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Abstract

Erdős proved that there exist graphs of arbitrarily high girth and ar-
bitrarily high chromatic number. We give a different proof (but also using
the probabilistic method) that also yields the following result on the typ-
ical asymptotic structure of graphs of high girth: for all ` ≥ 3 and k ∈ N
there exist constants C1 and C2 so that almost all graphs on n vertices
and m edges whose girth is greater than ` have chromatic number at least
k, provided that C1n ≤ m ≤ C2n

`/(`−1).

1 Introduction and Results

In 1959, Erdős [4] proved that there are graphs of arbitrarily large girth and
arbitrarily large chromatic number. (Here the girth of a graph G is the length
of its shortest cycle and is denoted by girth(G).) His proof is one of the first and
most well-known examples of the probabilistic method: he showed that with
high probability one can alter a random graph (with suitable edge probability)
so that it has no short cycles and no large independent sets. Here we give a
proof (also using the probabilistic method) which gives more information about
the typical asymptotic structure of graphs of high girth and given density.

Let Fn,m(C≤`) denote the set of all graphs with n vertices and m edges
which contain no cycle whose length is at most `, (writing Fn,m(K3) instead of
Fn,m(C≤3)). We say that almost all graphs in Fn,m(C≤`) have some property
if the proportion of graphs in Fn,m(C≤`) with this property tends to one as n
tends to infinity.

Theorem 1. For all ` ≥ 3 and k ∈ N, there are constants C1 and C2 so that
almost all graphs in Fn,m(C≤`) have chromatic number at least k, provided that
C1n ≤ m ≤ C2n

`/(`−1).

Let Gn,m denote a graph chosen uniformly at random from the set of graphs
with n vertices and m edges. We say that Gn,m has some property Q almost
surely if the probability that it has Q tends to one as n tends to infinity. The
restriction that m ≥ C1n in Theorem 1 is clearly necessary, since for m = o(n),
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Gn,m almost surely contains no cycles at all. For the case ` = 3, it turns out
that the restriction that m ≤ C2n

3/2 is also close to best possible. Indeed,
building on earlier results, in [8] we showed the following. Set

t3 = t3(n) =
√

3
4
n3/2

√
log n

and fix any ε > 0. Then if m ≥ (1 + ε)t3, almost all graphs in Fn,m(K3) are
bipartite. This threshold is sharp in the sense that if n/2 ≤ m ≤ (1−ε)t3, then
almost no graph in Fn,m(K3) is bipartite.

Instead of Theorem 1, we actually prove the following stronger result, which
gives a lower bound on the chromatic number of almost all graphs in Fn,m(C≤`)
in terms of n and m.

Theorem 2. For all ` > 3 there exist constants d1, d2 and d3 with the following
properties. Let

m0 = d1n
(`+2)/(`+1)(log n)2/(`+1).

If 2n ≤ m ≤ m0, then almost all graphs in Fn,m(C≤`) have chromatic number
at least

m

2n log(2m/n)
. (1)

If m0 ≤ m ≤ d2n
`/(`−1), then almost all graphs in Fn,m(C≤`) have chromatic

number at least
d3

√
n`/m`−1. (2)

We have made no attempt to find the best constants that can be obtained
from our proof of Theorem 2. Note that for m ≤ m0, the bound is of the same
order of magnitude as that which is known for Gn,p, where p = m/

(
n
2

)
and Gn,p

is a random graph with n vertices with edge probability p. In fact  Luczak (see
e.g. [5]) proved that if pn→∞ and p→ 0, then the chromatic number of Gn,p
is almost surely

(1 + o(1))
pn

2 log(pn)
.

It seems likely that the chromatic number of almost all graphs in Fn,m(C≤`) is
Θ( m

n log(m/n)) whenever n � m � n`/(`−1). However, this seems to be signifi-
cantly more difficult to prove than Theorem 2 even for the triangle-free case.

