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Abstract
It is well known that every bipartite graph with vertex classes of size n
whose minimum degree is at least n/2 contains a perfect matching. We
prove an analogue of this result for hypergraphs. We also prove several
related results which guarantee the existence of almost perfect matchings
in r-uniform hypergraphs of large minimum degree. Our bounds on the
minimum degree are essentially best possible.

1 Introduction

The so called ‘marriage theorem’ of Hall provides a necessary and sufficient
condition for the existence of a perfect matching in a bipartite graph. For hy-
pergraphs there is no analogue of this result—up to now only partial results are
known. For example, Conforti et al. [4] extended Hall’s theorem to balanced
hypergraphs and Haxell [8] extended Hall’s theorem to a sufficient condition for
the existence of a hypergraph matching which contains a given set of vertices.
Moreover, there are many results about the existence of almost perfect match-
ings in hypergraphs which are pseudo-random in some sense. Most of these are
based on an approach due to Rödl (see e.g. [1] for an introduction to the topic
or Vu [15] for more recent results). For random r-uniform hypergraphs, the
threshold for a perfect matching is still not known. There are several partial
results, see e.g. Kim [11].

A simple corollary of Hall’s theorem for graphs states that every bipartite
graph with vertex classes A and B of size n whose minimum degree is at least
n/2 contains a perfect matching. (This can also be proved directly by con-
sidering a maximal matching.) The condition on the minimum degree is best
possible. The first theorem of this paper provides an analogue of this result for
r-uniform r-partite hypergraphs. So instead of two vertex classes and a set of
edges joining them (as in the graph case), we now have r vertex classes and
a set of (unordered) r-tuples, each of whose vertices lies in a different vertex
class (see Section 2 for the precise definition). A natural way to define the min-
imum degree of an r-uniform r-partite hypergraph H is the following. Given
r − 1 distinct vertices x1, . . . , xr−1 of H, the neighbourhood Nr−1(x1, . . . , xr−1)
of x1, . . . , xr−1 in H is the set of all those vertices x which form a hyperedge
together with x1, . . . , xr−1. The minimum degree δ′r−1(H) is defined to be the
minimum |Nr−1(x1, . . . , xr−1)| over all tuples x1, . . . , xr−1 of vertices lying in
different vertex classes of H.

Theorem 1 Suppose that H is an r-uniform r-partite hypergraph with vertex
classes of size n ≥ 1000 which satisfies δ′r−1(H) ≥ n/2 +

√
2n log n. Then H

has a perfect matching.
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Theorem 1 is best possible up to the error term
√

2n log n (see Lemma 10).
Surprisingly, a simple argument already shows that a significantly smaller min-
imum degree guarantees a matching which covers almost all vertices of H:

Theorem 2 Suppose that H is an r-uniform r-partite hypergraph with vertex
classes of size n which satisfies δ′r−1(H) ≥ n/r. Then H has a matching which
covers all but at most r − 2 vertices in each vertex class of H.

Again, the bound on the minimum degree in Theorem 2 is essentially best
possible: if we reduce it by εn, then we cannot even guarantee a matching
which covers all but εn vertices in each vertex class (see Lemma 12 for a more
precise assertion). Actually, instead of Theorem 2, we will prove a more general
statement (Theorem 11).

Finally, we use Theorems 1 and 2 to obtain analogues for r-uniform hyper-
graphs H which are not necessarily r-partite. The minimum degree δr−1(H) of
such a hypergraph H is defined similarly as before except that we now take the
minimum |Nr−1(x1, . . . , xr−1)| over all (r − 1)-tuples of distinct vertices of H.

Theorem 3 For every integer r ≥ 3 there exists an integer n0 = n0(r) such
that for every n ≥ n0 the following holds. Suppose that H is an r-uniform
hypergraph with |H| = rn vertices which satisfies δr−1(H) ≥ |H|/2+3r2

√
n log n.

Then H has a perfect matching.

Theorem 4 For every integer r ≥ 3 there exists an integer n0 = n0(r) such
that for every n ≥ n0 the following holds. Suppose that H is an r-uniform
hypergraph with |H| = n vertices which satisfies δr−1(H) ≥ n/r + 3r2

√
n log n.

