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Abstract

The main results of this thesis are the following. We show that for
each α > 0 every sufficiently large oriented graph G with δ+(G), δ−(G) ≥
3|G|/8 + α|G| contains a Hamilton cycle. This gives an approximate solu-
tion to a problem of Thomassen [52]. In fact, we prove the stronger result
that G is still Hamiltonian if δ(G) + δ+(G) + δ−(G) ≥ 3|G|/2 + α|G|. Up
to the term α|G| this confirms a conjecture of Häggkvist [30]. This result
is then used to derive a corresponding Ore type result and a new result on
pancyclicity in oriented graphs.
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Chapter 1

Introduction and Notation

1.1. Introduction

Hamiltonicity is one of the most important, and most studied, areas of
graph theory. There are many papers published every year seeking more
sufficient conditions for a graph to contain a Hamilton cycle, looking at
the behaviour of Hamilton cycles in various models of random graphs and
examining refinements of the idea of Hamiltonicity. This thesis consists of
an introduction to the topic of Hamiltonicity within digraphs and a result
recently proved with Deryk Osthus and Daniela Kühn [37] which provides an
analogue of Dirac’s famous theorem on Hamilton cycles in graphs for oriented
graph. Extensions of this result, to an Ore type result and a pancyclicity
result, are also discussed.

A simple graph G = (V (G), E(G)) is a set of vertices, V (G) (or V if
this is unambiguous), often taken to be [n] := {1, . . . , n}, with a set of edges
E(G) ⊆ V (2) (or E). The number of vertices in a graph is called its order
and is often denoted |G|. The number of edges in a graph is denoted by e(G).
A multigraph is a graph in which edges are given a multiplicity. A Hamilton
cycle is an ordering x1, . . . , xn of the vertices of a graph such that xixi+1 ∈
E(G) for all i (counting modulo n). The degree d(x) of a vertex x ∈ V (G) is
the number of vertices sharing an edge with x. The minimum degree δ(G) of
a graph is the minimum of the degrees of the vertices of G. A fundamental
result of Dirac states that a minimum degree of |G|/2 guarantees a Hamilton
cycle in an undirected graph G on at least 3 vertices. Ore in 1960 gave a
stronger sufficient condition: if the sum of the degrees of every pair of non-
adjacent vertices is at least |G|, then the graph is Hamiltonian [48].

A digraph or directed graph is a multigraph in which all the edges are
assigned a direction and there are no multiple edges of the same direction. I.e.
we allow an edge in each direction between two vertices, but no other multiple
edges are allowed. An oriented graph is a (simple) graph in which every edge
is assigned a direction. Equivalently, an oriented graph is a digraph with no
multiple edges.

There is an obvious analogue of a Hamilton cycle for digraphs. That is,
an ordering x1, . . . , xn of the vertices of a digraph D such that xixi+1 is a
directed edge for all i. When discussing cycles and paths in digraphs we
always mean that they are directed without mentioning this explicitly. The
minimum semi-degree δ0(G) of an oriented graph G (or of a digraph) is the
minimum of its minimum outdegree δ+(G) and its minimum indegree δ−(G).
There are corresponding versions of the famous theorems of Dirac and Ore
for digraphs. Ghouila-Houri [28] proved in 1960 that every digraph D with
minimum semi-degree at least |D|/2 contains a Hamilton cycle. Meyniel
[44] showed that an analogue of Ore’s theorem holds for digraphs, that is
a digraph on at least 4 vertices is either Hamiltonian or the sum of the

1



degrees of a pair of non-adjacent vertices is less than 2|D| − 1. All these
bounds are best possible. See Theorems 2.1 and 2.2 for proofs of the results
of Ghouila-Houri and Meyniel.

It is natural to ask for the (smallest) minimum semi-degree which guar-
antees a Hamilton cycle in an oriented graph G. This question was first
raised by Thomassen [51], who [53] showed that a minimum semi-degree of

|G|/2 −
√

|G|/1000 suffices (see also [52]). Note that this degree require-
ment means that G is not far from being complete. Häggkvist [30] improved
the bound further to |G|/2 − 2−15|G| and conjectured that the actual value
lies close to 3|G|/8. The best previously known bound is due to Häggkvist
and Thomason [31], who showed that for each α > 0 every sufficiently large
oriented graph G with minimum semi-degree at least (5/12 + α)|G| has a
Hamilton cycle. Our first result implies that the actual value is indeed close
to 3|G|/8.

Theorem 1.1. For every α > 0 there exists an integer N = N(α) such
that every oriented graph G of order |G| ≥ N with δ0(G) ≥ (3/8 + α)|G|
contains a Hamilton cycle.

A construction of Häggkvist [30] shows that the bound in Theorem 1.1
is essentially best possible (see Proposition 5.1).

In fact, Häggkvist [30] formulated the following stronger conjecture.
Given an oriented graph G, let δ(G) denote the minimum degree of G
(i.e. the minimum number of edges incident to a vertex) and set δ∗(G) :=
δ(G) + δ+(G) + δ−(G).

Conjecture 1.2 (Häggkvist [30]). Every oriented graph G with δ∗(G) >
(3n − 3)/2 has a Hamilton cycle.

Our next result provides an approximate confirmation of this conjecture
for large oriented graphs.

Theorem 1.3. For every α > 0 there exists an integer N = N(α) such
that every oriented graph G of order |G| ≥ N with δ∗(G) ≥ (3/2 + α)|G|
contains a Hamilton cycle.

Note that Theorem 1.1 is an immediate consequence of this. Once one
has a Dirac-type result it is natural to ask if there is a corresponding Ore
type result and indeed in this case there is. The proof for this is similar to
that of Theorem 1.3 so we do not give the entire proof.

Theorem 1.4. For every α > 0 there exists an integer N = N(α) such
that if G is an oriented graph on n ≥ N vertices with d+(u)+d−(v) ≥ 3n/4+
αn for all non-adjacent vertices u, v ∈ V (G) then G contains a Hamilton
cycle.

We do though give a proof of the one important lemma which is different,
along with a brief discussion, in Chapter 5.

Moreover, note that Theorem 1.1 immediately implies a partial result to-
wards a classical conjecture of Kelly (see e.g. [4]), which states that every reg-
ular tournament on n vertices can be partitioned into (n−1)/2 edge-disjoint
Hamilton cycles, with a tournament being a complete oriented graph T in
which all vertices have indegree and outdegree (|T | − 1)/2.
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Corollary 1.5. For every α > 0 there exists an integer N = N(α) such
that every regular tournament of order n ≥ N contains at least (1/8 − α)n
edge-disjoint Hamilton cycles.

Indeed, Corollary 1.5 follows from Theorem 1.1 by successively removing
Hamilton cycles until the oriented graph G obtained from the tournament
in this way has minimum semi-degree less than (3/8 + α)|G|. The best pre-
viously known bound on the number of edge-disjoint Hamilton cycles in a
regular tournament is the one which follows from the result of Häggkvist
and Thomason [31] mentioned above. A related result of Frieze and Kriv-
elevich [27] implies that almost every tournament contains a collection of
edge-disjoint Hamilton cycles which covers almost all of its edges and that
the same holds for almost all regular tournaments. There is a more detailed
discussion of result on packing Hamilton cycles in digraphs in the survey in
Chapter 2.

An oriented graph on n vertices is called pancyclic if it contains a cycle
of length ℓ for every 3 ≤ ℓ ≤ n. With some extra work, the minimum semi-
degree condition in Theorem 1.3 also gives the following pancyclicity result.
Since our main result was proved, Keevash, Kühn and Osthus [36] have ex-
tended the methods to give an exact minimum semi-degree result, by proving
the (best-possible) bound of δ0(G) ≥ (3n − 4)/8 for containing a Hamilton
cycle. We extend this further to give the following exact pancyclicity result.

Theorem 1.6. There exists a number n0 so that any oriented graph G on
n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ ⌈(3n − 4)/8⌉ contains
an ℓ-cycle through u for any vertex u ∈ V (G) and 4 ≤ ℓ ≤ n.

This improves upon the previous work of Darbinyan [22], who proved
that a minimum semi-degree of ⌊n/2⌋ − 1 ≥ 4 implies pancyclicity.

This thesis is organised as follows. In the rest of this chapter we introduce
further notation. In Chapter 2 we give a survey of some of the main results
on Hamilton cycles in digraphs. In Chapters 3 and 4 we give an overview
of results on Hamiltonian decompositions of digraphs and pancyclicity in
digraphs as well as some results of our own on short cycles in oriented graphs.
In Chapter 5 we prove our main result, Theorem 1.3, and discuss how to
prove an Ore type result for oriented graphs. Finally in Chapter 6 we prove
the pancyclicity result discussed above.

1.2. Further Notation and Terminology

Given two vertices x and y of an oriented graph G, we write xy for the
edge directed from x to y. We will sometimes say that x and y are adjacent
to mean xy ∈ E(G). Given A ⊂ V (G) we say that x ∈ V (G)\A dominates A
if xy ∈ E(G) for all y ∈ A, and similarly we say that x is dominated by A if
yx ∈ E(G) for all y ∈ A. We write N+

G (x) := {y ∈ V (G) : xy ∈ E(G)} for
the outneighbourhood of a vertex x and d+

G(x) := |N+
G (x)| for its outdegree.

Similarly, we write N−
G (x) for the inneighbourhood of x and d−

G(x) := |N−
G (x)|

for its indegree. We write NG(x) := N+
G (x) ∪ N−

G (x) for the neighbourhood
of x and use N+(x) etc. whenever this is unambiguous.

We write ∆(G) for the maximum of |N(x)| over all vertices x ∈ G.
We write δ(G), δ+(G) and δ−(G) respectively for the minimum of |N(x)|,
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|N+(x)| and |N−(x)| over all vertices x ∈ G. We will sometimes write δ, δ+

and δ− where the meaning is clear.
Given a set A of vertices of G, we write N+

G (A) for the set of all out-
neighbours of vertices in A. So N+

G (A) is the union of N+
G (a) over all a ∈ A.

N−
G (A) is defined similarly. The oriented subgraph of G(V, E) induced by A

is G[A] := (A, E ∩ A(2)). We say that A is independent if G[A] contains no
edges. Given two vertices x, y of G, an x-y path is a directed path which
joins x to y. Given two disjoint subsets A and B of vertices of G, an A-B
edge is an edge ab where a ∈ A and b ∈ B, the number of these edges is
denoted by eG(A, B).

Recall that when referring to paths and cycles in oriented graphs we
always mean that they are directed without mentioning this explicitly. Given
two vertices x and y on a directed cycle C, we write xCy for the subpath of C
from x to y. Similarly, given two vertices x and y on a directed path P such
that x precedes y, we write xPy for the subpath of P from x to y. A walk
in an oriented graph G is a sequence of (not necessarily distinct) vertices
v1, v2, . . . , vℓ where vivi+1 is an edge for all 1 ≤ i < ℓ. The walk is closed
if v1 = vℓ. We define things similarly for graphs and for directed graphs.
The underlying graph of an oriented graph G is the graph obtained from G
by ignoring the directions of its edges. By a strongly connected or strong
oriented graph we mean one in which between every 2 vertices there exists
a directed path, which is the obvious oriented graph version of a connected
(undirected) graph. The distance dG(x, y) between 2 vertices x, y ∈ V (G) is
the length of the shortest path from x to y in G.

Given disjoint vertex sets A and B in a graph G, we write (A, B)G for
the induced bipartite subgraph of G whose vertex classes are A and B. We
write (A, B) where this is unambiguous. We call an orientation of a com-
plete graph a tournament and an orientation of a complete bipartite graph
a bipartite tournament. A digraph D is d-regular if all vertices have in- and
outdegree d. D is regular if it is d-regular for some d. It is easy to see (e.g. by
induction) that for every odd n there exists a regular tournament on n ver-
tices. A 1-factor of a digraph is a 1-regular spanning subdigraph, i.e. a
covering of the digraph by pairwise-disjoint cycles. Note that a Hamilton
cycle is a connected 1-factor.

Note that all these definitions apply equally well for digraphs and oriented
graphs.

For two functions f, g : N → R we write f(n) = o(g(n)) to mean
f(x)/g(x) → 0 as x → ∞.
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Chapter 2

Survey

2.1. Classical Results And Degree Conditions

In this section we give several, mainly classical, degree conditions forcing
a digraph to be Hamiltonian. We start with digraph analogues of the famous
theorems of Dirac and Ore.

Theorem 2.1 (Ghouila-Houri, 1960 [28]). If D is a digraph on n vertices
with minimum semi-degree δ0(D) ≥ n/2 then D is Hamiltonian.

Proof. Suppose not. Let D be a counterexample and let C be a cycle of
maximum length in D (C is not necessarily unique), and write ℓ for the length
of the cycle C. It is easy to see that ℓ ≥ max(δ+(D), δ−(D)) ≥ n/2. Indeed,
consider a maximal path in D. By the minimum semi-degree condition, this
path has length at least max(δ+(D), δ−(D)). Since the endvertex has no
edges to vertices outside this path it is adjacent to at least δ+(D) vertices
inside the path. Hence the end vertex must be adjacent to a vertex in the
path at a distance (along the path) of at least δ+(D) from itself. Similarly
considering the first vertex in this maximal path gives us a cycle of length
at least δ−(D).

Now let P = u0u1u2 . . . uk be a maximal path in D − V (C). Since ℓ +
k + 1 ≤ n and ℓ ≥ n/2 we have k < n/2. Define S := N−(u0) ∩ C,
T := N+(uk)∩C. By the maximality of P , N−(u0) ⊆ C∪P , N+(uk) ⊆ C∪P .
Hence

|S|, |T | ≥ δ0(D) − k ≥ n/2 − k > 0.

Also, the maximality of C implies that for all s ∈ S and t ∈ T , distC(s, t) >
k + 1. Otherwise we could replace the path from s to t inside C with P
to create a longer cycle. Hence there exists a vertex s ∈ S followed by at
least k + 1 vertices not in S. These are forbidden from T , along with all
vertices in C which succeed a vertex in S. Thus at least |S|−1+k+1 ≥ n/2
vertices of C are not in T . Hence |C| ≥ n−k, but this contradicts our earlier
observation that 1 + ℓ + k ≤ n.

�

Next we give Meyniel’s theorem, originally proved in 1973, which provides
an analogue of Ore’s theorem for directed graphs. The proof we give is due to
Bondy and Thomassen [11]. It proceeds by proving a more technical looking
result for which Meyniel’s theorem is an immediate corollary.

Theorem 2.2 (Meyniel, 1973 [44]). A strong digraph D on n vertices
contains a Hamilton cycle if d(u)+d(v) ≥ 2n−1 for every pair u, v ∈ V (D)
of non-adjacent vertices.

Theorem 2.3 (Bondy and Thomassen, 1976 [11]). Let D be a strong
digraph on n vertices containing no Hamilton cycle and let S := x1x2 . . . xk
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S′

xα

xα+1

y

v

Figure 1. The setup for the case β = 1 of the proof of The-
orem 2.3

be a maximal cycle in D. Then D contains a vertex v not in S and there
exist numbers α, β (1 ≤ α ≤ k, 1 ≤ β < k) such that

• xαv ∈ E(D),
• v is adjacent to no xα+i with 1 ≤ i ≤ β,
• d(v) + d(xα+β) ≤ 2n − 1 − β.

Proof. Suppose first that there is no path in D having only its start and
finish in S. Then since D is strong and V (S) is a proper subset of V (D),
D contains a cycle S ′ having precisely one vertex, say xα, in common with
S. Let v denote the successor of xα on S ′. If D contains a path of the form
xα+1yv or vyxα+1, where y ∈ V \V (S) then we contradict the assumption
that D has no path having only its start and finish in S. So no such path
exists and e(y, {xα+1, v}) ≤ 2 for all such y. Further, we can assume that v
is adjacent to no vertex of S other than xα. Hence we obtain

d(v) + d(xα+1) ≤ 2 + 2(k − 1) +
∑

y∈V \V (S)

(e(y, {xα+1, v}) + e({xα+1, v}, y))

≤ 2k + 2(n − k − 1) = 2n − 2,

and the theorem is proved with β = 1.
Therefore we may assume that D contains a path having only its start

and finish in S. Let P := xαy1y2 . . . ysxα+γ be chosen such that γ is minimal.
Note that since S is maximal, γ > 1. Put v = y1.

(1) By the maximality of S we can’t insert v into the path xα+γxα+γ+1 . . . xα.
If there were more than k−γ+2 edges between v and this path then
there would be an index i (α + γ ≤ i < α) such that xiv, vxi+1 ∈
E(D), which would be a contradiction. Hence there are at most
k − γ + 2 edges connecting this path to v.

(2) Furthermore, by the minimality of γ, v is not adjacent to any xα+i

with 1 ≤ i < γ, and D contains no path of the form xα+iyv or
vyxα+i with y ∈ V \V (S) and 1 ≤ i < γ.

Now let β be defined as the largest integer i (1 ≤ i ≤ γ), such that D con-
tains an xα+γxα path with vertex set {xα+γ , xα+γ+1, . . . , xα, xα+1, . . . , xα+β−1}.
Let P ′ be an xα+γxα path with this vertex set. Note that it is possible that
β = 1. Since P ∪P ′ is a cycle, it follows from the maximality of S that β < γ.
We cannot integrate xα+β into this path so by the pigeonhole principle they
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K∗

n−3

xα+1

xα

v

Figure 2. Extremal example for Theorem 2.2. In Theorem
2.3 we would have β = 1 and S as a Hamilton path in the
K∗

n−3 together with xα and xα+1.

are joined by at most k − γ + β + 1 edges. Combining this with (1) and (2)
we get

d(v)+d(xα+β) ≤ (k − γ + 2) + (k − γ + β + 1) + 2(γ − β − 1)+

+
∑

y∈V \V (S)

(e(y, {xα+1, v}) + e({xα+1, v}, y))

≤ 2k − β + 1 + 2(n − k − 1) = 2n − 1 − β.

This completes the proof. �

Taking the disjoint union of two complete digraphs of equal size shows
that Theorem 2.1 is best possible. Figure 2.1 shows that Theorem 2.2 is also
best possible.

The following important theorem of Moon states that for a tournament
being strong is equivalent to having a Hamilton cycle.

Theorem 2.4 (Moon, 1966 [45]). Let T be a strong tournament on n ≥ 3
vertices. For every x ∈ V (T ) and every integer k ∈ {3, 4, . . . , n}, there
exists a cycle of length k through x in T . In particular, a tournament is
Hamiltonian if and only if it is strong.

Proof. Let x ∈ V (T ) and observe that since T is strong both N+(x)
and N−(x) are non-empty. Moreover the bipartite subdigraph (N+(x), N−(x))
of T with vertex classes N+(x) and N−(x), is non-empty, so let yz be an
edge of (N+(x), N−(x)). Then xyz is a 3-cycle through x as required. We
now proceed by induction on k. Let C = x1x2 . . . xk be a cycle in T with
x1 := x and 3 ≤ k ≤ n − 1. We show that T has a (k + 1)-cycle through x.

If there is a vertex y ∈ V (T )\V (C) with an outneighbour and an in-
neighbour in C then it is easy to see that there exists an index i such that
xiy, yxi+1 ∈ E(T ). Thus the cycle C ′ := x1Cxiyxi+1Cxk completes the
proof, where we write x1Cxi for the subpath of C from x1 to xi. So we may
assume that for all y ∈ V (T )\V (C) either V (C) ⊆ N+(y) or V (C) ⊆ N−(y).
Denote by R the subset of V (T )\V (C) containing all vertices with inedges
to all vertices in C. Similarly let S contain all vertices in V (T )\V (C) with
outedges to all vertices in C. Then since T is strong, R, S 6= ∅ and (R, S) is
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not empty. Hence there exists r ∈ R, s ∈ S with rs ∈ E(T ). Then the cycle
C ′ := x1rsx3Cxk is a (k + 1)-cycle through x. �

This has the following corollary.

Corollary 2.5. Every tournament T on n vertices with minimum semi-
degree δ0(T ) ≥ n/4 is Hamiltonian.

