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Abstract

We show that the countably infinite union of infinite grids, H say, is
minor-universal in the class of all graphs that can be drawn in the plane
without vertex accumulation points, i.e. that H contains every such graph
as a minor. Furthermore, we characterize the graphs that occur as minors
of the infinite grid by a natural topological condition on their embeddings.

1 Introduction

In [3] we constructed a minor-universal planar graph—a planar graph that con-
tains every other planar graph as a minor. Since every finite planar graph is
a minor of some large enough finite grid, a first candidate for such a minor-
universal planar graph might have been the infinite grid. It is easily seen how-
ever, that the grid does not work: the graph H obtained from K4 by joining
to each of its four vertices infinitely many new vertices of degree one is planar
but not a minor of the infinite grid.

Every drawing of H has vertex accumulation points whereas every minor of
the infinite grid has a drawing without them. Thus one might hope that the
infinite grid is minor-universal at least for all VAP-free planar graphs, those
that have a drawing without vertex accumulation points. Again this is not
true: for example the graph that consists of two disjoint copies of the infinite
grid is VAP-free but not a minor of the infinite grid.

One purpose of this paper is to show that infinitely many copies of the grid
will do: the countably infinite disjoint union of infinite grids is a minor-universal
VAP-free planar graph. This is best possible in the sense that every such minor-
universal graph must have infinitely many components, each of which is a minor
of the infinite grid.

Furthermore, we characterize the graphs that do occur as minors of the grid
by more restrictive conditions on their embeddings: they are exactly those
graphs that have a drawing without vertex accumulation points such that each
edge accumulation point arises from edges with a common endvertex.

2 Terminology

Our basic notation follows Diestel [2], except that we allow the edges of plane
graphs to be simple Jordan curves rather than just polygonal arcs. All graphs
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in this paper are countable.
A vertex accumulation point (VAP) of a plane graph G is an accumulation

point of the vertex set of G. A point x ∈ R2 is called an edge accumulation point
of G if every neighbourhood of x meets infinitely many distinct edges of G. G
is called VAP-free if it does not have vertex accumulation points. Similarly, a
planar graph is called VAP-free if it has a drawing without vertex accumulation
points.

A graphH is a minor of a graphG if there is a family Vx, x ∈ V (H) of disjoint
nonempty connected subsets of V (G) with the property that if xy ∈ E(H) then
there is a Vx-Vy edge in G. The set Vx is called the branch set of x. A graph
obtained from H by replacing the edges of H by independent paths between
their ends is a subdivision of H. If G is a subdivision of H, we view V (H) as a
subset of V (G) and call these vertices branch vertices of G.

We assume a fixed orientation of R2. If C is a cycle embedded in R2, we
denote by ~C the cycle C oriented in the direction agreeing with this orientation
of R2. We shall also call this direction clockwise. Hence, if f is a face in a plane
graph, and ~e is an oriented edge on the boundary of f , then f lies on the right
of ~e or on its left (or both) in a natural way. (Think of the direction agreeing
with the orientation of R2 as a right turn.) We further assume that the above
orientation is so that the inner face of any plane cycle C lies on the right of
every edge on ~C. The inner face of a plane cycle C will be denoted by f(C).

Given an open set A ⊆ R2, we say that an edge e runs through A if e is
contained in A except possibly its endpoints.

The infinite grid is the graph with vertex set Z2, two vertices x = (x1, x2)
and y = (y1, y2) being adjacent if and only if |x1 − y1|+ |x2 − y2| = 1.

3 A minor-universal VAP-free planar graph

The purpose of this section is to prove the following

Theorem 1 The countably infinite disjoint union of infinite grids is a minor-
universal VAP-free planar graph. In particular, every connected VAP-free pla-
nar graph is a minor of the infinite grid.

Proof. Since the infinite grid has a VAP-free embedding into an infinite strip
of the plane of bounded width, the countably infinite disjoint union of infinite
grids is VAP-free. Hence it suffices to prove that every connected VAP-free
planar graph G is a minor of the infinite grid.

We may assume that G is an infinite connected VAP-free plane graph. Then
there is a sequence G1 ⊆ G2 ⊆ . . . of finite connected plane subgraphs of G
such that

(1) Gn+1 is obtained from Gn either by adding a new vertex in the outer
face of Gn and joining it to some vertex of Gn, or by adding a new edge
running through the outer face of Gn that joins two vertices of Gn;

(2) |G1| = 1;
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(3)
⋃∞
n=1Gn = G.

