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Abstract. As one of the most fundamental and well-known NP-complete problems, the Hamilton
cycle problem has been the subject of intensive research. Recent developments in the area have
highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts
and other recent techniques have led to the solution of several long-standing problems in the area.
New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in
hypergraphs. We survey these developments and highlight open problems, with an emphasis on
extremal and probabilistic approaches.

1. Introduction

A Hamilton cycle in a graph G is a cycle that contains all the vertices of G. The decision
problem of whether a graph contains a Hamilton cycle is among Karp’s original list of NP-complete
problems [79]. Together with the satisfiability problem SAT and graph colouring, it is probably
one of the most well-studied NP-complete problems. The techniques and insights developed for
these fundamental problems have also found applications to many more related and seemingly more
complex questions.

The main approach to the Hamilton cycle problem has been to prove natural sufficient conditions
which are best possible in some sense. This is exemplified by Dirac’s classical theorem [44]: every
graph G on n ≥ 3 vertices whose minimum degree is at least n/2 contains a Hamilton cycle. More
generally, one can ask the following ‘extremal’ question: what value of some easily computable
parameter (such as the minimum degree) ensures the existence of a Hamilton cycle? The field has
an enormous literature, so we concentrate on recent developments: several long-standing conjectures
have recently been solved and new techniques have emerged. In particular, recent trends include
the increasing role of probabilistic techniques and viewpoints as well as approaches based on quasi-
randomness. Correspondingly, in this survey we will focus on the following topics:

(1) Regular graphs and expansion;
(2) Optimal packings of Hamilton cycles and Hamilton decompositions;
(3) Random graphs;
(4) Uniform hypergraphs;
(5) Counting Hamilton cycles;
(6) Edge-coloured Hamilton cycles.

Notable omissions include the following topics: Hamilton cycles with additional properties (e.g. k-
ordered Hamilton cycles); pancyclicity; generalized degree conditions (e.g. Ore- and Fan-type condi-
tions); structural constraints (e.g. claw-free and planar graphs) as well as digraphs. Many results in
these areas are covered e.g. in the surveys by Gould [62, 63] and Bondy [28]. Digraphs are discussed
in [102], though some very recent results on digraphs are also included here.

2. Regular graphs and expansion

2.1. Dense regular graphs. The union of two cliques as well as the complete almost balanced
bipartite graph show that the minimum degree bound in Dirac’s theorem is best possible. The
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former graph is disconnected and the latter is not regular. This led Bollobás [20] as well as Häggkvist
(see [72]) to (independently) make the following conjecture: Every t-connected d-regular graph G
on n vertices with d ≥ n/(t + 1) is Hamiltonian. The case t = 2 was settled in the affirmative by
Jackson [72].

Theorem 2.1 ([72]). Every 2-connected d-regular graph on n vertices with d ≥ n/3 is Hamiltonian.

However, Jung [78] and independently Jackson, Li and Zhu [74] gave a counterexample to the
conjecture for t ≥ 4. Until recently, the only remaining case t = 3 was wide open. Kühn, Lo, Osthus
and Staden [98, 99] proved this case for all large n.

Theorem 2.2 ([98, 99]). There exists an integer n0 such that every 3-connected d-regular graph on
n ≥ n0 vertices with d ≥ n/4 is Hamiltonian.

The key to the proof is a structural partition result for dense regular graphs which was proved
recently by the same authors [98]: the latter result gives a partition of an arbitrary dense regular
graph into a small number of ‘robust components’, with very few edges between these components.
Each robust component is either a ‘robust expander’ or a ‘bipartite robust expander’. Here a graph
G is a robust expander if for every set S ⊆ V (G) of ‘reasonable size’, its neighbourhood N(S) is
significantly larger than S, even after some vertices and edges of G are deleted (the precise definition
is given in Section 3.4). [98] also contains further applications of this partition result. Similar ideas
might also be useful to prove the following conjectures:

Conjecture 2.3 ([73, 102]).

(a) For each d > 2, every d-regular oriented graph on n vertices with d ≥ (n − 1)/4 is Hamil-
tonian.

(b) For each d > 2, every strongly 2-connected d-regular digraph on n vertices with d ≥ n/3 is
Hamiltonian.

(c) For each d > 2, every strongly 2-connected d-regular oriented graph on n vertices with
d ≥ n/6 is Hamiltonian.

(Here digraph G is d-regular if all the in- and out-degrees equal d. An oriented graph is a digraph
with no 2-cycles.) (a) was conjectured by Jackson [73], (b) and (c) were raised in [102] as directed
analogues of Theorem 2.1. [102] also contains a more detailed discussion of these conjectures.

The following example (due to Jung as well as Jackson, Li and Zhu) shows that the bound on d in
Theorem 2.2 is best possible (and disproves the more general conjecture for t ≥ 4). For m divisible
by four, construct a graph G as follows. Let C1, C2 be two disjoint copies of Km+1 and let A,B be
two disjoint independent sets of sizes m,m−1 respectively. Add every edge between A and B. Add
a set of m/2 independent edges from each of C1 and C2 to A so that together these edges form a
matching of size m. Delete m/4 independent edges in each of C1, C2 so that G is m-regular. Then
G has 4m+ 1 vertices and is m/2-connected. However G is not Hamiltonian since G−A has |A|+ 1
components (see Figure 1(i)).

It is also easy to construct 2-connected regular non-Hamiltonian graphs whose degree is close to
n/3 (see Figure 1(ii)). Start with three disjoint copies of K3m. In the ith clique choose disjoint sets
Ai and Bi with |Ai| = |Bi| and |A1| = |A3| = m and |A2| = m − 1. Remove a perfect matching
between Ai and Bi for each i. Add two new vertices a and b, where a is connected to all vertices
in the sets Ai and b is connected to all vertices in all the sets Bi. Then G is a (3m − 1)-regular
2-connected graph on n = 9m + 2 vertices. However, G is not Hamiltonian. This shows that
Theorem 2.2 is best possible (and that the degree assumption in Theorem 2.1 cannot be reduced
either).

Christofides, Hladký and Máthé [34] used an approach related to that in the proof of Theorem 2.2
to prove the famous ‘Lovász conjecture’ in the case of dense graphs.
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Figure 1. Extremal examples for Theorem 2.2.

Conjecture 2.4. Every connected vertex-transitive graph has a Hamilton path.

In contrast to common belief, Lovász [113] in 1969 actually asked for the construction of a
connected vertex-transitive graph containing no Hamilton path. Traditionally however, the Lovász
conjecture is always stated in the positive. A related folklore conjecture is the following:

Conjecture 2.5. Every connected Cayley graph on at least three vertices contains a Hamilton cycle.

Here a Cayley graph is defined as follows: Let H be a finite group and let S ⊆ H be a subset
with S = S−1 such that S does not contain the identity. The corresponding Cayley graph G(H;S)
has vertex set equal to H. Two vertices g, h ∈ H are joined by a edge if and only if there exists
s ∈ S such that g = sh. (So every Cayley graph is vertex-transitive.)

Marušic [115] proved Conjecture 2.5 in the case when H is abelian. Alspach [6] conjectured
that in this case one even obtains a decomposition of the set of edges of G(H;S) into edge-disjoint
Hamilton cycles and at most one perfect matching. For a survey of results on these conjectures, see
for example [109].

The following result of Christofides, Hladký and Máthé [34] confirms the ‘dense’ case of both
Conjecture 2.4 and 2.5.

Theorem 2.6 ([34]). For every ε > 0 there exists an integer n0 such that every connected vertex-
transitive graph on n ≥ n0 vertices of degree at least εn contains a Hamilton cycle.

To prove this result, Christofides, Hladký and Máthé define the notion of ‘iron-connectedness’
which is related to that of robust expansion and consider a partition of the given vertex-transitive
graph into ‘iron-connected’ components. It would be interesting to find out whether such a partition-
based approach can also be extended to sparser graphs.

2.2. Sparse graphs: Toughness and expansion. The extremal examples for Theorem 2.2 in-
dicate that an obstacle to the existence of a Hamilton cycle is the fact that the graph is ‘easy to
separate’ into several pieces. The examples also show that connectivity is not the appropriate notion
to use in this context. So a fruitful direction of research has been to study notions which are stronger
than connectivity.

One of the most famous conjectures in this direction is the toughness conjecture of Chvátal [37].
It states that if a graph is ‘hard to separate’ into many pieces, then it contains a Hamilton cycle.

Conjecture 2.7 ([37]). There is a constant t so that every t-tough graph has a Hamilton cycle.

Here a graph is t-tough if, for every nonempty set S ⊆ V (G), the graph G− S has at most |S|/t
components. Trivially, every graph with a Hamilton cycle is 1-tough. Little progress has been made
on this conjecture – we only know that if the conjecture holds, then we must have t ≥ 9/4 [13].
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So instead of considering toughness, it has been more rewarding to consider the related (and in
some sense stronger) notions of expansion and quasi-randomness. By expansion, we usually mean
the following: every small set S of vertices has a neighbourhood N(S) which is large compared to |S|
(more formally, N(S) denotes the set of all those vertices which are adjacent to at least one vertex in
S). It is well known that expansion is closely linked to eigenvalues of the adjacency matrix: a large
eigenvalue gap is equivalent to good expansion properties (in which case we often call such a graph
quasi-random). In particular, there is a conjecture of Krivelevich and Sudakov [93] on Hamilton
cycles in regular graphs which involves the ‘eigenvalue gap’. The conjecture itself would follow from
the toughness conjecture.

