Decompositions of dense graphs into small subgraphs

Deryk Osthus

joint work with Ben Barber, Daniela Kühn, Allan Lo

University of Birmingham

August 2015
A graph G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F.
A graph G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F.
A graph G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F.

When does G have an F-decomposition?
Necessary conditions

Question

When does \(G \) have an \(F \)-decomposition?

If \(G \) has a triangle decomposition, then

(a) the number of edges of \(G \) is divisible by 3;
(b) every vertex has even degree.
Question

When does G have an F-decomposition?

If G has a triangle decomposition, then

(a) the number of edges of G is divisible by 3;
(b) every vertex has even degree.

A necessary condition

If G has an F-decomposition, then

(a) the number of edges in F divides the number of edges in G;
(b) $\gcd(F)$ divides $\gcd(G)$, where $\gcd(H)$ is the largest integer dividing the degree of every vertex of a graph H.

G is said to be F-divisible if G satisfies (a) and (b).
F-divisibility

(a) the number of edges in F divides the number of edges in G

(b) $\gcd(F)$ divides $\gcd(G)$, where $\gcd(H)$ is the largest integer dividing the degree of every vertex of a graph H
F-divisibility

(a) the number of edges in F divides the number of edges in G

(b) $\gcd(F)$ divides $\gcd(G)$, where $\gcd(H)$ is the largest integer dividing the degree of every vertex of a graph H

F-divisibility is not sufficient for F-decomposition.

The problem of deciding whether a graph G has an F-decomposition is NP-complete if F contains a connected component with at least 3 edges.
Decompositions of complete host graphs

Theorem (Kirkman 1847)
Every triangle-divisible K_n has a triangle decomposition. (i.e. $n \equiv 1, 3 \mod 6$)

Theorem (Wilson 1975)
For n large, every F-divisible K_n has an F-decomposition.

Generalization to hypergraph cliques:
Theorem (Keevash 2014)
For $r \leq q \ll n$, every complete r-uniform hypergraph on n vertices $K^{(r)}_n$ (subject to the necessary divisibility conditions) has a $K^{(r)}_q$-decomposition.
Theorem (Kirkman 1847)
Every triangle-divisible K_n has a triangle decomposition. (i.e. $n \equiv 1, 3 \pmod{6}$)
Theorem (Kirkman 1847)

Every triangle-divisible K_n has a triangle decomposition. (i.e. $n \equiv 1, 3 \mod 6$)

Theorem (Wilson 1975)

For n large, every F-divisible K_n has an F-decomposition.
Decompositions of complete host graphs

<table>
<thead>
<tr>
<th>Theorem (Kirkman 1847)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every triangle-divisible K_n has a triangle decomposition. (i.e. $n \equiv 1, 3 \mod 6$)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Wilson 1975)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For n large, every F-divisible K_n has an F-decomposition.</td>
</tr>
</tbody>
</table>

Generalization to hypergraph cliques:

<table>
<thead>
<tr>
<th>Theorem (Keevash 2014+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For $r \leq q \ll n$, every complete r-uniform hypergraph on n vertices $K_n^{(r)}$ (subject to the necessary divisibility conditions) has a $K_q^{(r)}$-decomposition.</td>
</tr>
</tbody>
</table>
Conjecture (Nash-Williams 1970)

Every large triangle-divisible graph G on n vertices with $\delta(G) \geq 3n/4$ has a triangle decomposition.

Conjecture generalizes to K_r-decompositions.
Conjecture (Nash-Williams 1970)

Every large triangle-divisible graph G on n vertices with $\delta(G) \geq 3n/4$ has a triangle decomposition.

conjecture generalizes to K_r-decompositions

Extremal example: blow up each vertex of C_4 to a K_m (m odd and divisible by 3).

Each triangle has at least one edge in one of the four cliques but less than a third of the edges lie inside the cliques.
Theorem (Gustavsson 1991, Keevash 2014)$^+$

For every graph F, there exist ε and n_0 such that every F-divisible graph G on $n \geq n_0$ vertices with $\delta(G) \geq (1 - \varepsilon)n$ has an F-decomposition.

For $F = K_r$, Gustavsson states $\varepsilon = 10^{-37} r^{-94}$.
Decompositions of graphs of large minimum degree

<table>
<thead>
<tr>
<th>Theorem (Gustavsson 1991, Keevash 2014$^+$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For every graph F, there exist ε and n_0 such that every F-divisible graph G on $n \geq n_0$ vertices with $\delta(G) \geq (1 - \varepsilon)n$ has an F-decomposition.</td>
</tr>
</tbody>
</table>

For $F = K_r$, Gustavsson states $\varepsilon = 10^{-37} r^{-94}$.