Then H has a matching which covers all but at most 2r2 vertices of H.

Again the bounds on the minimum degree are best possible up to lower order
terms (see Lemmas 15 and 17).

Recently, Rödl, Ruciński and Szemerédi [13] proved the related result that
for all positive ε there exists an integer n0 such that for all n ≥ n0 every 3-
uniform hypergraph H on n vertices with δ2(H) ≥ n/2 + εn contains a tight
Hamilton cycle. (A tight Hamilton cycle in a 3-uniform hypergraphH is a cyclic
ordering of its vertices such that every 3 consecutive vertices form a hyperedge.)
An immediate corollary is that if n is divisible by 3, then H contains a perfect
matching. We believe that the main advantage of Theorem 3 is that it provides
a much shorter proof of this corollary. Also, a related result was proved and
used as a tool in [13]: Let H be a 3-uniform hypergraph on n vertices and
consider the auxiliary graph G whose edges are all the pairs x, y of vertices of
H with |N2(x, y)| < n/2. If the maximum degree of G is small, then H has an
almost perfect matching. The argument used in the proof of Theorem 2 gives a
simple proof of this fact and reduces the necessary minimum degree from n/2
to n/3 in the 3-uniform case (see Theorems 11 and 16).

From an algorithmic point of view, there is also a major difference between
matching problems for graphs and hypergraphs. A largest matching in a graph
can be found in polynomial time (see e.g. [12]), whereas Karp proved that
one cannot find a maximum matching in an r-partite r-uniform hypergraph
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in polynomial time unless P=NP (see e.g. [6], this is also known as the r-
dimensional matching problem). In fact, Kann [10] proved that the problem is
even MaxSNP-complete, so unless P=NP it is not even possible to approximate
the optimal solution within a given factor 1 + ε in polynomial time. The best
known approximation algorithm is due to Hurkens and Schrijver [7] and has
approximation ratio r/2 + ε for any given ε > 0.

On the other hand, our proofs can easily be reformulated as polynomial time
algorithms (which are randomized in most cases). For example, if the mini-
mum degree is a little larger than |H|/2, there is a randomized polynomial time
algorithm which finds a perfect matching with high probability. It would be
interesting to know whether this can be achieved without randomization. This
is certainly the case for the argument we use to obtain Theorem 4 from The-
orem 2—it can easily be derandomized using standard techniques (see e.g. [1,
Chapter 15]). Hence an almost perfect matching can be found in polynomial
time if the minimum degree is at least |H|/r.

Finally, we present some open questions which are immediately suggested
by the above results: Obviously, it would be desirable to eliminate the gaps
between the upper and the lower bounds on the minimum degree. Also, it would
be interesting to know whether one can obtain similar results if one adopts the
following alternative definition of minimum degree: The neighbourhood of a
vertex x of an r-uniform hypergraph is the set of all those (r − 1)-tuples of
vertices which form a hyperedge together with x and the minimum degree is
the size of the smallest neighbourhood.

This paper is organized as follows. In Section 2 we introduce some notation
and collect tools which are needed in the proof of Theorem 1. In Section 3
we consider minimum degree conditions for the existence of perfect matchings
in r-partite r-uniform hypergraphs. In Section 4 we consider minimum degree
conditions for almost perfect matchings in such hypergraphs. In the final section
we then derive the corresponding results for r-uniform hypergraphs which are
not necessarily r-partite by using a simple probabilistic argument.

2 Notation and tools

In this paper, all logarithms are base e, where e denotes the Euler number. We
write |G| for the number of vertices in a graph G. We denote the degree of a
vertex x ∈ G by dG(x) and the set of its neighbours by NG(x). We often write
G = (A,B) for a bipartite graph G with vertex classes A and B.