Conjecture 2.8 ([93]). There is a constant C such that whenever G is a d-regular graph and the
second largest (in absolute value) eigenvalue of the adjacency matrix of G is a most d/C, then G
has a Hamilton cycle.

The best result towards this was proved by Krivelevich and Sudakov [93].

Theorem 2.9 ([93]). There exists an integer n0 such that the following holds for all n ≥ n0. Suppose
that G is a d-regular graph on n vertices and that the second largest (in absolute value) eigenvalue
λ of the adjacency matrix of G satisfies

λ ≤ (log log n)2

1000 log n(log log log n)
d.

Then G has a Hamilton cycle.

It is known that λ = Ω(d1/2) for d ≤ n/2. So the above result applies for example to quasi-random

graphs with λ = Θ(d1/2) whose density is polylogarithmic in n, i.e. for quasi-random graphs which
are quite sparse.

Theorem 2.9 has an application to Hamiltonicity of random Cayley graphs (see Section 4.5).
The proof of Theorem 2.9 makes crucial use of the fact that the eigenvalue condition implies the
following: small sets of vertices expand and there are edges between any two large sets of vertices.
Hefetz, Krivelevich and Szabó [68] proved the following general result which goes beyond the class
of regular graphs and makes explicit use of these conditions.

Theorem 2.10 ([68]). There exists an integer n0 such that the following holds for all integers n, d

with n ≥ n0 and 12 ≤ d ≤ e(logn)
1/2

. Let m := n(log logn) log d
d logn log log logn . Suppose that G is a graph on n

vertices which satisfies the following two conditions:

• |N(S)| ≥ d|S| for every S ⊆ V (G) with |S| ≤ m;
• There is an edge in G between any two disjoint subsets A,B ∈ V (G) with |A|, |B| ≥ m/4130.

Then G has a Hamilton cycle.

The original motivation for this result was a problem on maker-breaker games, but the result also
has several other applications, see [68].

3. Optimal packings of Hamilton cycles and decompositions

3.1. Optimal packings of Hamilton cycles in dense graphs. Nash-Williams [122] proved a
striking extension of Dirac’s theorem: every graph on n ≥ 3 vertices with minimum degree at least
n/2 contains not just one but at least 5n/224 edge-disjoint Hamilton cycles. He conjectured [120,
121, 122] that there should even be n/4 of these. This was disproved by Babai (see [120]), who gave
a construction showing that one cannot hope for more than (roughly) n/8 edge-disjoint Hamilton
cycles (see the end of this subsection for details). Nash-Williams subsequently raised the question
of finding the best possible bound, which is answered in Corollary 3.2 below.
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Recently Csaba, Kühn, Lapinskas, Lo, Osthus and Treglown [97, 38, 39, 94] were able to answer
a more general form of this question: what is the maximum number of edge-disjoint Hamilton cycles
one can guarantee in a graph G of minimum degree δ?

A natural upper bound is obtained by considering the largest degree regeven(G) of an even-regular
spanning subgraph of G. Let

regeven(n, δ) := min{regeven(G) : |V (G)| = n, δ(G) = δ}.
Clearly, in general we cannot guarantee more than regeven(n, δ)/2 edge-disjoint Hamilton cycles in a
graph of order n and minimum degree δ. The next result of Csaba, Kühn, Lapinskas, Lo, Osthus and
Treglown [97, 38, 39, 94] shows that this bound is best possible (if δ < n/2, then regeven(n, δ) = 0).

Theorem 3.1 ([97, 38, 39, 94]). There exists an integer n0 such that every graph G on n ≥ n0
vertices contains at least regeven(n, δ)/2 edge-disjoint Hamilton cycles.

The main result in [94] proves Theorem 3.1 unless G is close to one of the two extremal graphs
for Dirac’s theorem. This allows us in [97, 38, 39] to restrict our attention to the latter situation
(i.e. when G is close to the complete balanced bipartite graph or close to the union of two disjoint
copies of a clique).

An approximate version of Theorem 3.1 for δ ≥ n/2 + εn was obtained earlier by Christofides,
Kühn and Osthus [35]. Hartke and Seacrest [67] gave a simpler argument with improved error
bounds.

The parameter regeven(n, δ) can be evaluated via Tutte’s theorem. It turns out that for n/2 ≤
δ < n, we have

regeven(n, δ) ∼
δ +

√
n(2δ − n)

2
,

(see [35, 66]). In particular, if δ ≥ n/2 then regeven(n, δ) ≥ (n − 2)/4. So Theorem 3.1 im-
plies the following explicit bound, which is best possible and answers the above question of Nash-
Williams [120, 121, 122].

Corollary 3.2. There exists an integer n0 such that every graph G on n ≥ n0 vertices with minimum
degree δ(G) ≥ n/2 contains at least (n− 2)/8 edge-disjoint Hamilton cycles.

The following construction (which is based on a construction of Babai, see [120]) shows that the
bound in Corollary 3.2 is best possible for n = 8k+2, where k ∈ N. Consider the graph G consisting
of one empty vertex class A of size 4k, one vertex class B of size 4k+2 containing a perfect matching
and no other edges, and all possible edges between A and B. Thus G has order n = 8k + 2 and
minimum degree 4k + 1 = n/2. Any Hamilton cycle in G must contain at least two edges of the
perfect matching in B, so G contains at most b|B|/4c = k = (n−2)/8 edge-disjoint Hamilton cycles.

A weaker version of Theorem 3.1 for digraphs was proved by Kühn and Osthus in [105]. Ferber,
Krivelevich and Sudakov [52] asked whether one can also obtain such a result for oriented graphs.

Recall that Theorem 3.1 is best possible for the class of graphs on n vertices with minimum degree
δ. The following conjecture of Kühn, Lapinskas and Osthus [94] would strengthen this in the sense
that it would be best possible for every single graph G.

Conjecture 3.3 ([94]). Suppose that G is a graph on n vertices with minimum degree δ(G) ≥ n/2.
Then G contains regeven(G)/2 edge-disjoint Hamilton cycles.

For δ ≥ (2−
√

2 + ε)n, this conjecture was proved by Kühn and Osthus [105]. Recently, Ferber,
Krivelevich and Sudakov [52] were able to obtain an approximate version of Conjecture 3.3, i.e. a set
of (1− ε)regeven(G)/2 edge-disjoint Hamilton cycles under the assumption that δ(G) ≥ (1 + ε)n/2.

Also, it seems that the following ‘dual’ version of the problem has not been investigated yet.

Question 3.4. Given a graph G on n vertices with δ(G) > n/2, how many Hamilton cycles are
needed in order to cover all the edges of G?
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A trivial lower bound would be given by d∆(G)/2e. However, this cannot always be achieved.
Indeed, consider for example the graph G obtained from a complete graph on an odd number n of
vertices by deleting an edge xy. Let C be a collection of Hamilton cycles covering all edges of G.
Since both x and y have odd degree, at least one edge at each of x and y has to lie in at least two
Hamilton cycles from C. Thus |C| > (n− 1)/2 = ∆(G)/2.

Moreover, it is easy to see that the condition that δ > n/2 in Question 3.4 is needed to ensure
that every edge lies in a Hamilton cycle (consider the balanced complete bipartite graph with a
single edge in one of the classes). More is known about the probabilistic version of Question 3.4 (see
Section 4).

Question 3.4 can be viewed as a restricted version of the following conjecture of Bondy [27], where
arbitrary cycle lengths are permitted:

Conjecture 3.5 ([27]). The edges of every 2-edge-connected graph on n vertices can be covered by
at most 2(n− 1)/3 cycles.

3.2. The Hamilton decomposition and 1-factorization conjectures. Theorem 3.1 shows that
for dense graphs the bottleneck for finding many edge-disjoint Hamilton cycles is the densest even-
regular spanning subgraph. This makes it natural to consider the class of dense regular graphs. In
fact, Nash-Williams [120, 121] suggested that these should even have a Hamilton decomposition.

Here a Hamilton decomposition of a graph G consists of a set of edge-disjoint Hamilton cycles
covering all edges of G. A natural extension of this to regular graphs G of odd degree is to ask
for a decomposition into Hamilton cycles and one perfect matching (i.e. one perfect matching M in
G together with a Hamilton decomposition of G −M). The most basic result in this direction is
Walecki’s theorem (see [114]), which dates back to the 19th century:

Theorem 3.6 (see [114]). If n is odd, then the complete graph Kn on n vertices has a Hamilton
decomposition. If n is even, then Kn has a decomposition into Hamilton cycles together with a
perfect matching.

The following result of Csaba, Kühn, Lo, Osthus and Treglown [97, 38, 39, 96] generalizes Walecki’s
theorem to arbitrary regular graphs which are sufficiently dense: it determines the degree threshold
for a regular graph to have a Hamilton decomposition. In particular, it solves the above ‘Hamilton
decomposition conjecture’ of Nash-Williams [120, 121] for all large graphs.

Theorem 3.7 ([97, 38, 39, 96]). There exists an integer n0 such that the following holds. Let
n, d ∈ N be such that n ≥ n0 and d ≥ bn/2c. Then every d-regular graph G on n vertices has a
decomposition into Hamilton cycles and at most one perfect matching.

