asks a question, we can define
state of the game as (x0, x1), where x0 and x1 are natural numbers. x0 represents the
size of the “truth” set i.e. the set of elements of {1, . . . , n} that satisfy the answers
given to all previous questions. x1 represents the size of the “lie” set i.e. the set of the
elements of {1, . . . , n} that satisfy the answers given to all previous questions except
one, so the lie has been expended. This is a simple version of the chips game discussed
by Spencer in [8].

11i.e. A contains the one nonpenny and y pennies.
12When p = 3 and r = 4, then y = 1.
13The adversary strategy is a strategy in which the Responder does not need to actually pick a number

x from the search space, but answer questions consistently so that there exists an element of the search
space that satisfies all but one answer.
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The weight of the state (x0, x1) with j questions remaining is defined

wj(x0, x1) = x0(j + 1) + x1.

This can be interpreted by considering that each element of x0 gives j + 1 possibilities
of lying to each of the remaining j questions or not lying at all. In x1, the Responder
must tell the truth to each answer, since you are working on the assumption the lie has
been expended, so each element in x1 gives just one possibility.

After the Questioner poses any question the state (x0, x1) gives rise to two states
(x̂0, x̂1) and (x̃0, x̃1), corresponding to answers of “Yes” and “No” respectively. This
implies the following equation

wq(x0, x1) = wq−1(x̂0, x̂1) + wq−1(x̃0, x̃1) (4.1)

Claim The result of equation (4.1) holds.

Proof To show that (4.1) holds, we need to be clear what x̂0, x̂1, x̃0, x̃1 represent.
Consider the state (x0, x1) as shown in Figure 4.1. When the Responder answers a
question suppose that the black circles are the chips which refer to the “Yes” reply and
the white circles are the chips which refer to the “No” reply. Label the black chips in
x0 by x′0. Label the black chips in x1 by x′1. This is represented in Figure 4.2. When
the Responder replies to a question the state (x0, x1) splits into the following two states
(x̂0, x̂1) and (x̃0, x̃1), which are shown in Figure 4.3.

m
m
m
m

m
m
m

x0 x1

Figure 4.1: An example of a state

Hence, from the diagrams we obtain

x̂0 = x′0

x̂1 = x′1 + (x0 − x′0) = x′1 + x0 − x̂0

and

x̃0 = x0 − x′0 = x0 − x̂0

x̃1 = x′0 + x1 − x′1 = x̂0 + x1 − x′1.
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}
}

}
}

x0 x1

{x′0

m
m

m
}x′1

Figure 4.2: Highlighting the chips which represent the “Yes” and “No” answers.

}
}

}
}

x̂0 x̂1

m
m(x̂0, x̂1)

m
m

m
x̃0 x̃1

}
}

(x̃0, x̃1)

Figure 4.3: How the state (x0, x1) changes after a question is answered.
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Now evaluate the right hand side of (4.1)

wq−1(x̂0, x̂1) + wq−1(x̃0, x̃1) = (x̂0q + x̂1) + (x̃0q + x̃1)
= x̂0q + ((x0 − x̂0) + x′1) + x̃0q + (x̂0 + x1 − x′1)
= x̂0q + x̃0 + x̃0q + x̂0 + x1

= x0(q + 1) + x1

= wq(x0, x1).

�

The following theorem provides a condition for which the Responder will always
possess a winning strategy for the liar game for a search space of size n and q questions
and one lie.

Theorem 12 (a) For even n the Responder wins the [n, q] game if n(q + 1) > 2q.
(b) For odd n the Responder wins the [n, q] game if n(q + 1) + (q − 1) > 2q.

Proof (a) Let the Responder play the adversary strategy, where the Responder always
chooses the state of larger weight after each question has been asked. The weight of the
initial state is given by

wq(n, 0) = n(q + 1) > 2q.

After at most q questions the weight of the resulting state (x∗0, x
∗
1) will be at least 2,

since after q questions

w0(x∗0, x
∗
1) > 20 = 1.

