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If in doubt, flip a coin: randomness helps

But Combinatorialists do.
Why, and what do we gain?
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What is a graph?
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Modelling large ‘real world’ graphs

Internet graph:

vertices = webpages
edges = links

or

vertices = computers
edges = physical links
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Modelling large ‘real world’ graphs

Social networks
(e.g. linkedin, facebook):

vertices = people
edges = friends/ colleagues
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Modelling large ‘real world’ graphs

Erdős collaboration graph:

vertices = mathematicians
edges = have collaborated

on a paper
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Modelling large ‘real world’ graphs

Questions

How do these networks grow?

Do they have common features?

Can one model/ predict rumor or virus spread?

Obtain answers by modelling these networks as large random graphs.
We can do simulations or prove theorems about these models to make
predictions.
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Modelling large ‘real world’ graphs

Observed features of networks

Small distances (‘small world
phenomenon’)

Local clustering (friends of friends are
likely to be friends)

Scale free degree distribution: the
proportion of vertices with k
neighbours is ∼ k−γ

(γ = 2.1 for the internet graph)
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Modelling large ‘real world’ graphs

Random model: Rich get richer (Barabási-Albert model)

Graph grows by adding vertices which are more likely to attach to
vertices of already high degree:

Prob(x connects to y) is proportional to:
the number of neighbours of y + initial attractivity γ

Bollobás & Riordan: small distances
Buckley & Osthus: scale free degree distribution, k−γ
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Modelling large ‘real world’ graphs

What about local clustering?
Need more complicated models which involve the ‘geometry’ of the
network.
Recent approach: embed network into ‘hyperbolic space’.

Current work by several groups, including Fountoulakis (Birmingham)
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Have seen:
Use probability (“coin flipping”) to model ‘real world’ networks.

Next:
Use probability to prove the existence of good solutions to hard problems.
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Anders Björner and Richard P. Stanley

“Combinatorics is somewhat of a Cinderella story. It used to be looked
down on by “mainstream” mathematicians as being somehow less

respectable than other areas. Then along came the prince of computer
science with its many mathematical problems and needs – and it was

combinatorics that best fitted the glass slipper held out.”
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Suppose we are given a difficult
problem (which amounts to finding
a needle in a haystack)...
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Suppose we are given a difficult
problem (which amounts to finding
a needle in a haystack)...

Idea: Use coin flips to decide what a
solution should look like.
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Suppose we are given a difficult
problem (which amounts to finding
a needle in a haystack)...

Idea: Use coin flips to decide what a
solution should look like.

More precisely, we obtain a good solution if we can show

P(good solution exists) > 0.

Hence one such solution exists!
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MaxCut problem in graphs

Split vertices so that most edges go across split.
Applications e.g. in computer chip design.
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MaxCut problem in graphs

Split vertices so that most edges go across split.
Applications e.g. in computer chip design.

‘Extremal’ solution to this problem:

Theorem (Edwards, University of Birmingham 1973)

If a graph has m edges, we can always guarantee

m

2
+

√
m

8

edges across.

bound is best possible

Deryk Osthus Randomness to the rescue:if in doubt, flip a coin



Multicoloured MaxCut

Have edges in several colours/types (red blue ...)

Aim: Find cut with many edges of each colour going across.

Question (Bollobás and Scott)

Can one ensure that at least half of red and half of blue go across?
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Multicoloured MaxCut

Have edges in several colours/types (red blue ...)

Aim: Find cut with many edges of each colour going across.

Question (Bollobás and Scott)

Can one ensure that at least half of red and half of blue go across?
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4 blue across
4 red across
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(Multicoloured) MaxCut

Question (Bollobás and Scott)

Can one ensure that at least half of red and half of blue go across?
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(Multicoloured) MaxCut

Question (Bollobás and Scott)

Can one ensure that at least half of red and half of blue go across?

Answer (Kühn and Osthus)

Yes! Flip a coin for each vertex.

1

3

5

6

2

4

2 blue across and 4 red across
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(Multicoloured) MaxCut

Question (Bollobás and Scott)

Can one ensure that at least half of red and half of blue go across?

Answer (Kühn and Osthus)

Yes! Flip a coin for each vertex.

Can show:

P(random solution is ‘good’) > 0.

So: there is a good solution.
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(Multicoloured) MaxCut

Question (Bollobás and Scott)

Can one ensure that at least half of red and half of blue go across?

Answer (Kühn and Osthus)

Yes! Flip a coin for each vertex.

So there exists a good solution.

What if we want to find it?
For simplicity, forget about colours.