The bound on the degree in Theorem 3.7 is best possible. Indeed, it is easy to see that a
smaller degree bound would not even ensure connectivity. Previous results include the following:
Nash-Williams [119] showed that the degree bound in Theorem 3.7 guarantees a single Hamilton
cycle. Jackson [71] showed that one can guarantee close to d/2−n/6 edge-disjoint Hamilton cycles.
Christofides, Kühn and Osthus [35] obtained an approximate decomposition under the assumption
that d ≥ n/2 + εn. Under the same assumption, Kühn and Osthus [105] obtained an exact decom-
position (as a consequence of Theorem 3.17 below). Note that Conjecture 3.3 would ‘almost’ imply
Theorem 3.7.

Theorem 3.7 is related to the so-called ‘1-factorization conjecture’. Recall that Vizing’s theorem
states that for any graph G of maximum degree ∆(G), the edge-chromatic number χ′(G) of G is
either ∆(G) or ∆(G) + 1. For regular graphs G, χ′(G) = ∆(G) is equivalent to the existence of a
1-factorization, i.e. of a set of edge-disjoint perfect matchings covering all edges of G. The long-
standing 1-factorization conjecture guarantees a 1-factorization in every regular graph of sufficiently
high degree. It was first stated explicitly by Chetwynd and Hilton [32, 33] (who also proved partial
results). However, they state that according to Dirac, it was already discussed in the 1950s. The
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following result of Csaba, Kühn, Lo, Osthus and Treglown [97, 38, 39, 96] confirms this conjecture
for sufficiently large graphs.

Theorem 3.8 ([97, 38, 39, 96]). There exists an n0 such that the following holds. Let n, d ∈ N be
such that n ≥ n0 is even and d ≥ 2dn/4e − 1. Then every d-regular graph G on n vertices has a
1-factorization. Equivalently, χ′(G) = d.

The bound on the minimum degree in Theorem 3.8 is best possible. Indeed, a smaller bound on
d would not even ensure a single perfect matching. To see this, suppose for example that n = 2
mod 4 and consider the graph which is the disjoint union of two cliques of order n/2 (which is odd).

Note that Theorem 3.7 does not quite imply Theorem 3.8, as the degree threshold in the former
result is slightly higher. The 1-factorization conjecture is a special case of the ‘overfull subgraph’
conjecture. This would give an even wider class of graphs whose edge-chromatic number equals the
maximum degree (see e.g. the monograph [134]).

The best previous result towards the 1-factorization conjecture is due to Perkovic and Reed [125],
who proved an approximate version, i.e. they assumed that d ≥ n/2 + εn. This was generalized by
Vaughan [138] to multigraphs of bounded multiplicity.

The following ‘perfect 1-factorization conjecture’ was posed by Kotzig [88] more than fifty years
ago at the first international conference devoted to Graph Theory. It combines 1-factorizations
and Hamilton decompositions. First note that it is easy to see that the complete graph K2n has a
1-factorization. The ‘perfect 1-factorization conjecture’ would provide a far-reaching generalization
of this fact.

Conjecture 3.9 ([88]). K2n has a perfect 1-factorization, i.e. a 1-factorization in which any two
1-factors induce a Hamilton cycle.

The conjecture is known to hold if n or 2n − 1 is a prime, and for several special values of n,
but beyond that very little is known. To approach the conjecture it would be interesting to find
1-factorizations so that the number of pairs of 1-factors which induce Hamilton cycles is as large as
possible (see e.g. [140]).

Walecki’s theorem can also be generalized in another direction: Alspach conjectured that one can
decompose the complete graph Kn into cycles of arbitrary length. This was recently confirmed by
Bryant, Horsley and Pettersson [30].

Theorem 3.10. Kn has a decomposition into t cycles of specified lengths m1, . . . ,mt if and only if
n is odd, 3 ≤ mi ≤ n for i ≤ t, and m1 + · · ·+mt =

(
n
2

)
.

Perhaps it might be possible to prove a probabilistic analogue of this or extend the result to
non-complete graphs.

As the final open problem in the area, we turn to a beautiful conjecture of Bermond (see [7]) that
the existence of a Hamilton decomposition in a graph is inherited by its line graph (note that an
Euler circuit in a graph corresponds to a Hamilton cycle in the line graph).

Conjecture 3.11 (see [7]). If G has a Hamilton decomposition, then the line graph L(G) of G has
a Hamilton decomposition as well.

Muthusamy and Paulraja [118] proved this conjecture in the case when the number of Hamilton
cycles in a Hamilton decomposition of G is even (i.e. when G is d-regular where 4|d). They also
came quite close to proving it in the remaining case: they showed that if the number of Hamilton
cycles in a Hamilton decomposition of G is odd, then L(G) can be decomposed into Hamilton cycles
and one 2-factor.

3.3. Kelly’s conjecture. Kelly’s conjecture (see e.g. [116]) dates back to 1968 and states that
every regular tournament has a Hamilton decomposition. So one could view this as an oriented
version of Walecki’s theorem. Kühn and Osthus [104] recently proved the following result, which
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shows that Kelly’s conjecture is even true if one replaces the class of regular tournaments by that
of sufficiently dense regular oriented graphs. (Recall that an oriented graph G is a directed graph
without 2-cycles. G is d-regular if all the in- and outdegrees equal d.)

Theorem 3.12 ([104]). For every ε > 0 there exists an integer n0 such that every d-regular oriented
graph G on n ≥ n0 vertices with d ≥ 3n/8 + εn has a Hamilton decomposition.

In fact, Kühn and Osthus deduce this result from an even more general result, which involves
an expansion condition rather than a degree condition (see Theorem 3.17). It is not clear whether
the bound ‘3n/8’ is best possible. However, this bound is a natural barrier since the minimum in-
and outdegree threshold which guarantees a single Hamilton cycle in an (not necessarily regular)
oriented graph is (3n − 4)/8. As mentioned above, Theorem 3.12 implies Kelly’s conjecture for all
large tournaments.

Corollary 3.13. There exists an integer n0 such that every regular tournament on n ≥ n0 vertices
has a Hamilton decomposition.

Kühn and Osthus [105] also used Theorem 3.12 to prove a conjecture of Erdős on optimal packings
of Hamilton cycles in random tournaments, which can be viewed as a probabilistic version of Kelly’s
conjecture:

Theorem 3.14 ([105]). Let T be a tournament on n vertices which is chosen uniformly at random.
Then a.a.s. T contains min{δ+(T ), δ−(T )} edge-disjoint Hamilton cycles.

(Here we write a.a.s. for ‘asymptotically almost surely’, see Section 4 for the definition.) The
bound is clearly best possible. A similar phenomenon has been shown to occur in the random graph
Gn,p (see Theorem 4.1).

Jackson [73] posed the following bipartite version of Kelly’s conjecture. Here a bipartite tourna-
ment is an orientation of a complete bipartite graph.

Conjecture 3.15 ([73]). Every regular bipartite tournament has a Hamilton decomposition.

It is not even known whether there exists an approximate decomposition, i.e. a set of Hamilton
cycles covering almost all the edges of a regular bipartite tournament. More generally, we define a
regular k-partite tournament to be an orientation of a complete k-partite graph with equally sized
vertex classes in which the indegree of every vertex equals its outdegree. Kühn and Osthus [105]
proved that for k ≥ 4, every regular k-partite tournament has a Hamilton decomposition. The
following conjecture (which might be easier than Conjecture 3.15) would cover the remaining case
when k = 3.

Conjecture 3.16 ([105]). Every regular 3-partite tournament has a Hamilton decomposition.

Another conjecture related to Kelly’s conjecture was posed by Thomassen. The idea is to force
many edge-disjoint Hamilton cycles by high connectivity rather than regularity: Thomassen [137]
conjectured that for every k there is an integer f(k) so that every strongly f(k)-connected tourna-
ment contains k edge-disjoint Hamilton cycles. Kühn, Lapinskas, Osthus and Patel [95] proved this
by showing that f(k) = O(k2(log k)2) and conjectured that f(k) = O(k2).

3.4. Robust expansion. As we already indicated in Section 2, there is an intimate connection
between expansion and Hamiltonicity. In what follows, we describe a relatively new ‘dense’ notion of
expansion, which has been extremely fruitful in studying not just Hamilton cycles but also Hamilton
decompositions and more general subgraph embeddings.

Roughly speaking, this notion of ‘robust expansion’ is defined as follows: for any set S of vertices,
its robust neighbourhood is the set of all those vertices which have many neighbours in S. A
graph is a robust expander if for every set S which is not too small and not too large, its robust
neighbourhood is at least a little larger than S itself.
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More precisely, let 0 < ν ≤ τ < 1. Given any graph G on n vertices and S ⊆ V (G), the ν-robust
neighbourhood RNν,G(S) of S is the set of all those vertices x of G which have at least νn neighbours
in S. G is called a robust (ν, τ)-expander if

|RNν,G(S)| ≥ |S|+ νn for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ)n.

This notion was introduced (for digraphs) by Kühn, Osthus and Treglown [107], who showed that
every robustly expanding digraph of linear minimum in- and outdegree contains a Hamilton cycle.
Examples of robust expanders include graphs on n vertices with minimum degree at least n/2 + εn
as well as quasi-random graphs. Kühn and Osthus [104, 105] showed that every sufficiently large
regular robust expander of linear degree has a Hamilton decomposition.

Theorem 3.17 ([104, 105]). For every α > 0 there exists τ > 0 such that for all ν > 0 there exists
an integer n0 = n0(α, ν, τ) for which the following holds. Suppose that

(i) G is a d-regular graph on n ≥ n0 vertices, where d ≥ αn;
(ii) G is a robust (ν, τ)-expander.