Proof. All we need to show is that a minimum semi-degree of n/4 implies
that T is strong. Given a non-empty set X ⊂ V (T ), if every vertex x ∈ X

has |N+(x)∩X| > (|X|−1)/2 then e(X) >
(

|X|
2

)

, contradicting the fact that
T is a tournament. Hence there exists a vertex x ∈ X with |N+(x)\X| ≥
n/4−|X|/2+1/2 and so |N+(X)| ≥ n/4+|X|/2+1/2. Similarly for outedges
we get that for all non-empty Y ⊂ V (T ), |N−(Y )| ≥ n/4 + |Y |/2 + 1/2 –
just reverse every edge in T to see this.

Then for any distinct vertices u, v ∈ V (T ) define X1 := N+(u), Y1 :=
N−(v) and Xi+1 := N+(Xi), Yi+1 := N−(Yi). By the minimum semi-degree
condition |X1|, |Y1| ≥ n/4 and induction gives that for i ≥ 2, |Xi|, |Yi| ≥
n/2 − 2−i−1n + 1/2. Indeed, for i = 2 we have

|X2| ≥ n/4 + |X1|/2 + 1/2 ≥ n/2 − n/8 + 1/2.

Now suppose that it holds for i− 1. Then by the above averaging argument
we have that:

|Xi| ≥ n/4 + |Xi−1|/2 + 1/2 ≥ n/4 + n/4 − 2−(i−1)−1n/2 + 1/2 + 1/2

= n/2 − 2−i−1n + 1.

Hence there exists i with |Xi| + |Yi| ≥ n + 1 and so their intersection is
non-empty. This gives us a uv path as desired. �

Taking the disjoint union of two regular tournaments T1 and T2 and
adding all the edges from T1 to T2 shows that Corollary 2.5 is best possible.

Bollobás and Häggkvist showed that a slight increase in minimum semi-
degree gives us not just a Hamilton cycle, but all small powers of a Hamilton
cycle. Given a digraph D define the kth power of D, denoted D(k), to be
the digraph with vertex set V (D) and in which uv ∈ E(D(k)) if and only if
distD(u, v) ≤ k.

Theorem 2.6 (Bollobás and Häggkvist, 1990 [10]). For every ε > 0 and
every natural number k there exists N0 = N0(ε, k) such that the following
holds. If T is a tournament on n ≥ N0 vertices with δ0(T ) ≥ (1/4 + ε)n,
then T contains the kth power of a Hamilton cycle.

There is a conjecture of Jackson (see e.g. [4]) which says that this mini-
mum semi-degree condition implies the existence of a Hamilton cycle in any
regular oriented graph.

Conjecture 2.7. Every k-regular oriented graph of order at most 4k+1,
where k 6= 2, contains a Hamilton cycle.

Taking the disjoint union of two regular tournaments shows that this is
best possible.

For undirected graphs there are many degree conditions other than Ore’s
theorem on only some pairs of non-adjacent vertices that force a graph to
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be Hamiltonian. One of the best known examples of this is Fan’s theorem
[23] which says that if max{d(x), d(y)} ≥ n/2 for all pairs of vertices x, y at
distance 2 from each other in a graph G on n vertices, then G is Hamilton-
ian. Similar theorems which impose degree conditions only on some pairs of
vertices are rare for directed graphs. One such result that does exist is the
following result of Bang-Jensen, Gutin and Li [6]. Recall that given a digraph
D we say that a pair of vertices {x, y} ⊂ V (D) is dominated if there exists
a vertex z ∈ V (D) such that zx, zy ∈ E(D). We say that {x, y} ⊂ V (D) is
dominating if there exists a vertex z ∈ V (D) such that xz, yz ∈ E(D).

Theorem 2.8 (Bang-Jensen, Gutin and Li, 1995 [6]). Let D be a strong
digraph on n vertices. Suppose that

min{d+(x) + d−(y), d−(x) + d+(y)} ≥ n

for every pair of dominating or dominated non-adjacent vertices {x, y}. Then
D contains a Hamilton cycle.

Note that this result neither implies nor is implied by Meyniel’s theorem
(Theorem 2.2).

2.2. Random Graphs

The study of random graphs has been an extremely productive area of
research ever since Erdős and Rényi laid the foundations for the subject in
1959. Naturally random digraphs have also been extensively studied, and
in particular many people have asked questions about Hamilton cycles in
random digraphs.

We are interested not in whether some property definitely holds, but with
the behaviour of ‘typical’ graphs, that is, in the probability that a property
holds in a given probability space. In particular, many results try and show
that the probability that some property P holds tends to 1 as the number
of vertices of a graph given by a particular model tends to infinity. If this
happens we say that P occurs with high probability (w.h.p.) or almost surely.
In an arbitrary digraph on n vertices we can have n edges and a Hamilton
cycle, or (n − 1)2 edges and no Hamilton cycle. Surprisingly, at least for
those not accustomed to the study of random graphs, requiring only that we
have a Hamilton cycle w.h.p. almost completely removes this huge window
of uncertainty as we shall see in the rest of this section.

The following result provides an answer to perhaps the most obvious
question one could ask about Hamilton cycles in random digraphs. That
is, what happens in D(n, p), the model of random digraphs consisting of
digraphs with n vertices in which the edges are chosen independently and
randomly with probability p. The answer was given through a rather sur-
prising method using percolation by McDiarmid [43]. He showed that the
probability that a random digraph D ∈ D(n, p) is Hamiltonian is not smaller
than the probability that G(n, p) is Hamiltonian, where G(n, p) is the model
of random graphs consisting of graphs with n vertices in which the edges are
chosen independently and randomly with probability p. This can then be
combined with the following important theorem of Pósa to obtain a result
for D(n, p).
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Theorem 2.9 (Pósa, 1976 [8]). For a random graph G ∈ G(n, p) with
p = (log n + log log n + ω(n))/n for some function ω(n) → ∞, G almost
surely contains a Hamilton cycle.

Theorem 2.10 (McDiarmid, 1981 [43]). Let ε be constant and let p :=
(1 + ε)(log n)/n. Then

lim
n→∞

P(D ∈ D(n, p) is Hamiltonian) =

{

1 ε > 0
0 ε < 0

.

Frieze [26] later improved this result in two ways. Firstly he gave a much
sharper threshold. Secondly he gave an explicit algorithm DHAM for finding
Hamilton cycles in random digraphs.

Theorem 2.11 (Frieze, 1986 [26]). Let e1, e2, . . . , en(n−1) be a random
permutation of the edges of the complete digraph on n vertices. Let Em :=
{e1, e2, . . . , em} and let Dm be the digraph on n vertices with edgeset Em.
Define m∗ := min {m : δ0(Dm) ≥ 1}. Then

lim
n→∞

P(DHAM find a Hamilton cycle in Dm∗) = 1.

There are many other families of random digraphs we might be interested
in. When studying random graphs one finds, perhaps surprisingly, that there
is commonly a sharp threshold below which a particular property does not
hold w.h.p. and above which the property holds w.h.p. The result above
shows that the very edge which increases the minimum semi-degree to 1 also
makes the digraph Hamiltonian with high probability. With this behaviour
in mind the following space of random digraphs is a natural one to study.

The random digraph Dk−in,ℓ−out has vertex set [n] = {1, 2, . . . , n} and
each vertex v ∈ [n] chooses a set in(v) of k random edges directed to v
and a set out(v) of ℓ random edges directed from v. It is not normally
important if we choose edges with replacement, i.e. if we forbid multiple
edges, and the result we give below holds with or without it. Thus Dk−in,ℓ−out

usually has around (k + ℓ)n edges. This model of random digraphs was
originally introduced by Fenner and Frieze and subsequently the question of
the Hamiltonicity of such digraphs was studied by Cooper and Frieze (see
[17] and [18]). In particular they proved, in the course of several papers, the
following result.

Theorem 2.12 (Cooper and Frieze, 1999 [17]). The digraph D ∈ D2−in,2−out

is Hamiltonian with high probability.

Note that this result is best possible as w.h.p. D1−in,2−out contains 2
vertices of indegree 1 sharing a common inneighbour. The proof of this
theorem is long and hard so we will not give the proof here. Instead we will
note two of the main tools used in the proof, which are commonly used in
other work in this area and which we use in the proof of our main result
(Theorem 1.3) later.

Recall that a 1-factor is a spanning collection of disjoint cycles. It turns
out that the study of 1-factors in digraphs proves very helpful when looking
for Hamilton cycles. It is often easier to find a 1-factor of a digraph, and
then connect the cycles of the 1-factor up to form a Hamilton cycle, than
it is to try and find a Hamilton cycle directly. This is an idea used in the
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proof of Theorem 2.12, another important result in this section (Theorem
2.15) and one of the results in the chapter on Hamiltonian decompositions
(Chapter 3), as well as in the proof of our main result, Theorem 1.3.

The normal trick used when finding a 1-factor in an arbitrary digraph
is to look for a perfect matching in a suitable (undirected) bipartite graph.
Given a digraph D = (V, E) define G to be the bipartite graph with vertex
classes V = {1, 2, . . . , n} and V ′ = {1′, 2′, . . . , n′} where ij′ ∈ E(G) if and
only if ij ∈ E(D). Then crucially a perfect matching in G corresponds to a
1-factor of D. To find a perfect matching in G we need only check that Hall’s
condition holds, that is, for every subset X ⊂ V (D), |NG(X)| = |N+

D (X)| ≥
|X|.

Using this idea Cooper and Frieze proved that w.h.p. D2−in,2−out contains
a 1-factor. After this they give an algorithm which with high probability joins
together the cycles of the 1-factor to create a Hamilton cycle. In showing
that their algorithm succeeds w.h.p. they make heavy use of the following
tail estimate of Chernoff (see e.g. [3, Cor. A.14]).

Theorem 2.13. Let B(n, p) denote the binomial random variable with
parameters n and p. Then for any ε > 0 we have

P(|B(n, p) − np| ≥ εn) < 2 exp(−2ε2n).

Compared to Chebychev’s bound, which gives

P(|B(n, p) − np| ≥ εn) ≤ p2/ε2

for a binomial random variable, this is much stronger. Crucially it allows us
to show that in a random graph a property that for a single vertex behaves
like a binomial variable holds with high probability for every vertex. For
example, the property of having almost expected vertex degree, holds w.h.p.
for all vertices.

In a similar vein to the result on D2−in,2−out, Cooper, Frieze and Mol-
loy [19] recently proved the following result on Hamilton cycles in random
regular digraphs.

Theorem 2.14 (Cooper, Frieze and Molloy, 2005 [19]). Let r ≥ 2 be a
fixed constant and let Ωn,r denote the set of digraphs with vertex set [n] such
that each vertex has indegree and outdegree r. Let D be chosen uniformly at
random from Ωn,r. Then

lim
n→∞

P(D is Hamiltonian) =

{

0 r = 2
1 r ≥ 3

.

As with almost every topic in graph theory, the use of probabilistic tools
is vitally important in the study of Hamilton cycles. This is the case not just
when looking at random digraphs. Probabilistic methods are an incredibly
powerful tool when studying Hamilton cycles in any context. The following
result of Alon [3] uses the probabilistic method to bound the number of
Hamilton paths in a tournament, a problem, like many others, which it is
not clear how to approach otherwise.

11



First we need some definitions. The permanent of an n × n matrix A =
(ai,j) is defined as

per(A) :=
∑

σ∈Sn

n
∏

i=1

ai,σ(i),

where the sum is taken over every permutation of {1, 2, . . . , n}, i.e. over
Sn. The definition is similar to that of the determinant of a matrix, the
difference being that the signatures of the permutations are not taken into
account when calculating the permanent. Unlike the determinant there is no
pleasant geometric interpretation, crucially for us though it does have one
very nice combinatorial interpretation. Given a digraph D denote by AD the
adjacency matrix of D. That is, let AD = (ai,j) be the matrix with rows and
columns indexed by the vertices of D with ai,j = 1 if ij ∈ E(D) and ai,j = 0
otherwise. A little thought shows that the permanent of AD is precisely the
number of 1-factors of D.

Theorem 2.15 (Alon, 1990 [3]). Let P (n) denote the maximum possible
number of Hamilton paths in a tournament on n vertices. Then there exists
a positive constant c such that for every n,

n!

2n−1
≤ P (n) ≤ cn3/2 n!

2n−1
.

Before we can prove this result we will need some extra notation and
some other results. Let T be a tournament on n vertices and let AT be its
adjacency matrix. We will denote the number of 1-factors of T by F (T ) and
the number of Hamilton cycles by C(T ). Clearly C(T ) ≤ F (T ). We will also,
in a slight abuse of notation, write P (T ) for the number of Hamilton paths in
a given tournament T and C(n) for the maximum number of Hamilton cycles
in any tournament on n vertices. (F (n) is defined in the obvious way.) We
will use the following solution of the Minc conjecture by Brégman to bound
the permanent.

Theorem 2.16 (Brégman, 1973 [12]). Let A = (ai,j) be an n× n matrix
with all ai,j ∈ {0, 1}. Then the permanent of A satisfies

per(A) ≤
∏

1≤i≤n

(ri!)
1/ri ,

where ri is the number of non-zero entries in the ith row.

We will also need the following technical lemma (see e.g. [3]).

Lemma 2.17. Define g(x) = (x!)1/x. For every integer S ≥ n, the max-
imum of the function

∏n
i=1 g(xi) subject to the constraints

∑n
i=1 xi = S and

xi ≥ 1 are integers, is obtained if and only if the variables xi are as equal as
possible, i.e. iff each xi is either ⌊S/n⌋ or ⌈S/n⌉.
Proof. [of Theorem 2.15] Observe that the numbers ri defined in the the-
orem above are precisely the outdegrees of the vertices of T . If at least one
of these is 0, then clearly C(T ) = F (T ) = 0. Otherwise, by Theorem 2.16
and the technical lemma above, F (T ) is at most the value of the function
∏n

i=1(ri!)
1/ri , where the integer values ri satisfy

∑

i ri =
(

n
2

)

and are as equal
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as possible. Applying Stirling’s formula gives, after some tedious calculation,
that for every tournament T on n vertices

(1) C(T ) ≤ F (T ) ≤ (1 + o(1))

√
π√
2e

(n + 1)3/2 (n − 1)!

2n
.

Thus we have C(n) ≤ (1 + o(1))(n + 1)3/2 (n−1)!
2n .

Next we derive an upper bound on the number of Hamilton paths in a
tournament in terms of the number of Hamilton cycles in a larger tourna-
ment. Given a tournament T let S be the tournament obtained from T by
adding a new vertex y and by adding the edge xy to E(S) with probability
1/2 and the edge yx otherwise for every x ∈ V (T ). For every Hamilton
path in T , the probability that it can be extended to a Hamilton cycle in
S is precisely 1/4. Thus the expected number of Hamilton cycles in S is
P (T )/4, and hence there exists S for which C(S) ≥ P (T )/4. Hence we have
P (n) ≤ 4C(n + 1).

Combining this with (1) we have

P (n) ≤ 4C(n + 1) ≤ (1 + o(1))

√
π√
2e

n3/2 n!

2n−1
= O

(

n3/2 n!

2n−1

)

.

The lower bound comes from a simple application of the linearity of
expectation. For a permutation σ of V (T ) let Xσ be the indicator random
variable for σ giving a Hamilton path, where we pick σ uniformly at random
from all possible permutations of V (T ). Then the number of Hamilton paths
in T is precisely X :=

∑

Xσ, where we sum over all possible permutations
of V (T ), and

E(X) =
∑

E(Xσ) = n!2−(n−1).

Thus some tournament has at least E(X) Hamilton paths and we are done.
�

This result has recently been improved by Friedgut and Kahn [24].

Theorem 2.18 (Friedgut and Kahn, 2004 [24]). Let C(n) denote the
maximum number of Hamilton cycles in a tournament on n vertices. Then

C(n) < O

(

n3/2−α (n − 1)!

2n

)

,

where α = 0.2507 . . ..

Recently Busch [13] has given the following best possible lower bound on
the number of Hamilton paths in a strong tournament.

Theorem 2.19 (Busch, 2005 [13]). The minimum number of distinct
Hamilton paths in a strong tournament on n vertices is 5(n−1)/3.

2.3. Hamilton Cycles With Additional Con-

straints

In this section we discuss some results on Hamilton cycles where we im-
pose additional constraints. Primarily this will be requiring that the Hamil-
ton cycles either contain or avoid given edges or vertices.
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Figure 3. The exceptional tournament in Theorem 2.20.

We first give a classical result in this area. We say that a digraph D has
an [x, y]-Hamilton-path for distinct vertices x, y ∈ V (D) if it has a Hamilton
path either from x to y or from y to x. The following theorem of Thomassen
[54] gives a rather technical classification of tournaments containing an [x, y]-
Hamilton path which has a nice corollary concerning such paths in strong
tournaments. First we need some definitions. A maximal strong induced
subgraph of a digraph D is called a strong component. We call a strong
component of D initial if no other strong component sends an edge to it.
Similarly a strong component is called terminal if it sends an end to no other
strong component. See [4] for a fuller discussion of strong components.

Theorem 2.20 (Thomassen, 1978 [54]). Let T be a tournament on n
vertices and let x1, x2 be distinct vertices of T . Then T has an [x1, x2]-
Hamilton path if and only if none of the following holds.

(a) T is not strong and either neither x1 nor x2 belong to the initial
strong component of T or neither x1 nor x2 belong to the terminal
strong component.

(b) T is strong and for i = 1, 2, T − xi is not strong and x3−i belongs
to neither the initial nor the terminal strong component of T − xi.

(c) T is isomorphic to Figure 2.3.

This gives the following corollary, which is used in induction step of the
proof of the theorem itself.

Corollary 2.21. Let T be a strong tournament and let x, y, z be distinct
vertices of T . Then T has a Hamilton path connecting two of the vertices in
the set {x, y, z}.
Proof. Suppose x, y, z are distinct vertices of a strong tournament T
and that T has no Hamilton path connecting x and y. Then either (b) or
(c) holds. The result is clear if T is isomorphic to Figure 2.3, so assume
not. Then we have that (b) holds. If z belongs to the initial or the terminal
strong component of T − x, there is a Hamilton path connecting x and z.
If not, then T − z is strong. Also as T is strong and T − x is not strong
we must have that x has an outneighbour in the initial strong component of
T − x and an inneighbour in the terminal strong component of T − x. But
y belongs to neither the initial nor the terminal strong component of T − x
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so we must have that T − y is strong. But then T has a Hamilton path
connecting z and y by Theorem 2.20. �

The following result of Fraisse and Thomassen [25] provides a condition
for the existence of Hamilton cycles in tournaments which avoid a given set of
edges. We say that a digraph is k-strong if it is strong and if after removing
any set of k − 1 vertices it is still strong.

Theorem 2.22 (Fraisse and Thomassen, 1986 [25]). For every k-strong
tournament T = (V, E) and every set E ′ ⊂ E such that |E ′| ≤ k − 1, there
is a Hamilton cycle in T − E ′.

Thomassen also proved the following result on Hamilton cycles in tour-
naments with restrictions on both edges included and excluded.

Theorem 2.23 (Thomassen, 1983 [56]). Let T be a tournament on n
vertices and let k be a positive constant. Then for all k there exists h(k)
such that if T is h(k)-strong and A1 ⊂ E(T ) and A2 ⊂ E(T )\A1 are sets of
at most k edges then T − A1 contains a Hamilton cycle containing all edges
in A2.

Kühn, Osthus and Young [42] recently gave a minimum degree condition
that forces a sufficiently large digraph to contain a Hamilton cycle in which
a number of vertices appear in a prescribed order. We say a digraph D
is k-ordered Hamiltonian if for every sequence of k distinct vertices in D,
v1, . . . , vk, there exists a Hamilton cycle encountering v1, . . . , vk in this order.

Theorem 2.24 (Kühn, Osthus and Young, 2007 [42]). For every k ≥ 3
there is an integer n0 = n0(k) such that every digraph D on n ≥ n0 vertices
with

δ0(D) ≥ ⌈(n + k)/2⌉ − 1

is k-ordered Hamiltonian.

Note that the case k = 1, 2 is the theorem of Ghouila-Houri (Theorem
2.1), so this theorem generalises that result. They also proved a similar
result on the existence of Hamilton cycles encountering given edges in the
prescribed order.