Trying out possibilities is like finding
a needle in a haystack.
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(Multicoloured) MaxCut

Solution: Assign vertices to Left (L) and Right (R) one by one and look
at decision tree.
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One leaf corresponds to a good
solution. Which one?
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(Multicoloured) MaxCut

Ask an ape!!
(how he finds a banana in a binary
tree without looking.)
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(Multicoloured) MaxCut

Ask an ape!!
(how he finds a banana in a binary
tree without looking.)

The branch
containing the

banana is always the heavier
one – so the tree bends
that way.
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(Multicoloured) MaxCut

To solve the ‘real’ decision tree problem, give each partial
solution a weight according to its (predicted) quality.
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Follow the path in
the decision tree
which predicts the
best quality solution
(largest weight).

Do this via computing conditional expectations.
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Summary of approach

Probabilistic reasoning

⇓
P(good solution exists) > 0

⇓
There is a good solution

Consider random cut⇓
P(large cut exists) > 0

⇓
There is a large cut

Sometimes can use ‘ape in
a tree’ argument to find a
good solution efficiently.
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What is combinatorics?

Once, Israil Gelfand said that mathematics has three parts:
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What is combinatorics?

Once, Israil Gelfand said that mathematics has three parts:
xxx, yyy, and Combinatorics.
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What is combinatorics?

Once, Israil Gelfand said that mathematics has three parts:
xxx, yyy, and Combinatorics.
“What is combinatorics?” the listeners asked.
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What is combinatorics?

Once, Israil Gelfand said that mathematics has three parts:
xxx, yyy, and Combinatorics.
“What is combinatorics?” the listeners asked. The answer was:

“This is a science not yet created ...”

— Israil M. Gelfand (1980s)
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Colouring maps

Can we colour the countries of any given map with at most 4 colours so
that neighbouring countries get different colours?
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A 4-colouring of the world’s countries

Can we colour the countries of any given map with at most 4 colours so
that neighbouring countries get different colours?
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From maps to graphs/networks

For each country, introduce a vertex.

Connect vertices by an edge if the countries are neighbours.
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Note that the graphs we obtain are always planar, which means they can
be drawn without crossing edges.

Planar Non-planar

Question (4-colour problem for graphs (asked in 1852))

Can one colour the vertices of every planar graph with at most 4 colours
so that neighbouring vertices get different colours?

Appel & Haken, 1976: YES
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Vertex colourings

Definition

Proper colouring = a vertex colouring where adjacent vertices receive
different colours.

Chromatic number: χ(G ) = smallest number of colours in a proper
colouring of G.
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Application: Timetabling and scheduling

Exam scheduling conflict graph

vertices ↔ exams

edge between two vertices if someone is taking both exams

χ(G )= number of time slots needed

Deryk Osthus Randomness to the rescue:if in doubt, flip a coin



Application: Timetabling and scheduling

Exam scheduling conflict graph

vertices ↔ exams

edge between two vertices if someone is taking both exams

χ(G )= number of time slots needed

χ(G ) = 3, so we need 3 time slots.
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Application: Timetabling and scheduling

Things rapidly get complicated...

Conflict graph for some modules in the School of Mathematics

χ(G ) = 11
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Graph colouring is hard

Bad news: Determining χ(G ) is
NP-complete

Clay Institute Millennium Problem

Decide whether P=NP.

(one of 7 millennium problems, with a
$1,000,000 reward!)

Efficient algorithm for determining χ(G )
would imply P=NP
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Edge colourings

Now we colour edges instead, so that adjacent edges get different
colours.

ATeachers

Classes B

A teaches class B
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Edge colourings

Now we colour edges instead, so that adjacent edges get different
colours.

Teachers

=different times
different colours

A

BClasses

edge chromatic number: χedge(G ) = smallest number of colours
needed in a proper edge-colouring of G

Determining χedge(G ) in general is NP-complete

Deryk Osthus Randomness to the rescue:if in doubt, flip a coin



Edge colourings

A graph is D-regular if every vertex has exactly D neighbours.

Conjecture (1-factorization conjecture, Dirac 1950’s)

Let G be a D-regular graph on n vertices, where n is even and D ≥ n/2.
Then χedge(G ) = D.

A 7-edge-colouring of the complete graph K8 on 8 vertices.

Bounds in Conjecture would be best possible:

trivially, χedge(G ) ≥ D.

cannot replace n/2 by n/2− 1
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Edge colourings

A graph is D-regular if every vertex has exactly D neighbours.

Conjecture (1-factorization conjecture, Dirac 1950’s)

Let G be a D-regular graph on n vertices, where n is even and D ≥ n/2.
Then χedge(G ) = D.

True for D = n − 1, i.e. complete graphs.