<table>
<thead>
<tr>
<th>Theorem (Yuster 2002)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let F be a bipartite graph with $\delta(F) = 1$. If G is F-divisible and $\delta(G) \geq (\frac{1}{2} + o(1)) n$, then G has an F-decomposition.</td>
</tr>
</tbody>
</table>
Decompositions of graphs of large minimum degree

Theorem (Gustavsson 1991, Keevash 2014⁺)
For every graph F, there exist ε and n_0 such that every F-divisible graph G on $n \geq n_0$ vertices with $\delta(G) \geq (1 - \varepsilon)n$ has an F-decomposition.

For $F = K_r$, Gustavsson states $\varepsilon = 10^{-37} r^{-94}$.

Theorem (Yuster 2002)
Let F be a bipartite graph with $\delta(F) = 1$. If G is F-divisible and $\delta(G) \geq \left(\frac{1}{2} + o(1) \right) n$, then G has an F-decomposition.

Theorem (Bryant and Cavenagh 2014⁺)
If G is C_4-divisible and $\delta(G) \geq \left(\frac{31}{32} + o(1) \right) n$, then G has a C_4-decomposition.
Fractional F-decomposition of G: give every copy of F in G a weight $w(F) \in [0, 1]$ such that $\sum_{F:e \in E(F)} w(F) = 1$ for each edge e of G.
Fractional decompositions

fractional F-decomposition of G: give every copy of F in G a weight $w(F) \in [0, 1]$ such that $\sum_{F: e \in E(F)} w(F) = 1$ for each edge e of G.

![Diagram of fractional decomposition]

fractional decomposition threshold $\delta_{frac}(F)$: smallest $c \in [0, 1]$ s.t. every large graph G with $\delta(G) \geq cn$ has fractional F-decomposition.
Fractional decompositions

Fractional F-decomposition of G: give every copy of F in G a weight $w(F) \in [0, 1]$ such that $\sum_{F:e \in E(F)} w(F) = 1$ for each edge e of G

![Diagram of fractional decomposition]

Fractional decomposition threshold $\delta_{frac}(F)$: smallest $c \in [0, 1]$ s.t. every large graph G with $\delta(G) \geq cn$ has fractional F-decomposition

Fractional K_3-decomposition threshold:
- Garaschuk (2014): $\delta_{frac}(K_3) \leq 0.956$
- Dross (2015$^+$): $\delta_{frac}(K_3) \leq 0.9$

Fractional K_r-decomposition threshold:
- Yuster (2005): $\delta_{frac}(K_r) \leq 1 - \frac{1}{9r^{10}}$
- Dukes (2012): $\delta_{frac}(K_r) \leq 1 - \frac{1}{16r^4}$
- Barber, Kühn, Lo, Montgomery, Osthus (2015$^+$): $\delta_{frac}(K_r) \leq 1 - \frac{1}{10^4r^{3/2}}$
Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with $\delta(G) \geq (\delta_{\text{frac}}(K_3) + o(1))n$ has a triangle decomposition.
Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with $\delta(G) \geq (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Theorem (Barber, Kühn, Lo, Osthus 2014+)

If F is r-regular, then every large F-divisible graph G with $\delta(G) \geq (\max\{\delta_{frac}(F), 1 - 1/3r\} + o(1))n$ has a F-decomposition.
Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with $\delta(G) \geq (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Theorem (Barber, Kühn, Lo, Osthus 2014+)

If F is r-regular, then every large F-divisible graph G with $\delta(G) \geq (\max\{\delta_{frac}(F), 1 - 1/3r\} + o(1))n$ has a F-decomposition.

Corollary

- Every large triangle-divisible graph G with $\delta(G) \geq (0.9 + o(1))n$ has a triangle decomposition.
- Every large K_r-divisible graph G with $\delta(G) \geq (1 - 1/10^4 r^{3/2})n$ has a K_r-decomposition.
From fractional to ‘real’ decompositions

Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with $\delta(G) \geq (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Theorem (Barber, Kühn, Lo, Osthus 2014+)

If F is r-regular, then every large F-divisible graph G with $\delta(G) \geq (\max\{\delta_{frac}(F), 1 - 1/3r\} + o(1))n$ has a F-decomposition.