2.4. Regularity and Hamiltonicity

In this section we will introduce the concept of ε-regularity and give a
recent result by Frieze and Krivelevich on packing Hamilton cycles into ε-
regular random digraphs. Essentially, a graph is ε-regular if it looks like a
‘typical’ random graph. More precisely, we define it as follows. The density
of a bipartite graph G = (A, B) with vertex classes A and B is defined to be

(2) dG(A, B) :=
eG(A, B)

|A| |B| .

We often write d(A, B) if this is unambiguous. Given ε > 0, we say that G is
ε-regular if for all subsets X ⊆ A and Y ⊆ B with |X| > ε |A| and |Y | > ε |B|
we have that |d(X, Y ) − d(A, B)| < ε. A graph G = (V, E) is ε-regular if
this condition holds for all disjoint subsets; this is, |d(X, Y ) − d(A, B)| < ε
for all disjoint A, B ⊂ V with |A| , |B| > ε|V |.
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So a bipartite graph is ε-regular if all sufficiently large pairs of subsets
have almost the expected number of edges between them. This turns out to
be the right way to capture the notion of ‘looking random-like’. The following
theorem (see e.g. [3]) shows that this simple property is equivalent to almost
every property we would want from a ‘random-like’ graph. Equivalence here
means that for all i, j if we are given ci such that the statement relying on
ci is true then there exists cj = cj(ci) such that cj → 0 as ci → 0 and the
statement relying on cj is true for that value of cj.

Theorem 2.25. Let G be a graph on n vertices with edge density p. Then
the following properties are equivalent.

P1. For every graph H(s) on s vertices with t edges, the number of
labelled copies of H(s) in G is (1 + c1)n

spt.
P2. G contains at most (p4 + c2)n

4 labelled 4-cycles.
P3.

∑

x,x′∈V (G) |N(x) ∩ N(x′)|2 ≤ (p4 + c2)n
4.

P4. ||N(x)∩N(x′)|−p2n| ≤ c3n for all but at most c3n
2 pairs of vertices

x, x′ ∈ V (G).
P5. For any 2 disjoint sets A, B ⊂ V (G), |e(A, B) − p|A||B|| ≤ c4n

2.
P6. For any set A ⊂ V (G), the number of edges inside A differs from

p|A|2/2 by at most c5n
2.

P7. If λ1, . . . , λn are the eigenvalues of the adjacency matrix of G then
∑

λ4
i ≤ (p4 + c2)n

4.

Furthermore, if G is regular (of degree pn) then these are all equivalent to:

P8. The second largest absolute value of the eigenvalues of the adjacency
matrix of G is at most c6n.

Note that Properties 2, 3 and 7 all count the same thing.
The fact that Property 5, which we have taken as the definition of ε-

regularity, is strong enough to force almost the expected number of labelled
copies of every subgraph is one of the interesting special cases of this result,
and one of the reasons why ε-regularity is so interesting.

The full significance of the idea of ε-regularity comes from the enormous
power of Szemerédi’s famous Regularity lemma. Roughly speaking, this tells
us that any large graph can be approximated by a union of ε-regular bipartite
graphs. It has led to an astonishing variety of new results in the last twenty
years in almost every area of graph theory. Alon and Shapira [2] proved a
digraph version of the Regularity lemma, and we will use this heavily in our
result. See Section 5.2 for a statement of the Diregularity lemma and a much
longer discussion.

Clearly no digraph D contains more than δ0(D) edge disjoint Hamilton
cycles. It is conjectured that for random digraphs we achieve this bound with
high probability. The corresponding problem for undirected graphs has been
the subject of intensive research and has been settled for relatively sparse
graphs [9] (at most n ln n edges in a graph of order n). The question appears
to be very hard for the remaining cases. Erdős (see [57]) asked the following
similar question on Hamilton cycles in tournaments.

Question 2.26. Do almost all tournaments contain δ0(T ) edge-disjoint
Hamilton cycles?
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We now give one result which says dense random digraphs can almost
be decomposed into edge-disjoint Hamilton cycles. Let D(n, α, ε) be the
collection of digraphs on n vertices which are ε-regular and have minimum
semi-degree αn, where an ε-regular digraph is defined in the obvious way.
That is, given ε > 0 and a bipartite digraph D with vertex classes A and
B, we say that D is ε-regular if for all subsets X ⊆ A and Y ⊆ B with
|X| > ε |A| and |Y | > ε |B| we have that |d(X, Y ) − d(A, B)| < ε and
|d(Y, X) − d(B, A)| < ε. I.e. we demand ε-regularity in both directions. A
digraph D = (V, E) with density d := |E|/(n(n−1)) is ε-regular if all A, B ⊂
V with |A| , |B| > ε|V | satisfy |d − d(A, B)| < ε and |d − d(B, A)| < ε

Theorem 2.27 (Frieze and Krivelevich, 2003 [27]). For all α > 0 and
for all sufficiently large n ∈ N there exists ε satisfying

10

(

lnn

n

)1/6

≤ ε < α

such that if D ∈ D(n, α, ε) then D contains (α−4ε1/2)n edge-disjoint Hamil-
ton cycles with probability tending to 1 as n tends to infinity.

Corollary 2.28. Let 0 < p < 1 be constant. Then w.h.p. D(n, p)
contains (p − o(1))n edge-disjoint Hamilton cycles.

The corollary follows since using Chernoff type bounds it is relatively
straightforward to show that w.h.p. a graph in D(n, p) is ε-regular, i.e. w.h.p.
D(n, p) ∈ D(n, p, ε) for some constant ε.

Proof. [Sketch for Theorem 2.27] Let γ := ε1/2/2. First choose a random
subdigraph Γ of D with edge density γn and define D1 := D − Γ . Straight-
forward use of Chernoff type bounds (Theorem 2.13) shows that w.h.p. Γ
is dense and that there are almost the expected number of edges between
any two disjoint subsets of V (D) of size at least εn. We then extract a 2r-
regular subdigraph F from D1, where r := (α− 6γ)n. This is a fairly simple
task, done by applying the max-flow min-cut theorem to a suitably defined
bipartite graph.

For essentially the same reasons as discussed in the proof of Theorem
2.15, the number of perfect matching in a bipartite graph is equal to the
permanent of its adjacency matrix. This fact and Brégman’s proof of the
Minc conjecture (Theorem 2.16) are used to show that any 2r-regular digraph
(with r not too small) contains many 1-factors, and hence one can show that
it contains a 1-factor containing at most 10ε−1(n/ lnn)1/2 cycles. Repeating
this gives t := r − ⌊εn⌋ 1-factors F1, . . . , Ft each not containing too many
cycles.

Then for i = 1, 2, . . . , t we convert Fi into a Hamilton cycle Hi using
the edges of the subgraph D\(H1 ∪ . . . ∪ Hi−1 ∪ Fi ∪ . . . ∪ Ft). Note that
this subgraph contains almost all the edges of Γ , and so we are able to use
the fact that any two small sets, and thus the neighbourhoods of any two
vertices, have an edge between them in Γ . The bound on the number of
cycles in each 1-factor ensures that at every stage we have sufficient edges
outside H1 ∪ . . . ∪ Hi−1 ∪ Fi ∪ . . . ∪ Ft to convert Fi into a Hamilton cycle.

�
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This result also answers a long standing conjecture of Thomassen which in
some sense generalises Kelly’s conjecture (Conjecture 3.4). As with Corollary
2.28, this corollary follows from Theorem 2.27 by using Chernoff type bounds
to show that w.h.p. a random tournament is ε-regular.

Theorem 2.29 (Frieze and Krivelevich, 2003 [27]). For any ε > 0 almost
all tournaments of order n contain ⌊(1/2−ε)n⌋ edge-disjoint Hamilton cycles.
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Chapter 3

Hamiltonian Decompositions

3.1. Results on Hamiltonian Decompositions

In this chapter we discuss Hamiltonian decompositions of digraphs and
show how our result gives an improved partial result towards one of the most
famous conjectures in tournament theory, Kelly’s conjecture.

Given a digraph D, a Hamiltonian decomposition of D is a collection of
edge-disjoint Hamilton cycles of D covering every edge of D. For undirected
graphs it is a well-known and straightforward result that for n ≥ 1 the
complete graph K2n+1 is decomposable into edge-disjoint Hamilton cycles.

The question of the existence of Hamiltonian decompositions is harder
for digraphs. We do though have the following result of Tillson showing
that Hamiltonian decompositions exist for complete digraphs. The complete
digraph of order n, K∗

n, is the unique digraph on n vertices such that for all
x, y ∈ V (K∗

n), xy ∈ E(K∗
n).

Theorem 3.1 (Tillson, 1977 [58]). The edges of K∗
n can be decomposed

into Hamilton cycles if and only if n 6= 4, 6.

The constructive proof uses Latin squares to give actual decompositions
and can be found in Tillson’s paper [58].

Whilst finding Hamiltonian decompositions is hard, if we just ask for a
decomposition into edge-disjoint 1-factors the situation is easier. The fol-
lowing observation of Kotzig [41] says that we can always partition the edge
set of a regular digraph into 1-factors.

Theorem 3.2 (Kotzig, 1969 [41]). If D = (V, E) is an r-regular digraph
on n vertices, then the edge set of D can be partitioned into 1-factors.

Proof. Define G to be the bipartite graph with vertex classes V =
{1, 2, . . . , n} and V ′ = {1′, 2′, . . . , n′} where ij′ ∈ E(G) if and only if ij ∈
E(D). Then G is r-regular and a perfect matching in G corresponds to a
1-factor of D. To check the existence of a perfect matching in G we need
only check that Hall’s condition holds, that is, for every subset X ⊂ V ,
|NG(X)| ≥ |X|.

So let X ⊂ V . By the regularity of G, the number of edges from X
to N(X) is exactly r|X|. Counting in the other direction, the regularity
of G gives that the number of edges from N(X) to X is at most r|N(X)|.
Hence

r|X| = e(X, N(X)) ≤ r|N(X)|,
as desired.

Remove this perfect matching from G to obtain an (r − 1)-regular bi-
partite graph G′. By the same argument as before, G′ contains a perfect
matching. Repeating this we obtain r edge-disjoint perfect matchings in G,
and hence r edge-disjoint 1-factors of D as required. �
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As in Theorem 2.12, it is sometimes desirable to restrict the number of
cycles in a 1-factor, so as to make joining them together to form a Hamilton
cycle easier. The following result of Frieze and Krivelevich was mentioned in
the sketch of the proof of Theorem 2.27, but as it is of independent interest
we state it seperately here.

Lemma 3.3 (Frieze and Krivelevich, 2005 [27]). Let ε > 0 and let D
be an r-regular digraph on n vertices, where r ≥ εn. Then D contains a
1-factor with at most 10ε−1(n lnn)1/2 cycles.

3.2. Kelly’s Conjecture

For tournaments we have the following famous conjecture of Kelly (see
e.g. [4]).

Conjecture 3.4 (Kelly’s Conjecture). Every regular tournament on n
vertices can be partitioned into (n − 1)/2 edge-disjoint Hamilton cycles.

There have been several partial results towards this conjecture. The
first result which gave a number of Hamilton cycles dependent on n is due
to Thomassen [57] who showed that every tournament contains at least

⌊
√

n/1000⌋ edge-disjoint Hamilton cycles. The best previous result prior
to that said that every regular tournament on at least 5 vertices contains 2
edge-disjoint Hamilton cycles (see e.g. [4]).

The first person to prove that there are a linear number of Hamilton cycles
was Häggkvist [30], who proved that every regular tournament contains at
least 2−18n edge-disjoint Hamilton cycles. In work with Thomason [31] he
later improved this bound to n/12 − o(n), which was previously the best
known bound. The following corollary of our main theorem (Theorem 1.3)
improves these bounds.

Corollary 3.5. For every α > 0 there exists an integer N = N(α) such
that every regular tournament T of order n ≥ N contains at least (1/8−α)n
edge-disjoint Hamilton cycles.

Proof. A regular tournament has minimum semi-degree (n − 1)/2 so we
can apply Theorem 1.3 to obtain a Hamilton cycle H1. Let T1 := T − H1.
Then δ0(T1) = (n − 1)/2 − 1 and so we can find a Hamilton cycle H2 and
define T2 := T1 − H1 as before. We can continue in this manner until Ti

has minimum semi-degree less than 3n/8 + αn, i.e. we get at least n/8−αn
Hamilton cycles as desired. �

Note that whilst a full solution of Kelly’s conjecture appears very hard,
an improved partial result would be obtained by a solution of the conjecture
of Jackson (Conjecture 2.7) stating that any regular oriented graph on n
vertices with minimum semi-degree at least n/4 contains a Hamilton cycle.
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Chapter 4

Pancyclicity

4.1. Pancylicity In Digraphs

An interesting way to strengthen the property of having a Hamilton cycle
is to ask for the digraph to contain a cycle of every possible length. In this
chapter we survey some of the results in this area. We also demonstrate
how our result, in conjunction with partial results towards the Caccetta-
Häggkvist conjecture (Conjecture 4.9), implies not just the presence of a
Hamilton cycle in every sufficiently large oriented graph of minimum semi-
degree 3n/8 + αn, but also a cycle of every possible length.

A digraph D of order n is pancyclic if it has cycles of all lengths 3, 4, . . . , n.
We say that D is vertex-pancyclic if for every v ∈ V (D) and any k ∈
{3, 4, . . . , n} there is a cycle of length k containing v. Furthermore, we say
that D is vertex-m-pancyclic if D contains a cycle of length k containing v
for all m ≤ k ≤ n and each v ∈ V (D).

Whilst this appears a much stronger notion than that of having a Hamil-
ton cycle, it turns out that in some cases we require only slightly stronger
conditions to force pancyclicity. The following example shows that an in-
crease in minimum semi-degree of just 1 in the conditions of Theorem 2.1
gives us pancyclicity.

Theorem 4.1 (Alon and Gutin, 1997 [1]). Every directed graph D on n
vertices with minimum semi-degree δ0(D) ≥ n/2 + 1 is vertex-2-pancyclic.

Proof. Let v ∈ V be an arbitrary vertex. The subdigraph D − v has
minimum semi-degree at least n/2 = (n − 1)/2 + 1/2 so by Theorem 2.1
there is a Hamilton cycle u1u2 . . . un−1u1 in D − v. If there is no cycle of
length k through v then for no index i is ui ∈ N+(v) and ui+k−2 ∈ N−(v),
where the indices are modulo n − 1. By summing over all values of i, we
get that |N+(v)|+ |N−(v)| ≤ n− 1, contradicting the minimum semi-degree
condition. �

Note that this theorem says that there are 2-cycles, which is something
that is not required in our definition of pancyclicity. Similarly, adding just
one to the Ore type condition in Meyniel’s theorem (Theorem 2.2) again
forces pancyclicity.

Theorem 4.2 (Thomassen, 1977 [55]). Let D be a strong digraph on
n vertices such that d(x) + d(y) ≥ 2n whenever x and y are nonadjacent.
Then either D is pancyclic or n is even and D is isomorphic to the complete
bipartite digraph on n vertices.

Song [50] showed that for oriented graphs we can get a slightly stronger
result.
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Theorem 4.3 (Song, 1994 [50]). Let D be an oriented graph on n ≥ 9
vertices with minimum degree n − 2. If

xy 6∈ E(D) ⇒ d+(x) + d−(y) ≥ n − 3

then D is pancyclic.

There are many more nice results in this area. The following result of
Häggkvist puts a bound not on the minimum degree but on the number of
edges.

Theorem 4.4 (Häggkvist and Thomassen, 1976 [32]). Every Hamilton-
ian digraph on n vertices and at least n(n + 1)/2 − 1 edges is pancyclic.

If we relax the conditions of pancyclicity and ask only for every short
cycle we get a further set of interesting results. Erdős proved in 1963 a
result of this type for undirected graphs, we state a directed analogue of his
result for digraphs, due to Häggkvist and Thomassen.

Theorem 4.5 (Häggkvist and Thomassen, 1974 [32]). Let k ≥ 2 be an
integer. Every strong digraph D with n ≥ (k − 1)2 vertices and more than
n2/2 edges contains a cycle of length i for all i ≤ k.

The following simple observation says that if a tournament contains no
triangles then it is acyclic, i.e. it contains no cycles of any length.

Proposition 4.6. Every triangle-free tournament T is acyclic.

Proof. Let x1x2 . . . xk be a cycle of minimum length in T . By hypothesis
k ≥ 4. Since T is a tournament either x1x3 ∈ E(T ) or x3x1 ∈ E(T ). But
in the first case x1x3 . . . xk is a (k− 1)-cycle, contradicting the minimality of
k and in the second case x1x2x3 is a triangle contradicting our assumption
that T is triangle-free. �

Earlier when we stated Moon’s theorem (Theorem 2.4) we actually gave
a stronger version which he proved in 1968 stating that every strong tour-
nament is not just Hamiltonian, but that for every vertex there is a cycle of
every length containing it.

Theorem 4.7 (Moon, 1968 [46]). Every strong tournament is vertex
pancyclic.

4.2. The Caccetta-Häggkvist Conjecture

To extend the main theorem of this thesis (Theorem 1.3) to show pan-
cyclicity we will need to use a partial result towards the famous conjecture
of Caccetta and Häggkvist on small cycles in digraphs. It is reasonable to
expect that in a digraph with many edges there should be many cycles, and
in particular, there should be some short cycles. The following theorem of
Chvátal and Szemerédi shows that this intuition is correct.

Theorem 4.8 (Chvátal and Szemerédi, 1983 [16]). Let D be a digraph on
n vertices and let r be a positive constant such that the minimum outdegree
of D is at least r. Then D contains a cycle of length at most 2n/(r + 1).
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In 1978 Caccetta and Häggkvist [14] made the following striking conjec-
ture (see e.g. [47]).

Conjecture 4.9 (Caccetta and Häggkvist, 1978 [14]). Every digraph
on n vertices with minimum outdegree at least r contains a cycle of length
at most ⌈n/r⌉.

The following example shows that the result is best possible in the case
r = n/3. It is not hard to extend it to a family of digraphs showing that the
conjecture is best possible for all r.

Proposition 4.10. There exists an oriented graph G on n vertices with
minimum outdegree n/3 − 1 such that G contains no triangle.

Proof. Let the vertex set of G be {1, 2, . . . , n} and connect i to j if
1 ≤ j − i ≤ n/3 − 1, counting modulo n. If i1i2i3 is a triangle in G then by
the pigeon hole principle one of {i2 − i1, i3 − i2, i1 − i3} is at least n/3, where
we again count modulo n. But this contradicts the definition of the edgeset
of G. �

Caccetta and Häggkvist proved the result themselves in the case r = 2
[14] and proofs also exist for the cases r = 3 (Hamidoune [34]) and 4 ≤ r ≤ 5
(Hoáng and Reed [35]). Whilst the general case is unproven there are partial
results in several different directions. One weakening which has led to a result
is to insist that r is small compared to n.

Theorem 4.11 (Shen, 1998 [49]). Let r be a positive constant and let D
be a digraph on n ≥ 2r2 − 3r + 1 vertices. If D has minimum outdegree r
then it contains a cycle of length at most ⌈n/r⌉.

Allowing an additive constant error term in the size of the cycle has also
been a productive avenue of research. The first result in this direction was
due to Chvátal and Szemerédi [16], who gave an additive constant of 2500.
The current best error term of 73 is due to Shen [49].

Theorem 4.12 (Chvátal and Szemerédi, 1983 [16]). Let D be a directed
graph on n vertices and let r be a positive constant such that the minimum
outdegree of D is at least r. Then D contains a cycle of length at most
⌈n/r⌉ + 2500.

The third way one can weaken the conjecture is to increase the minimum
outdegree demanded, and it is a partial result in this direction which we will
need to prove that oriented graphs with minimum semi-degree 3n/8 + αn
are pancyclic. We will state results of this form in the case r = n/3, i.e.
when we are trying to force a triangle in our digraph. This is by far the most
famous form of this conjecture, and has been the subject of huge quantities
of research over the last 25 years. One of the strongest results of this type,
and the one we will use, is the following result of Shen.

Theorem 4.13 (Shen, 1998 [49]). Let c = 3−
√

7 = 0.354 . . . and suppose
that G is an oriented graph on n vertices with minimum outdegree at least
cn. Then G contains a triangle.

