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ABSTRACT. We prove the following tournament version of the Lovasz path removal conjecture:
for each k € N there exists g(k) € N so that every strongly g(k)-connected tournament 7' has
the property that for any ordered pair x,y of vertices there is a path P from z to y in T for
which T\ V(P) is strongly k-connected. In fact, we prove the following stronger statement,
which provides a tournament analogue of a long-standing conjecture of Thomassen: suppose
that T is a strongly 107 k%m-connected tournament. Then for every set M of m vertices in T,
there is a partition Vi, Vs of V(T') such that (i) M C Vi, (ii) for ¢ = 1,2 the subtournament
T[V;] is strongly k-connected, and (iii) every vertex in Vi has at least k out-neighbours and at
least k in-neighbours in V5.

1. INTRODUCTION

The famous Lovasz path removal conjecture states that for every k € N there exists g(k) € N
such that for every pair x,y of vertices in a g(k)-connected graph G we can find an induced
path P joining = and y in G for which G\ V(P) is k-connected. It is not hard to show that
g(1) = 3. Chen, Gould and Yu [1] as well as Kriesell [4] independently showed that g(2) = 5.
In general, the conjecture is still wide open (a version for edge-connectivity was proved in [3]).
More generally, one can also ask for the existence of a non-separating subdivision of a graph H
with prescribed branch vertices such that the paths joining the branch vertices are induced (the
path removal conjecture then corresponds to the special case when H consists of a single edge).

We prove such a result for tournaments. The natural tournament analogue of an induced
path is a backwards transitive path: here a directed path P = z1...x; in a tournament T is
backwards-transitive if x;x; is an edge of T whenever ¢ > j + 2.

Theorem 1.1. Let k,m € N. Suppose that T is a strongly 10*3kSm!3-connected tournament,
that M is a set of m wvertices in T, that H is a digraph on m vertices and that ¢ is a bijection
from V(H) to M. Then T contains a subdivision H* of H such that

(i) for each h € V(H) the branch vertex of H* corresponding to h is ¢(h),
(ii) T\ V(H*) is k-connected,
(iii) for every edge e of H, the path P, of H* corresponding to e is backwards-transitive.

Our proof shows that in the case when H is an edge it suffices for T to be strongly 2 - 107k5-
connected. We will derive Theorem 1.1 from the following result on tournament partitions:

Theorem 1.2. Let T be a tournament and k,m € N. If T is strongly 107 kSm-connected then for
any set M C V(T') with |M| = m, there exists a partition V1, Vo of V(T') such that M C Vi, T[V1]
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and T[V3] are both strongly k-connected, and every vertex in Vi has at least k out-neighbours
and at least k in-neighbours in Va.

We have made no attempt to optimize the bound on the connectivity in Theorem 1.2. (It
would be straightforward to obtain minor improvements at the expense of more careful calcula-
tions.) On the other hand, it would be interesting to obtain the correct order of magnitude (in
terms of m and k) for the connectivity bound.

Kiihn, Osthus and Townsend [7] earlier proved the weaker result that every strongly 10%k° log(4k)-
connected tournament 7' has a vertex partition Vj, Vo such that T[Vi] and T[Va] are both
strongly k-connected (with some control over the sizes of V; and V3). This proved a conjecture
of Thomassen. [7] raised the question whether this can be extended to digraphs. A graph version
of this was already proved much earlier by Hajnal [2] and Thomassen [10].

As described later, our proof of Theorem 1.2 develops ideas in [7]. These in turn are based
on the concept of robust linkage structures which were introduced in [5] to prove a conjecture of
Thomassen on edge-disjoint Hamilton cycles in highly connected tournaments. Further (asymp-
totically optimal) results leading on from these approaches were obtained by Pokrovskiy [8, 9].

Theorem 1.2 is a tournament analogue of the following long-standing conjecture of Thomassen
[11].

Conjecture 1.3. For every k € N there exists f(k) € N such that if G is a f(k)-connected
graph and M C V(QG) consists of k vertices then there exists a partition Vi, Vo of V(G) such
that M C Vi, both G[Vi] and G[Va] are k-connected, and each vertex in Vi has at least k
neighbours in Va.

The case |[M| = 2 would already imply the path removal conjecture. The case M = () was
proved in [6]. It implies the existence of non-separating subdivisions (without prescribed branch
vertices) in highly connected graphs.

2. NOTATION AND TOOLS

Given k € N, we let [k] := {1,...,k} and logk := logy k. We write V(G) and E(G) for the
set of vertices and the set of edges in a digraph G. We let |G| := |V(G)|. If u,v € V(G) we
write uv for the directed edge from u to v. We write d(v) and dg(v) for the in-degree and the
out-degree of a vertex v in G. We write 6~ (@) and 67 (G) for the minimum in-degree and the
minimum out-degree of G' and let §°(GQ) := min{§~(G),d"(G)}. A set A C V(G) in-dominates
a set B C V(G) if for every vertex b € B there exists a vertex a € A such that ba € E(G).
Similarly, we say that A out-dominates B if for every vertex b € B there exists a vertex a € A
such that ab € F(G). We say that a tournament 7 is transitive if we may enumerate its vertices
v1,...,Un such that v;v; € E(T) if and only if ¢ < j. In this case we call vy the source of T' and
Um the sink of T'. When referring to subpaths of tournaments, we always mean that these paths
are directed (i.e. consistently oriented). The length of a path is the number of its edges. We say
that two paths are disjoint if they are vertex-disjoint. A tournament 1" is strongly k-connected
if [T| > k and for every set F' C V(T') with |F| < k and every ordered pair z,y of vertices
in V(T) \ F there exists a path from = to y in T'— F. A tournament T is called k-linked if
|T| > 2k and whenever z1,..., Tk, y1,. .., Yy, are 2k distinct vertices of T' there exist disjoint
paths Py, ..., Py such that P; is a directed path from z; to y; for each i € [k].