A hypergraph H consists of a set V of vertices together with some set E of
subsets of V . The elements of E are called the hyperedges of H. We write |H| for
the number of vertices of H. H is r-uniform if all its hyperedges are r-element
sets. If H is an r-uniform hypergraph, we will also refer to its hyperedges as
r-tuples of H. An r-uniform hypergraph H is called r-partite if the vertex set
of H can be partitioned into r classes, V1, . . . , Vr say, such that every hyperedge
meets every Vi in precisely one vertex. The Vi are the vertex classes of H. A
matching in H is a set M of disjoint hyperedges of H. M is perfect if every
vertex of H lies in some hyperedge belonging to M .
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We use the following version of Stirling’s inequality (the bound is a weak
form of a result of Robbins, see e.g. [2]):

Proposition 5 For all integers n ≥ 1 we have(n
e

)n
≤ n! ≤ 3

√
n
(n

e

)n
. (1)

Moreover, we need the following result of Brégman [3] about the permanent
of a 0-1 matrix which was conjectured by Minc. (A short proof of it was given
by Schrijver [14], see also [1]). We formulate this result in terms of the number
of perfect matchings of a bipartite graph.

Theorem 6 Every bipartite graph G = (A,B) contains at most∏
a∈A

(dG(a)!)1/dG(a)

perfect matchings.

An application of Stirling’s inequality (Proposition 5) to Theorem 6 imme-
diately yields the following.

Corollary 7 Let G = (A,B) be a bipartite graph with |A| = |B| = n and
dG(a) ≥ n/3 for every a ∈ A. Let m denote the number of perfect matchings in
G. Then

m ≤ 27n3/2
∏
a∈A

dG(a)
e

.

The following lemma will be used in the proof of Theorem 1.

Lemma 8 Suppose that G = (A,B) is a bipartite graph with |A| = |B| = n ≥
1000 and such that dG(a) ≥ n/2 +

√
2n log n for all a ∈ A. Let M be a perfect

matching in the complete bipartite graph with vertex classes A and B chosen
uniformly at random. Then the probability that M contains at most n/2 edges
of G is at most 1/(2n).

Proof. Set y := dn/2+
√

2n log ne−n/2 and choose any spanning subgraph H
of G such that dH(a) = n/2+y for all a ∈ A. Given a set A′ ⊆ A, we denote by
HA′ the bipartite graph with vertex classes A andB in which every vertex a ∈ A′
is joined to all the vertices b ∈ NH(a) while every vertex a ∈ A \A′ is joined to
all the vertices b ∈ B \NH(a). Given 0 ≤ k ≤ n/2, let mk denote the number of
perfect matchings M ′ in the complete bipartite graph between A and B which
contain precisely k edges of H. Every such matching M ′ can be obtained by
first fixing a k-element set A′ ⊆ A and then choosing a perfect matching in the
graph HA′ . (Thus the elements of A′ correspond to the k endvertices of the
edges in M ′ ∩ E(H).) As n ≥ 1000, we have δ(HA′) ≥ n/2− y ≥ n/3, and we
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can apply Corollary 7 to HA′ . Altogether, this yields

mk ≤
(
n

k

)
· 27n3/2 ·

(
n/2 + y

e

)k (n/2− y
e

)n−k
≤ 2n · 27n3/2 · e−n(n/2 + y)n/2(n/2− y)n/2

= 2n · 27n3/2 · e−n(n2/4− y2)n/2

≤ 27n3/2 ·
(n

e

)n
· e−2y2/n

(1)

≤ 27n!
n5/2

.

Now consider a perfect matching M in the complete bipartite graph between A
and B chosen uniformly at random. Since there are n! such perfect matchings
and n ≥ 1000, the probability that M contains at most n/2 edges of H is at
most

bn/2c∑
k=0

mk

n!
<

1
2n
.

This proves the lemma since H is a subgraph of G. �

3 Perfect matchings in r-uniform r-partite hyper-
graphs

In Theorem 9 below, we prove a slightly strengthened version of the 3-uniform
case of Theorem 1. This will then be used to derive the general case of Theo-
rem 1.

Theorem 9 Let H be a 3-uniform 3-partite hypergraph with vertex classes A,
B and C of size n ≥ 1000. Suppose that |N2(a, b)| ≥ n/2 +

√
2n log n for all

pairs a ∈ A, b ∈ B and |N2(a, c)| ≥ n/2 +
√

2n log n for all pairs a ∈ A, c ∈ C.
Then H has a perfect matching.

