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Abstract. We provide an NC algorithm for finding Hamilton cycles in directed graphs
with a certain robust expansion property. This property captures several known criteria
for the existence of Hamilton cycles in terms of the degree sequence and thus we provide
algorithmic proofs of (i) an ‘oriented’ analogue of Dirac’s theorem and (ii) an approximate
version (for directed graphs) of Chvátal’s theorem. Moreover, our main result is used
as a tool in a recent paper by Kühn and Osthus, which shows that regular directed
graphs of linear degree satisfying the above robust expansion property have a Hamilton
decomposition, which in turn has applications to TSP tour domination.

1. Introduction

In this paper we study the problem of finding Hamilton cycles in directed graphs ef-
ficiently. The decision problem is one of the most famous NP-complete problems so we
will restrict our attention to some specific classes of directed graphs which are known to
be Hamiltonian and provide fast parallel algorithms for finding Hamilton cycles in such
graphs. These algorithms immediately translate into sequential algorithms with poly-
nomial running time. Our model of computation will be the EREW PRAM, in which
concurrent reading or writing is not allowed. We say that a problem belongs to the class
NC if it can be solved in polylogarithmic time on a PRAM containing a polynomial number
of processors. If the algorithm has running time O((log n)i), then we say that it belongs to
the class NCi. For a discussion of the various PRAM models, we refer the reader to [12].

By Dirac’s theorem [9], one class of undirected graphs which are known to be Hamilton-
ian is the class of graphs with minimum degree at least n

2 , where n is the order of the graph.
Although Dirac’s proof was not formulated in algorithmic terms, it can be easily turned
into a polynomial time algorithm for finding a Hamilton cycle in such graphs. Goldberg
raised the question of whether the problem of finding such a cycle belongs to NC. This
question was answered affirmatively by Dahlhaus, Hajnal and Karpinski [8] who designed
an NC4 algorithm for this problem.

Following Dirac’s theorem, there was a series of results by various authors giving even
weaker conditions which still guarantee Hamiltonicity. Finally, Chvátal [6] showed that if
the degree sequence d1 6 d2 6 · · · 6 dn of a graph G satisfies dk > k + 1 or dn−k > n− k
whenever k < n

2 , then G is Hamiltonian. Chvátal’s condition is best possible in the sense
that for every degree sequence d1 6 · · · 6 dn not satisfying this condition, there is a
non-Hamiltonian graph on n vertices whose degree sequence dominates d1 6 · · · 6 dn.
Chvátal’s original proof was not algorithmic. A sequential polynomial time algorithm for
finding Hamilton cycles in such graphs was found later by Bondy and Chvátal [5]. No
NC-algorithm for finding Hamilton cycles in such graphs is known yet. Recently however,
Sárközy [25] proved the following approximate result.

Theorem 1. Let 0 < η < 1 be fixed and let G be a graph of order n whose degree sequence
satisfies

dk > min {k + ηn, n/2} or dn−k−ηn > n− k
whenever k < n

2 . Then there is an NC4 algorithm for finding a Hamilton cycle in G.

Let us now turn our attention to directed graphs (digraphs). The digraphs considered
in this paper do not have loops and we allow at most 2 edges between any pair of ver-
tices, at most one in each direction. When referring to paths and cycles in digraphs we
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always mean that these are directed without mentioning this explicitly. For an analogue
of Dirac’s theorem for digraphs it is natural to consider the minimum semi-degree δ0(G)
of a digraph G, which is the minimum of its minimum out-degree δ+(G) and its minimum
in-degree δ−(G). The corresponding analogue is a theorem of Ghouila-Houri [10] which
states that every digraph G on n vertices with minimum semi-degree at least n

2 contains
a Hamilton cycle. Thomassen [27] asked for an analogue for oriented graphs (these are
digraphs without 2-cycles). One could expect that for such graphs, a much weaker degree
condition suffices. Indeed Häggkvist [13] pointed out that a minimum semi-degree of 3n−4

8
is necessary and conjectured that it is also sufficient to guarantee a Hamilton cycle in any
oriented graph of order n. The following approximate version of this conjecture was proved
by Kelly, Kühn and Osthus [15].

Theorem 2. For every α > 0 there exists an integer n0 = n0(α) such that for every
oriented graph G of order n > n0 the following hold:

(i) If δ(G) + δ+(G) + δ−(G) >
(
3
2 + α

)
n, then G contains a Hamilton cycle;

(ii) if d+(x) + d−(y) >
(
3
4 + α

)
n whenever xy /∈ E(G), then G contains a Hamilton

cycle.

In particular, if δ0(G) >
(
3
8 + α

)
n, then G contains a Hamilton cycle. (Here, δ(G) denotes

the minimum number of edges incident to a vertex of G.)

Finally, the conjecture of Häggkvist was proved for all large enough oriented graphs by
Keevash, Kühn and Osthus [14].

What about an analogue of Chvátal’s theorem for digraphs? No such analogue has yet
been proved. For a digraph G, let us write d+1 6 · · · 6 d+n for its out-degree sequence and
d−1 6 · · · 6 d−n for its in-degree sequence. The following conjecture of Nash-Williams [24]
would provide an analogue of Chvátal’s theorem for digraphs.

Conjecture 3. Let G be a strongly connected digraph of order n and suppose that for all
k < n

2

(i) d+k > k + 1 or d−n−k > n− k;

(ii) d−k > k + 1 or d+n−k > n− k.

Then G contains a Hamilton cycle.

Recently, the following approximate version of Conjecture 3 for large digraphs was
proved by Kühn, Osthus and Treglown [22].

Theorem 4. For every η > 0 there exists an integer n0 = n0(η) such that the following
holds. Suppose G is a digraph on n > n0 vertices such that for all k < n

2

(i) d+k > k + ηn or d−n−k−ηn > n− k;

(ii) d−k > k + ηn or d+n−k−ηn > n− k.

Then G contains a Hamilton cycle.

It is natural to ask whether the Hamilton cycles guaranteed in Theorems 2 and 4 can
be found efficiently. The main tools used to prove the above results were a version of
Szemerédi’s Regularity Lemma for digraphs [3] and the Blow-up Lemma [17]. Although
both of them have algorithmic versions, (see [1] for the undirected version of the Regularity
Lemma and [18] for the Blow-up Lemma) the authors needed to use a version of the Blow-
up Lemma due to Csaba [7] which is not yet known to be algorithmic. Using a different
approach, in this paper we give algorithmic versions of Theorems 2 and 4. In particular we
avoid the use of Csaba’s version of the Blow-up Lemma. More generally, our main result
will work for all digraphs which have certain expansion properties. To state our result we
first need some definitions.
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Given 0 < ν 6 τ 6 1
2 , we call a digraph G a (ν, τ)-outexpander if for every S ⊆ V (G)

with τ |G| 6 |S| 6 (1 − τ)|G| we have |N+(S)| > |S| + ν|G|. Here, N+(S) denotes the
set of all outneighbours of vertices of S. Although all digraphs we consider in this paper
are outexpanders, this notion of expansion is not strong enough in order to be inherited
by the reduced graph after we apply the Regularity Lemma. (Consider for example two
disjoint cliques of equal size, joined by a matching.) For this reason, we will instead use
the notion of robust outexpansion (introduced in [22] for similar reasons). Given a digraph
G and S ⊆ V (G), the ν-robust out-neighbourhood of S is the set

RN+
ν,G(S) = {x ∈ V (G) : |N−(x) ∩ S| > ν|G|}.

We will usually drop the subscript G if it is clear to which digraph we are referring to.
We call G a robust (ν, τ)-outexpander if |RN+

ν (S)| > |S| + ν|G| for every S ⊆ V (G) with
τ |G| 6 |S| 6 (1− τ)|G|. Thus a robust (ν, τ)-outexpander is also a (ν, τ)-outexpander.

We can now state our main theorem which implies algorithmic versions of Theorems 2
and 4. Here, and later on, we write 0 < ak � . . . � a1 6 1 to mean that there are
increasing functions f2, . . . , fk such that, given 0 < a1 6 1, whenever we choose positive
reals a2 6 f2(a1), . . . , ak 6 fk(ak−1), all calculations needed in the proofs of our statements
are valid.