We now collect the tools which we need in our proof of Theorem 1.2. We will use the following
well known fact.
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Proposition 2.1. Let k € N and let T be a tournament. Then T contains less than 2k vertices
of out-degree less than k, and T contains less than 2k vertices of in-degree less than k.

The following proposition is a straightforward consequence of the definition of linkedness.

Proposition 2.2. Let k € N. Then a tournament T is k-linked if and only if |T| > 2k and
whenever (x1,y1), .-, (Tk, yr) are ordered pairs of (not necessarily distinct) vertices of T, there
exist distinct internally disjoint paths Py, ..., Py such that for all i € [k] we have that P; is a
directed path from xz; to y; and that {x1,..., 2k, y1,-.., Yyt DV (F) = {xi, yi }.

We will also use the following bound from [5] on the connectivity which forces a tournament
to be highly linked.

Theorem 2.3. For each k € N every strongly 452k-connected tournament is k-linked.

The following two lemmas from [7] guarantee that every tournament contains almost out-
dominating and almost in-dominating sets which are not too large.

Lemma 2.4. Let T be a tournament, let v € V(T') and ¢ € N. Then there exist disjoint sets
A, E CV(T) such that the following properties hold:

(i) 1 < |A| < ¢ and T[A] is a transitive tournament with sink v,
(ii)) A out-dominates V(T)\ (AU E),
(iii) [E] < (1/2)° dp(v).

The next lemma follows immediately from Lemma 2.4 by reversing the orientations of all
edges.

Lemma 2.5. Let T be a tournament, let v € V(T) and ¢ € N. Then there exist disjoint sets
B, E CV(T) such that the following properties hold:

(i) 1 < |B| < ¢ and TB] is a transitive tournament with source v,
(ii) B in-dominates V(T') \ (BUE),
(iil) |B| < (1/2)°  dq(v).

We will also need the following observation, which guarantees a small set Z of vertices in a
tournament such that every vertex outside Z has many out- and in-neighbours in Z.

Proposition 2.6. Let k,n € N and let T be a tournament on n > 16 wvertices. Then there
is a set Z C V(T) of size |Z| < 3klogn such that each vertex in V(T) \ Z has at least k
out-neighbours and at least k in-neighbours in Z.

Proof. We may assume that n > 3klogn. Let ¢ := [logn] +1 < (3logn)/2. Note that
Lemma 2.5 implies that T" contains an in-dominating set Vi of size at most ¢. Apply Lemma 2.5
again to T\ V1 to find an in-dominating set Vo of 7'\ V; with size at most ¢. Continue in this
way to obtain disjoint sets Vi,..., V. Now apply Lemma 2.4 repeatedly to obtain disjoint sets
Ui, ..., Uy, each of size at most ¢, such that each U; is an out-dominating set in 7'\ (U1U- - -UU;_1).
We can take Z : =V U---UVL,UU;---UUyg. U

Recall that a subpath ) = ¢1 ... q|g| of a tournament T is backwards-transitive if ¢;q; € F (T)
whenever i > j + 2. The following lemma is a slight strengthening of Lemma 2.7 in [7]. The
proof is identical to that in [7], so we omit it here.
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Lemma 2.7. Let k,¢ € N, let T be a tournament and let Q1,...,Q be disjoint backwards-
transitive paths in T such that |Q;] > k+1 for all j € [(] and V(T) = V(Q1 U ---U Q). Let
U’ be the set consisting of the first k + 1 vertices in Q; for all j € [£] and let W' be the set
consisting of the last k + 1 vertices in Q; for all j € [(]. Then there exist sets U, W satisfying
the following properties:
e UCU CV(T) and W C W' CV(T),
o \ULIW|<2k(k+1),
o for any set FF C V(T) of size at most k — 1, and for every vertezx v in V(T') \ F, there
exists a directed path (possibly of length 0) in T[(U" U {v}) \ F] from v to a vertex in U
and a directed path in T[(W' U {v})\ F] from a vertex in W to v.

Note that U" and W’ may not be disjoint, and |U’'| = |W'| = £(k + 1).
3. PROOFS OF THEOREMS 1.1 AND 1.2

Before we prove Theorem 1.2, we will show how it can be used to derive Theorem 1.1.

Proof of Theorem 1.1. Apply Theorem 1.2 to obtain a partition Vi, Vo of V(T') such that
M C Vi, T[Vi] and T[Va] are both strongly 452km>-connected, and every vertex in V; has at
least k out-neighbours and at least k in-neighbours in V5. Theorem 2.3 now implies that T'[V7] is
m?2-linked. Together with Proposition 2.2 this in turn implies that T'[V;] contains a subdivision
H* of H such that for each h € V(H) the branch vertex of H* corresponding to h is ¢(h).
By shortening the paths between the branch vertices if necessary, we may assume that they
are backwards-transitive. Since every vertex in V; has at least k out-neighbours and at least &
in-neighbours in V5 it follows that T'[VoU (V1 \ V (H™))] is strongly k-connected, as desired. O

We now give a brief idea of the argument in the proof of Theorem 1.2 under the much stronger
assumptions that k > logn and |M| = 1. In this case we can find 2k disjoint sets Ay, ..., Ag C
V(T) of size o(k) which are out-dominating. We can also find 2k sets By, ..., Bax C V(T) of
size o(k) which are in-dominating such that all the B; are disjoint from each other and from
Aq, ..., Ao Moreover, we can choose these sets in such a way that each A; and each B; induces
a transitive subtournament of T. We now use the fact that 7" is (107k°/452)-linked to find, for
each i € [2k], a path P; from the sink of B; to the source of A; such that all the P; are pairwise
disjoint. We now assign A; U B; UV (F;) to Vj for all i < k and to V5 for all i > k. We assign
the remaining vertices arbitrarily. By relabeling Vi and V5 if necessary, we may assume that
M C V.