Proof. Given a perfect matching M in the complete bipartite graph with
vertex classes A and B, we define an auxiliary graph GM as follows. The vertex
classes of GM are C and M . Vertices c ∈ C and ab ∈M are neighbours in GM
whenever abc is a hyperedge of H. Clearly, H contains a perfect matching if
GM does. Thus it suffices to show that there exists a choice for M such that
GM has minimum degree at least n/2. Then GM contains a perfect matching
by Hall’s theorem.

Consider a perfect matching M in the complete bipartite graph with vertex
classes A and B which is chosen uniformly at random. By the above, it suffices
to show that with positive probability the minimum degree of GM is at least
n/2. Since |N2(a, b)| ≥ n/2 +

√
2n log n for all pairs a ∈ A, b ∈ B, all the

vertices in M ⊆ V (GM ) have degree at least n/2 in GM . Thus we only have
to show that for every vertex c ∈ C the probability that dGM (c) < n/2 is at
most 1/(2n). But this immediately follows from Lemma 8. Indeed, let Gc
denote the bipartite graph with vertex classes A and B such that ab is an
edge of Gc whenever abc is a hyperedge of H. Then the degree of c in GM
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is precisely the number of edges in M ∩ E(Gc). But for every vertex a ∈ A
we have dGc(a) = |N2(a, c)| ≥ n/2 +

√
2n log n. Thus Lemma 8 implies that

|M ∩ E(Gc)| ≤ n/2 with probability at most 1/(2n). �

Proof of Theorem 1. We will derive Theorem 1 from Theorem 9. Suppose
that r ≥ 4 and let V1, . . . , Vr denote the vertex classes of H. We first choose any
perfect matching M ′ in the complete (r−2)-uniform (r−2)-partite hypergraph
with vertex classes V3, . . . , Vr. Consider the auxiliary 3-uniform 3-partite hyper-
graph H′ whose vertex classes are V1, V2 and M ′ and in which v1 ∈ V1, v2 ∈ V2

and m ∈ M ′ from a hyperedge if and only if v1 and v2 form a hyperedge of H
together with all the r− 2 vertices belonging to m. Thus a perfect matching in
H′ corresponds to a perfect matching in H. But H′ contains a perfect matching
since it satisfies the assumptions of Theorem 9. (Put A := M ′, B := V1 and
C := V2.) �

The following lemma shows that the bound on the minimum degree in The-
orem 1 is best possible up to the error term

√
2n log n.

Lemma 10 For all integers r ≥ 3 and every n ≥ 1 there exists an r-uniform
r-partite hypergraph H with vertex classes of size n which satisfies δ′r−1(H) ≥
n/2− 1 but does not contain a perfect matching.

Proof. The vertex classes of our hypergraphH will be n-element sets V1, . . . , Vr.
For each i we choose a set V ′i ⊆ Vi such that n/2 − 1 ≤ |V ′i | ≤ n/2 + 1 and
|V ′1 ∪ · · · ∪V ′r | is odd. Clearly, this is always possible. The hyperedges of H will
be those r-tuples of vertices which meet each Vi in exactly one vertex and which
additionally meet an even number (i.e. possibly none) of the sets V ′1 , . . . , V

′
r . It

is easily seen that δ′r−1(H) ≥ n/2 − 1. However, any matching covers an even
number of vertices in V ′1 ∪ · · · ∪ V ′r since each hyperedge of H contains an even
number of these vertices. Hence, as |V ′1 ∪ · · · ∪ V ′r | is odd, there cannot exist a
perfect matching. �

Drake [5] showed that one can also obtain a lower bound of n/2 for all n
where n/2 is odd if r is odd.

4 Almost perfect matchings in r-uniform r-partite
hypergraphs

Instead of proving Theorem 2, we will prove the following more general asser-
tion, which implies that Theorem 2 is ‘robust’ in the sense that we still get
an almost perfect matching if the degree is slightly smaller and/or the degree
condition fails for only a small fraction of the (r − 1)-tuples.