Corollary

- Every large triangle-divisible graph G with $\delta(G) \geq (0.9 + o(1))n$ has a triangle decomposition.
- Every large K_r-divisible graph G with $\delta(G) \geq (1 - 1/10^4 r^{3/2})n$ has a K_r-decomposition.
- Every large F-divisible graph G with $\delta(G) \geq (1 - c/|F|^2)n$ has an F-decomposition.
Proof idea

Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with $\delta(G) \geq (\delta_{\frac{\Delta}{3}}(K_3) + o(1))n$ has a triangle decomposition.

Will use:

Theorem (Haxell and Rödl 2001)

Every large graph G with $\delta(G) \geq \delta_{\frac{\Delta}{3}}(K_3)n$ can be decomposed into edge-disjoint copies of K_3 and a remainder R with ϵn^2 uncovered edges.

Problem: What to do with leftover?
Proof idea

Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with $\delta(G) \geq \left(\delta_{frac}(K_3) + o(1) \right)n$ has a triangle decomposition.

Will use:

Theorem (Haxell and Rödl 2001)

Every large graph G with $\delta(G) \geq \delta_{frac}(K_3)n$ can be decomposed into edge-disjoint copies of K_3 and a remainder R with εn^2 uncovered edges.

Problem: What to do with leftover?
Planning ahead

Plan

1. Take out highly structured subgraph A.
2. Take out many triangles to leave a sparse remainder R.
3. Use ‘structure’ of A to decompose $A \cup R$ into triangles.

Assume now that all graphs are triangle-divisible.

Definition

An absorber is a graph A such that $A \cup R$ has a triangle decomposition for any sparse graph R.

An absorber for a graph R is a graph A_R such that A_R and $A_R \cup R$ both have a triangle decomposition.

Approach: take A to be union of A_R over all possible sparse remainders R.

Far more than n^2 possibilities for R, so no hope of finding one absorber for each R.
Planning ahead

Plan

1. Take out highly structured subgraph A.
2. Take out many triangles to leave a sparse remainder R.
3. Use ‘structure’ of A to decompose $A \cup R$ into triangles.

Assume now that all graphs are triangle-divisible.

Definition

An absorber is a graph A such that $A \cup R$ has a triangle decomposition for any sparse graph R.

Plan

1. Take out highly structured subgraph A.
2. Take out many triangles to leave a sparse remainder R.
3. Use ‘structure’ of A to decompose $A \cup R$ into triangles.

Assume now that all graphs are triangle-divisible.

Definition

An absorber is a graph A such that $A \cup R$ has a triangle decomposition for any sparse graph R.

An absorber for a graph R is a graph A_R such that A_R and $A_R \cup R$ both have a triangle decomposition.

Approach: take A to be union of A_R over all possible sparse remainders R.
Plan

1. Take out highly structured subgraph A.
2. Take out many triangles to leave a sparse remainder R.
3. Use ‘structure’ of A to decompose $A \cup R$ into triangles.

Assume now that all graphs are triangle-divisible.

Definition

An absorber is a graph A such that $A \cup R$ has a triangle decomposition for any sparse graph R.
An absorber for a graph R is a graph A_R such that A_R and $A_R \cup R$ both have a triangle decomposition.

Approach: take A to be union of A_R over all possible sparse remainders R.
Far more than n^2 possibilities for R, so no hope of finding one absorber for each R.
Absorbers

Aim

Reduce the number of possible remainders R.

Let m be a large integer and equipartition the vertex set into $V_1, \ldots, V_{\frac{n}{m}}$ each of size m. Can we ensure that every edge of R is contained within some V_i?
Absorbers

Aim

Reduce the number of possible remainders R.

Let m be a large integer and equipartition the vertex set into $V_1, \ldots, V_{\frac{n}{m}}$ each of size m. Can we ensure that every edge of R is contained within some V_i?

Lemma

Yes.
Absorbers

Aim

Reduce the number of possible remainders \(R \).

Let \(m \) be a large integer and equipartition the vertex set into \(V_1, \ldots, V_{\frac{n}{m}} \) each of size \(m \). Can we ensure that every edge of \(R \) is contained within some \(V_i \)?

Lemma

Yes.

Let \(R_i \) be the part of \(R \) contained within \(V_i \).

For each \(i \), there are at most \(2^{\binom{m}{2}} \) possibilities for \(R_i \).

