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Abstract

We study Hamiltonicity in random subgraphs of the hy-

percube Qn. Our first main theorem is an optimal hitting

time result. Consider the random process which includes

the edges of Qn according to a uniformly chosen random

ordering. Then, with high probability, as soon as the graph

produced by this process has minimum degree 2k, it con-

tains k edge-disjoint Hamilton cycles, for any fixed k ∈ N.

Secondly, we obtain a perturbation result: if H ⊆ Qn satis-

fies δ(H) ≥ αn with α > 0 fixed and we consider a random

binomial subgraph Qn
p of Qn with p ∈ (0, 1] fixed, then with

high probability H ∪Qn
p contains k edge-disjoint Hamilton

cycles, for any fixed k ∈ N. In particular, both results re-

solve a long standing conjecture, posed e.g. by Bollobás, that

the threshold probability for Hamiltonicity in the random

binomial subgraph of the hypercube equals 1/2. Our tech-

niques also show that, with high probability, for all fixed

p ∈ (0, 1] the graph Qn
p contains an almost spanning cycle.

Our methods involve branching processes, the Rödl nibble,

and absorption.

1 Introduction and results

The n-dimensional hypercube Qn is the graph whose
vertex set consists of all n-bit 01-strings, where two ver-
tices are joined by an edge whenever their corresponding
strings differ by a single bit. The hypercube and its sub-
graphs have attracted much attention in graph theory
and computer science, e.g. as a sparse network model
with strong connectivity properties. It is well known
that hypercubes contain spanning paths (also called
Gray codes or Hamilton paths) and, for all n ≥ 2, they
contain spanning cycles (also referred to as cyclic Gray
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codes or Hamilton cycles). Classical applications of Gray
codes in computer science are described in the surveys of
Savage [46] and Knuth [34]. Applications of hypercubes
to parallel computing are discussed in the monograph of
Leighton [43].

1.1 Spanning subgraphs in hypercubes. The sys-
tematic study of spanning paths, trees and cycles in
hypercubes was initiated in the 1970s. There is by now
an extensive literature about subtrees of the hypercube;
see, for instance, results of Bhatt, Chung, Leighton and
Rosenberg [5] about embedding subdivided trees (instig-
ated by processor allocation in distributed computing
systems).

As a generalization of Hamilton paths, Caha and
Koubek [18] considered the problem of finding a collec-
tion of spanning vertex-disjoint paths, given a prescribed
set of endpoints. After several improvements [20, 29],
this problem was recently resolved by Dvořák, Gregor
and Koubek [23].

The applications of hypercubes as networks in
computer science inspired questions about the reliability
of its properties. This led to considering ‘faulty’
hypercubes in which some edges or vertices are missing.
For instance, Chan and Lee [19] showed that, if Qn
has at most 2n − 5 faulty edges and every vertex has
(non-faulty) degree at least 2, then there is a Hamilton
cycle in Qn which avoids all faulty edges (and this
condition is best possible). They also showed that the
general problem of determining the Hamiltonicity of Qn
with a larger number of faulty edges is NP-complete.
More generally, Dvořák and Gregor [22] studied the
existence of spanning collections of vertex-disjoint paths
with prescribed endpoints in faulty hypercubes. These
can be seen as extremal results about the robustness
of the hypercube with respect to containing spanning
collections of paths and cycles.

1.2 Hamilton cycles in binomial random graphs.
One of the most studied random graph models is
the binomial random graph Gn,p. Here we have a
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(labelled) set of n vertices and we include each edge
with probability p independently of all other edges.

Given some monotone increasing graph property P,
a function p∗ = p∗(n) is said to be a (coarse) threshold
for P if P[Gn,p ∈ P] → 1 whenever p/p∗ → ∞ and
P[Gn,p ∈ P ]→ 0 whenever p/p∗ → 0. One can define the
stronger notion of a sharp threshold similarly: p∗ = p∗(n)
is said to be a sharp threshold for P if, for all ε > 0,
we have that P[Gn,p ∈ P] → 1 whenever p ≥ (1 + ε)p∗

and P[Gn,p ∈ P] → 0 whenever p ≤ (1 − ε)p∗. The
problem of finding the threshold for the containment of
a Hamilton cycle was solved independently by Pósa [45]
and Koršunov [37]. Furthermore, Koršunov [37] de-
termined the sharp threshold for Hamiltonicity to be
p∗ = log n/n. These results were later made even more
precise by Komlós and Szemerédi [36]. It is worth noting
that p∗ = log n/n is also the sharp threshold for the
property of having minimum degree at least 2. In this
sense, the results about Hamilton cycles in Gn,p can
be interpreted as saying that the natural obstruction
of having sufficiently high minimum degree is also an
‘almost sufficient’ condition.