It is easy to see that both T'[V;] and T[V3] are strongly k-connected. Indeed, consider some
F CVy with |F| < k. So there exists i € [k] such that F" avoids A; U B; UV (F;). Consider any
x,y € V1 \ F. Since B; is in-dominating, there is an edge from x to some 2’ € B;. Similarly,
since A; is out-dominating, there is an edge from some 3’ € A; to y. Then P;, xa’, y'y together
with the edge from 2’ to the sink of B; and the edge from the source of A; to ¢/ form a path
in T[V1 \ F] from z to y, as required. A similar argument shows that 7'[V3] is k-connected too.
Moreover, each x € V] has k in-neighbours and k out-neighbours in V5 since z receives an edge
from A; and sends an edge to B; for all ¢ > k.

In general, the problem with this approach is that we cannot guarantee such (small) domi-
nating sets when k is bounded. However, we can still find small sets which dominate a large
proportion of V(7). With some new ideas one can use these to ensure strong k-connectivity of
both T[V4] and T'[V;] as well as high in- and outdegree of the vertices in V; from and to V5.
Significant additional difficulties arise when |M| > 1.
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Proof of Theorem 1.2. Let X := {x1,z9,..., 290t} C V(T')\ M consist of 20k vertices whose

in-degree in T is as small as possible, and let Y := {y1,y2,...,y20x} be a set of 20k vertices in
V(T)\ (M U X) whose out-degree in T is as small as possible. Define
0~ (T) := i dy d o (T) := i i (v).
(T) v @By 7(v) an (T) T 7(v)
Let ¢ := [log (80k)]+1 < 9k. Apply Lemmas 2.4 and 2.5 with parameter ¢ repeatedly (removing
M and the dominating sets each time) to obtain disjoint sets of vertices Ay, ..., Asgk, B1, - . ., Baok
and sets of vertices Ea,,...,Ea,,,EB,,-..,EB,, satisfying the following properties for all

i € [20k], where we write D := [J7% (4;UB;), D1 := U!% (4,UB;) and Dy := 2%, 1 (A;UB;):
(D1) 1 < |Ai| < cand T[A;] is a transitive tournament with sink z;,
(D2) 1 < |B;| < cand T[B;] is a transitive tournament with source y;,
(D3) A; out-dominates V(T)\ (M UDUEy,,) in T,
(D4) B, in-dominates V(T)\ (M UDUEg,) in T,
(D5) |Ea,| < (1/2)7 10~ (T),
(D6) |Ep,| < (1/2)1o%(T).
Let Eq := Ep, U---UFEy,,, Ep := Eg, U---UEpR,,, E;‘ = Eg,
EBigps U UEB,,, E:=FEsUEp and E' := E; U E5. Note that

U---UBEay,,, By =

9k+1
0=(T) o+ (T)

1 and |Ej| <|Ep| < 1

1 c—1 R
(3.1)  |E4| < |Ea| < 20k <2> 5(T) <

by our choice of c¢. Moreover, we may assume that |E4| < |Ep|. (The case |E4| > |Ep| follows
by a symmetric argument.) In particular, this implies that

(o9

(T)
5

Our aim is to use the almost-dominating sets A;, B; in order to construct the desired partition
Vi, Vo of V(T'). More precisely, we will iteratively colour the vertices of 7" with colours « and
B, and at each step V,, will consist of all vertices of colour o and Vj is defined similarly. At
the end of our argument, every vertex of T will be coloured either with a or with 3, i.e. V,, Vg
will form a partition of V(7"). Our aim is to colour the vertices in such a way that we can take
V1 =V, and V3 := V3. We start with no vertices of 7" coloured, and we then colour the vertices
in MUD; =MUJ?"(4; U B;) by a and the vertices in Dy = U?g’;ng(Ai U B;) by S.

At each step and for each v € {«, 3}, we call a vertex v € V, forwards-safe if for any set
F # v of at most k — 1 vertices, there is a directed path (possibly of length 0) in T'[V, \ F]
from v to V,,\ (M UD U Eg U F). Similarly, we say that v € V, is backwards-safe if for any set
F # v of at most k — 1 vertices, there is a directed path (possibly of length 0) in T'[V, \ F] from
VAN\(MUDUE4,UF) to v. We will call a vertex v € V,, partition-safe if either v ¢ M UDUE
or v = B or v has at least k out-neighbours and k in-neighbours of colour 5. Finally, we call
a vertex safe if it is forwards-safe, backwards-safe and partition-safe. Note that the following
properties are satisfied at every step (for each v € {a, 8}):

(S1) all coloured vertices in V(T') \ (M U D U E) are safe,

(S2) all coloured vertices in V(T') \ (M U D U Ep) are forwards-safe and all coloured vertices
in V(T)\ (M UDU Ej,) are backwards-safe,

(S3) if v € V, has at least k forwards-safe out-neighbours of colour v then v itself is forwards-
safe; the analogue holds if v has at least k backwards-safe in-neighbours of colour ~,

(3.2) |E'| < |E| < |Ea| + |Ep| < 2|EB| <
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(S4) all coloured vertices in V, \ (M U D U E’;) which have at least k out-neighbours in V3
are partition-safe,

(S5) if v € V, is safe and in the next step we enlarge V., by colouring some more (previously
uncoloured) vertices then v is still safe.

Indeed, to check (S4) note that (D3) implies that every vertex in V(T \ (M U D U E;) has
an in-neighbour in A, for each 19k < s < 20k and that all vertices in these A; are coloured (3.