Theorem 5. Let n0 be an integer and let ν, τ, β be constants such that 0 < 1/n0 � ν 6
τ � β � 1. Let G be a digraph on n > n0 vertices with δ0(G) > βn and suppose G is a
robust (ν, τ)-outexpander. Then G contains a Hamilton cycle. Moreover, there is an NC5

algorithm for finding such a Hamilton cycle. In particular, there is a sequential polynomial
time algorithm for finding such a Hamilton cycle.

A non-algorithmic version of Theorem 5 was already proved in [22]. To see that the di-
graphs considered in Theorem 4 are robust outexpanders, we refer the reader to Lemma 11
of [22]. The fact that the graphs in Theorem 2(i) are robust outexpanders is proved in
Lemma 12.1 of [21]. Lemma 6.2 of [15] shows that the oriented graphs considered in
Theorem 2(ii) are outexpanders. A similar proof shows that they are in fact robust out-
expanders.

Theorem 5 is also used as a tool in a paper by Kühn and Osthus [21], which shows that
if a digraph G is a robust outexpander whose minimum semi-degree is linear in n, then
G has a Hamilton decomposition. More precisely, the fact that Theorem 5 is algorithmic
is used in [21] to provide an algorithm which finds the above Hamilton decomposition in
polynomial time. This in turn is used to solve a problem on TSP tour domination which
was posed by Glover and Punnen [11] as well as Alon, Gutin and Krivelevich [2] (see [21]
for more details).

Our parallel algorithmic version of Theorem 2 is best possible not only in the sense that
there are oriented graphs G with δ0(G) = d(3|G| − 4)/8e − 1 which are not Hamiltonian,
(see [14] for examples) but also in the following sense. Given an oriented graph G on
n vertices with δ0(G) > ηn where 0 < η < 3/8, it is NP-complete to decide whether
G contains a Hamilton cycle. To see this, consider the graph G constructed as follows
(see Figure 1). G has (4 + α)n+ 1 vertices partitioned into 5 parts A,B,C,D,H of sizes

|A| = |B| = |C| = n, |D| = n+ 1 and |H| = αn, where α is chosen so that 0 < α < 3−8η
2η .

Each of A and C span tournaments which are as regular as possible, B and D induce
empty graphs, H is an arbitrary oriented graph and we add all possible edges from A
to B and H, from B and H to C, from C to D and from D to A as well as bipartite
tournaments between B and D and between D and H which are as (semi-)regular as
possible (i.e. orientations of complete bipartite graphs such that, the in-degree and out-
degree of each vertex differ by at most one.) It is easy to check that δ0(G) > 3n

2 −1 > η|G|
(provided n is large enough). It is also easy to check that G contains a Hamilton cycle if
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Figure 1.

and only if H contains a Hamilton path and it is well-known that to decide whether an
arbitrary oriented graph H contains a Hamilton path is NP-complete.

Our paper is organized as follows. The next section contains some basic notation. In
Section 3, we collect all the information we need about the Regularity Lemma and the
Blow-up Lemma, and we state some simple facts about robust outexpanders. In Section 4,
we give a brief overview of the proof. An important tool in our proof will be the notion
of shifted walks. We explain how we obtain such walks in Section 5. Finally, in Section 6,
we prove Theorem 5.

2. Notation

Given two vertices x and y of a digraph G, we write xy for the edge directed from x
to y. The order |G| of G is the number of its vertices. We write N+

G (x) and N−G (x) for the

out-neighbourhood and in-neighbourhood of x and d+G(x) and d−G(x) for its out-degree and

in-degree. The degree of x is dG(x) = d+G(x) + d−G(x). The minimum and maximum degree
of G are defined to be δ(G) = min {d(x) : x ∈ V (G)} and ∆(G) = max {d(x) : x ∈ V (G)}
respectively. We usually drop the subscript G if this is unambiguous. Given a set A of
vertices of G, we write N+

G (A) for the set of all out-neighbours of vertices of A, i.e. for the

union of N+
G (x) over all x ∈ A. We define N−G (A) analogously.

Given two vertices x and y on a directed cycle C we write xCy for the subpath of C from
x to y. Similarly, given two vertices x and y on a directed path P such that x precedes
y, we write xPy for the subpath of P from x to y. A walk of length ` in a digraph G is
a sequence v0, v1, . . . , v` of vertices of G such that vivi+1 ∈ E(G) for all 0 6 i 6 ` − 1.
The walk is closed if v0 = v`. A 1-factor of G is a collection of disjoint cycles which cover
all vertices of G. Given a 1-factor F of G and a vertex x of G, we write x+F and x−F for
the successor and predecessor of x on the cycle in F containing x. We usually drop the
subscript F if this is unambiguous.

Given disjoint vertex sets A and B in a graph G, we write (A,B)G for the induced
bipartite subgraph of G with vertex classes A and B. We write EG(A,B) for the set of
all edges ab with a ∈ A and b ∈ B and put eG(A,B) = |EG(A,B)|. As usual, we drop the
subscripts when this is unambiguous.

Given a digraph G and a positive integer r, the blow-up of G by a factor of r is the
digraph G′ = G × Er obtained from G by replacing every vertex x of G by r vertices
x1, . . . , xr and replacing every edge xy of G by the r2 edges xiyj (1 6 i, j 6 r).

To avoid unnecessarily complicated calculations we will sometimes omit floor and ceiling
signs and treat large numbers as if they were integers.
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3. The Main Tools

In this section, we collect all the information we need about the Regularity Lemma
and the Blow-up Lemma and state some simple facts about outexpanders and robust
outexpanders. For surveys on applications of the Regularity Lemma and the Blow-up
Lemma, we refer the reader to [19, 16, 20].

3.1. The Regularity Lemma. The density of an undirected bipartite graph G = (A,B)

with vertex classes A and B is defined to be dG(A,B) = eG(A,B)
|A||B| . We often write d(A,B)

if this is unambiguous. Given ε > 0, we say that G is ε-regular if for all subsets X ⊆ A
and Y ⊆ B with |X| > ε|A| and |Y | > ε|B| we have that |d(X,Y )− d(A,B)| < ε. Given
d ∈ [0, 1], we say that G is (ε, d)-regular if it is ε-regular of density at least d. We also say
that G is (ε, d)-super-regular if it is ε-regular and furthermore dG(a) > d|B| for all a ∈ A
and dG(b) > d|A| for all b ∈ B. Given partitions V0, V1, . . . , Vk and U0, U1, . . . , U` of the
vertex set of some graph, we say that V0, V1, . . . , Vk refines U0, U1, . . . , U` if for all Vi with
1 6 i 6 k, there is some Uj with 0 6 j 6 ` which contains Vi. Note that this is weaker
than the usual notion of refinement of partitions since V0 need not be contained in any Uj .

Given a digraph G, and disjoint subsets A,B of V (G), we say that the pair (A,B) is
ε-regular, if the corresponding undirected bipartite graph consisting of all those edges of
G which are directed from A to B is ε-regular. (So the order of A and B matters here.)
We use a similar convention for super-regularity. The Diregularity Lemma is a version of
the Regularity Lemma for digraphs due to Alon and Shapira [3]. We will use the degree
form of the Diregularity Lemma which can be easily derived from the standard version, in
exactly the same manner as the undirected degree form. (See e.g. [20] for a sketch proof.)
We will also use the Diregularity Lemma in its algorithmic form. The algorithmic version
of the Regularity Lemma is due to Alon, Duke, Lefmann, Rödl and Yuster [1]. Although
we are not aware of any appearance of the algorithmic version of the Diregularity Lemma
in print, it can be proved in much the same way as in [3], using instead the algorithmic
ideas developed in [1]. For completeness, we include a sketch.