Chetwynd and Hilton (1989), and independently Niessen and
Volkmann (1990), for D ≥ (

√
7− 1)n/2 ≈ 0.82n.

Perkovic and Reed (1997) for D ≥ (1/2 + ε)n with ε > 0.

Vaughan (2013) : an approximate multigraph version.
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Edge colourings

A graph is D-regular if every vertex has exactly D neighbours.

Conjecture (1-factorization conjecture, Dirac 1950’s)

Let G be a D-regular graph on n vertices, where n is even and D ≥ n/2.
Then χedge(G ) = D.

Proof.

Proved by Csaba, Kühn, Lo, Osthus & Treglown, 2013.

Proof is 200 pages and uses probabilistic arguments.

Proof argument gives 2 more conjectures on Hamilton cycles from
1970’s.
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4-colour theorem vs Hadwiger’s conjecture

Theorem (Appel & Haken, 1976)

The vertices of every planar graph can be coloured with at most 4
colours, i.e. every planar graph G has χ(G ) ≤ 4.

Proof of the 4-colour theorem is long and needs computer help.
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4-colour theorem vs Hadwiger’s conjecture

Proof of the 4-colour theorem is long and needs computer help.

Complete graphs Kr as minors of other graphs:

K
4

4 minorKon 4 vertices
complete graph 

Contraction of edges

Deletion of vertices &

Conjecture (Hadwiger’s conjecture, 1943)

If r colours are needed to colour graph G , then G contains a complete
graph Kr on r vertices as a minor.
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4-colour theorem vs Hadwiger’s conjecture

Conjecture (Hadwiger’s conjecture, 1943)

If r colours are needed to colour graph G , then G contains a complete
graph Kr on r vertices as a minor.

Remark

Hadwiger’s conjecture for r = 5 implies the 4-colour theorem,
i.e. that every planar graph G has χ(G ) ≤ 4.
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4-colour theorem vs Hadwiger’s conjecture

Conjecture (Hadwiger’s conjecture, 1943)

If r colours are needed to colour graph G , then G contains a complete
graph Kr on r vertices as a minor.

Remark

Hadwiger’s conjecture for r = 5 implies the 4-colour theorem,
i.e. that every planar graph G has χ(G ) ≤ 4.

To prove this remark, we use:

Theorem (Kuratowski, 1930)

A graph is planar if and only if it does not contain K5 or K3,3 as a minor.

K5 K3,3

Deryk Osthus Randomness to the rescue:if in doubt, flip a coin



4-colour theorem vs Hadwiger’s conjecture

Conjecture (Hadwiger’s conjecture, 1943)

If r colours are needed to colour graph G , then G contains a complete
graph Kr on r vertices as a minor.

Remark

Hadwiger’s conjecture for r = 5 implies the 4-colour theorem,
i.e. that every planar graph G has χ(G ) ≤ 4.

Proof (of Remark).

Suppose that χ(G ) > 4.
Hadwiger’s conjecture implies that G has a K5 minor.
Then Kuratowski’s theorem implies that G is not planar.
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4-colour theorem vs Hadwiger’s conjecture

Conjecture (Hadwiger’s conjecture, 1943)

If r colours are needed to colour graph G , then G contains a complete
graph Kr on r vertices as a minor.

Remark

Hadwiger’s conjecture for r = 5 implies the 4-colour theorem,
i.e. that every planar graph G has χ(G ) ≤ 4.

Robertson, Seymour & Thomas 1993: true for r = 6

Kühn & Osthus 2003: true for ‘locally sparse’ graphs

. . .
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Hamilton cycles in graphs

Hamilton cycle contains
every vertex exactly once

Question

Can you decide if a graph contains a Hamilton cycle? Is this a difficult
problem?

no characterization of Hamiltonian graphs known

decision problem NP-complete
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Hamilton cycles in graphs

Hamilton cycle contains
every vertex exactly once

Question

Can you decide if a graph contains a Hamilton cycle? Is this a difficult
problem?

no characterization of Hamiltonian graphs known

decision problem NP-complete
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Hamilton cycles in graphs

Clay Institute Millennium Problem

Decide whether P=NP.

efficient algorithm for checking
Hamiltonicity would imply P=NP

Aim

Find simple sufficient conditions which
guarantee a Hamilton cycle
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Hamilton cycles in graphs

Aim

Simple sufficient conditions which guarantee a Hamilton cycle

Proved longstanding conjectures by:

Thomassen 1979 (Keevash, Kühn, Osthus)

Thomassen 1982 (Kühn, Lapinskas, Osthus, Patel)

Bollobás & Häggkvist 1970’s (Kühn, Lo, Osthus, Staden)