So we only need to find \(2^{\binom{m}{2}} \frac{n}{m} = O(n) \) absorbers.
Definition

A graph T is an (H_1, H_2)-transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.
Definition
A graph T is an (H_1, H_2)-transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Proposition
If H_2 has a triangle decomposition, then $T \cup H_2$ is an absorber for H_1.

$H_1 \leftrightarrow H_2$ if there is an (H_1, H_2)-transformer.

Useful fact \leftrightarrow is symmetric \leftrightarrow is transitive—if $H_1 \leftrightarrow H_2 \leftrightarrow H_3$, then $H_1 \leftrightarrow H_3$.

Transformers

Definition
A graph T is an (H_1, H_2)-transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Proposition
If H_2 has a triangle decomposition, then $T \cup H_2$ is an absorber for H_1.

Write $H_1 \leftrightarrow H_2$ if there is an (H_1, H_2)-transformer.

Useful fact
- \leftrightarrow is symmetric
Definition
A graph T is an (H_1, H_2)-transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Proposition
If H_2 has a triangle decomposition, then $T \cup H_2$ is an absorber for H_1.

Write $H_1 \leftrightarrow H_2$ if there is an (H_1, H_2)-transformer.

Useful fact
- \leftrightarrow is symmetric
- \leftrightarrow is transitive—if $H_1 \leftrightarrow H_2 \leftrightarrow H_3$, then $H_1 \leftrightarrow H_3$
Moving

Definition

A graph T is an (H_1, H_2)-transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Suppose H_1 is isomorphic to H_2.

$H_1 = C_9$

$H_2 = C_9$
Moving

Definition

A graph \(T \) is an \((H_1, H_2)\)-transformer if both \(H_1 \cup T \) and \(T \cup H_2 \) have triangle decompositions.

Suppose \(H_1 \) is isomorphic to \(H_2 \).
A graph T is an (H_1, H_2)-transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Suppose H_1 is isomorphic to H_2.

This allows us to 'move graphs around'.
Moving

Definition

A graph T is an (H_1, H_2)-transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Suppose H_1 is isomorphic to H_2.

\[H_1 = C_9 \]

\[H_2 = C_9 \]

\[T \]

This allows us to 'move graphs around'.
A graph T is an (H_1, H_2)-transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Suppose H_1 is isomorphic to H_2.

This allows us to ‘move graphs around’.
Identify the green vertices of H_2.

Note that T is still an (H_1, H_2)-transformer. So we can 'identify vertices' (providing no multiple edges are created). Since \leftrightarrow is symmetric, we can 'split vertices' (providing the resulting graph is still triangle-divisible).
Identify the green vertices of H_2.

Note that T is still an (H_1, H_2)-transformer.
So we can ‘identify vertices’ (providing no multiple edges are created).
Identifying vertices

Identify the green vertices of H_2.

Note that T is still an (H_1, H_2)-transformer. So we can ‘identify vertices’ (providing no multiple edges are created). Since \leftrightarrow is symmetric, we can ‘split vertices’ (providing the resulting graph is still triangle-divisible).
Subdividing an edge

Let xy be an edge.
Let \(xy \) be an edge.

- Attach a triangle to \(x \)
Let xy be an edge.

1. Attach a triangle to x
2. Split the vertex x.

We can subdivide xy into a path of length 4. So we can identify vertices; split a vertex; subdivide an edge.
Subdividing an edge

Let xy be an edge.

1. Attach a triangle to x
2. Split the vertex x.

We can subdivide xy into a path of length 4.
Let xy be an edge.

1. Attach a triangle to x
2. Split the vertex x.

We can subdivide xy into a path of length 4.

So we can
- identify vertices;
- split a vertex;
- subdivide an edge.
Suppose that $e(H) = 3k$.

H
Constructing an absorber for a given H

Suppose that $e(H) = 3k$.

1. Subdivide all edges of H.

2. Identify all original vertices of H.

3. Let J be a union of k vertex-disjoint triangles.

4. Subdivide all edges of J.

5. Identify all original vertices of J.

6. Since \leftrightarrow is transitive, $H \leftrightarrow J$.

Thus H has an absorber.
Constructing an absorber for a given H

Suppose that $e(H) = 3k$.

1. Subdivide all edges of H.
2. Identify all original vertices of H.

Since \leftrightarrow is transitive, $H \leftrightarrow J$.
Thus H has an absorber.