Lemma 6 (Diregularity Lemma; Algorithmic degree form). For every ε ∈ (0, 1) and all
positive integers M ′,M ′′, there are positive integers M and n0 such that if G is a digraph
on n > n0 vertices, d ∈ [0, 1] is any real number and U0, U1, . . . , UM ′′ is a partition of
the vertices of G, then there is an NC1 algorithm that finds a partition of the vertices of
G into k + 1 clusters V0, V1, . . . , Vk and a spanning subdigraph G′ of G with the following
properties:

• M ′ 6 k 6M ;
• V0, V1, . . . , Vk refines the partition U0, U1, . . . , UM ′′;
• |V0| 6 εn, |V1| = · · · = |Vk| =: m and G′[Vi] is empty for all 0 6 i 6 k;
• d+G′(x) > d+G(x)− (d+ ε)n and d−G′(x) > d−G(x)− (d+ ε)n for all x ∈ V (G);
• all pairs (Vi, Vj)G′ with 1 6 i, j 6 k are ε-regular with density either 0 or at least d;
• all but at most εk2 pairs 1 6 i, j 6 k satisfy either (Vi, Vj)G = (Vi, Vj)G′ or
dG(Vi, Vj) < d.

We call V1, . . . , Vk the clusters of the partition, V0 the exceptional set and the vertices
of G in V0 the exceptional vertices. The fifth condition of the lemma says that all pairs of
clusters are ε-regular in both directions (but possibly with different densities).

Sketch proof of Lemma 6. To prove an algorithmic version of the standard form of the
Diregularity Lemma we follow the proof of Lemma 3.1 in [3]. To refine a partition P =
(V1, . . . , Vk), instead of applying Lemma 3.4 of [3] which merely asserts the existence a
refinement with some given properties we proceed as follows. Corollary 3.3 of [1] gives an
NC1 algorithm which either certifies that P is ε-regular (meaning that it produces a list
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of at least
(
k
2

)
− εk2 pairs which are ε-regular), or certifies that at least ε4

16 pairs are not
ε4

16 -regular (meaning that it returns subsets of the vertex classes of the pair which verify

the non-regularity of the pair). Given these certificates, Lemma 3.4 of [1] gives an NC1

algorithm which produces a refinement P ′ of P with the same properties as the refinement
whose existence is guaranteed by Lemma 3.4 of [3] (but with slightly worse constants).
Note that each time we apply Lemma 3.4 of [1] we apply it to one of the undirected graphs
−→
G(P ),

←−
G(P ) or G(P ) which have the same vertex set as G and in which there is an edge

between x ∈ Vi and y ∈ Vj with i < j, if and only if xy is an edge of G, yx is an edge of
G, both xy and yx are edges of G respectively. Given the partition P , these undirected
graphs can be constructed in NC1. The proof of Lemma 3.1 of [3] shows that we only
need to repeat this a constant number of times before Corollary 3.3 of [1] proves that we
have arrived at an ε-regular partition. Although Lemma 3.1 of [3] does not mention the
refinement property stated in Lemma 6 it is obvious that the same proof works for this
property as well. It remains to show how to obtain the degree form of the Diregularity
Lemma. This is obtained in a similar way from the standard version as in the undirected
case: one applies the Diregularity lemma with a parameter ε′ � ε and then deletes a small
proportion of the edges (in particular all edges between pairs which are not ε′-regular or
have density less than d+ε′) and moves a small proportion of the vertices into V0. (See [20]
for a sketch of this for the undirected case.) One important difference is that in our case
we do not know whether each pair is ε′-regular or not. However, for most ε′-regular pairs,
we do have certificates confirming the ε′-regularity of the pair. So, instead of removing all
edges between non ε′-regular pairs, we remove all edges between all pairs which are not
known to be ε′-regular. The calculations remain unchanged. Finally, we just need to check
that whenever we delete edges, or we remove vertices from the clusters into the exceptional
cluster, we only need knowledge of the degrees of the vertices in the various clusters and
there is an NC1 algorithm for finding these degrees. �

The reduced digraph R of G′ with parameters ε, d,M ′ (with respect to the above parti-
tion) is the digraph whose vertices are the clusters V1, . . . , Vk and in which ViVj is an edge
precisely when (Vi, Vj)G′ has density at least d (and thus is also ε-regular).

In various stages of our proof of Theorem 5, we will want to make some pairs of clusters
super-regular, while retaining the regularity of all other pairs. This can be achieved by
the following folklore lemma.

Lemma 7. Let ε� d, 1/∆ and let R be a reduced digraph of G as given by Lemma 6. Let
H be a subdigraph of R of maximum degree ∆. Then, we can move exactly ∆εm vertices
from each cluster Vi into V0 such that each pair of clusters corresponding to an edge of
H becomes (2ε, d2)-super-regular, while each pair of clusters corresponding to an edge of R

becomes 2ε-regular with density at least d − ε. Moreover, there is an NC1 algorithm for
finding the set of vertices to be removed.

Proof. For each cluster V of the partition, let

A(V ) =

{
x ∈ V :

|N+(x) ∩W | < (d− ε)m for some out-neighbour W of V in H
or |N−(x) ∩W | < (d− ε)m for some in-neighbour W of V in H

}
The definition of regularity implies that |A(V )| 6 ∆εm. Remove from each cluster V

a set of size exactly ∆εm containing A(V ). Since ∆ε 6 1
2 , it follows easily that all pairs

corresponding to edges of R are 2ε-regular of density at least d−ε. Moreover, the minimum
degree of each pair corresponding to an edge of H is at least (d − (∆ + 1)ε)m > d

2m, as
required. Finally, for each cluster V and each vertex x ∈ V , to check whether x ∈ A(V )
we only need to compute the out-degrees and in-degrees of x in all the other clusters W
so the parallelization claim follows. �
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3.2. A parallel algorithm for finding maximal matchings and systems of paths.
At several steps of our algorithm, we will need to produce matchings in certain bipartite
graphs. It will turn out that if we only needed to find a sequential polynomial time
algorithm, then we could find these matchings greedily. To find them in parallel, we will
use the following result of Lev [23].

Theorem 8. There exists an NC4 algorithm for finding a maximal matching (i.e. a match-
ing which cannot be extended) in a bipartite graph.

We will also use the following result. Note that, using the definition of super-regularity,
it is easy to greedily find the paths guaranteed by this result. The point is that one can
find those paths efficiently in parallel.

Lemma 9. Suppose k,m are integers and ε2, ε, d are real numbers such that 0 < 1
m �

ε2 � ε, 1/k � d 6 1. Let R be a graph on [k], let V1, . . . , Vk be pairwise disjoint sets of
size m and let G be a graph with vertex set V = V1 ∪ · · · ∪Vk obtained from R by replacing
every vertex i of R with the set Vi (1 6 i 6 k) and replacing every edge ij of R by an
(ε, d)-super-regular pair between Vi and Vj. Let s 6 ε2m be a positive integer and for each
1 6 i 6 s, let Wi = i1i2 . . . i`(i) be a walk in R with 4 6 `(i) 6 k3. Suppose also that any
closed subwalk of any Wi has length at least 4. Let x1, y1, . . . , xs, ys be distinct vertices of
V such that xi ∈ Vi1 and yi ∈ Vi`(i) for each 1 6 i 6 s. Then, there is an NC4 algorithm

(wrt m) which finds s disjoint paths P1, . . . , Ps in G such that each Pi joins xi to yi, has
the same length as Wi and such that whenever ab is an edge of Wi, the corresponding edge
of Pi joins the sets Va and Vb.

Proof. We begin by finding the first edge of all paths Pi for which `(i) > 5. To find
these edges consider the bipartite graph with vertex classes A = {xi : `(i) > 5} and
B = V \ {xi, yi : 1 6 i 6 s}. In this graph we join xi ∈ A to v ∈ B if and only if
v ∈ Vi2 and xi is adjacent to v in G. By super-regularity of the pair (Vi1 , Vi2), each
xi ∈ A has at least (d/2 − 2ε2)m neighbours in this bipartite graph. Since 1

m � ε2 � d,
it follows that any maximal matching in this bipartite graph covers every vertex of A.
Thus Theorem 8 implies that we can find the required edges. Repeating this at most 1

k3

times, we may find the first `(i) − 4 edges of each path Pi. Indeed, at each application
of Theorem 8 we know that at most sk3 6 ε2k

3m � dm vertices have been used from
each Vi and so a similar argument as above shows that the paths can be extended. To
avoid introducing more notation, from now on we will assume that each walk Wi has
length exactly 3 (and so is a path) and keep in mind the extra restriction that each Vi
contains a subset Ui of size at most ε2k

3m of vertices which are not allowed to be used
when creating the paths Pi. For each 1 6 i 6 k, let V ′i = Vi \ Ui. We now want to find
distinct w1, z1, . . . , ws, zs ∈ V ′ = V ′1 ∪ · · · ∪ V ′k such that for each i, xiwi, wizi, ziyi are
edges of G, wi ∈ Vi2 and zi ∈ Vi3 . Then, the Pi := xiwiziyi will be the required paths
in G. To find these wi’s and zi’s we proceed as follows. For each i, consider N(xi) ∩ V ′i2
and N(yi) ∩ V ′i3 . By super-regularity of the pairs (Vi1 , Vi2) and (Vi3 , Vi4) we have that

|N(xi) ∩ Vi2 |, |N(yi) ∩ Vi3 | > dm/2 and so |N(xi) ∩ V ′i2 |, |N(yi) ∩ V ′i3 | > (d/2 − ε2k3)m.