Theorem 11 Let k ≥ 1, ` ≥ 0 be integers and let H be an r-uniform r-partite
hypergraph with vertex classes of size n. Put

δ′ :=
{
dn/re − ` if n ≡ 0 mod r or n ≡ r − 1 mod r
bn/rc − ` otherwise.
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Suppose that there are fewer than kr−1 tuples x1, . . . , xr−1 of vertices in H such
that all the xi lie in different vertex classes and |Nr−1(x1, . . . , xr−1)| < δ′. Then
H has a matching which covers all but at most (r−1)k+ `r−1 vertices in each
vertex class of H.

The proof of Theorem 11 is short and elementary—the idea is to consider a
matching of maximum size. This then will turn out to have the required prop-
erties.

Proof of Theorem 11. Let V1, . . . , Vr denote the vertex classes of H. Choose
any matching M of H whose size is maximum. Let V ′i ⊆ Vi be the set of all
those vertices which are not covered by M . Then |V ′1 | = · · · = |V ′r | =: s.
Suppose that s ≥ (r − 1)k + `r ≥ (r − 1)k. Then for every i = 1, . . . , r one
can find a set Ai which consists of exactly k vertices from each V ′j (j 6= i)
and avoids Vi and such that all the Ai are disjoint from each other. Thus
each Ai contains vertices xi1, . . . , x

i
r−1 lying in different vertex classes for which

|Nr−1(xi1, . . . , x
i
r−1)| ≥ δ′. By the choice of M , Nr−1(xi1, . . . , x

i
r−1) lies entirely

in Vi \ V ′i and thus meets at least δ′ of the elements of the matching M . Since
rδ′ > n − (r − 1)k − `r ≥ n − s = |M |, there exist indices i 6= j such that
Nr−1(xi1, . . . , x

i
r−1) and Nr−1(xj1, . . . , x

j
r−1) meet the same element of M , m

say. Let M ′ be the matching obtained from M by deleting m and adding the
hyperedge consisting of xi1, . . . , x

i
r−1 together with the unique vertex in m ∩ Vi

as well as adding the hyperedge consisting of xj1, . . . , x
j
r−1 together with the

unique vertex in m ∩ Vj . Then |M ′| = |M |+ 1, contradicting the choice of M .
�

The following lemma shows that the minimum degree in Theorem 2 (and in
the k = 1, ` = 0 case of Theorem 11) cannot be reduced. Moreover, it implies
that if we reduce the minimum degree in Theorem 2 by εn, then one cannot
even guarantee a matching which covers all but at most εn vertices in each
vertex class.

Lemma 12 Given integers q ≥ 1, r ≥ 3 and n ≥ rq, suppose that n = sr + t
where s, t ∈ N and 0 ≤ t < r. Put

C :=
{
rq if t = 0
r(q − 1) + t otherwise.

There exists an r-uniform r-partite hypergraph H with vertex classes of size n
such that δ′r−1(H) = dn/re − q and such that every matching in H avoids at
least C vertices in each vertex class of H.

Proof. Put δ := dn/re−q. Let V1, . . . , Vr be disjoint n-element sets. For each i
let V ′i be any δ-element subset of Vi. Consider the r-uniform hypergraph whose
vertex classes are V1, . . . , Vr and whose hyperedges are precisely those r-tuples
which meet each Vi in exactly one vertex and which additionally meet at least
one of the sets V ′1 , . . . , V

′
r . Then δ′r−1(H) = δ. But since every hyperedge of H

meets at least one of the sets V ′i , every matching in H has at most rδ elements
and thus avoids at least n− rδ = C vertices in each of the vertex classes. �
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Note that Lemma 12 implies that Theorem 11 with ` = 0 and k = 1 is
also sharp in the sense that if n = sr + (r − 2), then there exists an r-uniform
r-partite hypergraph with vertex classes of size n which has minimum degree
bn/rc and where every matching misses r − 2 vertices in each vertex class.