Since we are only concerned with natural numbers, this implies that after at most q
questions the weight of (x∗0, x

∗
1) is at least 2. We need to show is that such a state with

weight at least 2 cannot be equal to the state (1, 0). Clearly the state (1, 0) would only
occur if the state prior to it was (1, c), where c is a natural number of size less than n,
with j questions remaining. The Questioner asks a question with regard to the single
element in x0 of (1, c), hence, we obtain the states (1, 0) and (0, c+1). Assume that the
weight of (0, c+ 1) is at most that of (1, 0) i.e.

wj−1(1, 0) ≥ wj−1(0, c+ 1),

which in turn implies

j ≥ c+ 1 (4.2)

Now since the Responder is playing the adversary strategy they pick the new state of
greater weight, so the Responder chooses the state (1, 0).

The state (1, c) was reached after q − j questions using the adversary strategy. The
weight of this state is

wj(1, c) = j + 1 + c > 2q × 2−(q−j) = 2j (4.3)
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i.e. the weight of total number of questions to begin with the weight of the number of
questions asked by this point removed. Substituting (4.2) into (4.3) implies

2j > 2j

⇒ j > 2j−1.

However, j ≯ 2j−1 for all j, where j is a natural number. Hence, (1, 0) was not the state
of larger weight and it therefore contradicts the Responder’s adversary strategy i.e. by
the adversary strategy the Responder would not have chosen the state (1, 0) in order to
win the game.

(b) For odd n, any question asked at the beginning of the [n, q] game gives the states
(x̂0, x̂1) and (x̃0, x̃1). We note that

n+ 1
2

+
n− 1

2
= n.

It is easy to see that

q
n+ 1

2
+
n− 1

2
≥ q

n− 1
2

+
n+ 1

2
.

Hence,

max(wq−1(x̂0, x̂1), wq−1(x̃0, x̃1)) ≥ q
n+ 1

2
+
n− 1

2
.

Assuming the Responder adopts the adversary strategy, the first question yields at state
of weight at least q n+1

2 + n−1
2 . By assumption

n(q + 1) + (q − 1) > 2q.

Rearranging this gives

q(n+ 1) + (n− 1) > 2q

⇒ q
n+ 1

2
+
n− 1

2
> 2q−1.

So after at most q−1 questions, the adversary strategy gives a state of weight if at least
2 . Following the proof of (a), it can be shown that (1, 0) is not the state the Responder
chooses and hence, by playing the adversary strategy the Responder wins. �

We note that part a) of the theorem is equivalent to the case k = 1 of Theorem 8
in Chapter 3. To see this consider the weight of the game with search size space n, q
questions and at most one lie i.e. k ≥ 1. Recall (3.1)

p∗i =
k∑

i=0

(
q

k − i

)
× 2−q,

which defines the weight of an individual chip on position i and the weight of a state is
defined in (3.2) as

w∗ =
k∑

i=0

xip
∗
i .
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Now at the start of play all of the chips lie on position x0 i.e. there are n chips on x0

and no chips on x1, which implies the weight of the state is

n×
((

q

1

)
+

(
q

0

))
× 2−q = n(q + 1)× 2−q.

Theorem 8 states that the weight of a state is greater than 1 i.e.

n(q + 1)× 2−q > 1
⇒ n(q + 1) > 2q.

In the case of odd, the additional term (q − 1) means part b) of Theorem 12 is a
little stronger than Theorem 8.

Using Theorem 12 we can show that even with an optimal strategy the Questioner
requires at least 25 questions to win the Ulam’s searching game with one lie. Note that
if we suppose q = 24, by substituting q = 24 and n = 106 into Theorem 12 part a) gives

106 × 25 > 224.

Thus the Responder wins when q = 24 i.e. there does not exist an optimal strategy for
q = 24 with which the Questioner can win.

4.5 The general strategy for the liar game with one lie of
search space size n = 2l

Consider the liar game with one lie and a search space of size n, such that n = 2l, where
l is a natural number. The Responder chooses an integer x from n = 2l and within q
questions the Questioner must identify x, where q is sufficiently large. The initial state
of the game is P = (n, 0), which has initial weight14

wq(x0, x1) = x0(q + 1) + x1 = n(q + 1).

Theorem 13 If n ≤ 2q

q+1 and n = 2l, where l is a natural number, then the Questioner
has a strategy which identifies x in q questions.

Proof Firstly we note that the weight of the initial state is

wq(n, 0) = n(q + 1) ≤ 2q.