Since ε2k
3 � d, the regularity of the pair (Vi2 , Vi3) implies that for each 1 6 i 6 s, we can

find subsets Wi ⊆ N(xi) ∩ V ′i2 and Zi ⊆ N(yi) ∩ V ′i3 such that each wi ∈ Wi has at least
d2m
3 neighbours in Zi and each zi ∈ Zi has at least d2m

3 neighbours in Wi. In particular,

|Wi|, |Zi| > d2m
3 . We claim that we can pick distinct w1, . . . , ws such that wi ∈ Wi for

each 1 6 i 6 s. Since ε2 � d and so s � d2m, this follows by applying Theorem 8 in
the natural auxiliary bipartite graph. Finally, we claim that we can pick distinct z1, . . . , zs
such that zi ∈ Zi ∩N(wi) for each 1 6 i 6 s. This follows again by applying Theorem 8
in the natural auxiliary bipartite graph. This completes the proof of the lemma. �
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3.3. The Blow-up Lemma. The Blow-up Lemma implies that dense super-regular pairs
behave like complete bipartite graphs with respect to containing bounded degree graphs as
subgraphs. In our proof of Theorem 5, we will need the algorithmic version of the Blow-up
Lemma [18].

Lemma 10 (Blow-up Lemma; Algorithmic form). For any graph R of order k and any
positive parameters d,∆, there exists an ε0 = ε0(d,∆, k) > 0 such that whenever 0 < ε 6
ε0, the following holds. Let n be a positive integer and let us replace the vertices of R with
pairwise disjoint sets V1, . . . , Vk of size n (blowing-up). We construct two graphs on the
same vertex set V1 ∪ · · · ∪ Vk. The graph R(n) is obtained by replacing all edges of R with
copies of the complete bipartite graph Kn,n and a sparser graph G is obtained by replacing
the edges of R with some (ε, d)-super-regular pairs. If a graph H with maximum degree
∆(H) 6 ∆ is embeddable into R(n) then it is already embeddable into G. Moreover, there
is an NC5 algorithm for finding such a copy of H in G.

In fact, we will only use the following consequence of the Blow-up Lemma.

Lemma 11. For every real number d ∈ [0, 1], there exists an ε′0 = ε′0(d) > 0 such that
whenever 0 < ε 6 ε′0, the following holds. Let k, n be positive integers with k > 4, V1, . . . , Vk
be pairwise disjoint sets of size n and suppose G is a digraph on V1∪· · ·∪Vk such that each
(Vi, Vi+1)G is (ε, d)-super-regular. (Here, Vk+1 := V1.) Take any x ∈ V1 and any y ∈ Vk.
Then there is an NC5 algorithm which finds a Hamilton path P in G, starting with x and
ending with y. Moreover, for every vertex v ∈ Vi, the successor of v on P lies in Vi+1.

Proof. We claim that we may take ε′0(d) = min {12ε0(d/2, 2, `) : ` 6 6}. We show that this
ε′0 works as follows. By deleting edges if necessary we may assume that for every edge
vw of G there is an i such that v ∈ Vi and w ∈ Vi+1. Consider (Vk, V1)G − {x, y}. By
the Blow-up Lemma (applied to the corresponding undirected graph), there is an NC5

algorithm giving a perfect matching from Vk \ y to V1 \ x. Let us write Vi = {xi1, . . . , xin}
for each 1 6 i 6 k. We may assume x11 = x, xkn = y and the edges of the matching are
all edges of the form xkix1(i+1) for 1 6 i 6 n − 1. Hence, it is enough to give an NC5

algorithm which produces n vertex disjoint paths of length k − 1, connecting x1i with xki
for each 1 6 i 6 n. By fixing some intermediate vertices we can partition the edge set of
the path of length k − 1 corresponding to the graph G into paths of length at least 3 and
at most 5. By considering these paths instead, we may assume that 4 6 k 6 6. We now
define a new undirected graph G′ by identifying V1 with Vk via the identification of x1i
with xki and by ignoring the orientation of the edges. Applying the Blow-up Lemma to
G′ we obtain n disjoint cycles of length k in G′. The result now follows since these cycles
in G′ correspond to the required paths of length k − 1 in G. �

3.4. Properties of Outexpanders. In this subsection, we gather some simple properties
about outexpanders that will be needed in the proof of Theorem 5. We assume throughout
that 0 < ν 6 τ 6 1

2 .

Lemma 12. Let G be a digraph of order n with δ0(G) > τn and suppose G is a (ν, τ)-
outexpander. Then G contains a 1-factor.

Proof. We claim that for every S ⊆ V (G), we have |N+(S)| > |S|. Indeed, if 0 6= |S| < τn,
then |N+(S)| > δ+(G) > τn > |S|, if τn 6 |S| 6 (1− τ)n, then |N+(S)| > |S|+ νn by the
outexpansion properties of G, and finally, if |S| > (1− τ)n, then |S|+ δ−(G) > n and so
N+(S) = V (G), hence |N+(S)| > |S|. The result now follows by applying Hall’s theorem
to the bipartite graph H with vertex classes A and B, where A and B are both copies of
the vertex set of G and there is an edge joining a ∈ A to b ∈ B if and only if there is a
directed edge from a to b in G. Indeed, by Hall’s theorem H has a perfect matching and
by the definition of H this corresponds to a 1-factor of G. �
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Lemma 13. Let G be a (ν, τ)-outexpander of order n and let G′ be a graph obtained from
G by adding at most ν

2n isolated vertices. Then G′ is a (ν4 , 2τ)-outexpander.

Proof. Take S′ ⊆ V (G′) with 2τ |G′| 6 |S′| 6 (1 − 2τ)|G′| and let S = S′ ∩ V (G). Then
τn 6 |S| 6 (1− τ)n, hence

|N+
G′(S

′)| > |N+
G (S)| > |S|+ νn > |S′|+ ν

2
n > |S′|+ ν

4
|G′|,

as required. �

Lemma 14. Let G be a (ν, τ)-outexpander and let G′ be a blow-up of G. Then G′ is also
a (ν, τ)-outexpander.

Proof. Let us denote the order of G by n and suppose G′ is the blow-up of G by a factor
of r. Take S′ ⊆ V (G′) with τrn 6 |S′| 6 (1− τ)rn and consider

S = {x ∈ G : S′ contains a copy of x}.
Since G is a (ν, τ)-outexpander, it follows that:

(i) Either |N+(S)| > |S|+ νn;
(ii) or |S| > (1− τ)n, in which case (considering a subset of S of size (1− τ)n) we have
|N+(S)| > (1− τ + ν)n.

Note that if a vertex x of G belongs to N+(S), then any copy x′ of x in G′ belongs to
N+(S′). It follows that |N+(S′)| > r|N+(S)|. Thus, in case (i) we have

|N+(S′)| > r|N+(S)| > r|S|+ rνn > |S′|+ νrn,

while in case (ii) we have

|N+(S′)| > r|N+(S)| > (1− τ)rn+ νrn > |S′|+ νrn,

as required. �

We will also use the following lemma from [22, Lemma 11]. This is the only place where,
for our proof to work, we do need our digraphs to be robust outexpanders rather than just
outexpanders.