Then G has a Hamilton decomposition.

In [104] they actually proved a version of this for digraphs, which has several applications. (The
undirected version is derived in [105].) For example, this digraph version implies the following result.

Theorem 3.18 ([104]). For every ε > 0 there exists an integer n0 such that every d-regular digraph
G on n ≥ n0 vertices with d ≥ (1/2 + ε)n has a Hamilton decomposition.

Theorem 3.18 is a far-reaching generalization of a result of Tillson, who proved a directed version
of Walecki’s theorem. Moreover, Theorem 3.18 (which is algorithmic) has an application to finding
good tours for the (asymmetric) Traveling Salesman Problem (see [104]).

The main original motivation for these results was to prove Kelly’s conjecture for large tourna-
ments: indeed the directed version of Theorem 3.17 easily implies Theorem 3.12.

Theorem 3.17 has numerous further applications apart from Theorems 3.18 and 3.12 (both imme-
diate ones and ones for which it is used as a tool). For example, it is easy to see that for dense graphs,
robust expansion is a relaxation of the notion of quasi-randomness. So in particular, Theorem 3.17
implies (for large n) a recent result of Alspach, Bryant and Dyer [8] that every Paley graph has a
Hamilton decomposition. Theorem 3.17 is also used in the proof of the Hamilton decomposition
conjecture and the 1-factorization conjecture (Theorems 3.7 and 3.8).

The proof of Theorem 3.17 uses an ‘approximate’ version of the result, which was proved by
Osthus and Staden [123] and states that the conditions of the theorem imply the existence of an
‘approximate decomposition’, i.e. the existence of a set of edge-disjoint Hamilton cycles covering
almost all edges of G. (This generalizes an earlier result of Kühn, Osthus and Treglown [108] on
approximate Hamilton decompositions of regular tournaments.)

Assuming this approximate version, the basic idea behind the proof of Theorem 3.17 can be
described as follows. Let G be a robustly expanding graph as in Theorem 3.17. Suppose that inside
G we can find a sparse regular spanning subgraph Hrob which is ‘robustly decomposable’ in the
sense that it still has a Hamilton decomposition if we add a few edges to it. More precisely, Hrob

is robustly decomposable if Hrob ∪H0 has a Hamilton decomposition whenever H0 is a very sparse
regular graph which is edge-disjoint from Hrob and has the same vertex set. Then assuming the
existence of such an Hrob, we can prove Theorem 3.17 as follows. Initially, we remove the edges of
Hrob from G to obtain G′. Since the expansion property of G is robust, G′ is still a robust expander
with slightly weaker parameters. So we can find an approximate decomposition of G′ using the
result in [123] mentioned above. Let H0 be the leftover, i.e. the set of all those edges of G′ which
are not contained in the approximate decomposition. Now apply the fact that Hrob is robustly
decomposable to obtain a Hamilton decomposition of Hrob ∪H0 and thus of G.
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To construct Hrob, we proceed in several steps: we actually construct several suitable graphs
Hrob

1 , . . . ,Hrob
` which together play the role of Hrob. More precisely, we remove the edges in all

these Hrob
i at the start and find an approximate decomposition of the remainder of G. Let H0 be

the leftover from this approximate decomposition step. Then we show that Hrob
1 ∪ H0 contains a

set of edge-disjoint Hamilton cycles so that the resulting leftover H1 (i.e. the graph consisting of
all those edges of Hrob

1 ∪ H0 not covered by these Hamilton cycles) has more structure than H0

(i.e. H1 has some useful properties). This in turn means that we can improve on the previous step
and now find a set of edge-disjoint Hamilton cycles in Hrob

2 ∪H1 so that the resulting leftover H2

has even more structure than H1. After `− 1 steps, H`−1 will be a sufficiently ‘nice’ graph so that
Hrob
` ∪H`−1 actually has a Hamilton decomposition.
This general approach was first introduced in [84]. We believe that it will also be useful for a

wide range of problems, and is not restricted to Hamilton cycles.

4. Random graphs

Probabilistic versions of the above Hamiltonicity questions have also been studied intensively. As
usual, Gn,p will denote a binomial random graph on n vertices where every edge is present with
probability p (independently from all other edges), and we say that a property of a random graph
on n vertices holds a.a.s. (asymptotically almost surely) if the probability that it holds tends to 1
as n tends to infinity.

Improving on bounds by several authors, Bollobás [21]; Komlós and Szemerédi [86] as well as
Korshunov [87] determined the precise value of p which ensures a Hamilton cycle: if pn ≥ log n +
log log n + ω(n), where ω(n) → ∞ as n → ∞, then a.a.s. Gn,p contains a Hamilton cycle. On the
other hand, if pn ≤ log n+ log log n− ω(n), then a.a.s. Gn,p contains an isolated vertex.

One can even obtain a ‘hitting time’ version of this result in the evolutionary process Gn,t. For
this, let Gn,0 be the empty graph on n vertices. Consider a random ordering of the edges of Kn. Let
Gn,t be obtained from Gn,t−1 by adding the tth edge in the ordering. Ajtai, Kómlos and Szemerédi [2]
as well as Bollobás [22] showed that a.a.s. the time t at which Gn,t attains minimum degree two is
the same as the time at which it first contains a Hamilton cycle.

There are many generalizations and related results. Recently, much attention has focused on the
following areas, which we will discuss below:

• Optimal packings of edge-disjoint Hamilton cycles,
• Resilience and robustness.

However, many intriguing questions remain open.

4.1. Optimal packings of Hamilton cycles. Bollobás and Frieze [26] extended the above hitting
time result to packing edge-disjoint Hamilton cycles in random graphs of bounded minimum degree.
In particular, this implies the following: suppose that pn ≤ log n+O(log log n). Then a.a.s. Gn,p has
bδ(Gn,p)/2c edge-disjoint Hamilton cycles. Frieze and Krivelevich [57] made the striking conjecture
that this extends to all p. This has recently been confirmed in a sequence of papers by several teams
of authors:

Theorem 4.1. For any p = p(n), a.a.s. Gn,p has bδ(Gn,p)/2c edge-disjoint Hamilton cycles.
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We now summarize the results leading to a proof of Theorem 4.1. Here ‘exact’ refers to a bound
of bδ(Gn,p)/2c, ‘approx.’ refers to a bound of (1− ε)δ(Gn,p)/2, and ε is a positive constant.

authors range of p
Ajtai, Komlós, Szemerédi [2]; Bollobás [22] δ(Gn,p) = 2 exact
Bollobás & Frieze [26] δ(Gn,p) bounded exact
Frieze & Krivelevich [56] p constant approx.

Frieze & Krivelevich [57] p = (1+o(1)) logn
n exact

Knox, Kühn & Osthus [83] p� logn
n approx.

Ben-Shimon, Krivelevich & Sudakov [16] (1+o(1)) logn
n ≤ p ≤ 1.02 logn

n exact

Knox, Kühn & Osthus [84] (logn)50

n ≤ p ≤ 1− n−1/5 exact

Krivelevich & Samotij [92] logn
n ≤ p ≤ n−1+ε exact

Kühn & Osthus [105] p ≥ 2/3 exact

In particular, the results in [26, 84, 92, 105] (of which [84, 92] cover the main range) together imply
Theorem 4.1.

Glebov, Krivelevich and Szabó [61] were the first to consider the ‘dual’ version of this problem:
how many Hamilton cycles are needed to cover all the edges of Gn,p? Hefetz, Kühn, Lapinskas and
Osthus [69] solved this problem for all p that are not too small or too large (based on the main
lemma of [84]).

Theorem 4.2 ([69]). Suppose that (logn)117

n ≤ p ≤ 1− n−1/8. Then a.a.s. the edges of Gn,p can be
covered by d∆(Gn,p)/2e Hamilton cycles.

It would be interesting to know whether a ‘hitting time’ version of Theorem 4.2 holds. For this,
given a property P, let t(P) denote the hitting time of P, i.e. the smallest t so that Gn,t has P.

Question 4.3 ([69]). Let C denote the property that an optimal covering of a graph G with Hamilton
cycles has size d∆(G)/2e. Let H denote the property that a graph G has a Hamilton cycle. Is it true
that a.a.s. t(C) = t(H)?

Note that C is not monotone. In fact, it is not even the case that for all t > t(C), Gn,t a.a.s. has
C. Taking n ≥ 5 odd and t =

(
n
2

)
− 1, Gn,t is the complete graph with one edge removed – which,

as noted at the end of Section 3.1, cannot be covered by (n − 1)/2 Hamilton cycles. It would be
interesting to determine (approximately) the ranges of t such that a.a.s. Gn,t has C.

Another natural model of random graphs is of course that of random regular graphs. In this
case it seems plausible that we can actually ask for a Hamilton decomposition (and thus obtain an
analogue of Theorem 3.7 for sparse random graphs). Indeed, for random regular graphs of bounded
degree this was proved by Kim and Wormald [82] and for (quasi-)random regular graphs of linear
degree this was proved by Kühn and Osthus [105] (as a consequence of Theorem 3.17). However,
the intermediate range remains open:

Conjecture 4.4. Suppose that d = d(n)→∞ and d = o(n). Then a.a.s. a random d-regular graph
on n vertices has a decomposition into Hamilton cycles and at most one perfect matching.

So far, not even an approximate version of this is known. One might be able to deduce this from
the results in [84].