The following older (and weaker) result of Caccetta and Häggkvist is in
a similar vein.
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Theorem 4.14 (Caccetta and Häggkvist, 1978 [14]). Let c = (3−
√

5)/2
and suppose that G is an oriented graph on n vertices with minimum outde-
gree at least cn. Then G contains a triangle.

Proof. Let 0 < c < 1 and let G be an oriented graph on n vertices with
minimum outdegree at least cn and suppose that G contains no triangles.
We now show by induction that c < (3 −

√
5)/2.

By a simple averaging argument G contains a vertex v0 with indegree at
least cn. Let A := N−(v0) and let B := N+(v0). Then |A|, |B| ≥ cn. Since
G is an oriented graph we can assume that A, B and {v0} are all disjoint.

Let G′ be the subdigraph of G induced by B. Since |B| < n our induction
hypothesis gives us a triangle in G′, and thus in G, if δ+(G′) ≥ c|B|. Hence
there exists a vertex b0 ∈ B with |N+

B (b0)| < c|B|. Let W := N+
G (b0)\B and

note that
|W | > cn − c|B|.

If v0 ∈ W then G contains a 2-cycle, contradicting the fact that G is oriented.
If A∩W 6= ∅ then G contains a triangle and we are done. Therefore we can
assume that the sets A, B, W and {v0} are all disjoint, and so

n ≥ |A| + |B| + |W | + 1 > 2cn + (1 − c)|B| + 1 > 3cn − c2n.

This implies that
c2 − 3c + 1 > 0

and rearranging this gives c > (3 −
√

5)/2 as desired. �

In 1992 De Graaf, Schrijver and Seymour [29] considered a similar prob-
lem. Instead of asking for the minimum outdegree which forces a short cycle
they asked for the minimum semi-degree which does this. The main result of
this type is due to Shen and gives a stronger bound than is currently known
for the ordinary version of the Caccetta-Häggkvist conjecture.

Theorem 4.15 (Shen, 1997 [49]). If G is any oriented graph on n vertices
with minimum semi-degree δ0(G)/n ≥ 0.3477 . . . then G contains a triangle.

Recently Hamburger, Haxell and Kostochka [33] have used some results
of Chudnovsky, Seymour and Sullivan [15] to slightly improve the bound
given by Shen’s method.

Theorem 4.16 (Hamburger, Haxell and Kostochka, 2007 [33]). If G
is any oriented graph on n vertices with minimum semi-degree δ0(G) ≥
0.34564n then G contains a triangle.

4.3. Short Cycles

To prove our pancyclicity result we need a result on short cycles in ori-
ented graphs which, as it is of interest in its own right, we will state and
discuss first. After seeing the triangle case of the Caccetta-Häggkvist con-
jecture (Conjecture 4.9) the following question is a natural one to ask.

Question 4.17. What minimum semi-degree condition forces an oriented
graph to contain a cycle of length k for a given constant k?

We can provide an essentially best possible answer for k ≥ 4, k 6≡ 0
(mod 3).
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Theorem 4.18. Let G be an oriented graph on n vertices and let u, v ∈
V (G) be distinct vertices. Then the following holds.

(P1) If δ0(G) ≥ n/3 + 1 then G contains a path of length exactly 4 from
u to v.

(P2) If δ0(G) ≥ n/3 + 1 + (k − 5) with 5 ≤ k ≤ n/7 then G contains a
path of length exactly k from u to v.

If u ∈ V (G) is any vertex then we have the following.

(C1) If δ0(G) ≥ n/3 + 1 then G contains a cycle of length 4 containing
u.

(C2) If δ0(G) ≥ n/3 + 1 then G contains a cycle of length 5 containing
u.

(C3) If δ0(G) ≥ n/3 + (k − 5) with 6 ≤ k ≤ n/7 then G contains a cycle
of length k containing u.

Proof. We start with (P1). Assume that there is no path of length 4 from
u to v. First note that given a walk uu1u2u3v of length 4 from u to v the
only ways in which this will not be a path are if u1 = v or u3 = u. Thus if
we exclude these 2 possibilities then any such walk will in fact be a path.

Choose a set X ⊆ N+(u)\{v} of size n/3 and define Y := V (G)\(X ∪
N+(X)). A walk of length 4 from u to v through X which avoids u will
necessarily be a path. For all vertices x ∈ V (G) we have |N(x)| ≥ 2n/3 + 2
and so the maximum size of an independent set is at most n/3− 2. Writing
X+ for N+(X), we thus have X ∩ X+ 6= ∅.

Let X++ := N+(X+). If |X++| > 2n/3 then as |N−(v)\{u}| ≥ n/3 their
intersection is nonempty and we have the desired path. So assume not.

Assume |X∪X+| ≤ 2n/3 and let Z := {z ∈ X∩X+ : N−(z)∩(X∩X+) =
∅}, i.e. Z is the set of vertices in X ∩ X+ which are not in N+(X ∩ X+). If
Z = X ∩ X+ then X ∩ X+ is an independent set and

|N+(X ∩ X+)\X| ≥ n/3 + 1 = n/3 + 1 − |X ∩ X+|/2 + |Z|/2.

Now suppose Z is a proper subset of X ∩ X+ and note that there are no
edges from X ∩ X− to Z. So

e((X ∩ X+)\Z, X ∩ X+) ≤ (|X ∩ X+| − |Z|)2/2.

Hence there must exist a vertex x ∈ (X ∩ X+)\Z with |N+(x)\X| ≥ n/3 +
1 − |X ∩ X+|/2 + |Z|/2 and hence

(3) |X+\X| ≥ |N+(x)\X| ≥ n/3 + 1 − |X ∩ X+|/2 + |Z|/2.

Define YB := {y ∈ Y : N−(y)\Y = ∅} and YG := Y \YB. YB should be
thought of as the set of ‘bad’ vertices – it contains vertices which are not in
X++.

If YB = ∅ then |YG| = n − |X ∪ X+| > n/3 by our assumption that
|X ∪X+| ≤ 2n/3. But for any vertex x ∈ X ∩X+ the minimum semidegree
condition gives that |N+(x) ∩ X+| = |N+(x)| ≥ n/3 + 1. Thus |X++| >
2n/3 + 1, which is a contradiction.

So suppose that YB 6= ∅ and observe that

e(YB) ≤ (|YB| − 1)|YB|/2, e(YG, YB) ≤ |YB||YG|, e(V (G), YB) ≥ |YB|n/3.
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Combining these we get that

n/3 ≤ e(V (G), YB)/|YB| ≤ |YB|/2 − 1/2 + |YG|
= |Y |/2 − |YG|/2 − 1/2 + |YG|.

Hence

2n/3 ≤ |Y | + |YG| − 1

⇒|YG| ≥ 2n/3 − (n − |X ∪ X+|) + 1 = |X ∪ X+| − n/3 + 1.(4)

Observe that as there are no edges from X to Y , YG ⊆ X++. Noting that
N+(X+) is at least the union of its intersections with X, X+\X and Y we
now have that

|X++| ≥ |N+(X ∩ X+) ∩ (X+\X)| + |N+(X ∩ X+) ∩ X| + |YG|
≥ |N+(X ∩ X+) ∩ (X+\X)| + (|X ∩ X+| − |Z|) + |YG|
(3)

≥ (n/3 + 1/2 − |X ∩ X+|/2 + |Z|/2) + (|X ∩ X+| − |Z|) + |YG|
(4)

≥ n/3 + 1/2 + |X ∩ X+|/2 − |Z|/2 + |X ∪ X+| − n/3 + 1

≥ |X ∩ X+|/2 − |Z|/2 + |X ∪ X+| + 3/2

≥ |X ∩ X+|/2 − |Z|/2 + |X| + |N+(X ∩ X+)\X| + 3/2

(3)

≥ |X ∩ X+|/2 − |Z|/2 + |X| + n/3 + 1 − |X ∩ X+|/2 + |Z|/2 + 3/2

= |X| + n/3 + 5/2

≥ 2n/3 + 5/2.

Which contradicts our earlier assumption that |X++| ≤ 2n/3 + 1.
Now suppose that |X ∪ X+| > 2n/3. Then |Y | < n/3 and so by the

minimum semi-degree condition every vertex in Y has an inneighbour in
X ∪ X+. But e(X, Y ) = 0 by the definition of X+ so every vertex in Y has
an inneighbour in X+ and Y ⊂ X++.

Also, X\X+ is an independent set, and so every vertex in X\X+ receives
≥ n/3 + 1 edges from (X+ ∪ Y )\X. But |Y | < n/3 so every vertex in X
receives an edge from X+. Thus X\X+ ⊂ X++. Finally, any vertex in
X ∩ X+ has at least n/3 + 1 outneighbours in X+, and so |X++ ∩ X+| ≥
n/3 + 1. (Recall that X ∩ X+ 6= ∅ and so we can indeed do this.)

Putting these observations together we get

|X++| ≥ |X\X+| + |Y | + |X++ ∩ X+|
≥ (|X| − |X ∩ X+|) + (n − |X ∪ X+|) + (n/3 + 1)

≥ 4n/3 + 1 − |X+| > 2n/3 + 1.

Which is a contradiction. The final inequality holds since if |X+| ≥ 2n/3−1
then |X++| = n, which is a contraction, and so we have shown that (P1)
holds. Property (C1) holds by exactly the same argument; just set u = v .

Case (P2) is proved by a different method. We first prove it for k = 5
and then show how this implies the result in general. The maximum size of
an independent set in G is n−2δ0(G) ≤ n/3−2, so N+(u)∩N+(N+(u)\{v})
has size at least 2. Thus there exist vertices x 6= v and x′ ∈ N+(u)\{v} with
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(a) u = u3 (b) u1 = u4 (c) u2 = v

(d) u = u4 (e) u1 = v

Figure 1. All possible ways in which a walk uu1u2u3u4v of
length 5 in an oriented graph could not be a path.

ux, x′x ∈ E(G). (If not then there exists y ∈ N+(u) such that N+(u)\{y, v}
is an independent set of size ≥ n/3 − 1, which is a contradiction.)

Note that the minimum semi-degree condition is impossible for n < 9
and for n = 9 it implies a regular tournament in which case the result is
trivial. So we may assume that n ≥ 10.

Define X := N+(x)\{v}. Then |X| ≥ n/3. We now proceed as before,
seeking a path of length 3 or 4 from x to v which avoids x′ and u. Let Y :=
N−(v)\{u, x, x′}. By the minimum semi-degree condition, |Y | ≥ n/3 − 2.
We can assume the following, as otherwise we are done.

(i) N+(X) ∩ Y = ∅.
(ii) (N+(X) ∩ N−(Y ))\{u} = ∅.
(iii) X ∩ N−(Y ) = ∅.

Note that (i) and (iii) are equivalent. The exclusion of vertices from condition
(ii) and the definitions of X and Y are necessary to prevent us getting a ‘path’
from u to v which self-intersects. We do not have to exclude u from X since
X ⊆ N+(N+(u)) so u ∈ X would give us a 2-cycle, contradicting the fact
that G is an oriented graph. To see that we are done if one of (i)–(iii) fails
let uu1u2u3u4v be the walk from u to v which exists if one these conditions
fails. Then either the negation of (i) gives

(5) u1 = x′, u2 = x, u3 ∈ X, u4 ∈ N+(X) ∩ Y

or the negation of (ii) gives

(6) u1 = x, u2 ∈ X, u3 ∈ (N+(X) ∩ N−(Y ))\{u}, u4 ∈ Y.

This walk will not be a path if any of the following occur: u = u3, u1 = u4,
u2 = v, u = u4 or u1 = v – see Figure 1 for an illustration. So in our situation
we won’t have a path if any of the following hold: u1 = v, u2 = v, u3 = u
or u4 ∈ {u, x, x′}. In (5) this is impossible because of the definition of x′,
the definition of x, the definition of X and the definition of Y respectively.
Again in (6) this is impossible because of the definition of x, the definition
of X, condition (ii) and the definition of Y respectively.

We now have to consider two separate cases.

Case 1. Either X\Y = ∅ or Y \X = ∅.
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uv
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xz2
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u z3

z1 z2

(b)
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z2 z3

w

(c)

u
z1

z2
z3

w

(d)

Figure 2. Diagram for Case 1 of the proof of (P2) in Theorem
4.18 when Y \X = ∅.

If X\Y = ∅ then |X∩Y | = |X| ≥ n/3, which is larger than the maximum
size of an independent set. Thus X ∩ Y contains an edge z1z2, but then
ux′xz1z2v is the desired path.

If Y \X = ∅ then |Y ∩ X| = |Y | ≥ n/3 − 2, and we may assume that
Y = Y ∩ X is an independent set. An independent set has size at most
n/3 − 2 so we know that |Y | = n/3 − 2. Since any vertex y ∈ Y ∩ X has
none of its ≥ 2n/3 + 2 neighbours in Y , the minimum semi-degree condition
gives us that |N+(y)|, |N−(y)| = n/3 + 1 and every vertex outside Y is a
neighbour of y.

If there exists y1, y2 ∈ Y with N+(y1) 6= N+(y2) then there exist vertices
z1, z2 with z1 ∈ N+(y1)∩N−(y2) and z2 ∈ N+(y2)∩N−(y1). Since z1 = u =
z2 is impossible we may assume that z1 6= u. Then we have a path uxy1z1y2v
of length 5 from u to v. Note that we can’t have z1 = v as y1 ∈ N+(v).

So we now have that N+(Y ) ∩ N−(Y ) = ∅ and Y , N+(Y ) and N−(Y )
partition V (G). Clearly v ∈ N+(Y ) and x ∈ N−(Y ). If u ∈ N−(Y ) then any
path of length 3 from Y to Y avoiding u and v completes the proof, and there
are many such paths. Indeed, as no vertex in N+(Y ) has an outneighbour
in Y we have

e(N+(Y ), N−(Y )) ≥ δ0(G)|N+(Y )| − e(N+(Y )) ≥ (n/3 + 1)2/2.

So to get an edge from N+(Y ) to N−(Y ) avoiding u and v, and hence the
desired path, we only need (n/3+1)2/2 > 2(n/3+1), which holds for n ≥ 10,
which we have assumed to be the case.

So we may assume that u 6∈ N−(Y ). If u has an outneighbour z1 ∈
N+(Y )\{v} then one of the following must occur.
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(a) Suppose there exists z2 ∈ N+(Y ), z2 6= v, with z1z2 ∈ E(G). By the
minimum semi-degree condition z2 has an outneighbour z3 ∈ N−(Y )
and so for any y ∈ Y we have uz1z2z3yv as a path of length 5 from
u to v. Note that z3 6= u since u 6∈ N−(Y ).

(b) So assume not, i.e. N+(z1)∩N+(Y ) ⊆ {v}. Then we have |N+(z1)∩
N−(Y )| ≥ n/3. By the minimum semi-degree condition G[N+(z1)∩
N−(Y )] is nonempty so pick an edge z2z3 in it. Then we again have
the desired path.

So we can assume that u has no outneighbours in N+(Y )\{v}, and hence
|N+(u) ∩ N−(Y )| ≥ n/3. Thus there exists at most one vertex, w say, in
N−(Y ) which is not in the outneighbourhood of u. We have one of the
following cases.

(c) If there exists a path z1z2z3 in N−(Y )\{w} of length 2 then we are
done.

(d) So assume no such path exists. Then in particular there exists a
vertex z1 ∈ N−(Y )\{w} with no outneighbours in N−(Y ) other
than, possibly, w. Thus it has at least 2 outneighbours in N+(Y ),
and hence an outneighbour z2 ∈ N+(Y )\{v}. By the minimum
semi-degree condition z2 has an outneighbour z3 6= z1 in N−(Y ).
The path uz1z2z3yv completes the proof, for any vertex y ∈ Y .

This completes the analysis of Case 1.

Case 2. X\Y 6= ∅ and Y \X 6= ∅.
Suppose that all the vertices in X\Y have more than (|X\Y | − 1)/2

outneighbours in X. Then e(X\Y, X) >
(

|X\Y |−1
2

)

, and so as G[X] is an
oriented graph at least one vertex must have an outneighbour in X ∩Y . But
this gives us a path of length 3 from x to v and hence a contradiction.

Hence there exists a vertex in X with at most (|X\Y | − 1)/2 outneigh-
bours in X, and so at least δ0(G)− (|X\Y |−1)/2 outneighbours outside X.
Thus

|N+(X)\X| ≥ n/3 + 1 − |X\Y |/2 + 1/2

= n/3 + 3/2 − |X|/2 + |X ∩ Y |/2.

As Y \X 6= ∅ we can use the same averaging argument as before to get
that there exists a vertex in Y with at most (|Y \X| − 1)/2 inneighbours in
Y , and so at least δ0(G) − (|Y \X| − 1)/2 inneighbours outside Y . Thus

|N−(Y )\Y | ≥ n/3 + 3/2 − |Y |/2 + |X ∩ Y |/2.

Combining these with the bounds on the sizes of |X| and |Y | we get

|X ∪ N+(X)| ≥ |X|/2 + n/3 + 3/2 + |X ∩ Y |/2,

|Y ∪ N−(Y )| ≥ |Y |/2 + n/3 + 3/2 + |X ∩ Y |/2.

Finally, adding these together gives

|X ∪ N+(X)| + |Y ∪ N−(Y )| ≥ 2n/3 + 3 + |X|/2 + |Y |/2 + |X ∩ Y |
≥ n + 3/2 + |X ∩ Y |.

But |X ∩ N−(Y )| + |N+(X) ∩ (Y ∪ N−(Y ))| ≤ 1 by conditions (i)-(iii) so

|X ∪ N+(X)| + |Y ∪ N−(Y )| ≤ n + |X ∩ Y | + 1.
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This contradiction completes the proof of case (P2) when k = 5.
To find a cycle of length 5 we do exactly the same thing, setting u = v.
To find paths of length k ≥ 6 we first find a path uu1 . . . uk−5 in G of

length k− 5 starting at u, with ui 6= v for all i. Remove u, u1, . . . , uk−6 from
V (G) to form a new oriented graph H with m := n − (k − 5) vertices. A
path of length 5 from uk−5 to v in H corresponds to a path of length k from
u to v in G. But as δ0(H) ≥ m/3 + 1 we can now apply (P2) to find the
desired uv path.

To find a cycle of length k ≥ 6 containing a given vertex u we first find
a path uu1 . . . uk−5 of length k − 5 starting at u. Remove u1, . . . uk−6 from
V (G) to form a new oriented graph H with m := n − (k − 6) vertices and
minimum semi-degree δ0(H) ≥ m/3 + 1. Now use (P2) to find a path of
length 5 from uk−5 to u in H and thus obtain the desired cycle. Hence (C3)
holds and the proof is complete. �

Consider the blow-up of a triangle; the oriented graph on n vertices with
3 vertex classes V0, V1, V2 of as equal size as possible, with all possible edges
from Vi to Vi+1, counting modulo 3. It contains no cycles of length k where
k ≥ 4, k 6≡ 0 (mod 3), and so our result on minimum semi-degree forcing
the existence of cycles of prescribed length is essentially best possible for all
such k, where we regard k as fixed and n large.

For k ≡ 0 (mod 3) the blow-up of a triangle contains many cycles of
length k, but does not contain paths of length k between all pairs of vertices.
Adding an extra vertex u with N+(u) = V1 and N−(u) = V0 gives an oriented
graph with minimum semi-degree ≥ ⌊n/3⌋− 1 with no cycle of length k ≡ 0
(mod 3) containing u.

This example also gives a lower bound of ⌊n/3⌋ for the existence of paths
of length exactly k (k ≥ 4) between every pair of vertices, and so our result
is essentially best possible here for all k ≥ 5. Note that proving the existence
of paths of length at most 4 between any vertices in an oriented graph on n
vertices with minimum semi-degree 3n/8+1 is very straightforward (a simple
averaging argument suffices), the difficulty is in showing the existence of a
path of prescribed length.

30



Chapter 5

Proof of our main theorem

5.1. Extremal Example

We now prove our main result, Theorem 1.3, and show how this can be
extended to an Ore type result. In this section we give the extremal example.
In Section 5.2 we discuss some machinery which we need, in particular the
Diregularity Lemma. In Section 5.3 we prove our main technical lemmas and
in Section 5.4 we prove the result. Finally in Section 5.5 we prove Theorem
1.4.