Lemma 15. Let M ′, n0 be integers and let ε, d, ν, τ, β be constants such that 0 < 1
n0
�

ε � d � ν 6 τ, β < 1/2 and such that 0 < M ′ � n0. Let G be a digraph on n > n0
vertices with δ0(G) > βn and such that G is a robust (ν, τ)-outexpander. Let R be the

reduced digraph of G with parameters ε, d and M ′. Then δ0(R) > β
2 |R| and R is a robust

(ν2 , 2τ)-outexpander.

4. Overview of the Proof of Theorem 5

We now give a rough overview of the proof of Theorem 5, which is worth keeping in
mind when following the details of the proof. By applying the Diregularity Lemma to G
with parameters ε1, d1 and M ′1 = 1

ε1
, we obtain a reduced graph R1 of order k1 and an

exceptional set V 1
0 . By Lemma 15 R1 is an outexpander and so by Lemma 12 it contains a

1-factor F1. By Lemma 7, we may assume that the edges of F1 correspond to super-regular
pairs. Let R∗1 be the graph obtained from R1 by adding the set V 1

0 of exceptional vertices
and for each x ∈ V 1

0 and each V ∈ R1 adding the edge xV if x has many out-neighbours
in V and the edge V x if x has many in-neighbours in V . We would like to find a closed
walk W in R∗1 such that

(a) For each cycle C1 of F1, W visits every vertex of C1 the same number of times;
(b) W visits every cluster of R1 at least once but not too many times;
(c) W visits every vertex of V 1

0 exactly once;
(d) any two vertices of V 1

0 are at distance at least 3 along W .
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Having obtained W , we would then find a corresponding cycle W ′ such that whenever W
visits a vertex of V 1

0 , W ′ visits the same vertex, and whenever W visits a cluster Vi of R1,
then W ′ visits a vertex x ∈ Vi. We would then be able to use Lemma 11 to transform
W ′ to a Hamilton cycle of G. Property (a) is required because we want to ensure that
whenever we apply Lemma 11, all clusters have the same sizes. Property (b) is required
to ensure that whenever we apply Lemma 11, all pairs of clusters we are interested in are
indeed super-regular. Property (c) is required so that the Hamilton cycle does indeed cover
all vertices of V 1

0 (exactly once) and finally property (d) is required in order to construct
W ′ with the properties described above. Unfortunately, since V 1

0 might have size ε1n, this
simple approach can only guarantee that W visits each cluster of R1 at most O( ε1ν n) times.
This however is far too large to allow the use of Lemma 11 (as it is larger than the number
of vertices in each cluster). So, instead of considering R∗1, we proceed as follows.

We refine our partition by applying the Diregularity Lemma with new parameters
ε2, d2 � ε1 and M ′2 = 1

ε2
to obtain a new reduced graph R2 whose clusters are sub-

clusters of the Vi and a new exceptional set V 2
0 . Fix 0 < θ < 1. Using the fact that

the blow-up of R1 is an outexpander, we can find a union F2 of disjoint cycles covering
all subclusters of V 1

0 as well as a θ-proportion of the subclusters of each cluster Vi of R1

(provided θ is large enough.) As before, we may assume that the edges of F2 correspond
to super-regular pairs. For each cycle C2 of F2, Lemma 11 gives a Hamilton path in the
subgraph of G corresponding to C2. Now let R∗ be the graph obtained from R1 by adding
the set V 2

0 of exceptional vertices and a vertex for each cycle C2 of F2. For each x ∈ V 2
0

and each V ∈ R1 add the edge xV if x has many out-neighbours in V and the edge V x if
x has many in-neighbours in V . Given a cycle C2 of F2, suppose that the application of
Lemma 11 yields a Hamilton path in the corresponding subgraph of G, starting at x and
ending at y, where x belongs to the cluster Vk. Then add an edge in R∗ from C2 to Vk
and an edge from V −k (the predecessor of Vk in F1) to C2. Provided θ is not too large, we
can find a closed walk W in R∗ such that

(a) For each cycle C1 of F1, W visits every vertex of C1 the same number of times;
(b) W visits every cluster of R1 at least once but not too many times;
(c) W visits every vertex of V 2

0 exactly once;
(d) W visits every cycle C2 of F2 exactly once;
(e) any two vertices of V 2

0 are at distance at least 3 along W .

With this approach, we can now guarantee that the number of times that W visits a
cluster Vi of R1 is � |Vi|, and this is small enough to allow the use of Lemma 11 in order
to transform W into a Hamilton cycle of G.

5. Shifted Walks

To achieve property (a) above, we will build up W from certain special walks, each of
them satisfying property (a). Given vertices a, b ∈ R1, a shifted walk from a to b is a walk
W (a, b) of the form

W (a, b) = x1C1x
−
1 x2C2x

−
2 . . . xtCtx

−
t xt+1,

where x1 = a, xt+1 = b, C1, . . . , Ct are (not necessarily distinct) cycles of F1, and for
each 1 6 i 6 t, x−i is the predecessor of xi on Ci. We call C1, . . . , Ct the cycles which
are traversed by W (a, b). So even if the cycles C1, . . . , Ct are not distinct, we say that W
traverses t cycles. Note that for every cycle C of F1, the walk W (a, b)−b visits the vertices
of C an equal number of times.

Our next lemma will guarantee that between any two vertices a, b of R1 there will be a
shifted walk W (a, b) which does not traverse too many cycles.
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Lemma 16. Let R be a (ν, τ)-outexpander with δ0(R) > 3τ |R| and let F be a 1-factor in
R. Then, for any a, b ∈ V (R), there is a shifted walk W (a, b) from a to b traversing at
most 1

ν cycles.

Proof. Let S1 = N+
R (a−) and for i > 1, let Si+1 = N+

R (N−F (Si)). Note that for every i > 1,
Si is the set of vertices x of R for which there exists a shifted walk from a to x traversing
at most i cycles. In particular, Si ⊆ Si+1. Note also that |S1| > δ+(R) > 3τ |R|. Since
R is a (ν, τ)-outexpander, it follows that either |S1| 6 (1 − τ)|R| in which case we have
|S2| > |S1|+ν|R| > 4ν|R|, or |S1| > (1− τ)|R| in which case we have |S2| > (1− τ +ν)|R|.
In both cases, it follows that |S2| > min {4ν|R|, (1− τ + ν)|R|} and inductively, |Si| >
min {(i+ 2)ν|R|, (1− τ + ν)|R|} for every i > 1. In particular, |Sb1/νc−1| > (1− τ + ν)|R|.
But then |Sb1/νc−1|+ δ−(R) > n, and so Sb1/νc = V (R) as required. �

6. Proof of Theorem 5

We begin by defining additional constants such that

1

n0
� ε2 � d2 � ε1 � θ � d1 � ν 6 τ � β 6 1.

Recall that this means that we can choose the constants from right to left as explained
before the statement of Theorem 5.

Apply the Diregularity Lemma with parameters ε1, d1 and M ′1 = 1
ε1

to obtain an excep-

tional set V 1
0 , a spanning subdigraph G′1 of G and a reduced graph R′1. By Lemma 15, R′1

is a (ν2 , 2τ)-outexpander with δ0(R′1) >
β
2 |R

′
1|. So by Lemma 12, R′1 contains a 1-factor

F ′1.
For technical reasons, it will be convenient to be able to assume that each cycle of F ′1

has length at least 4. (This is because Lemma 9 fails if one of the walks Wi has length less
than 3.) To achieve this, we arbitrarily partition each cluster of G into 2 parts of equal
size. (If the sizes of the clusters are odd then we move one vertex from each cluster to V 1

0 .)

Consider the graph R
′′
1 whose vertices correspond to the parts and where two vertices are

joined by an edge if the corresponding bipartite subgraph of G′1 is (3ε1,
2d1
3 )-regular. Note

that we may not be able to construct R
′′
1 in NC. This is because deciding whether a given

pair is ε-regular is co-NP-complete (see [3]). For this reason, we will instead work with the

subgraph R1 = R′1×E2 of R
′′
1 . We will denote the order of R1 by k1 and write V1, . . . , Vk1

for its clusters (which were the parts of the original clusters). Note that δ0(R1) >
β
2k1.

Note also that by Lemma 14, R1 is a (ν2 , 2τ)-outexpander. The size of the exceptional set
is now at most ε1n + |R′1| 6 2ε1n. Each cycle of length ` of F ′1 now becomes a copy of
C` × E2, which contains a cycle of length 2`. This yields a 1-factor F1 of R1 so that all
cycles of F1 have length at least 4.