Related to this is the question of how high the chromatic number of a graph
can be if it has n vertices and girth greater than `. Let f(n, `) be the max-
imum chromatic number of such a graph. The proof of Erdős [4] shows that
for fixed `, f(n, `) ≥ n1/`+o(1). For the triangle-free case ` = 3 this was im-
proved by Kim [6], who solved a longstanding open question by showing that
f(n, 3) ≥ 1

9n
1/2/
√

log n, which (by a result of Ajtai, Komlós, and Szemerédi [1])
is best possible up to the value of the constant factor. It is well known (see
e.g. Krivelevich [7, Lemma 6.1] or [9]) that f(n, `) ≥ n1/(`−1)+o(1), which is
the best known lower bound for ` > 3. As pointed out to us by one of the
referees, an upper bound on f(n, `), where ` > 3 is even, may be obtained as
follows. For even `, Bondy and Simonovits [3] showed that a C`-free graph

2



has O(n1+2/`) edges. Thus it has an independent set of size Ω(n1−2/`). Re-
moving this set and applying induction, it is easily seen that such a graph has
chromatic number O(n2/`) and thus f(n, `) = O(n2/`) for even `. This can be
improved by a logarithmic factor using the results on independents sets in [1]
(see also [2, Lemma XII.15]). The bounds obtained from Theorem 2 are much
smaller than the lower bounds mentioned above: they achieve their maximum
when m = m0 = n(`+2)/(`+1)+o(1), where they imply that almost all graphs in
Fn,m(C≤`) have chromatic number at least n1/(`+1)+o(1).

In the remainder of this note, we prove Theorem 2. Although the proof is
not quite as simple as that of the original existence result of Erdős, it turns out
to be fairly straightforward. Indeed, for a graph G let α(G) denote the size of a
largest independent set of vertices. Since for a graph G on n vertices, we have
χ(G) ≥ n/α(G), it suffices to show that almost all graphs in Fn,m(C≤`) have
no large independent set (where m satisfies the conditions of the theorem).
This is done by demonstrating that for suitable choices of parameters, the
probability that there is a “large” independent set in Gn,m is much smaller
than the probability that Gn,m has girth greater than `.

2 Proof of Theorem 2

Throughout this section, we set p = m/
(
n
2

)
. Using the fact that χ(G) ≥ n/α(G)

for any graphG on n vertices, Theorem 2 follows immediately from the following
lemma. Throughout, we assume that n is large enough for our estimates to hold
and we denote by Gn,m a graph chosen uniformly at random from the set of
graphs with n vertices and m edges.

Lemma 3. For all ` > 3 there exist constants c1, c2 and c3 with the following
properties. Let

p0 = c1n
−`/(`+1)(log n)2/(`+1).

If 4/n ≤ p ≤ p0, then

P[α(Gn,m) ≥ 4
p

log(np) | girth(Gn,m) > ` ] = o(1). (3)

If p0 ≤ p ≤ c2n
−(`−2)/(`−1), then

P[α(Gn,m) ≥ c3

√
p`−1n` | girth(Gn,m) > ` ] = o(1). (4)

To prove Lemma 3, we shall need Lemma 4 (see also Prömel and Steger [10]
and Theorem 3.11 in [5] for similar results), whose proof relies on the FKG-
inequality (see e.g. [5]). For i ≥ 3, let Xi denote the number of i-cycles in Gn,m.
Note that

E[Xi] = (1 + o(1))
(n)ipi

2i
= Θ(mi/ni).