5 Matchings in general r-uniform hypergraphs

To derive Theorem 3 from Theorem 1 we show that the vertex set of every r-
uniform hypergraph H as in Theorem 3 can be partitioned into r vertex classes
of equal size such that the r-partite subhypergraph thus obtained satisfies the
conditions of Theorem 1. Indeed, a straightforward argument (see Proposi-
tion 13) shows that a random partition of the vertex set of H into classes of
equal size will have the desired properties. To work out the details, we need the
following definition. Suppose that H is an r-uniform hypergraph whose number
of vertices is divisible by r, |H| = rn say. Given a set N ⊆ V (H), we say that
a partition V1, . . . , Vr of the vertex set of H splits N fairly if |Vi| = n and∣∣∣∣ |N ∩ Vi| − |N |r

∣∣∣∣ ≤ 2r
√
n log n (2)

for every i ≤ r.

Proposition 13 For each integer r ≥ 2 there exists an integer n0 = n0(r)
such that the following holds. Suppose that n ≥ n0 and that H is an r-uniform
hypergraph with rn vertices. Then there exists a partition V1, . . . , Vr of the
vertex set of H which splits all neighbourhoods Nr−1(x1, . . . , xr−1) fairly.

Proposition 13 follows from a straightforward application of the following large
deviation bound for the hypergeometric distribution (see e.g. [9, Thm. 2.10,
Cor. 2.3 and Cor. 2.4]).

Lemma 14 Given q ∈ N and sets N ⊆ V with |V | ≥ q, let Q be a subset of V
which is obtained by successively selecting q elements of V uniformly at random
without repetitions. Let X := |N ∩Q|.

(i) For all 0 < α ≤ 3/2 we have P(|X − EX| ≥ αEX) ≤ 2e−
α2

3
EX .

(ii) If α′ ≥ 3
2EX, we have P(X ≥ α′) ≤ e−c

′α′, where c′ is an absolute
constant.

Proof of Proposition 13. Choose a partition V1, . . . , Vr with |V1| = · · · =
|Vr| = n of the vertex set V (H) of H uniformly at random from the set of
all such partitions. Clearly, the probability that Vi equals a fixed n-element
subset of V (H) is the same as when Vi was obtained by successively selecting n
elements of V (H) uniformly at random without repetitions. Thus we may apply
Lemma 14 with any one of the Vi taking the role of Q. Set γ := 2r

√
(log n)/n.
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Consider first any neighbourhood Nr−1(x1, . . . , xr−1) =: N whose size is at least
2rγn/3. Since E(|N ∩ Vi|) = |N |/r ≤ n, Lemma 14(i) implies that

P(| |N ∩ Vi| − |N |/r | ≥ γn) = P(| |N ∩ Vi| − |N |/r | ≥ (γnr/|N |)|N |/r)

≤ 2e−
γ2n2

3
r
|N| ≤ 2e−

γ2n
3 ≤ e−r

2 logn <
1
r
·
(
|H|
r − 1

)−1

.

If |N | ≤ 2rγn/3, we get the same bound using Lemma 14(ii). Indeed, since
E(|N ∩ Vi|) = |N |/r ≤ 2γn/3, Lemma 14(ii) implies that

P(| |N ∩ Vi| − |N |/r | ≥ γn) = P(|N ∩ Vi| ≥ |N |/r + γn)
≤ P(|N ∩ Vi| ≥ γn)

≤ e−c
′γn = e−c

′2r
√

logn
√
n <

1
r
·
(
|H|
r − 1

)−1

.