A property that generalises Hamiltonicity is that
of containing k edge-disjoint Hamilton cycles, for some
k ∈ N. We will present more results in this direction
in Section 1.4; for now, let us simply note that the
sharp threshold for the containment of k edge-disjoint
Hamilton cycles in Gn,p, for some k ∈ N independent
of n, is p∗ = log n/n, i.e., the same as the threshold for
Hamiltonicity.

The study of robustness of graph properties has also
attracted much attention recently. For instance, given
a graph G which is known to satisfy some property P,
consider a random subgraph Gp obtained by deleting
each edge of G with probability 1−p, independently of all
other edges. The problem then is to determine the range
of p for which Gp satisfies P with high probability. In
this setting, a result of Krivelevich, Lee and Sudakov [39]
asserts that, for any n-vertex graph G with minimum
degree at least n/2, the graph Gp is asymptotically
almost surely Hamiltonian whenever p� log n/n. This
can be viewed as a robust version of Dirac’s theorem on
Hamilton cycles.

1.3 Hamilton cycles in binomial random sub-
graphs of the hypercube. Throughout this paper,
we will consider random subgraphs of the hypercube
and show that the hypercube is robustly Hamiltonian
in the above sense. We will denote by Qnp the random
subgraph of the hypercube obtained by removing each
edge of Qn with probability 1−p independently of every
other edge.

The random graph Qnp was first studied by

Burtin [17], who proved that the sharp threshold for
connectivity is 1/2. This result was later made more
precise by Erdős and Spencer [25] and Bollobás [7]. As
a related problem, Dyer, Frieze and Foulds [24] determ-
ined the sharp threshold for connectivity in subgraphs
of Qn obtained by removing both vertices and edges
uniformly at random. Later, Bollobás [9] proved that
1/2 is also the sharp threshold for the containment of a
perfect matching in Qnp . As with the Gn,p model, this
also coincides with the threshold for having minimum
degree at least 1.

The main goal of this paper is to study the analogous
problem for Hamiltonicity in random subgraphs of the
hypercube. There is a folklore conjecture that the sharp
threshold for Hamiltonicity in Qnp should be 1/2, i.e., the
same as the threshold for having minimum degree at least
2. This question was explicitly asked by Bollobás [10] at
several conferences in the 1980s, in the ICM surveys of
Frieze [27] and Kühn and Osthus [41], as well as in the
recent survey of Frieze [28]. A special case of our first
result resolves this problem.

Theorem 1.1. For any k ∈ N, the sharp threshold
for the property of containing k edge-disjoint Hamilton
cycles in Qnp is p∗ = 1/2.

For k = 1, this can be seen as a probabilistic version
of the result on faulty hypercubes [19], and also as a
statement about the robustness of Hamiltonicity in the
hypercube.

While, for p < 1/2, with high probability Qnp will not
contain a Hamilton cycle, it turns out that the reason
for this is mostly due to local obstructions (e.g., vertices
with degree zero or one). More precisely, we prove that,
for any constant p ∈ (0, 1/2), a.a.s. the random graph
Qnp contains an almost spanning cycle.

Theorem 1.2. For any δ, p ∈ (0, 1], a.a.s. the graph
Qnp contains a cycle of length at least (1− δ)2n.

We believe that the probability bound is far from
optimal, in the sense that random subgraphs of the hyper-
cube where edges are picked with vanishing probability
should also satisfy this property.

Conjecture 1.1. Suppose that p = p(n) satisfies that
pn → ∞. Then, a.a.s. Qnp contains a cycle of length
(1− o(1))2n.

Similarly, it would be interesting to determine which
(long) paths and (almost spanning) trees can be found
in Qnp . Moreover, our methods might also be useful to
embed other large subgraphs, such as F -factors.
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Conjecture 1.2. Suppose ε > 0 and an integer ` ≥ 2
are fixed and p ≥ 1/2 + ε. Then, a.a.s. Qnp contains
a C2`-factor, that is, a set of vertex-disjoint cycles of
length 2` which together contain all vertices of Qn.

1.4 Hitting time results. Remarkably, the above
intuition that having the necessary minimum degree
is an ‘almost sufficient’ condition for the containment
of edge-disjoint perfect matchings and Hamilton cycles
can be strengthened greatly via so-called hitting time
results. These are expressed in terms of random graph
processes. The general setting is as follows. Let G
be an n-vertex graph with m = m(n) edges, and
consider an arbitrary labelling E(G) = {e1, . . . , em}.
The G-process is defined as a random sequence of nested
graphs G̃(σ) = (Gt(σ))mt=0, where σ is a permutation of
{1, . . . ,m} chosen uniformly at random and, for each
i ∈ {0, . . . ,m}, we set Gi(σ) = (V (G), Ei), where
Ei := {eσ(j) : j ∈ {1, . . . , i}}. Given any monotone
increasing graph property P such that G ∈ P , the hitting
time for P in the above G-process is the random variable
τP(G̃(σ)) := min{t ∈ {0, . . . ,m} : Gt(σ) ∈ P}.