Lemma 4. For any ` ≥ 3, there are constants c, c′ > 0 so that if 2n ≤ m ≤
c′n`/(`−1),

P[ girth(Gn,m) > ` ] ≥ e−cE[X`].
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Proof. We will make use of the inequality

1− x ≥ e−x−x
2 ≥ e−2x, (5)

valid for x ≤ 1/2 (see e.g. page 5 of [2]). Since for i ≥ 3, the number of i-cycles
in the complete graph on n vertices is (n)i

2i , the FKG-inequality implies that

P[ girth(Gn,2p) > ` ] ≥
∏̀
i=3

(1− (2p)i)
(n)i
2i

(5)

≥
∏̀
i=3

e−2(2p)i
(n)i
2i

≥
∏̀
i=3

e−3·2i E[Xi] ≥ e−3` 2` E[X`], (6)

where the last line follows sincem ≥ 2n implies that E[Xi] ≤ E[X`] for 3 ≤ i ≤ `.
But since the property of containing no cycle of length at most ` is monotone

decreasing, we have (denoting by e(G) the number of edges of a graph G and
letting N =

(
n
2

)
)

P[ girth(Gn,2p) > ` ] ≤ P[ girth(Gn,m) > ` ] + P[|e(Gn,2p)− 2pN | ≥ pN ]

≤ P[ girth(Gn,m) > ` ] + e−pN/12, (7)

where the last line follows from standard tail estimates for the binomial distri-
bution (see e.g. Theorem 7(i) in [2]). Thus (6) and (7) imply that

P[ girth(Gn,m) > ` ] ≥ e−3` 2` E[X`] − e−m/12.

The result now follows immediately by observing that for c′ sufficiently small,
m ≤ c′n`/(`−1) implies that m is significantly larger than E[X`]. 2

We shall also need Pittel’s inequality (see page 35 in [2]), which states that
if Q is any property and 0 < p = m/

(
n
2

)
< 1, then

P[Gn,m has Q ] ≤ 3
√
mP[Gn,p has Q ]. (8)

Proof of Lemma 3. First note that for any r = r(n) with r →∞,

P[α(Gn,p) ≥ r] ≤
(
n

r

)
(1− p)(

r
2) ≤ (en/r)re−pr(r−1)/2 = e−(1+o(1))φ,

where for convenience we write

φ = r(pr/2− log(n/r)).

Then by Lemma 4 and (8), there is a constant c > ` so that

P[α(Gn,m) ≥ r | girth(Gn,m) > ` ] ≤ P[α(Gn,m) ≥ r ]
P[ girth(Gn,m) > ` ]

≤ 3
√
mP[α(Gn,p) ≥ r ] ecE[X`]

≤ 3
√
m e−(1+o(1))(φ−cE[X`]).
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Thus to prove (3), it suffices to prove that if r = 4
p log(np) and 4/n ≤ p ≤ p0

(where c1 in the definition of p0 will be determined below), then φ ≥ 4 log n and
φ/E[X`] ≥ 2c. Note that our choice of r implies that log(1/p) = (1+o(1)) log r.
This in turn implies that pr/4 = (1 + o(1)) log(n/r) and thus that

φ = (1 + o(1))pr2/4 = (1 + o(1))
4
p

(log(np))2 ≥ 4 log n,

with room to spare. Also

φ

E[X`]
= (1 + o(1))

p

4

(
4
p

log(np)
)2 2`

n`p`
= (1 + o(1))

8`(log(np))2

n`p`+1
≥ 2c,

as required. The final inequality holds if we choose c1 (in the definition of p0)
sufficiently small compared to c.

Inequality (4), where p0 ≤ p ≤ c2n
−(`−2)/(`−1), is dealt with in a similar

way. Indeed, setting r = c3

√
p`−1n`, where c3 is chosen to be sufficiently large

compared to c1, gives

pr/4 ≥ c3

4

√
p`+1

0 n` ≥ log(n/r).

This in turn implies

φ ≥ pr2/4 = (pn)`+o(1) ≥ 4 log n.

Also, we have

φ

E[X`]
= (1 + o(1))

p

4
c2

3p
`−1n`

2`
n`p`

= (1 + o(1))
c2

3`

2
≥ 2c,

as required, provided we choose c3 sufficiently large compared to c. 2
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