Hence with probability > 1− 1/r the set Vi satisfies

| |Nr−1(x1, . . . , xr−1) ∩ Vi| − |Nr−1(x1, . . . , xr−1)|/r | ≤ γn (3)

for all neighbourhoods Nr−1(x1, . . . , xr−1). Thus the probability that all the
partition sets Vi satisfy (3) is positive. Therefore there exists an outcome
V1, . . . , Vr with this property. This is a partition of V (H) as required. �

Proof of Theorem 3. First apply Proposition 13 to obtain a partition
of the vertex set of H into V1, . . . , Vr which splits all the neighbourhoods
Nr−1(x1, . . . , xr−1) fairly. Let H′ be the r-uniform r-partite subhypergraph of
H defined in this way. (So the hyperedges ofH′ are those hyperedges ofH which
meet every Vi in precisely one vertex.) Then δ′r−1(H′) ≥ n/2 + 3r

√
n log n −

2r
√
n log n ≥ n/2 +

√
2n log n. Thus Theorem 1 implies that H′ (and hence

also H) has a perfect matching. �

The following lemma implies that Theorem 3 becomes false if the minimum
degree is ‘a bit below’ |H|/2. It would be interesting to know whether there are
even counterexamples H with δr−1(H) ≥ |H|/2− 1.

Lemma 15 For all integers r ≥ 3 and every odd n ≥ r there exists an r-
uniform hypergraph H with 2rn vertices which satisfies

δr−1(H) =
{
rn− (r − 1) if r is odd
rn− r if r is even

but does not contain a perfect matching.

Proof. We first consider the case when r is odd. LetA andB be two rn-element
sets. The vertex set of our hypergraph H will be A ∪B. The hyperedges of H
will be those r-tuples of distinct vertices which meet A in an even (and thus
possibly empty) number of vertices. Then δr−1(H) = rn − (r − 1) and every
matching covers only an even number of vertices in A (and thus cannot cover
all of them).

In the case when r is even we proceed similarly except that A is now an
(rn+ 1)-element set and B is an (rn− 1)-element set. �
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Instead of Theorem 4, we will prove the following strengthening.

Theorem 16 For every integer r ≥ 3 there exists an integer n0 = n0(r)
such that for every n ≥ n0 the following holds. Let k ≥ 1 and ` ≥ 0 be
integers and suppose that H is an r-uniform hypergraph with |H| = rn ver-
tices which has less than kr−1 tuples x1, . . . , xr−1 of distinct vertices satisfying
|Nr−1(x1, . . . , xr−1)| < |H|/r − `+ 3r2

√
n log n. Then H has a matching which

covers all but at most r2k + `r vertices of H.

Theorem 4 follows immediately from the k = 1 case. Indeed, if the number of
vertices of H is not divisible by r, then apply Theorem 16 to the hypergraph
which is obtained from H by deleting up to r − 1 vertices.

Theorem 16 can be derived from Theorem 11 in the same way as Theorem 3
was derived from Theorem 1.

Proof of Theorem 16. First apply Proposition 13 to obtain a parti-
tion of the vertex set of H into V1, . . . , Vr which splits all neighbourhoods
Nr−1(x1, . . . , xr−1) fairly. Let H′ be the r-uniform r-partite subhypergraph
of H defined in this way. Then there are less than kr−1 tuples x1, . . . , xr−1

such that all the xi lie in different vertex classes of H′ and which satisfy
|Nr−1(x1, . . . , xr−1)| < n/r − `/r + 3r

√
n log n − 2r

√
n log n. Since the right

hand side is at least dn/re−b`/rc, Theorem 11 implies that H′ (and hence also
H) has a matching which avoids at most r(r − 1)k + r2(`/r) − r ≤ r2k + `r
vertices. �

The following lemma implies that if we reduce the minimum degree in The-
orem 4 by 2ε|H|, then one cannot guarantee a matching which leaves less than
rε|H| vertices uncovered, provided that |H| is sufficiently large compared to r
and ε.

Lemma 17 For all integers r ≥ 3, q ≥ 1 and every n ≥ q, r there exists an
r-uniform hypergraph H with rn vertices which satisfies δr−1(H) = n − q but
does not contain a matching which avoids less than rq of its vertices.

Proof. Let A be an (n− q)-element set and let B be an (rn− (n− q))-element
set. The vertex set of our hypergraph will be A∪B. The hypergedges of H will
be those r-tuples which meet A in at least one vertex. Thus δr−1(H) ≥ n− q.
However, every matching in H covers at most |B|− rq vertices in B since every
hyperedge has at most r− 1 vertices in B and (r− 1)|A| = rn− (n− q)− rq =
|B| − rq. �
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