Our next step is to make the pairs of clusters corresponding to edges of F1 (6ε1,
d1
3 )-

super-regular, rather than just regular. By Lemma 7 we can achieve this by moving exactly
6ε1|Vi| vertices from each cluster Vi into V 1

0 and thus increasing the size of V 1
0 to at most

8ε1n. We will still refer to the new clusters as V1, . . . , Vk1 and to the new exceptional set
as V 1

0 . We will denote the size of the Vi by m1. Note that R1 has not been altered in any

way and all edges of R1 correspond to 6ε1-regular pairs of density at least d1
3 .

As explained in the overview, we will now need to refine our partition. Before doing
so, we define a new graph G1 obtained from G′1 by removing, for each x ∈ V 1

0 , all edges

from x into Vi (for 1 6 i 6 k1) unless |N+
G (x) ∩ Vi| > β

4m1, and all edges from Vi
into x unless |N−G (x) ∩ Vi| > β

4m1. Since |V 1
0 | 6 8ε1n, it is immediate that for every

x ∈ V (G) \ V 1
0 , we have d+G1

(x) > d+
G′1

(x) − 8ε1n > d+G(x) − (d1 + 9ε1)n and similarly
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d−G1
(x) > d−G(x)− (d1 + 9ε1)n. Moreover, for each x ∈ V 1

0 we have

d+G1
(x) > d+

G′1
(x)− βm1k1/4 > d

+
G(x)− (d1 + ε1 + β/4)n > βn/4.

Similarly d−G1
(x) > β

4n. We now apply the Diregularity Lemma to G1 with parameters

ε2, d2 and M ′2 = 1
ε2

to obtain a partition refining V 1
0 , V1, . . . , Vk1 . Observe that since k1

is bounded by a function of ε1, we may assume that the constant d2 is chosen in such a
way that d2 � 1

k1
holds. We denote the exceptional set by V 2

0 , the spanning subdigraph

by G′2, the reduced graph by R′2, its order by k2 and the size of the clusters of R′2 by m′2.
For each 1 6 i 6 k1, we denote the clusters of R′2 contained in Vi by Vij and call them the
subclusters of Vi. Since (1 − 8ε1)

n
k1
6 m1 6 n

k1
and (1 − ε2) nk2 6 m′2 6

n
k2

we have for all
i > 1 that

(1− 9ε1)
k2
k1
6 (m1 − |V 2

0 |)
k2
n
6 |{Vij : j > 1}| 6 1

(1− ε2)
k2
k1
. (1)

Note however that distinct Vi may have different number of subclusters. Finally, we denote
the clusters of R′2 contained in V 1

0 by V0j and call them the subclusters of V 1
0 .

Our next aim is to find a union F2 of cycles in R′2 covering all subclusters of V 1
0 and

exactly θ k2k1 subclusters of every other Vi. Before doing that, it will be convenient to

collect some results about the edge distribution in R′2. The next lemma states that every
subcluster of V 1

0 has significant degree in R′2.

Lemma 17. Every subcluster V0i of V 1
0 satisfies d+

R′2
(V0i), d

−
R′2

(V0i) >
β
5k2.

Proof. Suppose this is not the case, say d+
R′2

(V0i) <
β
5k2 for some i and consider any x ∈ V0i.

Then
β

4
n 6 d+G1

(x) 6 d+
R′2

(V0i)m
′
2 + |V 2

0 |+ (d2 + ε2)n <

(
β

5
+ d2 + 2ε2

)
n,

a contradiction. �

We now remove some edges from G′2 to obtain a new digraph G2. The reason for doing
this, is to guarantee later that any two subclusters of V 1

0 are at distance at least 3 in the
union F2 of cycles. For each subcluster Vij with i > 1, we either remove all edges from Vij
into all subclusters V0k of V0, or we remove all edges from all subclusters V0k of V0 into Vij .
We also let R2 ⊆ R′2 be the reduced digraph of G2 with respect to the same partition. We
can randomly remove the edges in such a way that the conclusion of the following lemma
holds.

Lemma 18. There is a subdigraph G2 obtained from G′2 as above, such that for every

subcluster V0k of V 1
0 we have d+R2

(V0k), d
−
R2

(V0k) >
β
20k2. Moreover, G2 can be obtained

from G′2 in constant parallel time.

Proof. For each Vij with i > 1, either remove all edges from Vij into all subclusters V0k
of V0, or remove all edges from all subclusters V0k of V0 into Vij choosing either option
with probability 1/2, independently at random. For each subcluster V0k of V 1

0 denote by
X+
k the random variable d+R2

(V0k) and by X−k the random variable d−R2
(V0k). Lemma 17

implies that EX+
k >

β
10k2 and so by Chernoff’s inequality (see e.g. [4, Theorem A.1.4])

P
(
X+
k 6

β

20
k2

)
6 P

(
X+
k 6

1

2
EX+

k

)
6 exp

{
− β

40
k2

}
.

A similar inequality holds for X−k and so the probability that G2 does not satisfy the

required properties of the lemma is at most 2k2 exp
{
− β

40k2

}
. Since k2 > M ′2 � 1, there

is a positive probability that G2 has the required properties. Finally, to see that G2 can
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be obtained from G′2 in constant time, note that the size of the probability space used
depends only on k2 and not on n. �

We proceed by showing that every subcluster of V 1
0 forms an edge of R2 (and thus an

(ε2, d2)-regular pair) with many subclusters of many clusters of R1.

Lemma 19. For every subcluster V0i of V 1
0

(i) there are at least β
50k1 clusters Vj such that (V0i, Vjk) is an edge of R2 for at least

β
50
k2
k1

subclusters Vjk of Vj;

(ii) there are at least β
50k1 clusters Vj such that (Vjk, V0i) is an edge of R2 for at least

β
50
k2
k1

subclusters Vjk of Vj.

Proof. If (i) is not true, then by (1) there is an i such that

d+R2
(V0i) 6

(
β

50
k1

)(
1

1− ε2
k2
k1

)
+ k1

(
β

50

k2
k1

)
<

β

20
k2,

contradicting Lemma 18. Part (ii) of the lemma is proved in a similar way. �

The last result we need in order to produce the union F2 of cycles is that if (Vi, Vj) is
an edge of R1 then in G2 most subclusters of Vi form an edge of R2 with many subclusters
of Vj .

Lemma 20. Let (Vi, Vj) be an edge of R1. Let Si and Sj be unions of si and sj subclusters

of Vi and Vj respectively, where si, sj >
√
ε1
k2
k1

. Call a subcluster Vik of Vi bad for Sj, if

there are at most d21sj subclusters Vj` belonging to Sj such that (Vik, Vj`) is an edge of R2.
Then Si has at most 4

√
ε1si subclusters which are bad for Sj.

Proof. Suppose Si has b > 4
√
ε1si subclusters which are bad for Sj . Let B be the union of

these bad subclusters and consider the bipartite graph (B,Sj)G1 . Since |B|, |Sj | � ε1m1

and (Vi, Vj)G1 is (6ε, d1/3)-regular, we have dG1(B,Sj) >
d1
3 − 6ε1 >

d1
4 . However, by our

assumption, at least (1− d21)bsj pairs of subclusters Vik, Vj` belonging to B and Sj do not
form an edge of R2. The last property of Lemma 6 implies that at most ε2k

2
2 of these

have density at least d2 in G1. Since ε2k
2
2 � d21bsj as ε2 � 1

k1
, it follows that at least

(1 − 2d21)bsj of the pairs Vik, Vj` belonging to B and Sj have density less than d2 in G1.

But then (B,Sj)G1 must have density at most 2d21 + d2 <
d1
4 , a contradiction. �

We can now find the promised union F2 of cycles in R2.

Lemma 21. R2 contains a union F2 of cycles covering all subclusters of V 1
0 and exactly

θ k2k1 subclusters of every Vi with 1 6 i 6 k1. Furthermore, every cycle in F2 has length at
least 4 and contains two consecutive subclusters, say Vij followed by Vk`, such that neither
of them is a subcluster of V 1

0 and moreover, Vij is not bad for Vk.