Nash-Williams 1970 (Csaba, Kühn, Lapinskas, Lo, Osthus, Treglown)

Kelly 1968 (Kühn, Osthus)

Frieze & Krivelevich, 2005 (Knox, Kühn & Osthus)

. . .
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Hamilton decompositions of graphs

Hamilton decomposition of G
= set of edge-disjoint Hamilton cycles covering all edges of G

Which graphs/digraphs have Hamilton decompositions?
Very few general conditions known
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Hamilton decompositions of graphs

Theorem (Walecki, 1892)

Complete graph Kn has a Hamilton decomposition ⇔ n odd

Construction: find Hamilton path decomposition for Kn−1

then add extra vertex and close paths into Hamilton cycles
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Hamilton decomposition conjecture

A graph is D-regular if every vertex has exactly D neighbours.

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with D even and D ≥ bn/2c has a
decomposition into Hamilton cycles.

Extremal examples

No disconnected graph contains a Hamilton cycle.

≈ n/2≈ n/2
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Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with D even and D ≥ bn/2c has a
decomposition into Hamilton cycles.
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Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with D even and D ≥ bn/2c has a
decomposition into Hamilton cycles.

Nash-Williams (1969), D ≥ bn/2c guarantees a Hamilton cycle.

Jackson (1979), D/2− n/6 edge-disjoint Hamilton cycles

Christofides, Kühn and Osthus (2012) D ≥ n/2 + εn guarantees an
almost Hamilton decomposition.

Kühn and Osthus (2014) D ≥ n/2 + εn guarantees Hamilton
decomposition.
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Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with D even and D ≥ bn/2c has a
decomposition into Hamilton cycles.

Nash-Williams (1969), D ≥ bn/2c guarantees a Hamilton cycle.

Jackson (1979), D/2− n/6 edge-disjoint Hamilton cycles

Christofides, Kühn and Osthus (2012) D ≥ n/2 + εn guarantees an
almost Hamilton decomposition.

Kühn and Osthus (2014) D ≥ n/2 + εn guarantees Hamilton
decomposition.

Theorem (Csaba, Kühn, Lo, Osthus, Treglown 2014+)

Hamilton decomposition conjecture holds for sufficiently large n.
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Travelling Salesman problem

Travelling salesman
problem

Given a graph and
weights on the edges,
find a shortest tour which
visits all vertices.

Weighted version of
the Hamilton cycle
problem.

Problem is
NP-complete.
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Travelling salesman tour domination

Popular approach:
Find ‘approximate’ solutions which are close to optimal

Alternative approach:

Domination ratio of an algorithm A

A has domination ratio d ⇔ the proportion of solutions which are worse
than those produced by A is at least d.

So want an algorithm with d close to 1.
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Travelling salesman tour domination

Domination ratio of an algorithm A

A has domination ratio d ⇔ the proportion of solutions which are worse
than those produced by A is at least d.

Tours ranked by cost
Number of cities = n

Best known result:
guaranteed not to lie in
bottom 1

n fraction.
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Travelling salesman tour domination

Domination ratio of an algorithm A

A has domination ratio d ⇔ the proportion of solutions which are worse
than those produced by A is at least d.

Tours ranked by cost
Number of cities = n

Kühn and Osthus: guaranteed not
to lie in bottom 1

2 .
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Travelling salesman problem

Domination ratio of an algorithm A

A has domination ratio d ⇔ the proportion of solutions which are worse
than those produced by A is at least d.

Tours ranked by cost
Number of cities = n

Kühn, Osthus and Patel 2014: guaranteed to lie in top 1/n fraction for
1–2 weights.
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Regularity

Proofs use more sophisticated versions of coin flipping; for example:

Szemerédi’s Regularity Lemma

Every dense graph can be approximated by a small number of random
graphs.
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Regularity

These tools and ideas have applications outside of Graph Theory:

Theorem (Green, Tao, 2004)

The primes contain arithmetic progressions of arbitrary length.

The proof uses the fact that primes are ‘randomly distributed’ on any
long interval of the integers.
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The development of Combinatorics

Nati Linial:

Combinatorics must always have been fun. But when and how did it
become a serious subject? I see several main steps in this development:

The asymptotic perspective.
Extremal combinatorics (in particular extremal graph theory).
The emergence of the probabilistic method.
The computational perspective.’
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The development of Combinatorics

Nati Linial:

Combinatorics must always have been fun. But when and how did it
become a serious subject? I see several main steps in this development:

The asymptotic perspective.
Extremal combinatorics (in particular extremal graph theory).
The emergence of the probabilistic method.
The computational perspective.’

Many thanks to: Katherine Staden, Amelia Taylor, Tim Townsend
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