In what follows, by a (partial) colouring of the vertices of 7" we always mean a colouring with
colours @ and B in which all the vertices in M U D; are coloured « and all the vertices in Ds
are coloured f.

Claim 1: Suppose that there are distinct indices i1, ..., i € [19k], distinct indices iy, ..., €
[19k] and subpaths Q1,...,Qr and Piggi1,- .., Peor of T satisfying the following properties:

e for each s € [k] the path Qs joins the sink of By to the source of A;,,

o for each 19k < s < 20k the path Ps joins the sink of By to the source of As,

e the paths Q1,...,Qk and Piggyi1, ..., Par are disjoint from each other and meet DU M
only in their endvertices.

Suppose that we have coloured all vertices of T such that

e cvery vertex in MU Dy UV(Qq)U---UV(Qg) is coloured «,
e cvery vertex in Do UV (Proky1) U -+ UV (Paog) is coloured 3,
e cvery vertex is safe.

Then the sets Vi := V, and Va := Vp form a partition of V(T') as required in Theorem 1.2.

To prove Claim 1, we first show that T[V,] is strongly k-connected. So consider any set F
of at most k — 1 vertices and any two vertices z,y € V, \ F. We need to check that TV, \ F]
contains a path from z to y. Since z is forwards-safe there exists a path P, in T'[V, \ F] from z
to some vertex =’ € V, \ (M UD U Ep U F). Similarly, since y is backwards-safe there exists a
path P, in T[V, \ F| from some vertex ' € Vo, \(MUDUE4UF) toy. Let s € [k] be such that
F avoids A;, UV (Qs) U By,. Since 2’ ¢ MU DU Ep, (D4) implies that 2" sends an edge to By .
Similarly, since v/ ¢ M U D U E4, (D3) implies that y' receives an edge from A;,. Altogether
this implies that TV (P,) UV (P,) U A;, UV (Qs) U By ] C TV, \ F] contains path from z to y,
as desired.

A similar argument shows that Vj is strongly k-connected too. It remains to show that any
vertex x € V,, has k in-neighbours and k out-neighbours in V. Since x is partition-safe this is
clearif r e MUDUE. If xt ¢ M UDUE then (D3) and (D4) together imply that, for every
19k < s < 20k, = sends an edge to Bs C Vj and receives an edge from A C V. This completes
the proof of Claim 1.

Claim 2: Consider a partial colouring of V(T) and let C' denote the set of previously coloured
vertices. (So MUD CC.) Let ZCV(T)\(MUXUY) and N CV(T)\ Z and suppose that
9k%|Z| + |C U N| < 5-105%5m. Then for every colouring of the vertices in Z \ C there is a set
Z'CV(T)\ (ZUNUCQC) and a colouring of the vertices in Z' such that every vertex in Z U Z'
is safe and |Z U Z'| < 9K?|Z|.

To prove Claim 2, note that the strong 107k®m-connectivity of T implies that §°(T) > 107k5m.
Hence

1) 67(T)

. (
(3.3) 6 (T) —|E4| > > 5-10%5m,

_ )
- 2
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and similarly

3.2) §+

(3.4 s - e = 2D
Consider any colouring of Z \ C. Let Z, be the vertices in Z coloured with o and define
Zg similarly. For each vertex z € Zg in turn we greedily choose k uncoloured in-neighbours
outside N U E 4, and colour them S. Then for each vertex z € Z, in turn we greedily choose 2k
uncoloured in-neighbours outside N U Ey4, and colour k of them a and & of them 3. (We do not
modify C' in this process.) To see that we can choose all these vertices to be distinct from each
other, note that the total number of vertices we wish to choose is 2k|Z,| + k| Zg| < 2k|Z| and

> 5-10k5m.

3.3
ICUNUZ|+2k|Z| < 5-10%%5m (g) 6~ (T) — |Ea|.
For each vertex outside C'\ Z of colour 8 in turn we greedily choose k uncoloured out-neighbours
outside N U E, and colour them by 8. Now for each vertex outside C'\ Z of colour « in turn we
greedily choose 2k uncoloured out-neighbours not in NV U E and colour k of them by a and k of
them by 5. To see that we can choose such vertices to be distinct from each other, note that
the total number of vertices we wish to choose is at most 2k(1 + 2k)|Z| and

(34)
|CUN U Z|+2k|Z| + 2k(1 + 2k)| Z| < |CUN|+9k*|Z| < 5-10°%%m < 6 (T) — |E|.

Let Z’' be the set of vertices outside C'U Z that we coloured. Then Z’N N = (). Moreover, using
(S1)—(S4) it is easy to check that every vertex in Z U Z' is safe. This completes the proof of
Claim 2.

o=a, e=[3

{
Zo 2 gNUEs ¢gNUE Z;33’<EzmeNuE
‘\.—'.

ZNUEs, ¢NUE ZNUE

([ ] (0]
¢NUE gNUE
Fi 1. The vertices chosen in the case when k& = 1 in order to make
BUC 5 one vertex in Z, safe (left) and one vertex in Z 5 safe (right).

Recall that we have already coloured all the vertices in M U D by « and all the vertices in
Dy by . Step by step, we will now colour further vertices of T. Our final aim is to arrive at
a colouring of V(T') which is as described in Claim 1. The first step is to colour some more
vertices in order to achieve that all the coloured vertices are safe. In what follows, when saying
that we colour some additional vertices we always mean that these vertices are uncoloured so
far.

Claim 3: We can colour some additional vertices of T in such a way that every coloured vertex
is safe and the set Cy consisting of all vertices coloured so far satisfies |C1| < 5000k*m.