Let us denote the properties of containing a per-
fect matching by PM, Hamiltonicity by HAM, and
connectivity by CON , respectively. For any k ∈ N,
let δk denote the property of having minimum degree
at least k, and let HMk denote the property of con-
taining bk/2c edge-disjoint Hamilton cycles and, if k is
odd, one matching of size bn/2c which is edge-disjoint
from these Hamilton cycles. With this notion of hitting
times, many of the results about thresholds presented
in Sections 1.2 and 1.3 can be strengthened significantly.
For instance, Bollobás and Thomason [13] showed that
a.a.s. τCON (K̃n(σ)) = τδ1(K̃n(σ)) and, if n is even, then
a.a.s. τPM(K̃n(σ)) = τδ1(K̃n(σ)). Ajtai, Komlós and
Szemerédi [1] and Bollobás [8] independently proved that
a.a.s. τHAM(K̃n(σ)) = τδ2(K̃n(σ)). This was later gener-
alised by Bollobás and Frieze [11], who proved that, given
any k ∈ N, for n even a.a.s. τHMk(K̃n(σ)) = τδk(K̃n(σ)).

A hitting time result for the property of having k
edge-disjoint Hamilton cycles when k is allowed to grow
with n is still not known, even in Kn-processes. As a
slightly weaker notion, consider property H, where we
say that a graph G satisfies property H if it contains
bδ(G)/2c edge-disjoint Hamilton cycles, together with
an additional edge-disjoint matching of size bn/2c if δ(G)
is odd. Knox, Kühn and Osthus [33], Krivelevich and
Samotij [40] as well as Kühn and Osthus [42] proved
results for different ranges of p which, together, show
that Gn,p a.a.s. satisfies property H.

For graphs other than the complete graph, Johans-
son [32] recently obtained a robustness version of the
hitting time results for Hamiltonicity. In particular, for

any n-vertex graph G with δ(G) ≥ (1/2 +ε)n, he proved
that a.a.s. τHAM(G̃(σ)) = τδ2(G̃(σ)). This was later
extended to a larger class of graphs G and to hitting
times for HM2k, for all k ∈ N independent of n, by
Alon and Krivelevich [2].

In the setting of random subgraphs of the hyper-
cube, Bollobás [9] determined the hitting time for per-
fect matchings by showing that a.a.s. τPM(Q̃n(σ)) =
τCON (Q̃n(σ)) = τδ1(Q̃n(σ)). One of our main results
(which implies Theorem 1.1) is a hitting time result for
Hamiltonicity (and, more generally, property HMk) in
Qn-processes. Again, this question was raised by Bol-
lobás [10] at several conferences.

Theorem 1.3. For all k ∈ N, a.a.s. τHMk(Q̃n(σ)) =
τδk(Q̃n(σ)), that is, the hitting time for the containment
of a collection of bk/2c Hamilton cycles and k− 2bk/2c
perfect matchings, all pairwise edge-disjoint, in Qn-
processes is a.a.s. equal to the hitting time for the
property of having minimum degree at least k.

We also wonder whether this is true if k is allowed
to grow with n, and propose the following conjecture
which, if true, would be an approximate version of the
results of [33, 40, 42] in the hypercube.

Conjecture 1.3. For all p ∈ (1/2, 1] and η > 0,
a.a.s. Qnp contains (1/2−η)δ(Qnp ) edge-disjoint Hamilton
cycles.

1.5 Randomly perturbed graphs. A relatively re-
cent area at the interface of extremal combinatorics and
random graph theory is the study of randomly perturbed
graphs. Generally speaking, the idea is to consider a
deterministic dense n-vertex graph H (usually satisfying
some minimum degree condition) and a random graph
Gn,p on the same vertex set as H. The question is
whether H is close to satisfying some given property P
in the sense that a.a.s. H ∪Gn,p ∈ P for some small p.
This line of research was sparked off by Bohman, Frieze
and Martin [6], who showed that, if H is an n-vertex
graph with δ(H) ≥ αn, for any constant α > 0, then
a.a.s. H∪Gn,p is Hamiltonian for all p ≥ C(α)/n. Other
properties that have been studied in this context are
e.g. the existence of powers of Hamilton cycles and gen-
eral bounded degree spanning graphs [16], F -factors [3]
or spanning bounded degree trees [15, 38]. One common
phenomenon in this model is that, by considering the
union with a dense graph H (i.e., a graph H with linear
degrees), the probability threshold of different proper-
ties is significantly lower than that in the classical Gn,p
model. The results for Hamiltonicity [6] were very re-
cently generalised by Hahn-Klimroth, Maesaka, Mogge,
Mohr and Parczyk [30] to allow α to tend to 0 with n
(that is, to allow graphs H which are not dense).
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We consider randomly perturbed graphs in the
setting of subgraphs of the hypercube. To be precise, we
take an arbitrary spanning subgraph H of the hypercube,
with linear minimum degree, and a random subgraph Qnε ,
and consider H ∪ Qnε . Note that the minimum degree
is required to be linear with respect to the dimension
n (and not with respect to the number of vertices, as
in the aforementioned results). Note also that Qnε is a
‘dense’ subgraph of Qn, but for ε < 1/2 it will contain
both isolated vertices and vertices of very low degrees.
In this setting, we show the following result.