In addition we note that15

l ≤ q − log(q + 1),

and since l is a natural number, this implies

l ≤ q − dlog(q + 1)e (4.4)

14See Chapter 3 Equation (3.5).
15Remember that we are working with logarithms to the base 2.
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Consider each integer of n = 2l in its binary form i.e. we have 2l strings of length l. The
Questioner performs a binary search on these numbers by asking questions of the form
“Is the value of x in position m a 1?”. The binary search on the search space n uses
exactly l questions and as a result we obtain l+ 1 possible binary numbers for x. There
is exactly one number which satisfies all the answers, hence we consider this number as
a nonpenny. There are also l numbers which satisfy all but one answer, so we consider
these numbers as pennies16. Therefore, after the binary search has been performed we
obtain the position P ∗(1, l), shown in Figure 4.4.

m
x1x0

m
m
m
m

l pennies

Figure 4.4: The Questioner’s position after l questions i.e. P ∗ = (1, l)

Moreover,

wq−l(x0, x1) = 1× (q − l + 1) + l × 1
= q + 1

=
wq(n, 0)

n
=
wq(n, 0)

2l
,

where x0 = 1 and x1 = l. This shows that the Questioner has played optimally so far,
as after each question has been asked, the weight been exactly has halved.

Let p = q−l. By (4.4), it now suffices to identify x within p = dlog(q + 1)e questions.
Note that the weight of the state P ∗ is 2p−1 < w(1, l) ≤ 2p 17. Suppose that q+1 is not
a power of 2. Similarly, as in the proof of Theorem 10, it is easy to see that we can add
pennies to the state until the total weight is equal to 2p, as the addition of pennies will
only make the game harder for the Questioner. Suppose that we now have r pennies in
total, so we obtain the new state P̂ ∗ = (1, r), with r ≥ l, where the weight of P̂ ∗ equals
2p. So we obtain

p+ 1 + r = wp(1, r) = 2p (4.5)

We now have two cases to consider:

Case One: If r < p+ 1, then

2(p+ 1) > 2p

⇒ (p+ 1) > 2p−1,

16See Chapter 3 Definition 3.2.1.
17The lower bound occurs since q +1 may not be equal to a power of 2 and if it was less than or equal

to 2p−1, we would require less than p questions to identify x.
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which holds if and only if p ≤ 2. This means that we have one nonpenny and at most
two pennies. Therefore, the Questioner can easily identify x in two questions.

Case Two: If r ≥ p+ 1, then

2p ≥ 2(p+ 1)

⇒ 2p−1 ≥ p+ 1,

which holds if and only if p ≥ 3.
We know that the total weight of this state is even, so we wish to find a set, say

A, such that when a question is asked about it, regardless of the Responder’s reply,
the weight is exactly halved, which implies that we are still playing optimally. This
is equivalent to applying the Endgame Lemma18. Since this strategy is simpler than
that of the Endgame Lemma, we give a self contained argument here. Assume that A
contains the nonpenny and y pennies and that the weight of A is equal to 2p−1. Suppose
that x is contained in A, then the weight of the resulting state is(

p− 1
≤ 1

)
+ y = p+ y.

If, however, x is not contained in A, the resulting state has the weight(
p− 1
≤ 0

)
+ r − y = r − y + 1.

Thus we wish to solve

r − y + 1 = p+ y

⇔ y =
1
2
(r + 1− p) (4.6)

We note that (4.5) implies (r + 1− p) is even and so y is an integer. Moreover, the
condition r ≥ p , implies that y is an natural number i.e. y ≥ 0.

Suppose that the Questioner asks “Is x ∈ A?”. Here we have two possible outcomes
to consider.

Outcome One: The Responder replies “Yes”.
If the Responder replies “Yes”, we obtain a position P ′, which consists of one nonpenny
and y pennies i.e. P ′ = (1, y), which has weight 2p−1. If p − 1 ≤ 2, then by Case One,
the Questioner can easily identify x. If p − 1 > 2, we redefine r, such that r = y and
then calculate the new value of y by (4.6), to obtain a new set A. The Questioner now
asks “Is x ∈ A?” for the new A. If the Responder replies “Yes”, we repeat this step
again, however, if the Responder replies “No”, we refer to result of Outcome Two.