An analogue of the hitting time result of Bollobás and Frieze [26] for random geometric graphs
was proved by Müller, Perez-Gimenez and Wormald [117]. Here the model is that n vertices are
placed at random on the unit square and edges are sequentially added in increasing order of edge-
length. For fixed k ≥ 1, they prove that a.a.s. the first edge in the process that creates minimum
degree at least k also causes the graph to have bk/2c edge-disjoint Hamilton cycles. The hitting
time result for the case k = 1 was proved slightly earlier by Balogh, Bollobás, Krivelevich, Müller
and Walters [11].
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The giant component of a random graph is also intriguing to study with respect to Hamiltonicity.
More precisely, let τk denote the minimum time t such that the k-core of Gn,t (its unique maximal
subgraph with minimum degree at least k) is nonempty. Remarkably, the k-core will a.a.s. have
linear size right from the start, i.e. at time τk. Bollobás, Cooper, Fenner and Frieze [24] gave
bounds on the threshold for the appearance of a Hamilton cycle in the k-core. They did this by
investigating the threshold for Hamiltonicity in random graphs with a given number m = cn of
edges and minimum degree k. The following conjecture that the k-core will immediately contain
many edge-disjoint Hamilton cycles is implicit in their work.

Conjecture 4.5 ([24]). Fix k ≥ 3. Then a.a.s. at time t ≥ τk, the k-core of Gn,t contains b(k−1)/2c
edge-disjoint Hamilton cycles.

The bound b(k− 1)/2c would be best possible: one can prove that the k-core a.a.s. contains a k-
spider (a vertex x of degree k+1 whose neighbours all have degree k). This prevents the existence of
more edge-disjoint Hamilton cycles: indeed, suppose that k is even. Then a set of k/2 edge-disjoint
Hamilton cycles will use up all edges at each of the neighbours of x and thus all edges at x, which
is clearly impossible.

Krivelevich, Lubetzky and Sudakov [91] gave support for Conjecture 4.5 by showing that a.a.s. for
k ≥ 15, at time τk, the k-core of Gt does contain at least one Hamilton cycle and that for large
enough (but fixed) k a.a.s. the k-core contains b(k−3)/2c edge-disjoint Hamilton cycles for all t ≥ τk.
Note that one challenge involved in proving the above conjecture is that the property of containing
a Hamilton cycle is not monotone in t, as the k-core is continually growing until it contains every
vertex.

4.2. Resilience. Often one would like to know not just whether some graph G has a property P, but
‘how strongly’ it has this property. In other words, does G still have property P if we delete (or add)
some edges? Implicitly, variants of this question have been studied for many properties and many
classes of graphs. Sudakov and Vu [135] recently initiated the systematic study of this question. In
particular, they introduced the notion of resilience of a graph with respect to a property P (below,
we assume that P is monotone increasing, i.e. that P cannot be destroyed by adding edges):

• a graph has local resilience t with respect to P if it still has P whenever one deletes a set of
edges such that at each vertex less than t edges are deleted;
• a graph has global resilience t with respect to P if it still has P whenever one deletes less

than t edges.

Which of these variants is the more natural one to study usually depends on the property P:
for ‘global’ properties such as Hamiltonicity and connectivity the local resilience leads to more
interesting results, whereas for ‘local’ properties such as triangle containment, it makes more sense
to study the global resilience. Resilience has been studied intensively for various random graph
models (mainly Gn,p), as it yields natural probabilistic versions of ‘classical’ theorems. Lee and
Sudakov [110] proved a resilience version of Dirac’s theorem (which improved previous bounds by
several authors):

Theorem 4.6 ([110]). For any ε > 0 there is a constant C so that the following holds. If p ≥
C log n/n then a.a.s. every subgraph of Gn,p with minimum degree at least (1 + ε)np/2 contains a
Hamilton cycle.

It is natural to consider more general structures than Hamilton cycles. However, as observed by
Huang, Lee and Sudakov [70], there is a limit to what one can ask for in this context: for every
ε > 0 there exists p with 0 < p < 1 such that a.a.s. Gn,p contains a subgraph H with minimum
degree at least (1− ε)np and Ω(1/p2) vertices that are not contained in a triangle of H.

As an even more informative notion than local resilience, Lee and Sudakov [110] recently suggested
a generalization of local resilience which allows a different number of edges to be deleted at different
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vertices. In other words, in this ‘degree sequence resilience’ the degree sequence of the deleted graph
has to be dominated by the given constraints. In particular, they asked for a resilience version of
Chvátal’s theorem on Hamilton cycles:

Problem 4.7 ([110]). Characterize all those sequences (k1, . . . , kn) for which G = Gn,p a.a.s. has
the following property: Let H ⊆ G be such that the degree sequence (d1, . . . , dn) of H satisfies di ≤ ki
for all i ≤ n. Then G−H has a Hamilton cycle.

Partial results on this problem were obtained by Ben-Shimon, Krivelevich and Sudakov [16].
Another way of measuring the resilience of a graph with respect to some property is the study

of ‘maker-breaker games’ in graphs: given a graph G, a maker-breaker game is played as follows:
players ‘maker’ and ‘breaker’ take turns to choose an edge of G (with breaker taking the first move).
The aim of maker is to build (in this case) a Hamilton cycle, and the aim of breaker is to prevent
this. The basic question is then for which graphs G maker has a winning strategy (regardless of
breaker’s strategy). Ben-Shimon, Ferber, Hefetz and Krivelevich [15] proved the following hitting
time result: maker has a winning strategy on Gn,t a.a.s. as soon as Gn,t has minimum degree four
(this is clearly best possible). One can view this as an ‘on-line’ version of global resilience. Many
related questions about Hamiltonicity and other properties have been investigated in the context of
combinatorial games, see e.g. the monograph [14].

4.3. Robust Hamiltonicity. An approach which can be viewed as ‘dual’ to resilience was taken by
Krivelevich, Lee and Sudakov [90]. They proved the following extension of Dirac’s theorem, which
one can view as a ‘robust’ version of the theorem.

Theorem 4.8 ([90]). There exists a constant C such that for p ≥ C log n/n and a graph G on n
vertices of minimum degree at least n/2, the random subgraph Gp obtained from G by including each
edge with probability p is a.a.s. Hamiltonian.

This theorem gives the correct order of magnitude of the threshold function since if p is a little
smaller than log n/n, then the graph Gp a.a.s. has isolated vertices. Also, since there are graphs
with minimum degree n/2− 1 which are not even connected, the minimum degree condition cannot
be improved. Note that the result can be viewed as an extension of Dirac’s theorem since the case
p = 1 is equivalent to Dirac’s theorem.

One can ask similar questions for other (families of) graphs which are known to be Hamiltonian. In
particular, a natural question that seems to have been unfairly neglected is that of the Hamiltonicity
threshold in random hypercubes. More precisely, given n and p, the random subgraph Qn,p of the
n-dimensional cube Qn is defined as follows: each edge of Qn is included independently in Qn,p with
probability p. Bollobás [23] proved that if p > 1/2 is a constant, then a.a.s. Qn,p is connected and
has a perfect matching (and actually proved a hitting time version of this result). It seems plausible
that a.a.s. Qn,p even contains a Hamilton cycle. There is no chance for this if p ≤ 1/2 as there is a
significant probability that Qn,p has an isolated vertex in that case.

Conjecture 4.9. Suppose that p > 1/2 is a constant. Then a.a.s. Qn,p has a Hamilton cycle.

As far as we are aware, the question is still open even if p is any constant close to one. Since Qn
is Hamiltonian, the above conjecture can be viewed as a ‘robust’ version of this simple fact.

4.4. The Pósa-Seymour conjecture. Surprisingly, a probabilistic analogue of the Pósa-Seymour
conjecture is still open. This beautiful generalization of Dirac’s theorem states that every graph G
on n vertices with minimum degree at least kn/(k + 1) contains the kth power of a Hamilton cycle
(which is obtained from a Hamilton cycle C by adding edges between any vertices at distance at
most k on C). The conjecture was proved for large graphs by Komlós, Sárközy and Szemerédi [85].
For squares of Hamilton cycles (i.e. for k = 2) the best current bound in this direction is due to
Châu, DeBiasio and Kierstead [31], who proved that in this case the conjecture holds for all graphs
on at least 2 · 108 vertices.
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A straightforward first moment argument indicates that the threshold for the square of a Hamilton
cycle in Gn,p should be close to p = n−1/2. Note that unlike the deterministic version of the problem,
this threshold would be significantly larger than the threshold for a triangle-factor. The latter was
determined to be n−2/3(log n)1/3 in a breakthrough by Johansson, Kahn and Vu [77].

Conjecture 4.10 ([103]). If p� n−1/2, then a.a.s. Gn,p contains the square of a Hamilton cycle.

When k ≥ 3, the threshold is n−1/k. This follows from a far more general theorem on thresholds
for spanning structures in Gn,p which was obtained by Riordan [126]. His proof is based on the
second moment method. In [103] Kühn and Osthus proved an ‘approximate’ version of the above

conjecture: for any ε > 0, if p ≥ n−1/2+ε, then Gn,p a.a.s. contains the square of a Hamilton
cycle. Their proof is ‘combinatorial’ in the sense that it uses a version of the absorbing method for
random graphs rather than the second moment method. A version of this for quasi-random graphs
was proved by Allen, Böttcher, Hàn, Kohayakawa and Person [4]. Their result also extends to kth
powers of Hamilton cycles.