The following construction of Häggkvist [30] shows that Conjecture 1.2
is best possible for infinitely many values of |G|. We include it here for
completeness.

Proposition 5.1. There are infinitely many oriented graphs G with min-
imum semi-degree (3|G| − 5)/8 which do not contain a 1-factor and thus do
not contain a Hamilton cycle.

Proof. Let n := 4m + 3 for some odd m ∈ N. Let G be the oriented
graph obtained from the disjoint union of two regular tournaments A and C
on m vertices, a set B of m + 2 vertices and a set D of m + 1 vertices by
adding all edges from A to B, all edges from B to C, all edges from C to D
as well as all edges from D to A. Finally, between B and D we add edges to
obtain a bipartite tournament which is as regular as possible, i.e. the in- and
outdegree of every vertex differ by at most 1. So in particular every vertex
in B sends exactly (m + 1)/2 edges to D (Figure 1).

It is easy to check that the minimum semi-degree of G is (m−1)/2+(m+
1) = (3n− 5)/8, as required. Since every path which joins two vertices in B
has to pass through D, it follows that every cycle contains at least as many
vertices from D as it contains from B. As |B| > |D| this means that one
cannot cover all the vertices of G by disjoint cycles, i.e. G does not contain
a 1-factor. �

5.2. The Diregularity Lemma and Other Tools

In this section we collect all the information we need about the Diregular-
ity lemma and the Blow-up lemma. See [40] for a survey on the Regularity
lemma and [38] for a survey on the Blow-up lemma. We start with some
more notation. Recall that the density of a bipartite graph G = (A, B) with
vertex classes A and B is defined to be

dG(A, B) :=
eG(A, B)

|A| |B| .

We often write d(A, B) if this is unambiguous. Given ε > 0, we say that G
is ε-regular if for all subsets X ⊆ A and Y ⊆ B with |X| > ε |A| and
|Y | > ε |B| we have that |d(X, Y ) − d(A, B)| < ε. Given d ∈ [0, 1] we
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B C

D

Figure 1. The oriented graph in the proof of Proposition 5.1.

say that G is (ε, d)-super-regular if it is ε-regular and furthermore dG(a) ≥
(d − ε) |B| for all a ∈ A and dG(b) ≥ (d − ε) |A| for all b ∈ B. (This is
a slight variation of the standard definition of (ε, d)-super-regularity where
one requires dG(a) ≥ d |B| and dG(b) ≥ d |A|.)

The Diregularity lemma is a version of the Regularity lemma for digraphs
due to Alon and Shapira [2]. Its proof is quite similar to the undirected
version. We will use the degree form of the Diregularity lemma which can be
easily derived (see e.g. [59]) from the standard version, in exactly the same
manner as the undirected degree form.

Lemma 5.2 (Degree form of the Diregularity lemma). For every ε ∈ (0, 1)
and every integer M ′ there are integers M and n0 such that if G is a digraph
on n ≥ n0 vertices and d ∈ [0, 1] is any real number, then there is a partition
of the vertices of G into V0, V1, . . . , Vk and a spanning subdigraph G′ of G
such that the following holds:

• M ′ ≤ k ≤ M ,
• |V0| ≤ εn,
• |V1| = · · · = |Vk| =: m,
• d+

G′(x) > d+
G(x) − (d + ε)n for all vertices x ∈ G,

• d−
G′(x) > d−

G(x) − (d + ε)n for all vertices x ∈ G,
• for all i = 1, . . . , k the digraph G′[Vi] is empty,
• for all 1 ≤ i, j ≤ k with i 6= j the bipartite graph whose vertex

classes are Vi and Vj and whose edges are all the Vi-Vj edges in G′

is ε-regular and has density either 0 or density at least d.

V1, . . . , Vk are called clusters, V0 is called the exceptional set and the
vertices in V0 are called exceptional vertices. The last condition of the lemma
says that all pairs of clusters are ε-regular in both directions (but possibly
with different densities). We call the spanning digraph G′ ⊆ G given by the
Diregularity lemma the pure digraph. Given clusters V1, . . . , Vk and the pure
digraph G′, the reduced digraph R′ is the digraph whose vertices are V1, . . . , Vk

and in which ViVj is an edge if and only if G′ contains a Vi-Vj edge. Note
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that the latter holds if and only if the bipartite graph whose vertex classes
are Vi and Vj and whose edges are all the Vi-Vj edges in G′ is ε-regular and
has density at least d. It turns out that R′ inherits many properties of G, a
fact that is crucial in our proof. However, R′ is not necessarily oriented even
if the original digraph G is, but the next lemma shows that by discarding
edges with appropriate probabilities one can go over to a reduced oriented
graph R ⊆ R′ which still inherits many of the properties of G.

Lemma 5.3. For every ε ∈ (0, 1) there exist integers M ′ = M ′(ε) and
n0 = n0(ε) such that the following holds. Let d ∈ [0, 1], let G be an oriented
graph of order at least n0 and let R′ be the reduced digraph obtained by ap-
plying the Diregularity lemma to G with parameters ε, d and M ′. Then R′

has a spanning oriented subgraph R with

(a) δ+(R) ≥ (δ+(G)/|G| − (3ε + d)) |R|,
(b) δ−(R) ≥ (δ−(G)/|G| − (3ε + d)) |R|,
(c) δ(R) ≥ (δ(G)/|G| − (3ε + 2d)) |R|.

Proof. Let us first show that every cluster Vi satisfies

(7) |NR′(Vi)|/|R′| ≥ δ(G)/|G| − (3ε + 2d).

To see this, consider any vertex x ∈ Vi. As G is an oriented graph, the
Diregularity lemma implies that |NG′(x)| ≥ δ(G)−2(d+ε)|G|. On the other
hand, |NG′(x)| ≤ |NR′(Vi)|m + |V0| ≤ |NR′(Vi)||G|/|R′| + ε|G|. Altogether
this proves (7).

We first consider the case when

(8) δ+(G)/|G| ≥ 3ε + d and δ−(G)/|G| ≥ 3ε + d.

Let R be the spanning oriented subgraph obtained from R′ by deleting edges
randomly as follows. For every unordered pair Vi, Vj of clusters we delete
the edge ViVj (if it exists) with probability

(9)
eG′(Vj, Vi)

eG′(Vi, Vj) + eG′(Vj, Vi)
.

Otherwise we delete VjVi (if it exists). We interpret (9) as 0 if ViVj , VjVi /∈
E(R′). So if R′ contains at most one of the edges ViVj, VjVi then we do
nothing. We do this for all unordered pairs of clusters independently and
let Xi be the random variable which counts the number of outedges of the
vertex Vi ∈ R. Then

E(Xi) =
∑

j 6=i

eG′(Vi, Vj)

eG′(Vi, Vj) + eG′(Vj, Vi)
≥

∑

j 6=i

eG′(Vi, Vj)

|Vi| |Vj |

≥ |R′|
|G| |Vi|

∑

x∈Vi

(d+
G′(x) − |V0|) ≥ (δ+(G′)/|G| − ε) |R|

≥ (δ+(G)/|G| − (2ε + d)) |R|
(8)

≥ ε|R|.
A Chernoff-type bound (see e.g. [3, Cor. A.14]) now implies that there exists
a constant c = c(ε) such that

P(Xi < (δ+(G)/|G| − (3ε + d)) |R|) ≤ P(|Xi − E(Xi)| > εE(Xi))

≤ e−cE(Xi) ≤ e−cε|R|.
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Writing Yi for the random variable which counts the number of inedges of
the vertex Vi in R, it follows similarly that

P(Yi < (δ−(G)/|G| − (3ε + d)) |R|) ≤ e−cε|R|.

As 2|R|e−cε|R| < 1 if M ′ is chosen to be sufficiently large compared to ε,
this implies that there is some outcome R with δ+(R) ≥ (δ+(G)/|G| − (3ε+
d)) |R| and δ−(R) ≥ (δ−(G)/|G| − (3ε + d)) |R|. But NR′(Vi) = NR(Vi) for
every cluster Vi and so (7) implies that δ(R) ≥ (δ(G)/|G| − (3ε + 2d))|R|.
Altogether this shows that R is as required in the lemma.

If neither of the conditions in (8) hold, then (a) and (b) are trivial and
one can obtain an oriented graph R which satisfies (c) from R′ by arbitrarily
deleting one edge from each double edge. If exactly one of the conditions
in (8) holds, say the first, then (b) is trivial. To obtain an oriented graph R
which satisfies (a) we consider the Xi as before, but ignore the Yi. Again,
NR′(Vi) = NR(Vi) for every cluster Vi and so (c) is also satisfied. �

The oriented graph R given by Lemma 5.3 is called the reduced oriented
graph. The spanning oriented subgraph G∗ of the pure digraph G′ obtained
by deleting all the Vi-Vj edges whenever ViVj ∈ E(R′)\E(R) is called the pure
oriented graph. Given an oriented subgraph S ⊆ R, the oriented subgraph
of G∗ corresponding to S is the oriented subgraph obtained from G∗ by
deleting all those vertices that lie in clusters not belonging to S as well as
deleting all the Vi-Vj edges for all pairs Vi, Vj with ViVj /∈ E(S).

In our proof of Theorem 1.3 we will also need the Blow-up lemma, in
both the original form of Komlós, Sárközy and Szemerédi [39] and a recent
strengthening due to Csaba [20]. Roughly speaking, they say that an r-
partite graph formed by r clusters such that all the pairs of these clusters
are dense and ε-regular behaves like a complete r-partite graph with respect
to containing graphs H of bounded maximum degree as subgraphs.

Lemma 5.4 (Blow-up Lemma, Komlós, Sárközy and Szemerédi [39]).
Given a graph F on [k] and positive numbers d, b, ∆, there exist positive
numbers η0 = η0(d, ∆, k) and α = α(d, ∆, r, k) ≤ 1/2 such that the following
holds for all positive numbers ℓ1, . . . , ℓk and all 0 < η ≤ η0. Let F ′ be the
graph obtained from F by replacing each vertex i ∈ F with a set Vi of ℓi

new vertices and joining all vertices in Vi to all vertices in Vj whenever ij is
an edge of F . Let G′ be a spanning subgraph of F ′ such that for every edge
ij ∈ F the graph (Vi, Vj)G′ is (η, d)-super-regular. Then G′ contains a copy
of every subgraph H of F ′ with ∆(H) ≤ ∆. Moreover, this copy of H in G′

maps the vertices of H to the same sets Vi as the copy of H in F ′, i.e. if
h ∈ V (H) is mapped to Vi by the copy of H in F ′, then it is also mapped to
Vi by the copy of H in G′.

Furthermore, we can additionally require that for vertices x ∈ H ⊆ R(L)
lying in Vi their images in the copy of H in G are contained in (arbitrary)
given sets Cx ⊆ Vi provided that |Cx| ≥ bL for each such x and provided that
in each Vi there are at most αL such vertices x.

Observe that in this version the pairs of clusters have to be super-regular
and ε has to be sufficiently small compared to 1/r (and so in particular we
cannot take r = |R|). We also need a stronger (and more technical) version
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due to Csaba [20], which allows us to take r = |R| and does not demand
super-regularity. The case when ∆ = 3 of this is implicit in [21].

In the statement of Lemma 5.5 and later on we write 0 < a1 ≪ a2 ≪ a3

to mean that we can choose the constants a1, a2, a3 from right to left. More
precisely, there are increasing functions f and g such that, given a3, whenever
we choose some a2 ≤ f(a3) and a1 ≤ g(a2), all calculations needed in the
proof of Lemma 5.5 are valid. Hierarchies with more constants are defined
in the obvious way.

Lemma 5.5 (Blow-up Lemma, Csaba [20]). For all integers ∆, K1, K2, K3

and every positive constant c there exists an integer N such that whenever
ε, ε′, δ′, d are positive constants with

0 < ε ≪ ε′ ≪ δ′ ≪ d ≪ 1/∆, 1/K1, 1/K2, 1/K3, c

the following holds. Suppose that G∗ is a graph of order n ≥ N and V0, . . . , Vk

is a partition of V (G∗) such that the bipartite graph (Vi, Vj)G∗ is ε-regular
with density either 0 or d for all 1 ≤ i < j ≤ k. Let H be a graph on n
vertices with ∆(H) ≤ ∆ and let L0 ∪ L1 ∪ · · · ∪ Lk be a partition of V (H)
with |Li| = |Vi| =: m for every i = 1, . . . , k. Furthermore, suppose that there
exists a bijection φ : L0 → V0 and a set I ⊆ V (H) of vertices at distance at
least 4 from each other such that the following conditions hold:

(C1) |L0| = |V0| ≤ K1dn.
(C2) L0 ⊆ I.
(C3) Li is independent for every i = 1, . . . , k.
(C4) |NH(L0) ∩ Li| ≤ K2dm for every i = 1, . . . , k.
(C5) For each i = 1, . . . , k there exists Di ⊆ I ∩ Li with |Di| = δ′m and

such that for D :=
⋃k

i=1 Di and all 1 ≤ i < j ≤ k

||NH(D) ∩ Li| − |NH(D) ∩ Lj || < εm.

(C6) If xy ∈ E(H) and x ∈ Li, y ∈ Lj then (Vi, Vj)G∗ is ε-regular with
density d.

(C7) If xy ∈ E(H) and x ∈ L0, y ∈ Lj then |NG∗(φ(x)) ∩ Vj | ≥ cm.
(C8) For each i = 1, . . . , k, given any Ei ⊆ Vi with |Ei| ≤ ε′m there

exists a set Fi ⊆ (Li ∩ (I \ D)) and a bijection φi : Ei → Fi such
that |NG∗(v)∩ Vj | ≥ (d− ε)m whenever NH(φi(v))∩Lj 6= ∅ (for all
v ∈ Ei and all j = 1, . . . , k).

(C9) Writing F :=
⋃k

i=1 Fi we have that |NH(F ) ∩ Li| ≤ K3ε
′m.

Then G∗ contains a copy of H such that the image of Li is Vi for all i =
1, . . . , k and the image of each x ∈ L0 is φ(x) ∈ V0.

The additional properties of the copy of H in G∗ are not included in the
statement of the lemma in [20] but are stated explicitly in the proof.

Let us briefly motivate the conditions of the Blow-up lemma. The embed-
ding of H into G guaranteed by the Blow-up lemma is found by a randomised
algorithm which first embeds each vertex x ∈ L0 to φ(x) and then succes-
sively embeds the remaining vertices of H . So the image of L0 will be the
exceptional set V0. Condition (C1) requires that there are not too many
exceptional vertices and (C2) ensures that we can embed the vertices in L0

without affecting the neighbourhood of other such vertices. As Li will be em-
bedded into Vi we need to have (C3). Condition (C5) gives us a reasonably
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large set D of ‘buffer vertices’ which will be embedded last by the randomised
algorithm. (C6) requires that edges between vertices of H−L0 are embedded
into ε-regular pairs of density d. (C7) ensures that the exceptional vertices
have large degree in all ‘neighbouring clusters’. (C8) and (C9) allow us to
embed those vertices whose set of candidate images in G∗ has grown very
small at some point of the algorithm. Conditions (C6), (C8) and (C9) cor-
respond to a substantial weakening of the super-regularity that the usual
form of the Blow-up lemma requires, namely that whenever H contains an
edge xy with and x ∈ Li, y ∈ Lj then (Vi, Vj)G∗ is (ε, d)-super-regular.

We would like to apply the Blow-up lemma with G∗ being obtained from
the underlying graph of the pure oriented graph by adding the exceptional
vertices. It will turn out that in order to satisfy (C8), it suffices to ensure
that all the edges of a suitable 1-factor in the reduced oriented graph R
correspond to (ε, d)-superregular pairs of clusters. A well-known simple fact
(see the first part of the proof of Proposition 5.6) states that this can be
ensured by removing a small proportion of vertices from each cluster Vi,
and so (C8) will be satisfied. However, (C6) requires all the edges of R to
correspond to ε-regular pairs of density precisely d and not just at least d.
(As remarked by Csaba [20], it actually suffices that the densities are close
to d in terms of ε.) The second part of the following proposition shows that
this too does not pose a problem.

Proposition 5.6. Let M ′, n0, D be integers and let ε, d be positive con-
stants such that 1/n0 ≪ 1/M ′ ≪ ε ≪ d ≪ 1/D. Let G be an oriented graph
of order at least n0. Let R be the reduced oriented graph and let G∗ be the
pure oriented graph obtained by successively applying first the Diregularity
lemma with parameters ε, d and M ′ to G and then Lemma 5.3. Let S be
an oriented subgraph of R with ∆(S) ≤ D. Let G′ be the underlying graph
of G∗. Then one can delete 2Dε|Vi| vertices from each cluster Vi to obtain
subclusters V ′

i ⊆ Vi in such a way that G′ contains a subgraph G′
S whose

vertex set is the union of all the V ′
i and such that

• (V ′
i , V

′
j )G′

S
is (

√
ε, d − 4Dε)-superregular whenever ViVj ∈ E(S),

• (V ′
i , V

′
j )G′

S
is

√
ε-regular and has density d − 4Dε whenever ViVj ∈

E(R).

Proof. Consider any cluster Vi ∈ V (S) and any neighbour Vj of Vi in S.
Recall that m = |Vi|. Let dij denote the density of the bipartite subgraph
(Vi, Vj)G′ of G′ induced by Vi and Vj. So dij ≥ d and this bipartite graph is
ε-regular. Thus there are at most 2εm vertices v ∈ Vi such that ||NG′(v) ∩
Vj | − dijm| > εm. So in total there are at most 2Dεm vertices v ∈ Vi

such that ||NG′(v) ∩ Vj | − dijm| > εm for some neighbour Vj of Vi in S.
Delete all these vertices as well as some more vertices if necessary to obtain
a subcluster V ′

i ⊆ Vi of size (1 − 2Dε)m =: m′. Delete any 2Dεm vertices
from each cluster Vi ∈ V (R) \ V (S) to obtain a subcluster V ′

i . It is easy to
check that for each edge ViVj ∈ E(R) the graph (V ′

i , V
′
j )G′ is still 2ε-regular

and that its density d′
ij satisfies

d′ := d − 4Dε < dij − ε ≤ d′
ij ≤ dij + ε.
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Moreover, whenever ViVj ∈ E(S) and v ∈ V ′
i we have that

(dij − 4Dε)m′ ≤ |NG′(v) ∩ V ′
j | ≤ (dij + 4Dε)m′.

For every pair Vi, Vj of clusters with ViVj ∈ E(S) we now consider a spanning
random subgraph G′

ij of (V ′
i , V

′
j )G′ which is obtained by choosing each edge of

(V ′
i , V

′
j )G′ with probability d′/d′

ij, independently of the other edges. Consider
any vertex v ∈ V ′

i . Then the expected number of neighbours of v in V ′
j (in

the graph G′
ij) is at least (dij − 4Dε)d′m′/d′

ij ≥ (1 − √
ε)d′m′. So we can

apply a Chernoff-type bound to see that there exists a constant c = c(ε)
such that

P(|NG′

ij
(v) ∩ V ′

j | ≤ (d′ −√
ε)m′) ≤ e−cd′m′

.

Similarly, whenever X ⊆ V ′
i and Y ⊆ V ′

j are sets of size at least 2εm′

the expected number of X-Y edges in G′
ij is dG′(X, Y )d′|X||Y |/d′

ij. Since

(V ′
i , V

′
j )G′ is 2ε-regular this expected number lies between (1 −√

ε)d′|X||Y |
and (1 +

√
ε)d′|X||Y |. So again we can use a Chernoff-type bound to see

that

P(|eG′

ij
(X, Y ) − d′|X||Y || >

√
ε|X||Y |) ≤ e−cd′|X||Y | ≤ e−4cd′(εm′)2 .