Theorem 1.4. For all ε, α ∈ (0, 1] and k ∈ N, the
following holds. Let H be a spanning subgraph of Qn
such that δ(H) ≥ αn. Then, a.a.s. H ∪Qnε contains k
edge-disjoint Hamilton cycles.

We can also allow H to have much smaller degrees,
at the cost of requiring a larger probability to find the
Hamilton cycles.

Theorem 1.5. For every integer k ≥ 2, there exists
ε > 0 such that a.a.s., for every spanning subgraph H
of Qn with δ(H) ≥ k, the graph H ∪ Qn1/2−ε contains

a collection of bk/2c Hamilton cycles and k − 2bk/2c
perfect matchings, all pairwise edge-disjoint.

Note that Theorem 1.5 can be viewed as a ‘univer-
sality’ result for H, meaning that it holds for all choices
of H simultaneously. It would be interesting to know
whether such a result can also be obtained for the lower
edge probability assumed in Theorem 1.4, i.e., is it the
case that, for all ε, α ∈ (0, 1], a.a.s. G ∼ Qnε has the prop-
erty that, for every spanning H ⊆ Qn with δ(H) ≥ αn,
G ∪H is Hamiltonian?

Theorem 1.1 follows straightforwardly from The-
orem 1.4, and it follows trivially from Theorem 1.3. In
turn, Theorem 1.3 follows from Theorem 1.5. On the
other hand, Theorems 1.2, 1.4 and 1.5, while being
proved with similar ideas, are incomparable.

1.6 Percolation on the hypercube. To build
Hamilton cycles in random subgraphs of the hypercube,
we will consider a random process which can be viewed
as a branching process or percolation process on the
hypercube. With high probability, for constant p > 0,
this process results in a bounded degree tree in Qnp which
covers most of the neighbourhood of every vertex in Qn,
and thus spans almost all vertices of Qn. The version
stated below is a special case of our main result in this
setting.

Theorem 1.6. For any fixed ε, p ∈ (0, 1], there exists
D = D(ε) such that a.a.s. Qnp contains a tree T with

∆(T ) ≤ D and such that |V (T ) ∩ NQn(x)| ≥ (1 − ε)n
for every x ∈ V (Qn).

Further results concerning the local geometry of the
giant component in Qnp for constant p ∈ (0, 1/2) were
proved recently by McDiarmid, Scott and Withers [44].

The random process we consider in the proof of
Theorem 1.6 can be viewed as a branching random
walk (with a bounded number of branchings at each
step). Simpler versions of such processes (with infinite
branchings allowed) have been studied by Fill and
Pemantle [26] and Kohayakawa, Kreuter and Osthus [35],
and we will base our analysis on these. Motivated by our
approach, we raise the following question, which seems
interesting in its own right.

Question 1.4. Does a non-returning random walk on
Qn a.a.s. visit almost all vertices of Qn?

More generally, there are many results and applica-
tions concerning random walks on the hypercube (but
allowing for returns). For example, motivated by a pro-
cessor allocation problem, Bhatt and Cai [4] studied a
walk algorithm to embed large (subdivided) trees into
the hypercube. Moreover, the analysis of (branching)
random walks is a critical ingredient in the study of
percolation thresholds for the existence of a giant com-
ponent in Qnp . These have been investigated e.g. by
Bollobás, Kohayakawa and  Luczak [12], Borgs, Chayes,
van der Hofstad, Slade and Spencer [14] and van der
Hofstad and Nachmias [31].

2 Outline of the main proofs

2.1 Overall outline. The proofs of our main results
are quite involved, and thus we cannot present them
here. Instead, we now sketch the key ideas for the proofs.
Full details can be found in [21].

We will first focus on the proof of Theorem 1.4. We
will first prove the case k = 1, and later use this to deduce
the case when k > 1. Recall we are given H ⊆ Qn with
δ(H) ≥ αn, and G ∼ Qnε , with α, ε ∈ (0, 1]. Our aim is
to show that a.a.s. H ∪G is Hamiltonian.

Our approach for finding a Hamilton cycle is to first
obtain a spanning tree. By passing along all the edges of
a spanning tree T (with a vertex ordering prescribed by
a depth first search), one can create a closed spanning
walk W which visits every edge of T twice. The idea is
then to modify such a walk into a Hamilton cycle. (This
approach is inspired by the approximation algorithm for
the Travelling Salesman Problem which returns a tour
of at most twice the optimal length.) More precisely, our
approach will be to obtain a near-spanning tree of Qn−s,
for some suitable constant s, and to blow up vertices of
this tree into s-dimensional cubes (see Figure 1). These
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cubes can then be used to move along the tree without
revisiting vertices, which will result in a near-Hamilton
cycle H. All remaining vertices which are not included
in H will be absorbed into H via absorbing structures
that we carefully put in place beforehand.