To prove Claim 3, for every v € {x1,...,Z19%,Y1,---, Y19k} U M in turn we greedily choose
2k uncoloured in-neighbours and 2k uncoloured out-neighbours, all distinct from each other,
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and colour k out-neighbours and k& in-neighbours by « and the other k out- and in-neighbours
by [. Similarly, for every v € {Z19k+1,---,T20k, Y19k+1, - - - » Y20k} in turn we greedily choose
k uncoloured in-neighbours and k uncolored out-neighbours, all distinct from each other and
colour them 3. Let Z* denote the set of 4k(38k + m) + 4k < 160k?>m new vertices we just
coloured and let Z := Z* U (D \ (X UY)). Then |Z| < |Z*| +|D| < 160k*m + c - 40k < 520k?m.
Apply Claim 2 with N := () to find a set Z’ of uncoloured vertices and a colouring of these
vertices such that all the vertices in Z U Z’ are safe and |Z U Z’| < 9k? - |Z| < 5000k*m. Our
choice of Z* and (S3) together now imply that the vertices in X UY U M are safe as well. This
completes the proof of Claim 3.

Claim 4: There are distinct indices i1,... i, € [19k], distinct indices i}, ...,1, € [19k] and
subpaths Q1,...,Qr and Pigki1, ..., Paor of T satisfying the following properties:

(i) for each s € [k] the path Qs joins the sink of By to the source of A;,,

(ii) for each 19k < s < 20k the path Ps joins the sink of B to the source of As,

(iii) the paths Q1,...,Qk and Piggi1,. .., Pyr are disjoint from each other and meet C; 2
D UM only in their endvertices,

(iv) we can colour the internal vertices of Q1, . . ., Qr by «, the internal vertices of Piog+1, - - -, Pook
by B and can colour some additional vertices such that the set Cy of all coloured vertices
satisfies the following properties:

(o) all vertices in Cy are safe,

(B) there is a set Co, C Cy such that every vertex in Cy is coloured o and the number of
vertices of colour a outside Cy, is at most 109k5m,

(7) every vertex outside Cy which has an in-neighbour in Cy has at least k in-neighbours
coloured 3, and every vertex outside Cy which has an out-neighbour in Cy, has at least
k out-neighbours coloured 3.

We will prove Claim 4 via a sequence of subclaims. For i € [20k] we define an i-path to be
a directed path from the sink of B; to the source of A; whose interior vertices lie outside C1.
Ideally, we would like to find disjoint i-paths P; (one for each i € [20k]) such that the following
properties hold:

(a) for 19k < ¢ < 20k all interior vertices of P; can be coloured S,

(b) there are at least k indices ¢ with ¢ € [19k] such that all interior vertices of P; can be
coloured «,

(c) by colouring some additional vertices we can achieve that all coloured vertices are safe.

However, we are not able to satisfy (b) (and (c)) directly. So instead, for each of the paths Qs
in Claim 4, there will be three paths P;,, P;, and P;; with 71,12,i3 € [19k] such that each P;; is
an ij-path and ()5 consists of an initial segment of F; , a middle segment of P;,, a final segment
of P;, as well as two edges joining these three segments.

More precisely, our strategy is to proceed as follows. For each i € [20k] we will first try to
find a short i-path P; such that all these i-paths are disjoint. We will then colour the vertices on
these short i-paths as well as some additional vertices such that (a)—(c) are satisfied for the set
Isphore of all indices ¢ for which we have been able to choose a short i-path (see Claim 4.1). This
provides some of the paths required in Claim 4. To find the remaining paths, for all i ¢ I, we
will choose 1000k i-paths Q; 1, . . -, Qi.1000%+ such that all these paths are internally disjoint from
each other. We will then show that for each i ¢ I with ¢ > 19k we can take the P; required in
Claim 4 to be some @); j, whereas each remaining path @), still required in Claim 4 will consist of
one segment from each of three different paths Q;, j,, Qis,jos Qis,js With 1,42, 13 € [19K]\ Lshort, as
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described before. The reason why we start with 19k indices to choose the k paths @) in Claim 4
and why we choose many i-paths for each i ¢ Ispo¢ is that we need some extra flexibility in
order to be able to satisfy part (vi) of Claim 4.

We will now choose the short i-paths. So let Pgpore be a collection of paths consisting of at
most one i-path for each i € [20k] such that all these paths are disjoint from each other, each
path has length at most 6k + 10 and, subject to this, |Psport| is as large as possible. Let Igpon be
the set of all those indices i € [20k] for which Pgpers contains an i-path, let Isport o := LshortN[19K]
and Isport, 8 = Ishort \ Lshort,a. Moreover, set Ijong == [20k] \ Ishort, Liong,a = liong N [19k] and
Liong,3 = Tiong \ liong,a- For each i € Igpor let P; denote the i-path contained in Pgpope. We will
call all these i-paths short. Let Vi be the set of all internal vertices of P; for all ¢ € Igp 0.
Recall that the definition of an i-path implies that all the vertices in Vg, are uncoloured so
far (i.e. Vipore N Cy = 0).

Claim 4.1: We may colour all vertices in Vsport as well as some additional vertices of T such
that the following properties hold:

(i) for each i € Igport o all the vertices on P; are coloured a,
(ii) for each i € Ishore g all the vertices on P; are coloured 3,
(iii) the set Oy consisting of all vertices coloured so far has size |Ca| < 8000k*m and all vertices
in Cy are safe.

Note that |Vipore| < 20k(6k + 9) < 300k%. Together with Claim 2 (applied with N := () and
Z := Vsport) and Claim 3 this implies Claim 4.1.

Claim 4.2: We may assume that |Zshorto| < k, and hence |Zjpng.q| > 18k.