Moreover, with probability at least 1/(3m′) the graph G′
ij has its expected

density d′ (see e.g. [8, p. 6]). Altogether this shows that with probability at
least

1/(3m′) − 2m′e−cd′m′ − 22m′

e−4cd′(εm′)2 ,

which is greater than 0 for sufficiently large m′, we have that G′
ij is (

√
ε, d′)-

superregular and has density d′. Proceed similarly for every pair of clusters
forming an edge of S. An analogous argument applied to a pair Vi, Vj of
clusters with ViVj ∈ E(R) \ E(S) shows that with non-zero probability the
random subgraph G′

ij is
√

ε-regular and has density d′. Altogether this gives
us the desired subgraph G′

S of G′. �

5.2.1. Overview of the proof of Theorem 1.3. Let G be our given
oriented graph. The rough idea of the proof is to apply the Diregularity
lemma and Lemma 5.3 to obtain a reduced oriented graph R and a pure
oriented graph G∗. The following result of Häggkvist implies that R contains
a 1-factor.

Theorem 5.7 (Häggkvist [30]). Let R be an oriented graph with δ∗(R) >
(3|R| − 3)/2. Then R is strongly connected and contains a 1-factor.

So one can apply the Blow-up lemma (together with Proposition 5.6)
to find a 1-factor in G∗ − V0 ⊆ G − V0. One now would like to glue the
cycles of this 1-factor together and to incorporate the exceptional vertices
to obtain a Hamilton cycle of G∗ and thus of G. However, we were only
able to find a method which incorporates a set of vertices whose size is small
compared to the cluster size m. This is not necessarily the case for V0. So
we proceed as follows. We first choose a random partition of the vertex set
of G into two sets A and V (G)\A having roughly equal size. We then apply
the Diregularity lemma to G − A in order to obtain clusters V1, . . . , Vk and
an exceptional set V0. We let m denote the size of these clusters and set
B := V1 ∪ . . . Vk. By arguing as indicated above, we can find a Hamilton
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cycle CB in G[B]. We then apply the Diregularity lemma to G−B, but with
an ε which is small compared to 1/k, to obtain clusters V ′

1 , . . . , V
′
ℓ and an

exceptional set V ′
0 . Since the choice of our partition A, V (G) \ A will imply

that δ∗(G−B) ≥ (3/2+α/2)|G−B| we can again argue as before to obtain
a cycle CA which covers precisely the vertices in A′ := V ′

1 ∪· · ·∪V ′
ℓ . Since we

have chosen ε to be small compared to 1/k, the set V ′
0 of exceptional vertices

is now small enough to be incorporated into our first cycle CB. (Actually,
CB is only determined at this point and not yet earlier on.) Moreover, by
choosing CB and CA suitably we can ensure that they can be joined together
into the desired Hamilton cycle of G.

5.3. Shifted Walks

In this section we will introduce the tools we need in order to glue certain
cycles together and to incorporate the exceptional vertices. Let R∗ be a
digraph and let C be a collection of disjoint cycles in R∗. We call a closed
walk W in R∗ balanced w.r.t. C if

• for each cycle C ∈ C the walk W visits all the edges on C an equal
number of times,

• W visits every vertex of R∗,
• every vertex not in any cycle from C is visited exactly once.

Let us now explain why balanced walks are helpful in order to incorporate
the exceptional vertices. Suppose that C is a 1-factor of the reduced ori-
ented graph R and that R∗ is obtained from R by adding all the exceptional
vertices v ∈ V0 and adding an edge vVi (where Vi is a cluster) whenever v
sends edges to a significant proportion of the vertices in Vi, say we add vVi

whenever v sends at least cm edges to Vi. (Recall that m denotes the size of
the clusters.) The edges in R∗ of the form Viv are defined in a similar way.
Let Gc be the oriented graph obtained from the pure oriented graph G∗ by
making all the nonempty bipartite subgraphs between the clusters complete
(and orienting all the edges between these clusters in the direction induced
by R) and adding the vertices in V0 as well as all the edges of G between V0

and V (G) \V0. Suppose that W is a balanced closed walk in R∗ which visits
all the vertices lying on a cycle C ∈ C precisely mC ≤ m times. Further-
more, suppose that |V0| ≤ cm/2 and that the vertices in V0 have distance at
least 3 from each other on W . Then by ‘winding around’ each cycle C ∈ C
precisely m − mC times (at the point when W first visits C) we can obtain
a Hamilton cycle in Gc. Indeed, the two conditions on V0 ensure that the
neighbours of each v ∈ V0 on the Hamilton cycle can be chosen amongst
the at least cm neighbours of v in the neighbouring clusters of v on W in
such a way that they are distinct for different exceptional vertices. The idea
then is to apply the Blow-up lemma to show that this Hamilton cycle corre-
sponds to one in G. So our aim is to find such a balanced closed walk in R∗.
However, as indicated in Section 5.2.1, the difficulties arising when trying to
ensure that the exceptional vertices lie on this walk will force us to apply
the above argument to the subgraphs induced by a random partition of our
given oriented graph G.

Let us now go back to the case when R∗ is an arbitrary digraph and C
is a collection of disjoint cycles in R∗. Given vertices a, b ∈ R∗, a shifted a-b

38



walk is a walk of the form

W = aa1C1b1a2C2b2 . . . atCtbtb

where C1, . . . , Ct are (not necessarily distinct) cycles from C and ai is the
successor of bi on Ci for all i ≤ t. (We might have t = 0. So an edge ab is a
shifted a-b walk.) We call C1, . . . , Ct the cycles which are traversed by W . So
even if the cycles C1, . . . , Ct are not distinct, we say that W traverses t cycles.
Note that for every cycle C ∈ C the walk W −{a, b} visits the vertices on C
an equal number of times. Thus it will turn out that by joining the cycles
from C suitably via shifted walks and incorporating those vertices of R∗ not
covered by the cycles from C we can obtain a balanced closed walk on R∗.

Our next lemma will be used to show that if R∗ is oriented and δ∗(R∗) ≥
(3/2 + α)|R∗| then any two vertices of R∗ can be joined by a shifted walk
traversing only a small number of cycles from C (see Corollary 5.10). The
lemma itself shows that the δ∗ condition implies expansion, and this will
give us the ‘expansion with respect to shifted neighbourhoods’ we need for
the existence of shifted walks. The proof of Lemma 5.8 is similar to that of
Theorem 5.7.

Lemma 5.8. Let R∗ be an oriented graph on N vertices with δ∗(R∗) ≥
(3/2+α)N for some α > 0. If X ⊆ V (R∗) is nonempty and |X| ≤ (1−α)N
then |N+(X)| ≥ |X| + αN/2.

Proof. For simplicity, we write δ := δ(R∗), δ+ := δ+(R∗) and δ− :=
δ−(R∗). Suppose the assertion is false, i.e. there exists X ⊆ V (R∗) with
|X| ≤ (1 − α)N and

(10)
∣

∣N+(X)
∣

∣ < |X| + αN/2.

We consider the following partition of V (R∗):

A := X∩N+(X), B := N+(X)\X, C := V (R∗)\(X∪N+(X)), D := X\N+(X).

(10) gives us

(11) |D| + αN/2 > |B|.
Suppose A 6= ∅. Then by an averaging argument there exists x ∈ A with
|N+(x) ∩ A| < |A|/2. Hence δ+ ≤ |N+(x)| < |B| + |A|/2. Combining this
with (11) we get

(12) |A| + |B| + |D| ≥ 2δ+ − αN/2.

If A = ∅ then N+(X) = B and so (11) implies |D| + αN/2 ≥ |B| ≥ δ+.
Thus (12) again holds. Similarly, if C 6= ∅ then considering the inneighbour-
hood of a suitable vertex x ∈ C gives

(13) |B| + |C| + |D| ≥ 2δ− − αN/2.

If C = ∅ then the fact that |X| ≤ (1 − α)N and (10) together imply that
D 6= ∅. But then N−(D) ⊆ B and thus |B| ≥ δ−. Together with (11) this
shows that (13) holds in this case too.

If D = ∅ then trivially |A| + |B| + |C| = N ≥ δ. If not, then for any
x ∈ D we have N(x) ∩ D = ∅ and hence

(14) |A| + |B| + |C| ≥ |N(x)| ≥ δ.

39



Combining (12), (13) and (14) gives

3|A| + 4|B| + 3|C| + 2|D| ≥ 2δ− + 2δ+ + 2δ − αN = 2δ∗(R∗) − αN.

Finally, substituting (11) gives

3N + αN/2 ≥ 2δ∗(R∗) − αN ≥ 3N + αN,

which is a contradiction. �

As indicated before, we will now use Lemma 5.8 to prove the existence
of shifted walks in R∗ traversing only a small number of cycles from a given
1-factor of R∗. For this (and later on) the following fact will be useful.

Fact 5.9. Let G be an oriented graph with δ∗(G) ≥ (3/2 + α)|G| for
some constant α > 0. Then δ0(G) > α|G|.
Proof. Suppose that δ−(G) ≤ α|G|. As G is oriented we have that δ+(G) <
|G|/2 and so δ∗(G) < 3n/2 + α|G|, a contradiction. The proof for δ+(G) is
similar. �

Corollary 5.10. Let R∗ be an oriented graph on N vertices with δ∗(R∗) ≥
(3/2 + α)N for some α > 0 and let C be a 1-factor in R∗. Then for any
distinct x, y ∈ V (R∗) there exists a shifted x-y walk traversing at most 2/α
cycles from C.

Proof. Let Xi be the set of vertices v for which there is a shifted x-v
walk which traverses at most i cycles. So X0 = N+(x) 6= ∅ and Xi+1 =
N+(X−

i ) ∪ Xi, where X−
i is the set of all predecessors of the vertices in Xi

on the cycles from C. Suppose that |Xi| ≤ (1 − α)N . Then Lemma 5.8
implies that

|Xi+1| ≥ |N+(X−
i )| ≥ |X−

i | + αN/2 = |Xi| + αN/2.

So for i∗ := ⌊2/α⌋−1, we must have |X−
i∗ | = |Xi∗| ≥ (1−α)N . But |N−(y)| ≥

δ−(R∗) > αN and so N−(y)∩X−
i∗ 6= ∅. In other words, y ∈ N+(X−

i∗) and so
there is a shifted x-y walk traversing at most i∗ + 1 cycles. �

Corollary 5.11. Let R∗ be an oriented graph with δ∗(R∗) ≥ (3/2 +
α) |R∗| for some 0 < α ≤ 1/6 and let C be a 1-factor in R∗. Then R∗

contains a closed walk which is balanced w.r.t. C and meets every vertex at
most |R∗|/α times and traverses each edge lying on a cycle from C at least
once.

Proof. Let C1, . . . , Cs be an arbitrary ordering of the cycles in C. For
each cycle Ci pick a vertex ci ∈ Ci. Denote by c+

i the successor of ci on the
cycle Ci. Corollary 5.10 implies that for all i there exists a shifted ci-c

+
i+1

walk Wi traversing at most 2/α cycles from C, where cs+1 := c1. Then the
closed walk

W ′ := c+
1 C1c1W1c

+
2 C2c2 . . .Ws−1c

+
s CscsWsc

+
1

is balanced w.r.t. C by the definition of shifted walks. Since each shifted
walk Wi traverses at most 2/α cycles of C, the closed walk W meets each
vertex at most (|R∗| /3)(2/α) + 1 times. Let W denote the walk obtained
from W ′ by ‘winding around’ each cycle C ∈ C once more. (That is, for
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each C ∈ C pick a vertex v on C and replace one of the occurences of v
on W ′ by vCv.) Then W is still balanced w.r.t. C, traverses each edge
lying on a cycle from C at least once and visits each vertex of R∗ at most
(|R∗| /3)(2/α) + 2 ≤ |R∗| /α times as required. �

5.4. Proof of Theorem 1.3

5.4.1. Partitioning G and applying the Diregularity lemma. Let G
be an oriented graph on n vertices with δ∗(G) ≥ (3/2+α)n for some constant
α > 0. Clearly we may assume that α ≪ 1. Define positive constants ε, d
and integers M ′

A, M ′
B such that

1/M ′
A ≪ 1/M ′

B ≪ ε ≪ d ≪ α ≪ 1.

Throughout this section, we will assume that n is sufficiently large compared
to M ′

A for our estimates to hold. Choose a subset A ⊆ V (G) with (1/2 −
ε)n ≤ |A| ≤ (1/2 + ε)n and such that every vertex x ∈ G satisfies

d+(x)

n
− α

10
≤ |N+(x) ∩ A|

|A| ≤ d+(x)

n
+

α

10

and such that N−(x)∩A satisfies a similar condition. (The existence of such
a set A can be shown by considering a random partition of V (G).) Apply
the Diregularity lemma (Lemma 5.2) with parameters ε2, d + 8ε2 and M ′

B

to G − A to obtain a partition of the vertex set of G − A into k ≥ M ′
B

clusters V1, . . . , Vk and an exceptional set V0. Set B := V1 ∪ . . . ∪ Vk and
mB := |V1| = · · · = |Vk|. Let RB denote the reduced oriented graph obtained
by an application of Lemma 5.3 and let G∗

B be the pure oriented graph. Since
δ+(G−A)/|G−A| ≥ δ+(G)/n−α/9 by our choice of A, Lemma 5.3 implies
that

(15) δ+(RB) ≥ (δ+(G)/n − α/8)|RB|.
Similarly

(16) δ−(RB) ≥ (δ−(G)/n − α/8)|RB|
and δ(RB) ≥ (δ(G)/n − α/4)|RB|. Altogether this implies that

(17) δ∗(RB) ≥ (3/2 + α/2)|RB|.
So Theorem 5.7 gives us a 1-factor CB of RB. We now apply Proposition 5.6
with CB playing the role of S, ε2 playing the role of ε and d + 8ε2 playing
the role of d. This shows that by adding at most 4ε2n further vertices to
the exceptional set V0 we may assume that each edge of RB corresponds to
an ε-regular pair of density d (in the underlying graph of G∗

B) and that each
edge in the union

⋃

C∈CB
C ⊆ RB of all the cycles from CB corresponds to

an (ε, d)-superregular pair. (More formally, this means that we replace the
clusters with the subclusters given by Proposition 5.6 and replace G∗

B with
its oriented subgraph obtained by deleting all edges not corresponding to
edges of the graph G′

CB
given by Proposition 5.6, i.e. the underlying graph

of G∗
B will now be G′

CB
.) Note that the new exceptional set now satisfies

|V0| ≤ εn.
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Apply Corollary 5.11 with R∗ := RB to find a closed walk WB in RB

which is balanced w.r.t. CB, meets every cluster at most 2|RB|/α times and
traverses all the edges lying on a cycle from CB at least once.

Let Gc
B be the oriented graph obtained from G∗

B by adding all the Vi-
Vj edges for all those pairs Vi, Vj of clusters with ViVj ∈ E(RB). Since
2|RB|/α ≪ mB, we could make WB into a Hamilton cycle of Gc

B by ‘winding
around’ each cycle from CB a suitable number of times. We could then apply
the Blow-up lemma to show that this Hamilton cycle corresponds to one in
G∗

B. However, as indicated in Section 5.2.1, we will argue slightly differently
as it is not clear how to incorporate all the exceptional vertices by the above
approach.

Set εA := ε/|RB|. Apply the Diregularity lemma with parameters ε2
A,

d+8ε2
A and M ′

A to G[A∪V0] to obtain a partition of the vertex set of G[A∪V0]
into ℓ ≥ M ′

A clusters V ′
1 , . . . , V

′
ℓ and an exceptional set V ′

0 . Let A′ := V ′
1∪· · ·∪

V ′
ℓ , let RA denote the reduced oriented graph obtained from Lemma 5.3 and

let G∗
A be the pure oriented graph. Similarly as in (17), Lemma 5.3 implies

that δ∗(RA) ≥ (3/2 + α/2)|RA| and so, as before, we can apply Theorem 5.7
to find a 1-factor CA of RA. Then as before, Proposition 5.6 implies that
by adding at most 4ε2

An further vertices to the exceptional set V ′
0 we may

assume that each edge of RA corresponds to an εA-regular pair of density d
and that each edge in the union

⋃

C∈CA
C ⊆ RA of all the cycles from CA

corresponds to an (εA, d)-superregular pair. So we now have that

(18) |V ′
0 | ≤ εAn = εn/|RB|.

Similarly as before, Corollary 5.11 gives us a closed walk WA in RA which is
balanced w.r.t. CA, meets every cluster at most 2|RA|/α times and traverses
all the edges lying on a cycle from CA at least once.

5.4.2. Incorporating V ′
0 into the walk WB. Recall that the balanced

closed walk WB in RB corresponds to a Hamilton cycle in Gc
B. Our next

aim is to extend this walk to one which corresponds to a Hamilton cycle
which also contains the vertices in V ′

0 . (The Blow-up lemma will imply that
the latter Hamilton cycle corresponds to one in G[B ∪ V ′

0 ].) We do this by
extending WB into a walk on a suitably defined digraph R∗

B ⊇ RB with vertex
set V (RB)∪V ′

0 in such a way that the new walk is balanced w.r.t. CB. R∗
B is

obtained from the union of RB and the set V ′
0 by adding an edge vVi between

a vertex v ∈ V ′
0 and a cluster Vi ∈ V (RB) whenever

∣

∣N+
G (v) ∩ Vi

∣

∣ > αmB/10

and adding the edge Viv whenever
∣

∣N−
G (v) ∩ Vi

∣

∣ > αmB/10. Thus

|N+
G (v) ∩ B| ≤ |N+

R∗

B
(v)|mB + |RB|αmB/10.

Hence

|N+
R∗

B
(v)| ≥ |N+

G (v) ∩ B|/mB − α|RB|/10 ≥ |N+
G (v) ∩ B||RB|/|B| − α|RB|/10

≥ (|N+
G−A(v)| − |V0|)|RB|/|G − A| − α|RB|/10

≥ (δ+(G)/n − α/2)|RB| ≥ α|RB|/2.(19)

(The penultimate inequality follows from the choice of A and the final one
from Fact 5.9.) Similarly

|N−
R∗

B
(v)| ≥ α|RB|/2.
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Figure 2. Incorporating the exceptional vertex v.

Given a vertex v ∈ V ′
0 pick U1 ∈ N+

R∗

B
(v), U2 ∈ N−

R∗

B
(v)\{U1}. Let C1 and

C2 denote the cycles from CB containing U1 and U2 respectively. Let U−
1

be the predecessor of U1 on C1, and U+
2 be the successor of U2 on C2. (19)

implies that we can ensure U−
1 6= U+

2 . (However, we may have C1 = C2.)
Corollary 5.10 gives us a shifted walk Wv from U−

1 to U+
2 traversing at most

4/α cycles of CB. To incorporate v into the walk WB, recall that WB traverses
all those edges of RB which lie on cycles from CB at least once. Replace one
of the occurences of U−

1 U1 on WB with the walk

W ′
v := U−

1 WvU
+
2 C2U2vU1C1U1,

i.e. the walk that goes from U−
1 to U+

2 along the shifted walk Wv, it then
winds once around C2 but stops in U2, then it goes to v and further to U1,
and finally it winds around C1. The walk obtained from WB by including v in
this way is still balanced w.r.t. CB, i.e. each vertex in RB is visited the same
number of times as every other vertex lying on the same cycle from CB . We
add the extra loop around C1 because when applying the Blow-up lemma we
will need the vertices in V ′

0 to be at a distance of at least 4 from each other.
Using this loop, this can be ensured as follows. After we have incorporated v
into WB we ‘ban’ all the 6 edges of (the new walk) WB whose endvertices
both have distance at most 3 from v. The extra loop ensures that every edge
in each cycle from C has at least one occurence in WB which is not banned.
(Note that we do not have to add an extra loop around C2 since if C2 6= C1

then all the banned edges of C2 lie on W ′
v but each edge of C2 also occurs

on the original walk WB.) Thus when incorporating the next exceptional
vertex we can always pick an occurence of an edge which is not banned to
be replaced by a longer walk. (When incorporating v we picked U−

1 U1.)
Repeating this argument, we can incorporate all the exceptional vertices
in V ′

0 into WB in such a way that all the vertices of V ′
0 have distance at

least 4 on the new walk WB.
Recall that Gc

B denotes the oriented graph obtained from the pure ori-
ented graph G∗

B by adding all the Vi-Vj edges for all those pairs Vi, Vj of
clusters with ViVj ∈ E(RB). Let Gc

B∪V ′

0

denote the graph obtained from Gc
B

by adding all the V ′
0-B edges of G as well as all the B-V ′

0 edges of G. More-
over, recall that the vertices in V ′

0 have distance at least 4 from each other
on WB and |V ′

0 | ≤ εn/|RB| ≪ αmB/20 by (18). As already observed at the
beginning of Section 5.3, altogether this shows that by winding around each
cycle from CB , one can obtain a Hamilton cycle Cc

B∪V ′

0

of Gc
B∪V ′

0

from the

walk WB, provided that WB visits any cluster Vi ∈ RB at most mB times.
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To see that the latter condition holds, recall that before we incorporated the
exceptional vertices in V ′

0 into WB, each cluster was visited at most 2|RB|/α
times. When incorporating an exceptional vertex we replaced an edge of WB

by a walk whose interior visits every cluster at most 4/α + 2 ≤ 5/α times.
Thus the final walk WB visits each cluster Vi ∈ RB at most

(20) 2|RB|/α + 5|V ′
0 |/α

(18)

≤ 6εn/(α|RB|) ≤
√

εmB

times. Hence we have the desired Hamilton cycle Cc
B∪V ′

0

of Gc
B∪V ′

0

. Note

that (20) implies that we can choose Cc
B∪V ′

0

in such a way that for each cycle

C ∈ CB there is subpath PC of Cc
B∪V ′

0

which winds around C at least

(21) (1 −√
ε)mB

times in succession.