$H \leftrightarrow L$

$3k$
Constructing an absorber for a given H

Suppose that $e(H) = 3k$.

1. Subdivide all edges of H.
2. Identify all original vertices of H.
3. Let J be a union of k vertex-disjoint triangles.

![Diagram showing the construction process](image)
Constructing an absorber for a given H

Suppose that $e(H) = 3k$.

1. Subdivide all edges of H.
2. Identify all original vertices of H.
3. Let J be a union of k vertex-disjoint triangles.
4. Subdivide all edges of J.

\[H \leftrightarrow L \]

\[3k \]

\[J \]
Suppose that $e(H) = 3k$.

1. Subdivide all edges of H.
2. Identify all original vertices of H.
3. Let J be a union of k vertex-disjoint triangles.
4. Subdivide all edges of J.
5. Identify all original vertices of J.

Since \leftrightarrow is transitive, $H \leftrightarrow J$.

Thus H has an absorber.
Suppose that $e(H) = 3k$.

1. Subdivide all edges of H.
2. Identify all original vertices of H.
3. Let J be a union of k vertex-disjoint triangles.
4. Subdivide all edges of J.
5. Identify all original vertices of J.
6. Since \leftrightarrow is transitive, $H \leftrightarrow J$. Thus H has an absorber.
Open problem: better fractional thresholds

Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with $\delta(G) \geq (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Problem

Determine $\delta_{frac}(F)$, i.e. the minimum degree threshold for a graph G to have a fractional F-decomposition.

• For triangles, showing that $\delta_{frac}(K_3) = 3/4$ could be combined with our results to show the actual 'decomposition threshold' is $(3/4 + o(1))n$.

• Actually, showing that $3n/4$ guarantees '(fractional) almost decomposition' would suffice.
Open problem: better fractional thresholds

Theorem (Barber, K¨uhn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with $\delta(G) \geq (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Problem

Determine $\delta_{frac}(F)$, i.e. the minimum degree threshold for a graph G to have a fractional F-decomposition.

- For triangles, showing that $\delta_{frac}(K_3) = 3/4$ could be combined with our results to show the actual ‘decomposition threshold’ is $(3/4 + o(1))n$.
- Actually, showing that $3n/4$ guarantees ‘(fractional) almost decomposition’ would suffice.
Theorem (Barber, Kühn, Lo, Osthus 2014+)

For n sufficiently large, every C_ℓ-divisible graph G on n vertices with

$$\delta(G) \geq \begin{cases}
\left(\frac{2}{3} + o(1)\right)n & \text{if } \ell = 4, \\
\left(\frac{1}{2} + o(1)\right)n & \text{if } \ell \geq 6 \text{ is even},
\end{cases}$$

has a C_ℓ-decomposition.

asymptotically best possible

$$\ell \geq 6 \text{ even}$$

$$n/2 \quad n/2$$

$$\delta = n/2 - 1$$

neither component is C_ℓ-divisible, but entire graph is
Decompositions into even cycles

Theorem (Barber, Kühn, Lo, Osthus 2014+)

For n sufficiently large, every C_ℓ-divisible graph G on n vertices with

$$\delta(G) \geq \begin{cases}
\left(\frac{2}{3} + o(1) \right) n & \text{if } \ell = 4, \\
\left(\frac{1}{2} + o(1) \right) n & \text{if } \ell \geq 6 \text{ is even},
\end{cases}$$

has a C_ℓ-decomposition.

asymptotically best possible

$$\ell = 4 \text{ (Kahn & Winkler)}$$

$\delta = 3n/5 - 1$, odd number of edges in blown-up C_5
Decompositions into even cycles

Theorem (Barber, Kühn, Lo, Osthus 2014⁺)

For \(n \) sufficiently large, every \(C_\ell \)-divisible graph \(G \) on \(n \) vertices with

\[
\delta(G) \geq \begin{cases}
\left(\frac{2}{3} + o(1)\right) n & \text{if } \ell = 4, \\
\left(\frac{1}{2} + o(1)\right) n & \text{if } \ell \geq 6 \text{ is even},
\end{cases}
\]

has a \(C_\ell \)-decomposition.

asymptotically best possible

\[
\ell = 4 \text{ (Taylor)}
\]

\[
\delta = 2n/3 - 2
\]

every \(C_4 \) has even number of edges inside \(A \), but \(e(A) \) is odd