In Sections 2.2 to 2.4 we outline in more detail
how we find a long cycle in G (Theorem 1.2). Note
that in Theorem 1.2 we have G ∼ Qnε , so a.a.s. G will
have isolated vertices which prevent any Hamilton cycle
occurring as a subgraph. In Section 2.5 we outline how
we build on this approach to obtain the case k = 1 of
Theorem 1.4. In Section 2.6 we sketch how we obtain
Theorem 1.5 and, thus, Theorem 1.3.

2.2 Building block I: trees via branching pro-
cesses. We view each vertex in Qn as an n-dimensional
01-coordinate vector. By fixing the first s coordinates,
we fix one of 2s layers L1, . . . , L2s of the hypercube,
where s ∈ N will be constant. Thus, L ∼= Qn−s for
each layer L. By considering a Hamilton cycle in Qs,
we may assume that consecutive layers differ only by a
single coordinate on the unique elements of Qs which
define them. Let G ∼ Qnε . For each layer L, we let
L(G) := G[V (L)] and, by momentarily viewing these
layers as different subgraphs on the vertex set of Qn−s,
we define the intersection graph I(G) :=

⋂2s

i=1 Li(G).
Hence, I(G) ∼ Qn−s

ε2s
. We view I(G) as a subgraph of

Qn−s. We first show that I(G) contains a near-spanning
tree T (see Theorem 2.1 below). Thus, a copy of T is
present in each of L1(G), . . . , L2s(G) simultaneously.

Since the walk W mentioned in Section 2.1 passes
through each vertex x of T a total of dT (x) times, it
will be important later for T to have bounded degree.
In order to guarantee this, we run bounded degree
branching processes from several far apart ‘corners’ of
the hypercube. Roughly speaking, T will be formed by
taking a union of these processes and removing cycles.
Crucially, the model we introduce for these processes
has a joint distribution with Qn−s

ε2s
, so that T will in fact

appear as a subgraph of I(G). In applying our main
result about trees inQnp , we obtain a bounded degree tree
T ⊆ I(G) which contains almost all of the neighbours of
every vertex of I(G). We also obtain a ‘small’ reservoir
set R ⊆ V (I(G)), which T avoids and which will play a
key role later in the absorption of vertices which do not
belong to our initial long cycle. At this point, both T
and R are now present in every layer of the hypercube
simultaneously.

The precise statement of our result is given below.
Here, given two vertices x, y ∈ V (Qn) and some k ∈ N,
dist(x, y) represents the distance between x and y, and
BkQn(x) is the set of vertices v ∈ V (Qn) whose distance
to x is at most k. The same notation is used for sets of

vertices. Furthermore, given a graph G and δ ∈ [0, 1], we
let Res(G, δ) be a probability distribution on subsets of
V (G), where R ∼ Res(G, δ) is obtained by adding each
vertex v ∈ V (G) to R with probability δ, independently
of every other vertex.

Theorem 2.1. Let 0 < 1/D, δ � ε′ ≤ 1/2, and let
ε, γ ∈ (0, 1] and k ∈ N. Then, the following holds a.a.s.

Let A ⊆ V (Qn) with the following two properties:

(P1) for any distinct x, y ∈ A we have dist(x, y) ≥ γn,
and

(P2) if we let x1 := {0}n, x2 := {1}n, x3 :=
{1}dn/2e{0}n−dn/2e and x4 := {0}dn/2e{1}n−dn/2e,
then Bk+2

Qn (A) ∩ {x1, x2, x3, x4} = ∅.

Let R ∼ Res(Qn, δ). Then, there exists a tree T ⊆
Qnε − (R ∪BkQn(A)) such that

(T1) ∆(T ) < D,

(T2) for all x ∈ V (Qn) \BkQn(A), we have that

|NQn(x) ∩ V (T )| ≥ (1− ε′)n.

2.3 Building block II: cube tilings via the
nibble. Let ` < s be fixed (in the proof, these values
depend on several other parameters, but are independ-
ent of n; for simplicity, here we think of them as large
constants, both much larger than the maximum degree
of the tree T ). In order to gain more local flexibility
when traversing the near-spanning tree T , we augment T
by locally adding a near-spanning `-cube factor of I(G).
One can use classical results on matchings in almost reg-
ular uniform hypergraphs of small codegree to show that
I(G) contains such a collection of Q` spanning almost
all vertices of I(G). However, we require the following
stronger properties, namely that there exists a collection
C of vertex disjoint copies of Q` in I(G) so that, for each
x ∈ V (I(G)),

(i) C covers almost all vertices in NI(Qn)(x);

(ii) the directions spanned by the cubes intersecting
NI(Qn)(x) do not correlate too strongly with any
given set of directions.