5.4.3. Applying the Blow-up lemma to find a Hamilton cycle

in G[B∪V ′
0 ]. Our next aim is to use the Blow-up lemma to show that Cc

B∪V ′

0

corresponds to a Hamilton cycle in G[B∪V ′
0 ]. Recall that k = |RB| and that

for each exceptional vertex v ∈ V ′
0 the outneighbour U1 of v on WB is distinct

from its inneighbour U2 on WB. We will apply the Blow-up lemma with H
being the underlying graph of Cc

B∪V ′

0

and G∗ being the graph obtained from

the underlying graph of G∗
B by adding all the vertices v ∈ V ′

0 and joining
each such v to all the vertices in N+

G (v) ∩ U1 as well as to all the vertices in
N−

G (v)∩U2. Recall that after applying the Diregularity lemma to obtain the
clusters V1, . . . , Vk we used Proposition 5.6 to ensure that each edge of RB

corresponds to an ε-regular pair of density d (in the underlying graph of G∗
B

and thus also in G∗) and that each edge of the union
⋃

C∈CB
C ⊆ RB of all

the cycles from CB corresponds to an (ε, d)-superregular pair.
V ′

0 will play the role of V0 in the Blow-up lemma and we take L0, L1, . . . , Lk

to be the partition of H induced by V ′
0 , V1, . . . , Vk. φ : L0 → V ′

0 will be the
obvious bijection (i.e. the identity). To define the set I ⊆ V (H) of vertices
of distance at least 4 from each other which is used in the Blow-up lemma,
let P ′

C be the subpath of H corresponding to PC (for all C ∈ CB). For each
i = 1, . . . , k, let Ci ∈ CB denote the cycle containing Vi and let Ji ⊆ Li

consist of all those vertices in Li ∩ V (P ′
Ci

) which have distance at least 4
from the endvertices of P ′

Ci
. Thus in the graph H each vertex u ∈ Ji has one

of its neighbours in the set L−
i corresponding to the predecessor of Vi on Ci

and its other neighbour in the set L+
i corresponding to the successor of Vi

on Ci. Moreover, all the vertices in Ji have distance at least 4 from all the
vertices in L0 and (21) implies that |Ji| ≥ 9mB/10. It is easy to see that
one can greedily choose a set Ii ⊆ Ji of size mB/10 such that the vertices in
⋃k

i=1 Ii have distance at least 4 from each other. We take I := L0 ∪
⋃k

i=1 Ii.
Let us now check conditions (C1)–(C9). (C1) holds with K1 := 1 since

|L0| = |V ′
0 | ≤ εAn = εn/k ≤ d|H|. (C2) holds by definition of I. (C3) holds

since H is a Hamilton cycle in Gc
B∪V ′

0

(c.f. the definition of the graph Gc
B∪V ′

0

).

This also implies that for every edge xy ∈ H with x ∈ Li, y ∈ Lj (i, j ≥ 1)
we must have that ViVj ∈ E(RB). Thus (C6) holds as every edge of RB

corresponds to an ε-regular pair of clusters having density d. (C4) holds
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with K2 := 1 because

|NH(L0) ∩ Li| ≤ 2 |L0| = 2 |V ′
0 |

(18)

≤ 2εn/|RB| ≤ 5εmB ≤ dmB.

For (C5) we need to find a set D ⊆ I of buffer vertices. Pick any set

Di ⊆ Ii with |Di| = δ′mB and let D :=
⋃k

i=1 Di. Since Ii ⊆ Ji we have that
|NH(D) ∩ Lj| = 2δ′mB for all j = 1, . . . , k. Hence

||NH(D) ∩ Li| − |NH(D) ∩ Lj || = 0

for all 1 ≤ i < j ≤ k and so (C5) holds. (C7) holds with c := α/10 by
our choice U1 ∈ N+

R∗

B
(v) and U2 ∈ N−

R∗

B
(v) of the neighbours of each vertex

v ∈ V ′
0 in the walk WB (c.f. the definition of the graph R∗

B).
(C8) and (C9) are now the only conditions we need to check. Given a set

Ei ⊆ Vi of size at most ε′mB, we wish to find Fi ⊆ (Li ∩ (I \ D)) = Ii \ D
and a bijection φi : Ei → Fi such that every v ∈ Ei has a large number of
neighbours in every cluster Vj for which Lj contains a neighbour of φi(v).
Pick any set Fi ⊆ Ii \D of size |Ei|. (This can be done since |D ∩ Ii| = δ′mB

and so |Ii \ D| ≥ mB/10 − δ′mB ≫ ε′mB.) Let φi : Ei → Fi be an arbitrary
bijection. To see that (C8) holds with these choices, consider any vertex
v ∈ Ei ⊆ Vi and let j be such that Lj contains a neighbour of φi(v) in H .
Since φi(v) ∈ Fi ⊆ Ii ⊆ Ji, this means that Vj must be a neighbour of Vi

on the cycle Ci ∈ CB containing Vi. But this implies that |NG∗(v) ∩ Vj | ≥
(d − ε)mB since each edge of the union

⋃

C∈CB
C ⊆ RB of all the cycles

from CB corresponds to an (ε, d)-superregular pair in G∗.

Finally, writing F :=
⋃k

i=1 Fi we have

|NH(F ) ∩ Li| ≤ 2ε′mB

(since Fj ⊆ Jj for each j = 1, . . . , k) and so (C9) is satisfied with K3 := 2.
Hence (C1)–(C9) hold and so we can apply the Blow-up lemma to obtain a
Hamilton cycle in G∗ such that the image of Li is Vi for all i = 1, . . . , k and
the image of each x ∈ L0 is φ(x) ∈ V0. (Recall that G∗ was obtained from
the underlying graph of G∗

B by adding all the vertices v ∈ V ′
0 and joining

each such v to all the vertices in N+
G (v) ∩ U1 as well as to all the vertices in

N−
G (v)∩U2, where U1 and U2 are the neighbours of v on the walk WB.) Using

the fact that H was obtained from the (directed) Hamilton cycle Cc
B∪V ′

0

and

since U1 6= U2 for each v ∈ V ′
0 , it is easy to see that our Hamilton cycle in G∗

corresponds to a (directed) Hamilton cycle CB in G[B ∪ V ′
0 ].

5.4.4. Finding a Hamilton cycle in G. The last step of the proof is
to find a Hamilton cycle in G[A′] which can be connected with CB into a
Hamilton cycle of G. Pick an arbitrary edge v1v2 on CB and add an extra
vertex v∗ to G[A′] with outneighbourhood N+

G (v1)∩A′ and inneighbourhood
N−

G (v2) ∩A′. A Hamilton cycle CA in the digraph thus obtained from G[A′]
can be extended to a Hamilton cycle of G by replacing v∗ with v2CBv1. To
find such a Hamilton cycle CA, we can argue as before. This time, there
is only one exceptional vertex, namely v∗, which we incorporate into the
walk WA. Note that by our choice of A and B the analogue of (19) is
satisfied and so this can be done as before. We then use the Blow-up lemma
to obtain the desired Hamilton cycle CA corresponding to this walk.
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5.5. Ore Type Condition

The proof of the Ore type result is essentially the same as that of the
Dirac type result. The only place in the proof of the Diract type result
where we used the full minimum semi-degree condition was in the proof of
the expansion property, so we give a version of that lemma with Ore type
conditions here. In the rest of the proof a weaker minimum degree condition
suffices. This is guaranteed by the following proposition.

Proposition 5.12. Let G be an oriented graph such that for all distinct
x, y ∈ V (G) with xy 6∈ E(G) we have d+(x) + d−(y) ≥ 3n/4. Then δ0(G) ≥
n/8.

Proof. Suppose not. When without loss of generality assume that δ+(G) ≤
δ−(G). Indeed, if not then replace every edge xy ∈ E(G) with yx. Let
u ∈ V (G) have d+(u) = δ0(G). Define S = {s ∈ V (G)\{u} : us 6∈ E(G)}.
Then |S| ≥ n − n/8 = 7n/8 and moreover for all s ∈ S we have d−(s) ≥
3n/4 − n/8 = 5n/8. Hence

n2/2 > e(G) ≥ (5n/8)|S| ≥ 35n2/64,

which is a contradiction. �

The only further difference is the need for an analogue of Lemma 5.3,
which guarantees that we can find an reduced oriented graph still approxi-
mately satisfying the original Ore type condition.

Lemma 5.13. For every ε ∈ (0, 1) there exist integers M ′ = M ′(ε) and
n0 = n0(ε) such that the following holds. Let d ∈ [0, 1], let G be an oriented
graph of order at least n0 and let R′ be the reduced digraph obtained by ap-
plying the Diregularity lemma to G with parameters ε, d and M ′. Suppose
further that ε + d ≪ α < 1 and for all vertices x, y ∈ V (G) with xy 6∈ E(G),
d+(x) + d−(y) ≥ α |G|. Then R′ has a spanning oriented subgraph R with

(22) d+(i) + d−(j) ≥ (α − (5ε + 2d)) |G|
for all ij 6∈ E(R).

Proof. Let us first show that all clusters Vi, Vj with ij 6∈ E(R′) satisfy

(23) (|N+
R′(i)| + |N−

R′(j)|)/|R′| ≥ α − (4ε + 2d).

To see this observe that as ij 6∈ E(R′) these do not form an ε-regular pair
of density at least d in the pure graph. Thus we can find vertices x ∈ Vi,
y ∈ Vj with xy 6∈ E(G) then by our hypothesis and the Diregularity lemma
d+

G′(x) + d−
G′(y) ≥ (α − 2(ε + d)) |G|. On the other hand,

|N+
G′(x)| + |N−

G′(y)| ≤ (|N+
R′(i)| + |N−

R′(j)|)m + 2|V0|
≤ (|N+

R′(i)| + |N−
R′(j)|)|G|/|R′| + 2ε|G|.

Altogether this proves (23).
Let R be the spanning oriented subgraph obtained from R′ by deleting

edges randomly as follows. For every unordered pair Vi, Vj of clusters we
delete the edge ij (if it exists) with probability

(24)
eG′(Vj, Vi)

eG′(Vi, Vj) + eG′(Vj, Vi)
.
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Otherwise we delete ji (if it exists). We interpret (24) as 0 if ij, ji /∈ E(R′).
So if R′ contains at most one of the edges ij, ji then we do nothing. We
do this for all unordered pairs of clusters independently and let Xi be the
random variable which counts the number of outedges of the vertex i ∈ R
and let Yi count the number of inedges. Suppose ij, ji ∈ E(R′). Then

E(Xi + Yj) =
∑

k 6=i

eG′(Vi, Vk)

eG′(Vi, Vk) + eG′(Vk, Vi)
+

∑

k 6=j

eG′(Vk, Vj)

eG′(Vj, Vk) + eG′(Vk, Vj)

≥
∑

k 6=i

eG′(Vi, Vj)

|Vi| |Vj |
+

∑

k 6=j

eG′(Vk, Vj)

|Vj| |Vk|

≥ |R′|
|G| |Vi|





∑

x∈Vi

(d+
G′(x) − |V0|) +

∑

y∈Vj

(d−
G′(y) − |V0|)



 .

Now observe that as ji ∈ E(R′), the bipartite oriented graph (Vj , Vi)G′ is
ε-regular with density at least d. Thus it contains a matching M of size
at least (1 − ε)|Vi|. Since G is oriented, this gives us |M | ordered pairs
of vertices (x, y) ∈ (Vi, Vj) with xy 6∈ E(G) and hence d+

G′(x) + d−
G′(y) ≥

(α − 2(ε + d)) |G′|. Thus

E(Xi + Yj) ≥
|R′|

|G| |Vi|
[(1 − ε)(α − 2(ε + d)) |R| |Vi| − 2|V0| |Vi|]

≥ (α − (5ε + 2d) |R| ≥ ε|R|.
As in Lemma 5.3, a straightforward application of a Chernoff type bound
shows that there exists R ⊆ R′ with this property, and combining this
with (23) we see that the result holds. �

The following expansion lemma is the analogue of Lemma 5.8 in the proof
of the Ore type result.

Lemma 5.14. Let R∗ be an oriented graph on N vertices with d+(u) +
d−(v) ≥ 3N/4 + αN for some α > 0 and for vertices u, v ∈ V (R∗) with
uv 6∈ E(R∗). If X ⊆ V (R∗) is nonempty and |X| ≤ (1−α)N then |N+(X)| ≥
|X| + αN/2.

Proof. Suppose the assertion is false, i.e. there exists nonempty X ⊆ V (R∗)
with |X| ≤ (1 − α)N and

(25)
∣

∣N+(X)
∣

∣ < |X| + αN/2.

We consider the following partition of V (R∗):

A := X∩N+(X), B := N+(X)\X, C := V (R∗)\(X∪N+(X)), D := X\N+(X).

(25) gives us

(26) |D| + αN/2 > |B|.
Suppose |D| < αN/10. Then by (26) |B| < 3αN/4 and so A, C 6= ∅. By
an averaging argument there exists a ∈ A with |N+(a) ∩ A| ≤ |A|/2 and
similarly there exists c ∈ C with |N−(c) ∩ C| ≤ |C|/2. By construction
ac 6∈ E(R∗) so d+(a) + d−(c) ≥ 3N/4 + αN and so

3N/4 + αN ≤ d+(a) + d−(c) ≤ (|A|/2 + |B|) + (|C|/2 + |B|).
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Hence we have

N ≥ |A| + |C| ≥ 3N/2 + 2αN − 4|B| ≥ 3N/2 − αN,

which is a contradiction. Thus for the rest of the proof we shall assume that
|D| > αN/10. Note that this is much stronger than we need, |D| ≥ 2 would
suffice.

For simplicity, we write δ := δ(R∗), δ+ := δ+(R∗) and δ− := δ−(R∗).
We write δ+

D for the minimum outdegree in R∗ of a vertex in D, that is,
δ+
D := mind∈D(d+

R∗(d)). We define δ−D, δ+
A , etc. similarly.

Note that R∗[D] contains no edges, and so for all x 6= y ∈ D we have
d(x) + d(y) ≥ 3N/2 + 2αn. Hence there is at most one vertex in D with
degree less than 3N/4+αn. In the case that such a vertex dbad exists, define
D′ := D\{dbad} and observe that δD′ ≥ 3N/4 + αN and D′ 6= ∅. If no such
vertex exists then let D′ := D and again δD′ ≥ 3N/4 + αN .

Suppose A 6= ∅. Then by an averaging argument there exists x ∈ A with
|N+(x) ∩ A| < |A|/2. Hence δ+

A ≤ |N+(x)| < |B| + |A|/2. Combining this
with (26) we get

(27) |A| + |B| + |D| ≥ 2δ+
A − αN/2.

If A = ∅ then N+(X) = B and so (26) implies |D| + αN/2 ≥ |B| ≥ δ+
D′.

Thus we get

(28) |A| + |B| + |D| ≥ 2δ+
D′ − αN/2.

Similarly, if C 6= ∅ then considering the inneighbourhood of a suitable vertex
x ∈ C gives

(29) |B| + |C| + |D| ≥ 2δ−C − αN/2.

If C = ∅ then N−(D′) ⊆ B and thus |B| ≥ δ−D′ . Together with (26) this
shows that

(30) |B| + |C| + |D| ≥ 2δ−D′ − αN/2.

For any x ∈ D′ we have N(x) ∩ D = ∅ and hence

(31) |A| + |B| + |C| ≥ |N(x)| ≥ δD′.

We now combine the above equations to generate a contradiction. We have
four separate, but very similar, cases.
Case 1: A 6= ∅, C 6= ∅. First note that e(A, C) = ∅ so δ+

A+δ−C ≥ 3N/4+αN .
Combining equations (27), (29) and (31) gives

3|A| + 4|B| + 3|C| + 2|D| ≥ 2δ+
A + 2δ−C + 2δD′ − αN

≥ 4(3N/4 + αN) − αN.

Case 2: A 6= ∅, C = ∅. Since e(A, D′) = ∅ we have δ+
A + δ−D′ ≥ 3N/4+αN .

Equations (27), (30) and (31) give

3|A| + 4|B| + 3|C| + 2|D| ≥ 2δ+
A + 2δ−D′ + 2δD′ − αN

≥ 4(3N/4 + αN) − αN.
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Case 3: A = ∅, C 6= ∅. Since e(D′, C) = ∅ we have δ+
D′ + δ−C ≥ 3N/4+αN .

Equations (28), (29) and (31) give

3|A| + 4|B| + 3|C| + 2|D| ≥ 2δ+
D′ + 2δ−C + 2δD′ − αN

≥ 4(3N/4 + αN) − αN.

Case 4: A = ∅, C = ∅. By the definition of D′ and our earlier remarks we
have δ+

D′ + δ−D′ ≥ 3N/4 + αN . Equations (28), (30) and (31) give

3|A| + 4|B| + 3|C| + 2|D| ≥ 2δ+
D′ + 2δ−D′ + 2δD′ − αN

≥ 4(3N/4 + αN) − αN.

Finally, substituting (26) gives

3N + αN/2 ≥ 3N + 3αN,

which is a contradiction. �
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Chapter 6

Proof of theorem 1.6

With the results of Section 4.3 in mind, we are now in a position to
prove Theorem 1.6. The proof that this result holds for ‘long’ cycles uses
somewhat similar methods to those in [36], and we will use some results
from that paper. Using the ‘stability method’ we will distinguish between
a non-extremal case where our oriented graph has some form of expansion
property, and an extremal case where the oriented graph is shown to be
similar to that in Figure 5.1.

We have already proved the result for 4 ≤ ℓ ≤ n/1010 in Theorem 4.18.
Thus we can assume that n/1010 ≤ ℓ < n.

We will need the following slight extension of Lemma 5.3, due to Keevash,
Kühn and Osthus [36].

Lemma 6.1. For every ε ∈ (0, 1) and there exist numbers M ′ = M ′(ε)
and n0 = n0(ε) such that the following holds. Let d ∈ [0, 1] with ε ≤ d/2,
let G be an oriented graph of order n ≥ n0 and let R′ be the reduced digraph
with parameters (ε, d) obtained by applying the Diregularity Lemma to G with
M ′ as the lower bound on the number of clusters. Then R′ has a spanning
oriented subgraph R such that

(a) δ+(R) ≥ (δ+(G)/|G| − (3ε + d))|R|,
(b) δ−(R) ≥ (δ−(G)/|G| − (3ε + d))|R|,
(c) for all disjoint sets S, T ⊂ V (R) with eG(S∗, T ∗) ≥ 3dn2 we have

eR(S, T ) > d|R|2, where S∗ :=
⋃

i∈S Vi and T ∗ :=
⋃

i∈T Vi.
(d) for every set S ⊂ V (R) with eG(S∗) ≥ 3dn2 we have eR(S) > d|R|2,

where S∗ :=
⋃

i∈S Vi.

Define a hierarchy of constants so that

1/n0 ≪ ε ≪ d ≪ c ≪ η ≪ 1.