Proof. We begin by finding a 1-factor FA2 in an auxiliary graph A, and then use FA2 to

create F2. We define A as follows: We blow up R1 by a factor of θ k2k1 and add to this

blow-up all subclusters of V 1
0 . Moreover we add edges from V0i to all copies of Vj in the

blow-up if and only if (V0i, Vjk) is an edge of R2 for at least β
50
k2
k1

subclusters Vjk of Vj
and similarly we add edges from all copies of Vj to V0i if and only if (Vjk, V0i) is an edge

of R2 for at least β
50
k2
k1

subclusters Vjk of Vj . By Lemma 14, the blow-up of R1 is (ν2 , 2τ)-

outexpander. Hence, by Lemma 13, A is a (ν8 , 4τ)-outexpander. This follows because

we can assume ε1 � νθ. Moreover, Lemma 19 implies that δ0(A) > β
51 |A|, and so, by

Lemma 12, A contains a 1-factor FA2 . We claim that we may assume that FA2 contains
no cycles of length 2. Indeed, if such a cycle appears, then by definition of R2 it cannot



14 DEMETRES CHRISTOFIDES, PETER KEEVASH, DANIELA KÜHN AND DERYK OSTHUS

contain a subcluster of V 1
0 . So suppose that this cycle is AiAj where Ai is a copy of Vi

and Aj is a copy of Vj . Then remove this cycle, find any other copy Bi of Vi on some other
cycle, and replace the appearance of Bi by AiAjBi. By the construction of A, we still
have a union of cycles, with one fewer cycle of length 2. A similar argument also shows
that we may assume that FA2 contains no cycles of length 3. Moreover, the fact that every
two vertices corresponding to subclusters of V 1

0 have distance at least 3 in R2 implies that
every cycle of FA2 contains two consecutive vertices, say Ai and Aj , which correspond to
clusters Vi and Vj with i, j > 1.

We now use FA2 to induce the required union F2 of cycles in R2. To do this, we will find
for each cycle A1A2 . . . ArA1 of FA2 , a cycle Vi1j1Vi2j2 . . . VirjrVi1j1 of R2 such that:

• If A` is a subcluster of V 1
0 , then Vi`j` = A` (and so i` = 0). If A` is a copy of some

cluster Vi with i 6= 0, then Vi`j` is a subcluster of Vi (and so i` = i).
• If both i` and i`+1 (addition done modulo r) are not equal to 0, then Vi`j` is not

bad for Vi`+1
.

• Every subcluster Vij of R2 is used in at most one such cycle.

Clearly, if we can do this, we obtain the required union F2 of cycles.
Suppose first that A1 and As are subclusters of V 1

0 but A2, . . . , As−1 are not (possibly
with A1 = As, i.e. r = s− 1). Note that we must have s > 4. For ` = 2, 3, . . . , s− 3, given
Vi`−1,j`−1

we choose Vi`,j` such that (Vi`−1,j`−1
, Vi`,j`) is an edge of R2 and Vi`,j` is not bad

for Vi`+1
. To see that this can be done note that if ` = 2, then by definition of A there are

at least β
50
k2
k1
> d21

2
k2
k1

choices for Vi2,j2 such that (Vi1,j1 , Vi2,j2) is an edge of R2. If ` > 3,

then by Lemma 20 and (1) there are also at least (1−9ε1)d
2
1
k2
k1
> d21

2
k2
k1

choices for Vi`,j` such

that (Vi`−1,j`−1
, Vi`,j`) is an edge of R2. By Lemma 20 and (1) again, at most 1

1−ε2
4
√
ε1
k2
k1

of those choices are bad for Vi`+1
. Of those remaining, at most θ k2k1 have been already used

in our construction so far. Since d1 � ε1, θ, it follows that there is such a choice for Vi`,j` .
(If s = 4, then Vis−3js−3 has already been chosen so we do nothing.) It remains to choose
Vis−2js−2 and Vis−1js−1 so that (Vis−3js−3 , Vis−2js−2), (Vis−2js−2 , Vis−1js−1) and (Vis−1js−1 , As)
are edges of R2 and moreover Vis−2js−2 is not bad for Vis−1 . To see that this can be done,

note that as above, there are at least
d21
2
k2
k1

choices for Vis−2js−2 so that (Vis−3js−3 , Vis−2js−2)

is an edge of R2 (whether s = 4 or not). By Lemma 20 and (1), at most 1
1−ε2

4
√
ε1
k2
k1

of those

are bad for Vis−1 . Of those remaining, at most θ k2k1 have been already used. In particular,

we have at least
d21
3
k2
k1

choices for Vis−2js−2 so that (Vis−3js−3 , Vis−2js−2) is an edge of R2

and Vis−2js−2 is not bad for Vis−1 . By the definition of A, there are at least β
50
k2
k1

choices

for Vis−1js−1 , so that (Vis−1js−1 , As) is an edge of R2 and of those at most θ k2k1 have been
already used. It remains to show that among all possible choices for Vis−2js−2 and Vis−1js−1

as above, there is such a choice such that (Vis−2js−2 , Vis−1js−1) is an edge of R2. But this
follows from Lemma 20 since d1, β � ε1, θ.

Repeated application of this argument shows that we can create a cycle of R2 having the
required properties for each cycle of FA2 containing at least one subcluster of V 1

0 . Similarly,
we can also create such a cycle for each cycle of FA2 not containing a subcluster of V 1

0 .
(For this we need that the length of such a cycle is at least 3, but we already guaranteed
that this will be the case.) �

Our next step is to make the pairs of clusters corresponding to edges of F2 (2ε2,
d2
2 )-

super-regular, rather than just regular. By Lemma 7 we can achieve this by moving exactly
2ε2m

′
2 vertices from each cluster of R2 into V 2

0 and thus increasing the size of V 2
0 to at

most 3ε2n. We still write V 2
0 for the new exceptional set and Vij for these altered clusters

of R2 and we denote the sizes of Vij by m2. So m2 = (1− 2ε2)m
′
2. Note that R2 has not
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been altered in any way and all edges of R2 correspond to 2ε2-regular pairs of density at
least d2

2 .
For each cycle C of F2 we now use Lemma 11 to obtain a Hamilton path PC in the

subgraph of G1 corresponding to C. Note that for the endpoints of this path we may
choose any two vertices which lie in any two consecutive clusters of C. We make this
choice as follows. First we pick two consecutive clusters, say Vij followed by Vk` of C such
that none of them is a subcluster of V 1

0 and moreover Vij is not bad for Vk. The existence
of these two subclusters is guaranteed by Lemma 21. We choose any xC in Vk` as the
initial vertex of the path. For the endvertex of the path we choose any vertex yC ∈ Vij
which maximizes |N+

G (yC) ∩ V ′k|, where by V ′k we denote the union of all subclusters of Vk
not used in F2.

Lemma 22. Let C be a cycle of F2 and let yC be chosen as above. Then |N+
G (yC)∩V ′k| >

1
5d

2
1d2m1.

Proof. Suppose yC belongs to the subcluster Vij and let Vk` be the successor of Vij in
F2. By our choice of Vij and Vk`, Vij is not bad for Vk. By (1) and the definition of a

subcluster being bad, it follows that there are at least (1 − 9ε1)d
2
1
k2
k1

subclusters Vk`′ of

Vk such that (Vij , Vk`′) is an edge of R2. From this, using Lemma 21 and the fact that

θ � d1 we conclude that at least
d21
2
k2
k1

of these Vk`′ ’s are not used in any of the cycles of

F2 and so they belong to V ′k. The result follows since every edge of R2 corresponds to a
(2ε2, d2/2)-regular pair in G′2. �

Let V 2
0 = {v1, . . . , vr} and let {C1, . . . , Cs} be the set of cycles of F2. For each vi ∈ V 2

0 ,
since δ0G(vi) > βn, we can find distinct clusters Ui and Wi in R1 such that |N−G (vi)∩Ui| >
β
2m1 and |N+

G (vi)∩Wi| > β
2m1. We write Pi for the path from U+

i to Ui in the 1-factor F1

of R1. For each cycle Cj of F2, we denote the cluster of R1 containing xCj by Bj and write

Qj for the path from Bj to B−j in F1. Define a graph R∗ by adding to the vertex set of

R1 all vertices of V 2
0 and one vertex for each cycle Cj of F2 as follows. For each 1 6 i 6 r

we add the edges Uivi and viWi and for each 1 6 j 6 s we add the edges B−j Cj and CjBj .
Now we define the closed walk W described in Section 4. For each 1 6 i, j 6 k1 we apply
Lemma 16 to R1 to obtain a shifted walk W (Vi, Vj) from Vi to Vj traversing at most 2

ν

cycles. We start at V1 and we incorporate the vertices of V 2
0 by following the walks

W (V1, U
+
1 ), P1, U1v1W1,W (W1, U

+
2 ), P2, U2v2W2, . . . ,W (Wr−1, U

+
r ), Pr, UrvrWr.