To prove Claim 4.2, suppose that |Zsport.o| > k. Colour all uncoloured vertices by 3. Then
|Va| < 8000k*m by Claim 4.1(iii). Since T is strongly 107k%m-connected and 107k%m — |V,| >
107k%m — 8000k*m > k, it follows that T[Vp] is strongly k-connected and that every vertex in
Vo has at least k in-neighbours and k out-neighbours in Vg. Using the facts that T[V,,] contains
D1 as well as disjoint i-paths for all ¢ € Zgp0rt o and that all the vertices in V,, are safe, a
similar argument as in the proof of Claim 1 shows that T[V,] is strongly k-connected too. So
the partition V,,, Vg is as desired in Theorem 1.2. This completes the proof of Claim 4.2.

Recall from Claim 4.1(iii) that the set Cy of coloured vertices has size at most 8000k*m.
So all uncoloured vertices together with the sinks of the B; and the sources of the A; for all
i € Ijpng induce a strongly (904 - 10%£?)-connected subtournament 7’ of T (with some room
to spare). Theorem 2.3 implies that 7" is 2 - 10*k>-linked. Together with Proposition 2.2 this
implies that for each i € Ijpn, We can find 1000k* i-paths in 7" such that all these 1000k*|I;on,|
paths are internally disjoint and the internal vertices on all these paths lie outside C5. We
choose such a collection of paths which minimizes the size of the set Vj,,, consisting of all the
internal vertices on these paths. Let Q;; denote the jth i-path we chose (for all i € Ijong and
all j € [1000k%]). Note that each Q;; must have length at least 6k + 11 since i € Ijpn,. Write

|Qi 51 |Qi 51

Qij = q?yjqilvj R So qgj is the the sink of B; and q;

.5 is the source of A;. Observe that

the minimality of |Vjong| implies the following:

(Q1) each Q;; induces a backwards-transitive path,
(Q2) if v € V(T) \ (C2 U Vigng) is an out-neighbour of ¢; ;, then v is also an out-neighbour of

qf'] for all s’ > s+ 3,
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ifve 5 U Vigng) is an in-neighbour of ¢¢ ., then v is also an in-neighbour of ¢
Q3) if v € V(T)\ (C2 U Vigny) is an in-neighbour of ¢; ;, then v is also an in-neighbour of ¢,
for all s’ < s—3.

or all i € Ij,,, and all j € we let int(Q; ;) == q'....q >’ denote the interior
For all i € Ijpny and all j € [1000KY] we let int(Qyy) == ql,...q0" " d h
of Q;j. Let Qij,...,QZ’j be disjoint segments of int(Q); ;) such that int(Q; ;) = llj Z,j’
Qi1 = \QZ]] =k+1,1Q7,1 =1Q%;| =k and |Q},| = |Q?;| = k +2. So qi’;+3 is the final vertex
of Qf”j and qui’j‘_3k_3 is the initial vertex of Q?,j' We let
by = Qi UQL QL UQL,UQLUQ,

Z?j
and write Vzgng for the set of all those vertices which lie in Q?,j for some 7 € I;ypy and some
j € [1000%%]. Thus V}gng C Viong and

V5 ,o| < (3K + 3) - 40k - 1000k* < 3 - 109K,

long
Claim 4.3: There exists an index set Ir C jong o ¥ [1000k*] such that, writing

Ri= |J V(Q);) and Is:=(lionga x [1000k"))\ I,
(i.4)€lr
for every (i,7) € Is every vertex in ng has at least k in-neighbours and at least k out-neighbours
in R, and such that |Ir| < T00k3.
To prove Claim 4.3, for each ¢ € [3k + 3] we consider U’ := {qf’j 20 € Tiong.a,j € [1000k*]}

and V¢ := {ql%’jl_z : i € liong.arj € [1000k*}. By Proposition 2.6 applied to T'[U*], there
exists a set Z5; C U’ with |Zf| < 3klog|U*| and such that every vertex in U’ \ Zf has at
least k out-neighbours and & in-neighbours in Zf]. Similarly, there exists a set Z{; C V! with
|Z4,| < 3klog|V*| and such that every vertex in V¢ \ Z{, has at least k out-neighbours and &
in-neighbours in Z{,. We let Z := Uresrts) (25U ZL) and write Iy for the set of all those indices
(i,4) for which Z contains some vertex in Q?} ;- Let R and Ig be as defined in the statement of
Claim 4.3. Then Z C R and for every (i,j) € Ig every vertex in Q?} ; has at least k in-neighbours
and at least k out-neighbours in Z C R. Moreover,
[Ir| < |Z| < (6k +6) - 3klog(2 - 10%k5) < T00K3,
as required in Claim 4.3.

Let
S = U V(QY;) and B:= U V(QY)-

(4.)€ls (45)El1ong, X [1000k4]
Moreover, let

stTi=J V(Qi;u@l) and RY:= | V(Qi;uQ]))
(el (DEln

and define BY" similarly. Note that by Claim 4.3 every vertex in S has least k in-neighbours
and at least k out-neighbours in R.

Claim 4.4: We may colour all vertices in ST URU B as well as some additional vertices lying
outside Vz?mg such that

(i) all vertices in SY7 are coloured o and all vertices in R U B are coloured 3,
(ii) all coloured vertices are safe,
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(iii) the set C3 consisting of all vertices coloured so far has size |C3| < 5-10°k5m and |C3 \
(Co USHT U RU B)| < 220k

To prove Claim 4.4, we first colour all vertices in S17 with o and all vertices in RU B with .
Recall from (Q1) that {int(Q; ;) : (¢,4) € Ir} is a collection of backwards-transitive paths with
lint(Q; ;)| > k+ 1. So we may apply the Lemma 2.7 to obtain sets Ur and Wg such that

(a) URa WR - lea

(b) |Ug|, [Wg| < 2k(k +1),

(c) for any set F' C V(T of size at most k — 1, and for every vertex v € V(T') \ F which lies
on some path in {int(Q; ;) : (i,7) € Ir} there exists a directed path (possibly of length
0) in T[(RY"U{v})\ F] from v to a vertex in Ug and a directed path in T[(R*"U{v})\ F]
from a vertex in Wgr to v.