Outcome Two: The Responder replies “No”.
If the Responder replies “No” then we obtain a position P ′, which consists only of
pennies i.e. P ′ = (0, r − y + 1), which has weight 2p−1. Since we have p − 1 questions
remaining we perform a binary search on the r−y−1 pennies remaining and after p−1
questions we will have identified x.

18Lemma 3.2.3.
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Since after each question has been asked we are playing optimally i.e. we reduce the
weight of the state exactly by half, within p questions, from the point of adding pennies,
the Questioner is able to identify x. Hence within q questions, as required, the Questioner
can identify x. �
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Chapter 5

Conclusion

One of the main aims in this project was to identify an optimal strategy in which it
is possible for the Questioner, using at most 25 questions, to win the liar game with
one lie and n = 106. Chapter 4 Section 4.2.4 provided an algorithm (called Strategy 3)
for which it was possible for the Questioner to identify x within 25 questions and as a
consequence a winning strategy for the liar game with one lie and n = 106. Furthermore,
using the Endgame Lemma result of Theorem 9 in Chapter 3, we were able to provide
an alternative optimal strategy, described in terms of chips, which was a simpler version
of Strategy 3. It was shown in Chapter 2, that there exists a 1 error-correcting code
that is able to optimally solve the liar game with one lie and n = 106. However, we
are able to conclude that for search spaces of different sizes, that the code used to solve
our original liar game is not an appropriate strategy to solve liar games with one lie
and n 6= 106. Additionally, in Chapter 4 we gave an optimal strategy for the liar game
with one lie and n = 2l, where l is a natural number, by using a simpler form of the
Endgame Lemma described in Chapter 3. Besides these exact results, we presented an
approximate result due to Spencer [8], which asymptotically solves the liar game for a
large search space and a fixed number of lies.

It would be desirable to extend the strategies discussed in Chapter 4 to consider the liar
game with more than one lie. In particular we could extend this project by discussing
Ulam’s liar game with two lies and n = 106. If we were to apply a similar strategy as to
that in Strategy 2 or Strategy 3, described in Chapter 4, we would obtain a twenty-digit
binary number. However, instead of having only 21 possible binary numbers representing
x, as with one lie, we have 211 possible binary numbers representing x, since(

20
2

)
+

(
20
1

)
+

(
20
0

)
= 211

(Indeed if the Responder had lied exactly i times, there are
(
20
i

)
candidates for the value

of x). This clearly would require a more complex strategy to solve optimally than that
required in Strategy 3. In [1] Czyzowicz, Mundici and Pelc showed that the minimum
number of questions required by the Questioner for the liar game with two lies and
n = 106 was 29.

Another extension of this project could be to investigate the consequences of Rényi’s
[5] description of the liar game, where we consider that the Responder lies a given
percentage of the total number of questions. Further extensions to the liar game are
discussed in Pelc [4].
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Appendix A

Proof of Theorem 2.2

Let q = 1− p. Hence (2.2) becomes

C(p) = 1 + p log p+ q log q.

Suppose that source emits 0 with probability α and 1 with probability β = 1−α. Then
the output ζ has the distribution 1

0 with probability αq + βp

1 with probability βq + αp

Using the definition of information, we have

I(ϕ|ζ) = H(ϕ)−H(ϕ|ζ)
= p log p+ q log q − (αq + βp) log(αq + βp)− (αp+ βq) log(αp+ βq)
= p log p+ q log q − (α(q − p) + p) log(α(q − p) + p)
− (α(p− q) + q) log(α(p− q) + q).

To find α, differentiate I(ϕ|ζ) with respect to α.

dI(ϕ|ζ)
dα

= −
(
(q − p) log(α(q − p) + p) + (p− q) log(α(p− q) + q)

= −(q − p) log
(α(q − p) + p

α(p− q) + q

)
= 0

⇒ α(q − p) + p

α(p− q) + q
= 1

α(q − p) = (1− α)(q − p)

i.e. α =
1
2
.

Take the second derivative of I(ϕ|ζ) to show that α is maximum.

d2I(ϕ|ζ)
dα2

=
−(q − p)2

α(q − p) + p
− (p− q)2

α(p− q) + q
.