Then we incorporate the cycles of F2 by following the walks

W (Wr, B1), Q1, B
−
1 C1B1,W (B1, B2), Q2, B

−
2 C2B2, . . . ,W (Bs−1, Bs), Qs, B

−
s CsBs.

Finally, to close the walk and to make sure that W visits every cluster of R1, we follow
the walks

W (Bs, V2),W (V2, V3), . . . ,W (Vk1−1, Vk1),W (Vk1 , V1)

Note that the walk W thus defined visits every vi and every Cj exactly once, for each
cycle C of F1 it visits every vertex of C the same number of times and for each cluster V
of R1 it visits V at least once and at most(

2

ν
+ 1

)
r +

(
2

ν
+ 1

)
s+

2k1
ν
6

7ε2n

ν
6

7ε2k1m1

(1− 8ε1)ν
6
d1m1

4
(2)

times. The last inequality follows since ε2 � 1/k1, d1, ν.
It remains to show how to transform W into a Hamilton cycle of G. Initially, we will

transform W to a cycle W ′ of G with the following properties:
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• Each cluster V in W is replaced by an x ∈ V ′ ⊆ V in W ′. (Recall that V ′ is the
union of all the subclusters of V not used in F2. Of course, to ensure that W ′ is a
cycle, different x’s will be chosen for each appearance of V in W ′.)
• Each vi ∈ V 2

0 in W is left unchanged in W ′.
• For each Cj ∈ F2, we replace Cj in W with the path PCj in W ′.

To achieve this we proceed as follows. For each 1 6 i 6 r we choose ui ∈ Ui and wi ∈ Wi

such that all of them are distinct and do not belong to the subclusters in F2 and moreover
uivi and viwi are edges of G. To see that this can be done, consider the (undirected)
bipartite graph with vertex classes D1 and D2 defined as follows. For every 1 6 i 6 r, D1

contains 2 vertices corresponding to vi ∈ V 2
0 which we call v+i and v−i , while D2 is the set

of all vertices of G lying in some V ′k with 1 6 k 6 k1. We join v+i to a vertex w of D2

if and only if w ∈ Wi and viw is an edge of G and we join v−i to a vertex u of D2 if and
only if u ∈ Ui and uvi is an edge of G. We use Theorem 8 to find a maximal matching
in this graph. We claim that this matching covers all vertices of D1. Indeed, the size of
D1 is at most 6ε2n, the degree of every vertex of D1 is at least (β2 − 2θ)m1 and so any
matching which does not cover a vertex in D1 can be extended to a larger matching as
ε2k1 � θ � β. Given this matching from D1 to D2, we now take ui to be the unique vertex
in D2 adjacent to v−i and wi to be the unique vertex in D2 adjacent to v+i in this matching.

Now, for each 1 6 j 6 s we choose bj ∈ Bj and b−j ∈ B
−
j such that all of them are distinct,

they are distinct from the ui, wi (1 6 i 6 r), they do not belong to the subclusters used in
F2 and moreover b−j xCj and yCjbj are edges of G. To achieve this, consider the bipartite

graph with vertex classes D3 and D4 defined as follows: D3 = {xCj , yCj : 1 6 j 6 s},
D4 = D2 \ {ui, wi : 1 6 i 6 r}, with xCj adjacent to b− ∈ D4 if and only if b− ∈ B−j and

b−xCj is an edge of G, and yCj adjacent to b ∈ D4 if and only if b ∈ Bj and yCjb is an
edge of G. As before, we use Theorem 8 to find a maximal matching in this graph and
claim that this matching covers all vertices of D3. Indeed, if there was a vertex v of D3

not covered by the matching, then we could extend the matching either by Lemma 22 if
v = yCj for some j, or by super-regularity of the pair (B−j , Bj)G1 if v = xCj for some j.

Given this matching, we can now take bj to be the unique vertex adjacent to yCj and b−j
to be the unique vertex adjacent to xCj in this matching.

Now we use W to join up the vertices ui, wi, bj , b
−
j by disjoint paths whose edges join

clusters corresponding to the relevant edges of W . (For example, the path joining up w1

to u2 moves through the clusters in the subwalk W (W1, U
+
2 )P2U2 of W .) Delete all the

vertices in V 2
0 as well as C1, . . . , Cs from W to obtain a set W of subwalks of W . So

each walk in W corresponds to one of the paths joining up the vertices ui, wi, bj , b
−
j we

are looking for. To choose these paths we first fix edges in G corresponding to all those
edges of the walks in W that do not lie within a cycle of F1. This can be done by looking
at all ordered pairs (Vi, Vj) with Vj 6= V +

i in turn. Let wij be the number of times the
edge ViVj is used by walks in W. We need to choose a matching in G that avoids all
previously chosen vertices and uses wij edges from V ′i to V ′j . (Recall that V ′i is the union

of all subclusters of Vi not used in F2.) To see that this matching exists, recall that the

pair (Vi, Vj) is (6ε1,
d1
3 )-regular and so the pair obtained from (V ′i , V

′
j ) by deleting all the

previously chosen vertices is still (7ε1,
d1
4 )-regular. Since wij � d1m1 by (2), this implies

the existence of the required matching from V ′i to V ′j . Theorem 8 now implies that there

is a NC4 algorithm for finding such a matching. After considering all such pairs (Vi, Vj)
we have found edges in G corresponding to all those edges of the walks in W that do not
lie within a cycle of F1. Finally, we can apply Lemma 9 with F1 playing the role of R and
with the subgraph of G1 which corresponds to F1 playing the role of G to find paths that
connect all the vertices chosen so far. (So these paths correspond to the set W ′ of walks
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obtained from the walks in W by deleting the edges outside F1. Lemma 9 can be applied
since |W ′| ≤ (r+ s+ k1)

3
ν ≤
√
ε2n and since each walk in W ′ has length at least 3 and at

most k1.) Together with the previously chosen edges of G and the paths PCj covering the
vertices lying in the subclusters belonging to F2, this yields a cycle W ′ in G as required.

Finally, we extend W ′ to a Hamilton cycle of G. For this note that by (2) for each

cycle C of F1, W
′ has visited every cluster of C exactly mC times for some mC 6

d1m1
4 .

Fix one particular occasion on which W ‘winds around’ C. It is enough to show that
we can replace the corresponding path P in W ′ by a new path with the same endpoints
exhausting all vertices in the clusters of C which do not appear in W ′. To do this, remove
all vertices from the clusters of C which are used in W ′ apart from the ones used in P .
Since exactly mC − 1 6 m1d1

4 vertices have been removed and since the pairs of clusters

corresponding to the edges of F1 are (6ε1,
d1
3 )-super-regular, the modified clusters are now

(12ε1,
d1
12)-super-regular and so we can use Lemma 11 to replace P by a new path with the

required property.
To see that the algorithm is in NC5, note that at most steps of the algorithm we either

use one of Lemmas 6,7,9,11,18 or we use Theorem 8 or we work entirely within one of the
reduced digraphs (which have constant size). The only other steps of the algorithm which
we need to check are when obtaining G1 from G′1 and when defining the vertices yC for
each cycle C of F2. To obtain G1 from G′1 we only need knowledge of the in-degrees and
out-degrees of each vertex x within each cluster Vk, which can be found in NC1. Similarly,
to define each yC we only need knowledge of the out-degrees of each vertex y within each
set V ′k which can again be found in NC1. This completes the proof of Theorem 5.
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[5] J. A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976), 111–135.
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