In the spirit of Theorem 4.8, one could also ask about a ‘robust’ version of Conjecture 4.10.

4.5. Random Cayley graphs. Random graphs also offer an interesting avenue to Conjecture 2.5
on the Hamiltonicity of Cayley graphs: one can consider a random set S of generators and ask how
large S has to be to ensure that a.a.s. the resulting graph is Hamiltonian. More precisely, given a
group H, a random Cayley graph G(S,H, k) is defined in the same way as a Cayley graph, except
that S is now a set of k elements of H chosen uniformly at random. Similarly as for Gn,p, one can
now ask for the threshold for various properties. While there are some similarities, there appear to
be some significant differences. These stem from the fact that (unlike Gn,p) random Cayley graphs
exhibit a high degree of symmetry.

Christofides and Markström [36] showed that for k ≥ (1 + ε) log2 n, a.a.s. G(S,H, k) is connected
(where n is the order of H). This is best possible in the sense that the Cayley graph of H = Zm2
with respect to any set S of size less than m = log2 n is disconnected. Pak and Radoičić [124] posed
the following related conjecture.

Conjecture 4.11 ([124]). There exists a constant C > 1 such that if H is a group of order n and
k ≥ C log2 n, then a.a.s. the random Cayley graph G(S,H, k) is Hamiltonian.

Krivelevich and Sudakov [93] used Theorem 2.9 to show that a.a.s. k = (log n)5 suffices to ensure
Hamiltonicity. Currently the best result towards Conjecture 4.11 is by Christofides and Mark-
ström [36], who showed that k = (log n)3 suffices.

5. Hamilton cycles in uniform hypergraphs

Cycles in hypergraphs have been studied since the 1970s. The first notion of a hypergraph cycle
was introduced by Berge [17]. Recently, the much more structured notion of ‘`-cycles’ has become
very popular and has led to very interesting results.

5.1. Dirac-type theorems. To obtain analogues of Dirac’s theorem for hypergraphs, we first need
to generalize the notions of a cycle and of minimum degree. There are several natural notions
available.

A k-uniform hypergraph G consists of a set V (G) of vertices and a set E(G) of edges so that
each edge of consists of k vertices. Given an integer ` with 1 ≤ ` < k, we say that a k-uniform
hypergraph C is an `-cycle if there exists a cyclic ordering of the vertices of C such that every edge
of C consists of k consecutive vertices and such that every pair of consecutive edges (in the natural
ordering of the edges) intersects in precisely ` vertices. So every `-cycle C has |V (C)|/(k− `) edges.
In particular, k − ` divides the number of vertices in C. If ` = k − 1, then C is called a tight cycle,
and if ` = 1, then C is called a loose cycle. C is a Hamilton `-cycle of a k-uniform hypergraph G if
V (C) = V (G) and E(C) ⊆ E(G).
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More generally, a Berge cycle is an alternating sequence v1, e1, v2, . . . , vn, en of distinct vertices
vi and distinct edges ei so that each ei contains vi and vi+1. (Here vn+1 := v1, and the edges ei are
also allowed to contain vertices outside {v1, . . . , vn}.) Thus every `-cycle is also a Berge cycle. A
Berge cycle v1, e1, v2, . . . , vn, en is a Hamilton Berge cycle of a hypergraph G if V (G) = {v1, . . . , vn}
and ei ∈ E(G) for each i ≤ n. So a Hamilton Berge cycle of G has |V (G)| edges. Moreover, every
tight Hamilton cycle of G is also a Hamilton Berge cycle of G (but this is not true for Hamilton
`-cycles with ` ≤ k − 2 as they have |V (G)|/(k − `) edges).

We now introduce several notions of minimum degree for a k-uniform hypergraph G. Given a set
S of vertices of G, the degree dG(S) of S is the number of all those edges of G which contain S as
a subset. The minimum t-degree δt(G) of G is then the minimum value of dG(S) taken over all sets
S of t vertices of G. When t = 1 we refer to this as the minimum vertex degree of G, and when
t = k − 1 we refer to this as the minimum codegree.

A Dirac-type theorem for Berge cycles was proved by Bermond, Germa, Heydemann and Sot-
teau [19]. A Dirac-type theorem for tight Hamilton cycles was proved by Rödl, Ruciński and Sze-
merédi [129, 130]. (This improved an earlier bound by Katona and Kierstead [80].) Together with
the fact that if (k − `)|n then any tight cycle contains an `-cycle on the same vertex set (consisting
of every (k − `)th edge), this yields the following result.

Theorem 5.1 ([129, 130]). For all k ≥ 3, 1 ≤ ` ≤ k− 1 and any ε > 0 there exists an integer n0 so
that if n ≥ n0 and (k−`)|n then any k-uniform hypergraph G on n vertices with δk−1(G) ≥

(
1
2 + ε

)
n

contains a Hamilton `-cycle.

If (k − `)|k and k|n then the above result is asymptotically best possible. Indeed, to see this,
note that if the above divisibility conditions hold, then every `-cycle C contains a perfect matching
(consisting of every k/(k − `)th edge of C). On the other hand, it is easy to see that the following
parity based construction shows that a minimum codegree of n/2 − k does not ensure a perfect
matching: Given a set V of n vertices, let A ⊆ V be a set of vertices such that |A| is odd and
n/2 − 1 ≤ |A| ≤ n/2 + 1. Let G be the k-uniform hypergraph whose edges consists of all those
k-element subsets S of V for which |S ∩A| is even.

For k = 3, Rödl, Ruciński and Szemerédi [131] were able to prove an exact version of Theorem 5.1
(the threshold in this case is bn/2c). The following result of Kühn, Mycroft and Osthus [100] deals
with all those cases in which Theorem 5.1 is not asymptotically best possible.

Theorem 5.2 ([100]). For all k ≥ 3, 1 ≤ ` ≤ k − 1 with (k − `) - k and any ε > 0 there exists an
integer n0 so that if n ≥ n0 and (k − `)|n then any k-uniform hypergraph G on n vertices with

δk−1(G) ≥

(
1

d k
k−`e(k − `)

+ ε

)
n

contains a Hamilton `-cycle.

Theorem 5.2 is asymptotically best possible. To see this, let t := n/(k − `) and s := dk/(k − `)e.
Fix a set A of dt/se − 1 vertices and consider the k-uniform hypergraph G on n vertices whose
hyperedges all have nonempty intersection with A. Then δk−1(G) = |A|. However, an `-cycle on n
vertices has t edges and every vertex on such a cycle lies in at most s edges. So G does not contain
an Hamilton `-cycle since A would be a vertex cover for such a cycle and |A|s < t.

So the problem of which codegree forces a Hamilton `-cycle is asymptotically solved, though exact
versions covering all cases remain a challenging open problem. For k = 3 and ` = 1, Czygrinow and
Molla [43] were able to prove such an exact version. The following table describes the history of the
results leading to the current state of the art.
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authors k range of `
Rödl, Ruciński & Szemerédi [129] k = 3 ` = 2 approx.
Kühn & Osthus [101] k = 3 ` = 1 approx.
Rödl, Ruciński & Szemerédi [130] k ≥ 3 ` = k − 1 approx.
Keevash, Kühn, Mycroft & Osthus [81] k ≥ 3 ` = 1 approx.
Hàn & Schacht [64] k ≥ 3 1 ≤ ` < k/2 approx.
Kühn, Mycroft & Osthus [100] k ≥ 3 1 ≤ ` < k − 1, (k − `) - k approx.
Rödl, Ruciński & Szemerédi [131] k = 3 ` = 2 exact
Czygrinow and Molla [43] k = 3 ` = 1 exact

Proving corresponding results for vertex degrees seems to be considerably harder. The following
natural conjecture, which was implicitly posed by Rödl and Ruciński [127], is wide open.

Conjecture 5.3 ([127]). For all integers k ≥ 3 and all ε > 0 there is an integer n0 so that the
following holds: if G is a k-uniform hypergraph on n ≥ n0 vertices with

δ1(G) ≥

(
1−

(
1− 1

k

)k−1
+ ε

)(
n

k − 1

)
,

then G contains a tight Hamilton cycle.

This would be asymptotically best possible. Indeed, if k|n then any tight Hamilton cycle contains
a perfect matching, and a minimum vertex degree which is slightly smaller than in Conjecture 5.3
would not even guarantee a perfect matching. To see the latter, fix a set A of n/k − 1 vertices and
consider the k-uniform hypergraph G on n vertices whose hyperedges all have nonempty intersection
with A. Then δ1(G) ∼ (1− (1− 1/k)k−1)

(
n
k−1
)
, but G does not contain a perfect matching.

For general k, Conjecture 5.3 seems currently out of reach – it is even a major open question
to determine whether the above degree bound ensures a perfect matching of G. However, it would
also be interesting to obtain non-trivial bounds (see e.g. [127]). For k = 3 the best current bound
towards Conjecture 5.3 was proved by Rödl and Ruciński [128]. They showed that in this case the
conjecture holds if 1− (1− 1/3)2 = 5/9 is replaced by (5−

√
5)/3.

For k = 3, Han and Zhao [65] were able to determine the minimum vertex degree which guarantees
a loose Hamilton cycle exactly.

Theorem 5.4 ([65]). There exists an integer n0 so that the following holds. Suppose that G is a

3-uniform hypergraph on n ≥ n0 vertices with δ1(G) ≥
(
n
2

)
−
(
3n/4
2

)
+ c, where n is even, c = 2 if

4|n and c = 1 otherwise. Then G contains a loose Hamilton cycle.