Let G be an oriented graph on n ≥ n0 vertices with minimum semi-degree
δ0(G) ≥ ⌈(3n − 4)/8⌉ and let u ∈ V (G). Suppose that G contains no cycle
of length ℓ containing u. Apply the Diregularity Lemma (Theorem 5.2)
and Lemma 6.1 to G with parameters (ε2/3, d). This gives us a partition
of V (G) into V0, V1, . . . , Vk with m := |V1| = . . . = |Vk| and a reduced
oriented graph R. Lemma 6.1 gives us that

(32) δ0(R) > (3/8 − 1/(2n) − d − ε2)k > (3/8 − 2d)k.

Case 1. |N+
R (S)| ≥ |S| + 2ck for every S ⊂ [k] with k/3 < |S| < 2k/3.

In this case we use probabilistic methods to find a subdigraph G′ of G
with ℓ vertices and a new reduced oriented graph which still satisfies the
conditions of Case 1, possibly with modified constants. Also, we can ensure
that u ∈ V (G′). We can then use the following result from [36], which says
that all such graphs contain a Hamilton cycle.
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Lemma 6.2. Let M ′, n0 be positive numbers and let ε, d, η, ν, τ be positive
constants such that 1/n0 ≪ 1/M ′ ≪ ε ≪ d ≪ ν ≤ τ ≪ 1. Let G be an
oriented graph on n ≥ n0 vertices such that δ0(G) ≥ 2ηn. Let R′ be the
reduced digraph of G with parameters (ε, d) and such that |R′| ≥ M ′. Suppose
that there exists a spanning oriented subgraph R of R′ with δ0(G) ≥ η|R| and
such that |N+

R (S)| ≥ |S| + ν|S| for all sets S ⊆ V (R) with |S| < (1 − τ)|R|.
Then G contains a Hamilton cycle.

The argument we use to find an appropriate subdigraph G′ is similar to
that in [36], and uses standard probabilistic techniques. Recall that there
are k (non-exceptional) clusters, each with size m.

Claim 1.1. Let m′ satisfy 10−11n/k < m′ < m and p := m′/m. Then
there exists a partition of V (G)\V0 into sets A and B which has the following
properties:

(a) |Ai| = m′, where we write Ai := Vi ∩ A for every i ∈ [k];
(b) |N+

G (v)∩Ai| = p|N+
G (v)∩ Vi| ± n2/3 for every vertex v ∈ V (G); and

similarly for N−
G (v);

(c) R is the oriented reduced graph with parameters (ε2/1011, 3d/4) cor-
responding to the partition A1, . . . , Ak of the vertex set of G[A];

(d) δ0(G[A]) ≥ (3/8 − ε)|A|.
Proof. For each cluster Vi define a partition into Ai and Bi as follows. Let
η := n2/3/(4|Vi|) and put x ∈ Vi in Ai with probability p+ η, independently
of all other vertices. Then standard Chernoff type bounds give that the
probability that p|Vi| < |Ai| < p|Vi|+ n2/3/2 does not occur is exponentially
small in |Vi|. Further, they also give that the probability that any vertex v ∈
Ai has outneighbourhood varying from p|N+

G (v)∩Vi| by more than n2/3/2 is
exponentially small. Thus for sufficiently large n a partition exists satisfying
both these conditions, and we can discard up to n2/3/2 vertices from each
Ai to obtain a partition satisfying (a) and (b).

To see (c) note that the definition of regularity implies that the pair
(Ai, Aj) consisting of all the Ai-Aj edges in the pure oriented graph G∗ is
ε2/1011-regular and has density at least 3d/4 whenever ij ∈ E(R). On the
other hand, (Ai, Aj) is empty whenever ij /∈ E(R) since (Vi, Vj) ⊃ (Ai, Aj)
is empty in this case. Property (d) follows immediately from (b). �

If ℓ ≥ n − |V0| then form G′ by discarding n − ℓ arbitrary vertices from
V (G) \ {u}. Otherwise apply the previous claim to G with m′ := ⌊ℓ/k⌋ − 1.
Let G′ := G[A ∪ V ′

0 ], where V ′
0 ⊆ V (G) \ A is an arbitrary set of vertices

containing u (if u 6∈ A) of size ℓ − |A|. Then G′ has exactly ℓ vertices and
satisfies the conditions of Lemma 6.2 with τ = η = 1/3 and ν = 2c. Apply
that result to obtain a Hamilton cycle in G′ and thus a cycle of length ℓ
through u in G.

Case 2. There is a set S ⊂ [k] with k/3 < |S| < 2k/3 and |N+
R (S)| <

|S| + 2ck.

In this case we exploit the minimum semi-degree condition to demon-
strate that G has roughly the same structure as the extremal graph. The
proof proceeds in three steps.
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(i) Show that the G has roughly the same structure as the extremal
graph.

(ii) Show that if the cluster sizes and vertices satisfy certain conditions
then using the Blow-up Lemma (Lemma 5.4) we have the desired
cycle (Claim 2.3).

(iii) Use (ii) to obtain further structural refinements, eventually showing
that G either contains a Hamilton cycle or contradicts the minimum
semi-degree condition.

The difference between the proof here and the proof of the exact Hamil-
tonicity result in [36] is primarily in Step (ii), Claim 2.3. We have similar
conditions here, but the stronger conclusion that we get a cycle of any length,
not just a Hamilton cycle. Their proofs of the results needed for (iii) in the
Hamiltonicity case implicitly require only that the conditions of (ii) are not
satisfied, and so the proof of Step (iii) for us is implicit in their paper. Hence
we will not give their proofs for either Step (i) or (iii). Instead we give a
complete proof of the result in Step (ii) and refer the reader to [36] for all
remaining details.

Let

AR := S∩N+
R (S), BR := N+

R (S)\S, CR := [k]\(S∪N+
R (S)), DR := S\N+

R (S).

These sets will have similar properties as the sets A, B, C and D in the
extremal example. Let A :=

⋃

i∈AR
Vi and define B, C, D similarly. The

following notation will prove useful. Let P (1) := A, P (2) := B, P (3) := C
and P (4) := D. When we refer to P (i + 1) or P (i − 1) we will always
mean modulo 4. Define P (i ⊕ 1) by P (1 ⊕ 1) := P (1), P (2 ⊕ 1) := P (4),
P (3⊕1) := P (3) and P (4⊕1) := P (2). This operation should be viewed with
reference to the extremal graph as being the ‘other’ out-class of P (i), and
has the obvious inverse P (1⊖1) := P (1), P (2⊖1) := P (4), P (3⊖1) := P (3)
and P (4 ⊖ 1) := P (2). Since we will show that G has a somewhat similar
structure to the extremal graph it will be useful to define the following graph
on V (G). Let F [(P (i), P (i + 1)] contain all edges from P (i) to P (i + 1), let
F [A] and F [C] be tournaments which are as regular as possible. Finally
let F [B, D] be a bipartite tournament which is as regular as possible. We
will show that G roughly looks like F , and hence contains a cycle of length
ℓ. From now on we will not calculate explicit constants multiplying c, and
just write O(c). The constants implicit in the O(∗) notation will always be
absolute.

We call a vertex x ∈ P (i) cyclic if it has almost the same number of
neighbours in P (i− 1) and P (i + 1) as a vertex in the corresponding vertex
class in F . More precisely, call a vertex x ∈ P (i) cyclic if |N+

G (x)∩P (i+1)| ≥
(1−O(

√
c)|P (i+1)| and |N−

G (x)∩P (i−1)| ≥ (1−O(
√

c)|P (i−1)|, counting
modulo 4. A vertex is acceptable if it has a significant outneighbourhood in
one of its two ‘out-classes’ and one of its two ‘in-classes’, where these are
understood with reference to F . More precisely, x ∈ P (i) is acceptable if
both the following hold.

• |N+
G (x) ∩ P (i + 1)| ≥ (1/100 − O(

√
c))n or |N+

G (x) ∩ P (i ⊕ 1)| ≥
(1/100 − O(

√
c))n,
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• |N−
G (x) ∩ P (i − 1)| ≥ (1/100 − O(

√
c))n or |N−

G (x) ∩ P (i ⊖ 1)| ≥
(1/100 − O(

√
c))n.

An edge from P (i) to P (j) in G is acceptable if P (j) = P (i + 1) or P (j) =
P (i ⊕ 1).

The next claim combines several results from [36] and shows that these
sets have roughly the same structure as in F .

Claim 2.2 (Keevash, Kühn and Osthus, [36]). The following hold for
all i.

(a) |P (i)| = (1/4 ± O(c))n,
(b) e(P (i), P (i + 1)) > (1 − O(c))n2/16,
(c) e(P (i), P (i⊕ 1)) > (1/2 − O(c))n2/16.

Furthermore, by reassigning vertices that are not cyclic to A, B, C or D we
can arrange that every vertex of G is acceptable. We can also arrange that
there are no vertices that are not cyclic but would become so if they were
reassigned.

Note that these properties of A, B, C and D are invariant under the
relabelling A ↔ C, B ↔ D. Thus we may assume that |B| ≥ |D|.

Given a path P := v1 . . . vk in G with v1, vk ∈ P (i) we say we contract P
to refer to the following process, which yields a new digraph H . Remove
v1, . . . , vk from G and add an extra vertex v∗ to P (i) with outneighbourhood
N+(vk) and inneighbourhood N−(v1). The ‘moreover’ part of the next claim
is not in the statement of the corresponding claim in [36]. That we are not
seeking a Hamilton cycle allows us this modified condition and a simpler
proof than would otherwise be the case.

Claim 2.3. If |B| = |D| and every vertex is acceptable then G has an
ℓ-cycle containing u. Moreover, the assertion also holds if we allow one
non-acceptable vertex x ∈ A ∪ C.

Proof. The idea is as follows. First we contract suitable paths to leave
us with a digraph G1 containing only cyclic vertices. Then we find suitable
paths to contract to give a digraph G2 with |A| = |B| = |C| = |D|. We
can then apply the Blow-up Lemma to the underlying graph to find a cycle
in G2 which ‘winds around’ A, B, C, D. By our choice of the vertices in
this cycle and the definition of our contractions this will correspond to the
desired cycle in G. We will say that a 4-partite graph with vertex classes
(P (1), P (2), P (3), P (4)) has type (p1, p2, p3, p4) if |P (i)| = pi + q and pi ∈ N

for all i and some q. Our initial condition on the sizes means that G has
type (p1, 0, p3, 0). The type sum is p1 + p2 + p3 + p4.

Firstly, move the non-acceptable vertex x (if it exists) to a vertex class
in which it is acceptable, and readjust the O(c) notation if necessary. This
gives us type (p1, 0 ≤ p2 ≤ 1, p3, 0), possibly with new values for the pi.
Let v1, . . . , vt be vertices which are acceptable but not cyclic. Claim 2.2 (a)
and (b) give us that t = O(

√
c)n, so we can pick cyclic neighbours v+

i

and v−
i of each vi such that the edges viv

+
i and v−

i vi are acceptable and all
these vertices are distinct. We want to contract v−

i viv
+
i so that we form

a new graph in which all vertices are cyclic. We need to ensure that after
contracting we are still of type (p1, 0 ≤ p2 ≤ 1, p3, 0) (although possibly with
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different pi to above) and p1, p3 = O(
√

c)n. For each vi find a path P ′
i of

length at most 3 starting at v+
i , ending at some cyclic vertex in the same

cluster as v−
i and ‘winding around the clusters,’ i.e. following the order P (i),

P (i + 1) etc. If v+
i and v−

i are in the same cluster then the path P ′
i is the

empty path. Let Pi := v−
i viv

+
i P ′

i and note that we can choose the Pi to be
disjoint.

Contract the paths Pi to form a new digraph G1. Note that G1 is not
necessarily oriented. Every vertex in G1 is cyclic by construction, possibly
with a new constant in the O(

√
c) notation in the definition of a cyclic vertex.

G1 also has type (p1, 0 ≤ p2 ≤ 1, p3, 0) and p1, p3 = O(
√

c)n.
Now suppose that |A| < |C| and let s := |C| − |A| = p3 − p1. Greedily

find a path PC in G1 which follows the pattern CCDAB s times and then
ends in C. I.e. find an edge between 2 cyclic vertices in C, extend around
the clusters back to C and repeat until we have a path from C to C with s
(cyclic) vertices from A, B and D and 2s+1 vertices from C. We can do this
as Claim 2.2 (a) and (c) imply that almost all unordered pairs of vertices in C
are connected by an edge and s = O(

√
c)n. Let G2 be the digraph obtained

by contracting PC . Then in G2 has type (p1, 0 ≤ p2 ≤ 1, p1, 0). If |A| > |C|
we can achieve type (p1, 0 ≤ p2 ≤ 1, p1, 0) in a similar way by contracting
a path PA from A to A following the pattern AABCD. Note that since
s = O(

√
c)n, all vertices of G2 are still cyclic. Now suppose that in G2 we

have |D| > |A|. Let s := |D| − |A| = −p1. This time we find a path PD

from D to D following the pattern DBCDABDABC which contains s + 1
more vertices from D than it contains from A, and similarly for C. Note
that contracting PD does not change |B| − |D|. Contracting PD gives us a
digraph (which we still call G2) with type (0, 0 ≤ p2 ≤ 1, 0, 0) and all of
whose vertices are still cyclic. The last case to consider is when we have
|D| < |A|. In this case we can equalize the sets by contracting two paths PA

and PC of appropriate length as above.
We now find and contract a short path in G2 to form a new oriented

graph G3 with |G3| − n + ℓ ≡ 0 (mod 4). Let p := n − ℓ (mod 4). This
is (congruent to) the number of vertices we do not want in the cycle we
will find in G3. We now contract paths to ensure that G3 has type sum
p, and thus |G3| − n + ℓ ≡ 0 (mod 4). Suppose G3 has type (0, 0, 0, 0).
If p = 0 we are done. If p = 1 use one path PC and one path PD as above
to obtain type (1, 0, 0, 0). If p = 2 then a path PD gives us type (1, 0, 1, 0)
and finally if p = 3 a path PC gives us type (1, 1, 0, 1). Now suppose G3

has type (0, 1, 0, 0). If p = 1 we are done already. If p = 2 contract one
path PD and one path PC to get type (1, 1, 0, 0). If p = 3 a path PD gives
us type (1, 1, 1, 0). Finally if p = 4 two paths PD and one path PC gives
type (2, 1, 1, 0).

At most O(
√

c)n vertices in G3 correspond to paths in G. Call these
vertices and u special vertices. We now contract the special vertices. Let S1

consist of the special vertices in A. Find a path from A to A that ‘winds
around’ the 4 clusters of the oriented graph G3 |S1| times and contains all
vertices in S1. As |S1| ≤ O(

√
c)n we can find such a path easily with a

greedy algorithm. Contract this path and repeat for B, C and D to reduce
the number of special vertices to at most 4 without otherwise affecting the
structure of G3. Let S consist of these remaining special vertices.
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Let G′
3 be the underlying graph corresponding to the set of edges oriented

from P (i) to P (i + 1), for 1 ≤ i ≤ 4. Since all vertices of G3 are cyclic and
we chose c ≪ η ≪ 1, each pair (P (i), P (i + 1)) is (η, 1)-super-regular in G′

3.
Furthermore, G′

3 contains no multiple edges. Let F ′ be the 4-partite graph
with vertex classes P (i) where the 4 bipartite graphs induced by (P (i), P (i+
1)) are all complete. Define ℓ′ := |F ′| − n + ℓ and note that it satisfies
ℓ′ ≡ 0 (mod 4) and ℓ′/4 ≤ |D|. Thus ‘winding around’ the 4 clusters ℓ′/4
times we can find a cycle of length ℓ′ in F ′ including all the special vertices.
Note that we need ℓ < n here, since the one non-acceptable vertex means
that we cannot ensure that G3 has type (0, 0, 0, 0). Remove each special
vertex vj ∈ S from this cycle to split the cycle into a series of disjoint paths
P1 := v+

1 P ′
1v

−
2 , P2 := v+

2 P ′
2v

−
3 etc. For each vj ∈ S ∩ P (i) and every i pick

sets C+
j ⊂ N+(vj) ∩ P (i + 1) and C−

j ⊂ N−(vj) ∩ P (i − 1) of size 10−8|G3|.
We now apply Lemma 5.4 with k = 4, ∆ = 2, b = 10−8 and the C+

j and C−
j

as the sets Cx (for x ∈ {v+
1 , v−

2 , v+
2 , . . . , v−

1 }) to embed the paths P1, . . . , P|S|.
This gives us disjoint paths in G′

3 − S with endpoints in the C+
j and C−

j

and the sum of whose lengths is |G3| − n + ℓ− 2|S|. The ‘moreover’ part of
Lemma 5.4 implies that we can assume that these paths continually ‘wind
around’ A, B, C, D. The condition on the endpoints of the paths ensures
that we can add in the special vertices to obtain a cycle C in G3 of length
|G3| − n + ℓ. As every vertex outside C in G3 corresponds to a single vertex
in G, the cycle Cℓ in G corresponding to C has length ℓ and contains u.

�

Since we are done if we satisfy the conditions of Claim 2.3, assume
that |B| > |D|. The argument in [36] reaches a similar point to us here,
and proceeds by showing that either G contains a Hamilton cycle, or is even
more like the extremal graph. More precisely, they show that G either sat-
isfies certain structural conditions, which we state below, or the conditions
of Claim 2.3 are satisfied. They do this by moving vertices between clusters
to obtain |B| = |D| whilst ensuring that all vertices are acceptable. The sit-
uation can arise though that |B| = |D|+ 1 and the only vertex class that it
is possible to move vertices in B to without stopping them being acceptable
is D. In this case we can shift an arbitrary vertex in B to A ∪ C to satisfy
the conditions of Claim 2.3.

Claim 2.4. For each of the following properties, there are fewer than
|B| − |D| vertices with that property or the conditions of Claim 2.3 are sat-
isfied.

• x ∈ A and |N−(x) ∩ C| ≥ (1/100 − O(
√

c))n.
• x ∈ A and |N−(x) ∩ B| ≥ (1/100 − O(

√
c))n.

• x ∈ C and |N+(x) ∩ A| ≥ (1/100 − O(
√

c))n.
• x ∈ C and |N+(x) ∩ B| ≥ (1/100 − O(

√
c))n.

We now define a new class of vertices. We say that a vertex is good if it
is acceptable and satisfies one of the following.

• x ∈ A and |N−(x) ∩ C|, |N−(x) ∩ B| ≤ (1/100 + O(
√

c))n.
• x ∈ B and |N+(x) ∩ A|, |N+(x) ∩ B| ≤ (1/100 + O(

√
c))n and

|N−(x) ∩ B|, |N−(x) ∩ C| ≤ (1/100 + O(
√

c))n.
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• x ∈ C and |N+(x) ∩ A|, |N+(x) ∩ B| ≤ (1/100 + O(
√

c))n.
• x ∈ D.

Note that cyclic vertices are not necessarily good.

Claim 2.5. By reassigning at most O(
√

c)n vertices we can arrange that
every vertex is good or the conditions of Claim 2.3 are satisfied.

Let M be a maximal matching in e(B, A) ∪ e(B) ∪ e(C, A) ∪ e(C, B).

Claim 2.6. e(M) = 0 and |B| − |D| = 1 or the conditions of Claim 2.3
are satisfied.

If the conditions of Claim 2.3 are satisfied we are done, so assume not.
Since e(M) = 0 we now have e(B ∪ C, A) = 0. Since e(A) < |A|2/2 there
exists a vertex a ∈ A with d−(a) ≤ (|A| − 1)/2 + |D|. Furthermore, we also
now have that e(C, B) = 0 and e(B) = 0, and so there exist vertices c ∈ C
and b ∈ B with d+(c) ≤ (|C| − 1)/2 + |D| and d(b) ≤ |A|+ |C|+ |D|. Since
|D| = |B| − 1 we see that

(3n− 4)/2 ≤ d−(a) + d+(c) + d(b) ≤ 3

2
(|A|+ |C|+ 2|D|)− 1 =

3

2
(n− 1)− 1.

This contradiction completes the proof. �
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[31] R. Häggkvist and A. Thomason, Oriented Hamilton cycles in oriented graphs, in
Combinatorics, Geometry and Probability, Cambridge University Press 1997, 339–
353.
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