The precise statement is given below. Neither (i) nor
(ii) follow from existing results on hypergraph matchings
and the proofs strongly rely on geometric properties
intrinsic to the hypercube.

In the following, D(Qn) is the set of 01-strings of
length n which contain exactly one 1 (these are the
directions of the hypercube). Given any collection C of
vertex disjoint copies of Q` in I(G), a vertex x ∈ V (Qn)
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and any Y ⊆ NQn(x), we denote Cx(Y ) := {C ∈ C :
dist(x,C) = 1, V (C) ∩ Y 6= ∅}. In particular, we write
Cx := Cx(NQn(x)). Finally, given any S ⊆ D(Qn) and
any positive t ∈ R, we denote Σ(C, S, t) := {C ∈ C :
|D(C) ∩ S| ≥ t}.

Theorem 2.2. Let ε, δ, α, β ∈ (0, 1) and K, ` ∈ N be
such that 1/` � α � β. For each x ∈ {0, 1}n, let
A0(x) := NQn(x) and, for each i ∈ {1, . . . ,K}, let
Ai(x) ⊆ A0(x) be a set of size |Ai(x)| ≥ βn. Then,
the graph Qnε a.a.s. contains a collection C of vertex-
disjoint copies of Q` such that the following properties
are satisfied for every x ∈ {0, 1}n:

(M1) |A0(x) ∩ V (C)| ≥ (1− δ)n;

(M2) for every ê ∈ D(Qn) we have

|Σ(Cx, {ê}, 1)| = o(n1/2);

(M3) for every i ∈ {0, . . . ,K} and every S ⊆ D(Qn) with
αn/2 ≤ |S| ≤ αn we have

|Σ(Cx(Ai(x)), S, `1/2)| ≥ |Ai(x)|/3000.

To prove that such a near-spanning `-cube factor
of I(G) exists, we build on the so-called Rödl nibble.
More precisely, we consider the hypergraph H, with
V (H) = V (Qn−s), where the edge set is given by the
copies of Q` in I(G). We run a random iterative process
where at each stage we add a ‘small’ number of edges
from H to C, before removing all those remaining edges
of H which ‘clash’ with our selection. A careful analysis
and an application of the Lovász local lemma yield the
existence of an instance of this process which terminates
in the near-spanning `-cube factor with the required
properties.

2.4 Constructing a long cycle. Roughly speaking,
we will use T as a backbone to provide ‘global’ connectiv-
ity, and will use the near-spanning `-cube factor C and
the layer structure to gain high ‘local’ connectivity and
flexibility. We show a representation of this structure in
Figure 1. Let T ∪

⋃
C∈C C =: Γ′ ⊆ I(G) and let Γ ⊆ Γ′

be formed by removing all leaves and isolated cubes in
Γ′. It follows by our tree and nibble results that almost
all vertices of I(G) are contained in Γ. Note that, for
each v ∈ V (Qn−s) = V (I(G)), there is a unique vertex
in each of the 2s layers which corresponds to v. We refer
to these 2s vertices as clones of v and to the collection
of these 2s clones as a vertex molecule. Similarly, each
`-cube C ∈ C contained in Γ gives rise to a cube molecule
(that is, a collection of 2s `-cubes, one in each layer, all
corresponding to the same `-cube in I(G)). We construct

Figure 1: A representation of the main structure used for the
proofs. We think of Qn as a ‘product’ of two smaller cubes. Each
‘horizontal’ cube represents a copy of Qn−s (a layer), and the
red ‘vertical’ cube represents Qs. All ‘horizontal’ cubes contain

a copy of the same tree T and the same cube tiling C (which are
consistently distributed with respect to the ‘vertical’ cube; this
gives rise to ‘cube molecules’). When finding a long cycle, cube

molecules are highly connected and can be covered by few paths,
and the tree is used to join cube molecules to one another.

a cycle in G which covers all of the cube molecules (and,
therefore, almost all vertices in Qn).

Let Γ∗ be the graph obtained from Γ by contracting
each `-cube C ⊆ Γ into a single vertex. We refer to such
vertices in Γ∗ as atomic vertices, and to all other vertices
as inner tree vertices. We run a depth-first search on Γ∗

to give an order to the vertices. Next, we construct a
skeleton which will be the backbone for our long cycle.
The skeleton is an ordered sequence of vertices in Qn
which contains the vertices via which our cycle will enter
and exit each molecule. That is, given an exit vertex v
for some molecule in the skeleton, the vertex u which
succeeds v in the skeleton will be an entry vertex for
another molecule, and such that uv ∈ E(G). Here, a
vertex in the skeleton belonging to an inner tree vertex
molecule is referred to as both an entry and exit vertex.
(Actually, we will first construct an ‘external skeleton’,
which encodes this information. The skeleton then also
prescribes some edges within molecules which go between
different layers.) We use the ordering of the vertices of
Γ∗ to construct the skeleton in a recursive way starting
from the lowest ordered vertex. It is crucial that our
tree T has bounded degree (much smaller than 2s), so
that no molecule is overused in the skeleton.