The bound on the minimum vertex degree is tight: for n of the form 4t + 2, fix a set A of t
vertices and consider the k-uniform hypergraph G on n vertices whose hyperedges all have nonempty
intersection with A. Buß, Han and Schacht [29] had earlier proved an asymptotic version of this
result.

5.2. Hamilton cycles in random hypergraphs. Similarly as in the graph case, it is natural to

study Hamiltonicity questions in a probabilistic setting. Let H
(k)
n,p denote the random k-uniform

hypergraph on n vertices where every edge is present with probability p, independently of all other
edges. The following result of Dudek, Frieze, Loh and Speiss [48] determines the threshold for the

existence of a loose Hamilton cycle in H
(k)
n,p. (In both Theorems 5.5 and 5.6 we only consider those n

which satisfy the trivial divisibility condition for the existence of an `-cycle, i.e. that n is a multiple
of k − `.)

Theorem 5.5 ([48]). Suppose that k ≥ 3. If p � (log n)/nk−1, then a.a.s. H
(k)
n,p contains a loose

Hamilton cycle.
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The logarithmic factor appears due to the ‘local’ obstruction that a.a.s. H
(k)
n,p contains isolated

vertices below this threshold.
The proof of Theorem 5.5 is ‘combinatorial’ (in particular, it does not use the second moment

method) and builds on earlier results by Frieze [55] as well as Dudek and Frieze [46], which required
additional divisibility assumptions. The argument in [48] also uses the celebrated result of Johansson,
Kahn and Vu [77] on the threshold for perfect matchings in hypergraphs.

Loose Hamilton cycles in random regular hypergraphs have been considered by Dudek, Frieze,
Ruciński and Šileikis [50]. The next result due to Dudek and Frieze [47] concerns precisely those
values of k and ` not covered by Theorem 5.5. Thus together Theorems 5.5 and 5.6 determine the
threshold for the existence of a Hamilton `-cycle in random k-uniform hypergraphs for any given
value of k and `.

Theorem 5.6 ([50]).

(i) For all integers k > ` ≥ 2 and fixed ε > 0, if p = (1− ε)ek−`/nk−`, then a.a.s. H
(k)
n,p does not

contain a Hamilton `-cycle.

(ii) If k > ` ≥ 2 and p� 1/nk−`, then a.a.s. H
(k)
n,p contains a Hamilton `-cycle.

(iii) For all fixed ε > 0, if k ≥ 4 and p = (1 + ε)e/n, then a.a.s. H
(k)
n,p contains a tight Hamilton

cycle.

The proof of Theorem 5.6 is based on the second moment method (which seems to fail for The-
orem 5.5). An algorithmic proof of (iii) with a weaker threshold of p ≥ n−1+ε was given by Allen,
Böttcher, Kohayakawa and Person [5]. Note that, for k ≥ 4, (i) and (iii) establish a sharp threshold
for tight Hamilton cycles, i.e. when ` = k − 1. It would be interesting to obtain a sharp threshold
for other cases besides those in (iii) and a hitting time result for loose Hamilton cycles.

5.3. Hamilton decompositions. Hypergraph generalisations of Walecki’s theorem (Theorem 3.6)
have also been investigated. This question was first studied for the notion of a Berge cycle. Let

K
(k)
n denote the complete k-uniform hypergraph on n vertices. Since every Hamilton Berge cycle of

K
(k)
n has n edges, a necessary condition for the existence of a decomposition of K

(k)
n into Hamilton

Berge cycles is that n divides
(
n
k

)
. Bermond, Germa, Heydemann and Sotteau [19] conjectured

that this condition is also sufficient. For k = 3, this conjecture follows by combining the results of
Bermond [18] and Verrall [139]. Kühn and Osthus [106] showed that as long as n is not too small,
the conjecture holds for k ≥ 4 as well. So altogether this yields the following result.

Theorem 5.7 ([18, 139, 106]). Suppose that 3 ≤ k < n, that n divides
(
n
k

)
and, in the case when

k ≥ 4, that n ≥ 30. Then K
(k)
n has a decomposition into Hamilton Berge cycles.

The following conjecture of Kühn and Osthus [106] would be an analogue of Theorem 5.7 for
Hamilton `-cycles.

Conjecture 5.8 ([106]). For all integers 1 ≤ ` < k there exists an integer n0 such that the following

holds for all n ≥ n0. Suppose that k − ` divides n and that n/(k − `) divides
(
n
k

)
. Then K

(k)
n has a

decomposition into Hamilton `-cycles.

To see that the divisibility conditions are necessary, recall that every `-cycle on n vertices contains
exactly n/(k − `) edges.

The ‘tight’ case ` = k − 1 of Conjecture 5.8 was already formulated and investigated by Bailey
and Stevens [9]. Actually, if n and k are coprime, the case ` = k − 1 already corresponds to a
conjecture made independently by Baranyai [12] and Katona concerning ‘wreath decompositions’.
A k-partite version of the ‘tight’ case of Conjecture 5.8 was recently proved by Schroeder [133].

Conjecture 5.8 is known to hold ‘approximately’ (with some additional divisibility conditions on
n), i.e. one can find a set of edge-disjoint Hamilton `-cycles which together cover almost all the edges
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of K
(k)
n . This is a very special case of results in [10, 58, 59] which together guarantee approximate

decompositions of quasi-random uniform hypergraphs into Hamilton `-cycles for 1 ≤ ` < k (again,
the proofs need n to satisfy additional divisibility constraints).

For example, Frieze, Krivelevich and Loh [59] proved an approximate decomposition result for
tight Hamilton cycles in quasi-random 3-uniform hypergraphs, which implies the following result
about random hypergraphs.

Theorem 5.9 ([59]). Suppose that ε, p, n satisfy ε45np16 ≥ (log n)21. Then whenever 4|n, a.a.s. there

is a collection of edge-disjoint tight Hamilton cycles of H
(3)
n,p which cover all but at most an ε1/15-

fraction of the edges of H
(3)
n,p.

The proof proceeds via a reduction to an approximate decomposition result of quasi-random
digraphs into Hamilton cycles. This reduction is also the cause for the divisibility requirement. It
would be nice to be able to eliminate this requirement. It would also be interesting to know whether
the threshold for the existence of an approximate decomposition into Hamilton `-cycles coincides
with the threshold for a single Hamilton cycle.

6. Counting Hamilton cycles

In Section 3.1 the aim was to strengthen Dirac’s theorem (and other results) by finding many
edge-disjoint Hamilton cycles. Similarly, it is natural to omit the condition of edge-disjointness
and ask for the total number of Hamilton cycles in a graph. For Dirac graphs (i.e. for graphs
on n vertices with minimum degree at least n/2), this problem was essentially solved by Cuckler
and Kahn [41, 42]. They gave a remarkably elegant formula which asymptotically determines the
logarithm of the number of Hamilton cycles.

To state their result, we need the following definitions. For a graph G and edge weighting
x : E(G)→ R+, set h(x) :=

∑
e∈E(G) xe log2(1/xe), where xe denotes the weight of the edge e. This

is related to the entropy function, except that
∑

e∈E(G) xe is not required to equal 1. We call an

edge weighting x a perfect fractional matching if
∑

e3v xe = 1 for each vertex v of G. Finally, let
h(G) (the ‘entropy’ of G) be the maximum of h(x) over all fractional matchings x.

Theorem 6.1 ([41, 42]). Suppose that G is a graph on n vertices with δ(G) ≥ n/2. Then the
number of Hamilton cycles in G is

(6.1) 22h(G)−n log2 e−o(n).

In particular, the number of Hamilton cycles in G is at least

(6.2) (1− o(1))n
δ(G)n

nn
n! ≥ n!

(2 + o(1))n
.

(6.2) answers a question of Sárközy, Selkow and Szemerédi [132]. The proof of the lower bound
in (6.1) proceeds by considering a random walk which embeds the Hamilton cycles. (6.2) is a
consequence of (6.1), but the derivation is nontrivial. (It is easy to derive if G is d-regular, as
then setting xe := 1/d for each edge e of G maximises h(x).) As a general bound on the number
of Hamilton cycles in Dirac graphs, (6.2) is best possible (up to lower order terms) – consider for
example the complete balanced bipartite graph. In fact, it is an easy consequence of Bregman’s
theorem on permanents that the first bound in (6.2) is best possible for any regular graph.
h(G) can be computed in polynomial time, so one can efficiently obtain a rough estimate for

the number of Hamilton cycles in a given Dirac graph. The question of obtaining more precise
estimates via randomized algorithms was considered earlier by Dyer, Frieze and Jerrum [51]. For
graphs whose minimum degree is at least n/2+εn, they obtained a fully polynomial time randomized
approximation scheme (FPRAS) for counting the number of Hamilton cycles. (Roughly speaking,
an FPRAS is a randomized polynomial time algorithm which gives an answer to a counting problem
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to within a factor of 1 + o(1) with probability 1 − o(1).) They asked whether this result can be
extended to all Dirac graphs.

Question 6.2 ([51]). Let G denote the class of all Dirac graphs, i.e. of all graphs G with minimum
degree at least |V (G)|/2. Is there an FPRAS for counting the number of Hamilton cycles for all
graphs in G?

Ferber, Krivelevich and Sudakov [52] proved an analogue of (6.2) for oriented graphs whose degree
is slightly above the Hamiltonicity threshold.