We next apply Lemma 2.7 to the collection of backwards-transitive paths {int(Q; ;) : (i,7) € Is}
to obtain sets Ug, Wg C S&7. Finally, we apply Lemma 2.7 to {int(Qs,5) : (4,5) € liong,3 X
[1000k%]} to obtain sets Ug, W C BY". Let U := Ur UUs UUp and define W similarly. Apply
Claim 2 with Cy, UUW, V0 , Playing the roles of C', Z, N to obtain a set Z' CV(T)O\(V2,,UCs)

lon,
and a colouring of the vertices in Z’ such that every vertex in U UW U Z’ is safe and

ong

UUWUZ| <93\ UUW| <9k 12k(k + 1) < 220k%.

So the set Cj consisting of all vertices coloured so far satisfies |C3\ (Co USH7 U RU B)| < 220k*
and |C3| < 220k* + V0, |+ |Ca| < 220k" 4 3-10°k° 4 8000k*m < 5-10°k%m. Using (c) (and its
analogue for Ug, Wg and Up, Wp) it is now straightforward to check that (ii) holds. (To check
that the vertices in S™7 are partition-safe we use that every vertex in S has least k in-neighbours
and at least k out-neighbours in R and that all vertices in R are coloured /3.) This completes
the proof of Claim 4.4.

Claim 4.5: For each s € [k] there are indices (i, 5°), (i™, ™), (i%,§7) € Ig such that

(i) the set Usepy {i’,i™, 4"} has size 3k (i.e. all these indices are different from each other),
(ii) for each s € [k] and each 2 < a < 6 no vertex in V(Q¢ U Qim jm U Qg g) is coloured,

(iii) for each s € [k] there is a directed edge e’ from the mztml vertex of Q o je to the initial

575

verter of Q3 jm» and a directed edge e2 from the final vertex of Q% jm to the final vertex
5 s s s s
of Qi jy-

Note that Claim 4.3 implies that for each s € Ijon4 o there are at least 1000k* — |Ir| > 300k*
indices j € [1000k*] for which (s, j) € Ig. Since |C3\ (C2USYTURUB)| < 220k by Claim 4.4(iii)
and C2 N Vigng = 0, we can pick an index j = j(s) with (s, j(s)) € Is and such that the coloured
vertices on int(Q j(s)) are precisely those in Q;j(s) UQZ’].(S). Let u(s) denote the initial vertex of

ng(s) (so u(s) = q2kJ(r2)) and let v(s) denote the final vertex of Qij(s) (sov(s) = q|QS( J)( =2k 2).

Now consider the subtournament 77 of T' which is induced by all the vertices v(s) for all
5 € liong.o- Thus |T1| = |Ijong.a| > 18k by Claim 4.2. Together with Proposition 2.1 this implies
that there is a set Iy C Ijong,o such that |I;] > 12k and such that for every s € I; the vertex
v(s) has at least 3k out-neighbours in 77. We now consider the subtournament 75 of 7' which
is induced by all the vertices u(s) for all s € I;. By Proposition 2.1 applied to T5 there is a
set Iy C I such that |I3| > 6k and such that for every s € Iy the vertex u(s) has at least 3k
in-neighbours in T5.
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Now let if*,...,4}" be k distinct indices in Ip. For each s € [k] choose an index it €L

S
such that u(i) is an in-neighbour of u(i™) and such that the 2k indices if?,... ,i;",i{, . ,ii

are distinct. Finally, for each s € [k] choose an index i, € Ij5,4 such that v(i}) is an out-

neighbour of v(#]') and such that the indices if,...,7} are distinct from each other and from

[AER 1R if, e ,ii. This completes the proof of Claim 4.5.

We are now ready to prove Claim 4. For each s € [k] let Qs denote the path formed by
1 2 3 4 5 6 7
Qje je U Qi je U Qi jn U Qi U Qi jn U Qi U Qi i
the initial vertices of both Q¢ ;¢ and Q% L the final vertices of both Q;r jr and Q?g,jg as well as
the edges el and e? guaranteed by Claim 4.5(iii). Let i’ := 4% and i, := i. Then Q, joins the
sink of Bj to the source of A;,, i.e. Claim 4(i) holds.

Recall that all the vertices in Qb it UQZ@', jr as well as the two endvertices of (s are coloured «,
and all other vertices of @) are uncoloured (i.e. lie outside C3). Colour all the (so far uncoloured)
vertices of Qs with o (for all s € [k]) and then all other vertices in Vj,,, which are still uncoloured
with 3. Let Cy be the set of coloured vertices obtained in this way.

o=oa,e=0

O—+0—+0——>0—>0—>+0——+0—+0—>0——+0—>@—>OmiP-O—t-p-O—P-O int(Qir jr)

OO0+ @+ O O Ot O O O O O O—— > @——>0——>-0 I116(Qjn jom )
o—>o—>o—> 0—»0——»0—»0—»0——»0—»0—»0—-—»0—-—»0—>O int(Qig,jg)

O—>0—>0—>0—>0—>0—+0—>0——0——>0——>0—>0——>0—>0—>0 nt(Q;,)
Q. Q. 3 ' 4. ' 5 QS T
Z?J l7j Z?] Z7.7 Z7j 17] Z7J
Colour patterns of the paths int(Q; ;) with (i, j) € Ig in the

Figure 2: case when k = 1. The thick arrows indicate int(Qs).