Once the skeleton is constructed, we apply our
‘connecting lemmas’ [21, Lemmas 8.8 and 8.9], for whose
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proofs we rely on results of Dvořák and Gregor [22].
These connecting lemmas, applied to a cube molecule
with a bounded number of pairs of entry and exit
vertices as input (given by the skeleton), provide us
with a sequence of vertex-disjoint paths which cover
this molecule, where each path has start and end
vertices consisting of an input pair. The union of all of
these paths combined with all edges in G between the
successive exit and entry vertices of the skeleton will
then form a cycle H ⊆ G which covers all vertices lying
in the cube molecules (thus proving Theorem 1.2).

2.5 Constructing a Hamilton cycle. In order to
construct a Hamilton cycle in H ∪ G, we will absorb
the vertices of V (Qn) \ V (H) into H. We achieve this
via absorbing structures that we identify for each vertex.
To construct these absorbing structures, we will need
to use some edges of H. Roughly speaking, to each
vertex v we associate a left `-cube Clv ⊆ Qn and a right
`-cube Crv ⊆ Qn, where Clv, C

r
v are both clones of some

`-cubes Cl, Cr ∈ C contained in Γ. We choose these
cubes so that v will have a neighbour u ∈ V (Clv) and
a neighbour u′ ∈ V (Crv), to which we refer as tips of
the absorbing structure. Furthermore, u will have a
neighbour w ∈ V (Crv), which is also a neighbour of u′.
Our near-Hamilton cycle H will satisfy the following
properties:

(a) H covers all vertices in Clv ∪ Crv except for u, and

(b) wu′ ∈ E(H).

These additional properties will be guaranteed by our
connecting lemmas discussed in Section 2.4. We can
then alter H to include the segment wuvu′ instead of
the edge wu′, thus absorbing the vertices u and v into H.
The following types of vertices will require absorption.

(i) Every vertex that is not covered by a clone of either
some inner tree vertex or of some cube C ∈ C which
is contained in Γ.

(ii) The cycle H does not cover all the clones of inner
tree vertices and, thus, the uncovered vertices of
this type will also have to be absorbed.

However, we will not know precisely which of the
vertices described in (ii) will be covered by H and which
of these vertices will need to be absorbed until after
we have constructed the (external) skeleton. Moreover,
many potential absorbing structures are later ruled out
as candidates (for example, if they themselves contain
vertices that will need to be absorbed). Therefore, it
is important that we identify a ‘robust’ collection of
many potential absorbing structures for every vertex
in Qn at a preliminary stage of the proof. The precise

absorbing structure eventually assigned to each vertex
will be chosen via an application of our rainbow matching
lemma [21, Lemma 5.5] at a late stage in the proof.

We will now highlight the purpose of the reservoir
R. Suppose v ∈ V (Qn) is a vertex which needs to be
absorbed via an absorbing structure with left `-cube Clv
and left tip u ∈ V (Clv). Recall that both u and Clv are
clones of some u∗ ∈ V (Γ) and Cl ∈ C, where u∗ ∈ V (Cl).
If u∗ has a neighbour w∗ in T −V (Cl), then it is possible
that the skeleton will assign an edge from u to w for the
cycle H (where w is the clone of w∗ in the same layer as
u). Given that u is now incident to a vertex outside of
Clv, we can no longer use the absorbing structure with u
as a (left) tip (otherwise, we might disconnect T ). To
avoid this problem, we show that most vertices have
many potential absorbing structures whose tips lie in the
reservoir R (which T avoids). Here we make use of vertex
degrees of H. A small number of scant vertices will not
have high enough degree into R. For these vertices we fix
an absorbing structure whose tips do not lie in R, and
then alter T slightly so that these tips are deleted from
T and reassigned to R. The fact that scant vertices are
few and well spread out from each other will be crucial
in being able to achieve this (see [21, Lemma 7.20]).

Let us now discuss two problems arising in the
construction of the skeleton. Firstly, let MC ⊆ Qn
with C ∈ C be a cube molecule which is to be covered
by H. Furthermore, suppose one of the clones Clv of
C belongs to an absorbing structure for some vertex
v. Let u be the tip of Clv and suppose that u has even
parity. We would like to apply the connecting lemmas
to cover MC − {u} by paths which avoid u. But this
would now involve covering one fewer vertex of even
parity than of odd parity. This, in turn, has the effect
of making the construction of the skeleton considerably
more complicated (this construction is simplest when
successive entry and exit vertices have opposite parities).
To avoid this, we assign absorbing structures in pairs, so
that, for each C ∈ C, either two or no clones of C will
be used in absorbing structures. In the case where two
clones are used, we enforce that the tips of these clones
will have opposite parities, and therefore each molecule
MC will have the same number of even and odd parity
vertices to be covered by H. We use our robust matching
lemma (see [21, Lemma 5.2]) to pair up the clones of
absorbing structures in this way. To connect up different
layers of a cube molecule, we will of course need to have
suitable edges between these. Molecules which do not
satisfy this requirement are called ‘bondless’ and are
removed from Γ before the absorption process (so that
their vertices are absorbed).