Counting Hamilton cycles also yields interesting results in the random graph setting. Note that
the expected number of Hamilton cycles in Gn,p is pn(n−1)!/2. Glebov and Krivelevich [60] showed
that for any p above the Hamiltonicity threshold, a.a.s. the number of Hamilton cycles in Gn,p is
not too far from this.

Theorem 6.3 ([60]). Let p ≥ logn+log logn+ω(n)
n , where ω(n) tends to infinity with n. Then a.a.s. the

number of Hamilton cycles in Gn,p is (1− o(1))npnn!.

For p = Ω(n−1/2), this was already proved by Janson [75], who in fact determined the asymp-
totic distribution of the number of Hamilton cycles in this range. Surprisingly, his results imply
that a.a.s. the number X of Hamilton cycles in Gn,p is concentrated below the expected value,
i.e. a.a.s. X/E(X)→ 0 for p→ 0 (on the other hand, in the Gn,m model, X is concentrated at E(X)

in the range when n3/2 ≤ m ≤ 0.99
(
n
2

)
). Glebov and Krivelevich [60] also obtained a hitting time

version of Theorem 6.3.

Theorem 6.4 ([60]). In the random graph process Gn,t, at the very moment the minimum degree
becomes two, a.a.s. the number of Hamilton cycles becomes (1− o(1))n(log n/e)n.

Note that at the hitting time t for minimum degree two a.a.s. the edge density p of Gn,t is close
to log n/n, and so the expression in Theorem 6.4 could also be written as (1 − o(1))npnn!, which
coincides with Theorem 6.3.

A related result of Janson [76] determines the asymptotic distribution of the number of Hamilton
cycles in random d-regular graphs for constant d ≥ 3. Frieze [54] proved a similar formula to that
in Theorem 6.3 for dense quasi-random graphs, which was extended to sparse quasi-random graphs
by Krivelevich [89].

It turns out that the number of Hamilton cycles in a graph is often closely connected to the
number of perfect matchings (indeed the former is always at most the square of the latter). So most
of the above papers also contain related results about counting perfect matchings.

Similar questions have also been investigated for tournaments: Szele [136] showed that the max-

imum number P (n) of Hamilton paths in a tournament on n vertices satisfies P (n) = O(n!/23n/4)
and P (n) ≥ n!/2n−1. The lower bound was one of the first applications of the probabilistic method
and is obtained by considering a random tournament. These bounds were improved in [1, 53, 141],
which also raise the following question:

Question 6.5. Is it true that P (n) = Θ(n!/2n−1)?

There are closely related questions and results about the maximum number C(n) of Hamilton
cycles in a tournament on n vertices.

Finally, Thomassen (see Problem 7.12 in [28]) asked whether there exists a regular tournament
whose number of Hamilton cycles is at least as large as the expected number (n−1)!/2n of Hamilton
cycles in a random tournament (note that the latter is likely to be close to regular but not completely
regular). As observed by Alon (personal communication), one can prove this by an elegant argument
based on a construction from [1]: Suppose that n ≡ 1 or 3 mod 6. So there exists an edge-
decomposition of Kn into triangles. Orient each triangle of it cyclically, where each direction is
chosen randomly among the two possible options. Clearly, this yields a regular tournament T . Note



20 DANIELA KÜHN AND DERYK OSTHUS

that for any undirected Hamilton cycle C which contains no two edges of the same triangle of our
triangle decomposition, the probability that C becomes a directed Hamilton cycle is exactly 1/2n−1,
and in any other case this probability is larger. Hence the expected number of directed Hamilton
cycles in T is at least (n − 1)!/2n, as required. A related result of Cuckler [40] states that in fact
every regular tournament has (1− o(1))n(n− 1)!/2n directed Hamilton cycles.

7. Edge-coloured graphs and hypergraphs

Another line of research with a long history has been to consider Hamilton cycles in edge-coloured
graphs. A natural aim in this area is to give conditions which ensure either a properly coloured
Hamilton cycle or conditions which ensure a rainbow Hamilton cycle. Here an edge-coloured graph
is a graph G with a colouring of the edges of G. We say that H ⊆ G is properly coloured if no two
adjacent edges of H have the same colour. Moreover, H is said to be rainbow if all edges of H have
distinct colours.

We first consider properly coloured Hamilton cycles. Perhaps the most natural question here is
to consider edge colourings of the complete graph where we bound the maximum degree of each
monochromatic subgraph. More precisely, a colouring c is r-degree bounded if the graph induced by
any single colour has maximum degree at most r. Clearly, for every 1-degree bounded colouring of
Kn there is a properly coloured Hamilton cycle, and the question is how large one can make r so
that we can always guarantee a properly coloured Hamilton cycle. Bollobás and Erdős [25] posed
the following conjecture, which was motivated by a (weaker) conjecture of Daykin.

Conjecture 7.1 ([25]). If r < bn/2c, then any r-degree bounded edge colouring of Kn admits a
properly coloured Hamilton cycle.

To see that the conjecture would be best possible, suppose that n = 4k+1. Let G be a 2k-regular
graph on n vertices. Now obtain a colouring of Kn by colouring all edges of G red and all edges of
its complement blue. Note that this colouring is r-bounded for r = 2k = bn/2c. However, since n
is odd, there is no properly coloured Hamilton cycle.

Recently, Lo [112] was able to prove that Conjecture 7.1 is true asymptotically. This improved a
sequence of bounds from various authors, see [112] for details.

Theorem 7.2 ([112]). For any ε > 0 there exists an integer n0 such that if n ≥ n0 and r ≤
(1/2 − ε)n, then any r-degree bounded edge colouring of Kn admits a properly coloured Hamilton
cycle.

The proof involves an adaption of the absorbing method to edge-coloured graphs. One can also
ask for properly coloured Hamilton cycles in edge-coloured non-complete graphs, see e.g. [111], which
contains an approximate Dirac-type result in this direction.

We now consider rainbow Hamilton cycles. Here it makes sense to consider a global bound on
the size of a monochromatic edge set: we say that an edge colouring of Kn is r-bounded if each
colour is used at most r times. The question is how large we can make r so that every r-bounded
colouring of Kn admits a rainbow Hamilton cycle. Clearly, we cannot take r ≥ n/2: in this case one
can colour Kn with n − 1 colours (and n/2 edges in each colour). This gives rise to the following
folklore question.

Question 7.3. Suppose that r < n/2. Is it true that every r-bounded edge colouring of Kn admits
a rainbow Hamilton cycle?

The best result in this direction is due to Albert, Frieze and Reed [3], who showed that we can
take r = n/64.

Hypergraph analogues of the above two problems have also led to interesting results. The defini-
tions involved in Theorem 7.2 and Question 7.3 generalize naturally to hypergraphs. Dudek, Frieze
and Ruciński [49] proved the following result on rainbow Hamilton `-cycles.
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Theorem 7.4 ([49]). For all integers 1 ≤ ` < k there is a constant c < 1 and an integer n0 such that

if n ≥ n0 and (k − `)|n then any cnk−`-bounded edge colouring of K
(k)
n admits a rainbow Hamilton

`-cycle.

For loose cycles, this result is best possible up to the value of c: indeed, recall that every loose
cycle has t = n/(k − 1) edges and set r =

(
n
k

)
/(t− 1). Then one can colour the complete k-uniform

hypergraph on n vertices with t− 1 colours and with r edges in each colour class.
The following result of Dudek, Frieze and Ruciński [49] is a version of Theorem 7.2 for hypergraphs.

Theorem 7.5 ([49]). For all integers 1 ≤ ` < k there is a constant c < 1 and an integer n0 such

that if n ≥ n0 and (k − `)|n then any cnk−`-degree bounded edge coloring of K
(k)
n admits a properly

coloured Hamilton `-cycle.

Here an edge colouring is r-degree bounded if for any vertex x, the number of hyperedges of the
same colour containing x is at most r, i.e. each colour class has maximum vertex degree r. Note
that for loose cycles, the result is trivially best possible up to the value of c, as the maximum vertex
degree of a hypergraph is at most nk−1. It seems likely that Theorems 7.4 and 7.5 are also best
possible for 1 < ` < k (up to the value of c). It would be interesting to find a construction which
shows this.

Dudek and Ferrara [45] showed that one can strengthen Theorem 7.5 by assuming a bound of
cnk−` on the maximum `-degrees of the colour classes. This is clearly best possible (up to the value
of c) as a trivial bound on the maximum `-degree is nk−`. They also strengthened Theorem 7.4 by
including an appropriate `-degree condition. All of the above results on edge-coloured hypergraphs
(as well as the result in [3]) rely on some version of the Local Lemma.
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[38] B. Csaba, D. Kühn, A. Lo, D. Osthus and A. Treglown, Proof of the 1-factorization and Hamilton decomposition

conjectures II: the bipartite case, preprint.
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(1943), 223–256.
[137] C. Thomassen, Edge-disjoint Hamiltonian paths and cycles in tournaments, Proc. London Math. Soc. 45 (1982),

151–168.
[138] E. Vaughan, An asymptotic version of the multigraph 1-factorization conjecture, J. Graph Theory 72 (2013),

19–29.
[139] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Discrete Math. 132 (1994), 333–348.
[140] D. Wagner, On the perfect 1-factorization conjecture, Discrete Math. 104 (1992), 211–215.
[141] N.C. Wormald, Tournaments with many Hamilton cycles, preprint.
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