Since |C3\ (CoUSH»TURUB)| < 220k* by Claim 4.4(iii) and CoNVipng = 0, for each s € Ijpng
there is at least one index j' = j'(s) such that V(int(Q, j/(5))) N C3 = V(QSJ,(S)). Moreover,
since V(QSJ,(S)) C B, all the vertices in V(ng,(s)) are coloured 5 by Claim 4.4(i). Altogether
this shows that all vertices on Q /() are coloured 3. For each s € ljong s let Ps := Qg ji(s)-
Together with the short paths Py for all s € Igpo 5 this gives k paths satisfying Claim 4(ii).
Our choice of the paths Qs and Ps implies that Claim 4(iii) holds too.

Let us now check that all vertices in Cy \ C5 are safe. First consider any v € Cy \ C5 which is
coloured . Then one of the following holds:

(a) ve s\ ST,

(b) ve V( ;End;n) for some s € [k].
Suppose first that (a) holds. So there exists (i,7) € Is such that v € sz,j U Q?J U Qij U Q?J.
Since Q;; is a backwards-transitive path by (Q1), it follows that every vertex in Qi j (except
possibly its final vertex) is an out-neighbour of v and every vertex in sz (except possibly its
initial vertex) is an in-neighbour of v. Since all vertices in S*7 D QZ{ ;U QZ ; are coloured a and
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are safe, it follows that v has at least k safe in-neighbours and at least k safe out-neighbours
of colour a. So by (S3) v is forwards- and backwards-safe. Since by Claim 4.3 v has at least k
in-neighbours and k out-neighbours in R (and all vertices in R are coloured ) it follows that v
is partition-safe. So v is safe.

Now suppose that (b) holds. As in (a) one can show that v is forwards- and backwards-safe.
Moreover, by (Q1) every vertex in Q?gn’ jm 18 an out-neighbour of v and every vertex in Q6 gm 18
an in-neighbour of v. But all the vertices in QZ- - UQ jm are coloured 3, so v is partition-safe
and thus safe.

Now consider any v € Cy \ C3 which is coloured 5. Then one of the following holds:

(c) ve S\ SH,
(d) veV( ?,j) for some i € I;pn, and j € [1000k?] such that (i,7) ¢ {(i™, ™) : s € [k]}.

If (c) holds then v has at least k in-neighbours and k out-neighbours in R. Since all vertices in
R are coloured 8 and are safe, this implies that v is safe. Moreover, together with Claim 4.4(ii)
and the safety of the vertices in Cy \ C3 which are coloured «, this implies that all vertices in
Vo , are safe.

Now suppose that (d) holds. Since (,7) ¢ {(i7%,j") : s € [k]} all vertices in Qij (except
possibly its initial vertex) and all vertices in Q (except possibly its final vertex) are coloured
B. Moreover, all these vertices are safe since they lie in V0 s+ By (Q1) every vertex in int(Q; ])
is an out-neighbour of v and every vertex in mt(Qi j) is an in-neighbour of v. So v is safe. This
completes the proof that all vertices in Cy \ C3 (and thus also all coloured vertices) are safe,
i.e. Claim 4(iv)(«) holds.

Let Cy be the union of V(Q%, 4m) over all s € [k]. Thus the number of vertices of colour a
outside Cy, is at most |Cs| +\ long| < 10%5m, i.e. Claim 4(iv)(B) holds. Moreover, if v €
V(T) \ C4 and v has an in-neighbour in some V(Q? im jm) then by (Q3) all vertices in Q?g",jg"
are also in-neighbours of v. But all vertices in Qz;n,];n are coloured 8. So v has at least k
in-neighbours of colour 4. Similarly, if v has an out-neighbour in V(Q%. ; jm) then by (Q2) all
vertices in Q2 jm are also out-neighbours of v. But all vertices in Q% im jm are coloured . So
v has at least k: out-neighbours of colour S. This shows that Claim 4(iv)(y) holds and thus
completes the proof of Claim 4.

The next claim shows that by colouring every uncoloured vertex with 3, all vertices will
become safe. Together with Claim 1 this then implies that the partition consisting of the colour
classes V,, V3 is as required in Theorem 1.2.

Claim 5: We can colour all uncoloured vertices with 3. Then every vertex is safe.

Colour all uncoloured vertices (i.e. all vertices in V(T') \ Cy) with §. Consider any vertex
v e V(T)\Cy. If v ¢ E' then by (D3) and (D4) v has an in-neighbour in As; and an out-
neighbour in By for every 19k < s < 20k. Since the vertices in all these sets A; and B, are
coloured S and are safe, this implies that v is safe.

Suppose next that v € El;\ E;. As above it follows that v has k safe in-neighbours of colour .
If v has k out-neighbours of colour 3 which are lying outside E’, then these out-neighbours are
safe and so v is safe. So suppose that v has less than k out-neighbours of colour g which are lying
outside E’. Recall from Claim 4(iv)(3) that at most 10°k%m vertices of colour « lie outside the

set C,. Together with the fact that 6T (7)) —|E’| > 5-10%5m > k+10%kSm by (3.4), this implies
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that v has an out-neighbour in C,. But now Claim 4(iv)(7y) implies that v has k out-neighbours
of colour 8 in Cy. Since all the vertices in Cy are safe, this shows that v is safe.

Finally, suppose that v € E’;. As in the previous case one can show that v has k safe out-
neighbours of colour . If v has k in-neighbours of colour § which are lying outside E’;, then these
in-neighbours are safe and so v is safe. So suppose that v has less than k in-neighbours of colour 3
which are lying outside E’;. Together with the fact that 6~ (T) — |E/;| > 5-10%k5m > k+10k5m
by (3.3), this implies that v has an in-neighbour in C,. Thus Claim 4(iv)(y) implies that v has
k in-neighbours of colour 8 in Cy. Since all the vertices in Cy are safe, this shows that v is safe.
This completes the proof of Claim 5 and thus of Theorem 1.2. U
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