Secondly, another issue related to vertex parities
arises from inner tree vertex molecules. Depending
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on the degree of an inner tree vertex v ∈ V (T ), the
skeleton could contain an odd number of vertices from
the moleculeMv consisting of all clones of v. All vertices
in Mv outside the skeleton will need to be absorbed.
But since the number of these vertices is odd, it would be
impossible to pair up (in the way described above) the
absorbing structures assigned to these vertices. To fix
this issue, we effectively impose that H will ‘go around
T twice’. That is, the skeleton will trace through every
molecule beginning and finishing at the lowest ordered
vertex in Γ∗. It will then retrace its steps through these
molecules in an almost identical way, effectively doubling
the size of the skeleton. This ensures that the skeleton
contains an even number of vertices from each molecule,
half of them of each parity.

Finally, once we have obtained an appropriate
skeleton, we can construct a long cycle H as described in
Section 2.4. For every vertex in Qn which is not covered
by H we have put in place an absorbing structure, which
is covered by H as described in (a) and (b). Thus,
as discussed before, we can now use these structures to
absorb all remaining vertices into H to obtain a Hamilton
cycle H′ ⊆ H ∪ G, thus proving the case k = 1 of
Theorem 1.4.

2.6 Hitting time for the appearance of a
Hamilton cycle. In order to prove Theorem 1.3, we
consider G ∼ Qn1/2−ε. We show that a.a.s., for any graph

H with δ(H) ≥ 2, the graph G∪H is Hamiltonian (The-
orem 1.5). The main additional difficulty faced here is
that G ∪H may contain vertices having degree as low
as 2. For the set U of these vertices we cannot hope to
use the previous absorption strategy: the neighbours of
v ∈ U may not lie in cubes from C. (In fact, v may not
even have a neighbour within its own layer in G ∪H.)
To handle such small degree vertices, we first prove that
they will be few and well spread out [21, Lemma 9.4]. We
then define three types of new ‘special absorbing struc-
tures’ (see [21, Section 9.1]). The type of the special
absorbing structure SA(v) for v will depend on whether
the neighbours a, b of v in H lie in the same layer as
v. In each case, SA(v) will consist of a short path P1

containing the edges av and bv, and several other short
paths designed to ‘balance out’ P1 in a suitable way.
These paths will be incorporated into the long cycle H
described in Section 2.4. In particular, this allows us
to ‘absorb’ the vertices of U into H. To incorporate the
paths Pi forming SA(v), we will proceed as follows.

Firstly, we make use of the fact that Theorem 2.1
allows us to choose T in such a way that it avoids a
small ball around each v ∈ U . Thus, (all clones of) T
will avoid SA(v), which has the advantage that there will
be no interference between T and the special absorbing

structures. To link up each SA(v) with the long cycle
H, for each endpoint w of a path in SA(v), we will
choose an `-cube in I(G) which suitably intersects T
and which contains w (or, more precisely, the vertex
in I(G) corresponding to w). Altogether, these `-cubes
allow us to find paths between SA(v) and vertices of
H which are clones of vertices in T . The remaining
vertices in molecules consisting of clones of these `-cubes
will be covered in a similar way as in Section 2.4. All
vertices in these balls around U which are not part of
the special absorbing structures will be absorbed into H
via the same absorbing structures used in the proof of
Theorem 1.4 to once again obtain a Hamilton cycle H′.

2.7 Edge-disjoint Hamilton cycles. The results
on k edge-disjoint Hamilton cycles can be deduced
from suitable versions of the case k = 1. Those
versions are carefully formulated to allow us to repeatedly
remove a Hamilton cycle from the original graph. The
following is the result which allows to prove Theorem 1.4.
Theorem 1.5 follows from a similar but more technical
statement [21, Theorem 9.6].

Theorem 2.3. For every ε, α ∈ (0, 1] and c > 0, there
exists Φ ∈ N such that the following holds. Let H ⊆ Qn
be a spanning subgraph with δ(H) ≥ αn and let G ∼ Qnε .
Then, a.a.s. there is a subgraph G′ ⊆ G with ∆(G′) ≤ Φ
such that, for every F ⊆ Qn with ∆(F ) ≤ cΦ, the graph
((H ∪G) \ F ) ∪G′ is Hamiltonian.
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