1The probability 0 is transmitted correctly + the probability 0 is not transmitted correctly. Similarly
this can be shown for the probability for the number 1.
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Now since p, q, α > 0

⇒ d2I(ϕ|ζ)
dα2

< 0

⇒ α =
1
2

is maximum

⇒ (2.1). �
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Appendix B

The operations on G

We have

G =


1 0 0 1 0 0 1
0 1 1 1 0 0 1
0 0 1 0 0 1 1
1 0 1 0 1 0 1


Now swap the 3rd and 6th columns of G and swap 1st and 4th columns of G to obtain

1 0 0 1 0 0 1
1 1 0 0 0 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


Add the 4th row to the first row 1st to get

1 0 0 0 1 1 0
1 1 0 0 0 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


Now add the 1st row to the 2nd row and we end up with

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


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Appendix C

Perfect information game

Consider a two player game, in which each player aims to win the game. Assume that the
game is finite and that all the information is given to each player before play of the game
begins. This is known as a zero-sum perfect information game. A consequence of
the game being of perfect information is that it can be strictly determined i.e. there
exists a winning strategy for one of the players. The following result is shown in [14].

Claim Every zero-sum two-player finite game of perfect information is strictly deter-
mined.

Proof Suppose that we have two players, Player 1 and Player 2 and assume that the
outcome of the game is not determined before play begins i.e. neither player holds a
winning strategy before play begins. Further, assume that there exist a finite number
of moves in which the players have to win the game. The first move made by Player 1
cannot be part of Player 1’s winning strategy, since this would imply that the outcome of
the game is determined before play began. Similarly, this first move cannot form part of
Player 2’s winning strategy. Therefore, the first move of the game is non-deterministic.
This implies that all the following moves cannot form part of a winning strategy, since
you could start the game in the position obtained as a result of making the first move
and reduce play of the game by one move. Hence the game is infinite, since no move
can be deterministic. However, this contradicts the assumption that the game is finite.
Therefore, the game is strictly determined i.e. there exists a winning strategy for one of
the players.

Note that although a winning strategy exists for one of the players there is no
guarantee they will find it during play and make use of it.
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Appendix D

Fact
(j
l

)
+

( j
l−1

)
=

(j+1
l

)
We can show that (

j

≤ k − i

)
+

(
j

≤ k − i+ 1

)
=

(
j + 1
≤ k − i

)
by using the property (

j

l

)
+

(
j

l − 1

)
=

(
j + 1
l

)
.

Claim (
j

l

)
+

(
j

l − 1

)
=

(
j + 1
l

)
.

Proof We know that
(
j+1

l

)
is equal to the number of choices for l balls in a box with

j + 1 balls. Now consider a box with j red balls and one blue ball. The number of ways
of choosing l red balls is

(
j
l

)
. The number of ways of choosing the one blue ball and l−1

red balls out of j is
(

j
l−1

)
.

Hence (
j

l

)
+

(
j

l − 1

)
=

(
j + 1
l

)
.

�
It follows from this that (

j

≤ l

)
+

(
j

≤ l − 1

)
=

(
j + 1
≤ l

)
.

Let l = k − i, which implies(
j

≤ k − i

)
+

(
j

≤ k − i− 1

)
=

(
j + 1
≤ k − i

)
.
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Appendix E

Fact (1− x)k ≥ 1− xk

Show that

(1− x)k ≥ 1− xk (E.1)

for all a ≥ 0.

Inductive statement:

Pk = (1− x)k ≥ 1− xk.

Induction start: Let k = 0. Then

(1− x)0 = 1 = 1− x× 0

Therefore, Pk holds for k = 0.

Inductive step: Suppose that the inductive statement Pk holds for k = a i.e.

(1− x)a ≥ 1− xa.

Show that the inductive statement holds for k = a+ 1.

(1− x)a+1 = (1− x)a × (1− x) ≥ (1− xa)× (1− x)

= 1− xa− x+ x2a

= 1− x(a+ 1) + x2a ≥ 1− x(a+ 1)

⇒ (1− x)a+1 ≥ (1− x(a+ 1)).

Therefore, Pk holds for k = a+ 1 and so we have proven (E.1).
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