To prove the existence of such a sequence it suffices to show the following: if Gk
is a finite connected plane subgraph of G such that all edges in E(G)rE(Gk)
run through the outer face of Gk, and if e is such an edge, then there exists a
finite sequence Gk ⊆ Gk+1 ⊆ · · · ⊆ Gk+` of plane subgraphs of G satisfying (1)
such that e ∈ Gk+` and all edges in E(G)rE(Gk+`) run through the outer face
of Gk+`. This in turn follows at once from the connectedness of G if at least
one endvertex of e does not belong to Gk. If both endvertices of e belong to Gk,
then since G is VAP-free there are only finitely many edges in E(G)rE(Gk+e)
that lie in an inner face of Gk + e. Thus in this case the assertion follows by
induction on the number of those edges.

Let us inductively embed G as a minor into a plane graph H that is a minor
of the infinite grid. Using compactness and the fact that G is VAP-free we
may thicken the point set Gn together with its inner faces a little to obtain a
topological disc that contains only the edges and vertices of G already belonging
to Gn. Note where the edges in E(G)rE(Gn) hit the boundary of this disc for
the first time: the boundary of the disc may be partitioned into finitely many
intervals such that all edges which have their first point of intersection with the
boundary of the disc in a common interval emanate from a common endvertex
in Gn. (Here an edge in E(G) r E(Gn) that joins two vertices of Gn has two
first points of intersection with the boundary of the disc—one for each of its
endpoints.)

We may inductively assume that we have embedded Gn as a minor into a
finite connected plane graph Hn of maximum degree at most four such that:

For every interval I of outgoing edges all emanating from some vertex x ∈
Gn, say, there is a leaf v(I) of Hn (a vertex of degree one on the boundary of
the outer face of Hn) that is contained in the branch set of x. Furthermore, the
oriented cyclic order of the intervals is reflected by the oriented cyclic order of
their leaves when the point set Hn together with its inner faces is thickened and
viewed as a disc.

Now consider how Gn+1 is obtained from Gn. If a vertex y is added and
joined to a vertex x ∈ Gn, then the edge xy splits the interval I it belongs to
into two parts (possibly empty). Extend Hn by joining three new leaves (placed
in the outer face of Hn) to v(I) so that the middle leaf starts a new branch set
for y and the (up to) two outer leaves are added to the branch set of x. Let
Hn+1 be the plane graph thus obtained.

If Gn+1 was obtained from Gn by adding a new edge xy for x, y ∈ Gn, we
may assume that the outer face of Gn+1 lies on the left of −→xy. The edge xy
belongs to an interval I of outgoing edges emanating from x as well as to an
interval J of outgoing edges emanating from y. Since Gn is connected, none of
the outgoing edges belongs to the part of I on the right of −→xy or the part of J
on the left of −→yx. Join v(I) to v(J) so that the outer face of the plane graph
thus obtained lies on the left of

−−−−−→
v(I)v(J). Join a new leaf to v(I) and another

to v(J) and add them to the branch sets of x and y respectively. Let Hn+1

denote the plane graph thus obtained, and note that all leaves of Hn belonging
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to intervals distinct from I and J lie on the boundary of the outer face of Hn+1.
Continuing in this way we obtain a minor embedding of G into

⋃∞
n=1Hn =:

H. Note that the leaves ofHn are the only vertices ofHn which are incident with
edges in E(H) r E(Hn). Furthermore, we may embed a suitable subdivision
of Hn into a finite grid such that only the branch vertices that correspond to
leaves of Hn lie on the boundary of the grid. It follows that the infinite grid
contains a suitable subdivision of H as a subgraph. �

Remark. The proof of Theorem 1 implies that every VAP-free planar graph
G has a VAP-free drawing whose edges are polygonal arcs. Indeed, suppose that
G is a connected VAP-free planar graph and G′ is a VAP-free drawing of G.
Then one may inductively define a new VAP-free embedding of G whose edges
are polygonal arcs into an infinite strip of the plane of bounded length using a
sequence G′1 ⊆ G′2 ⊆ . . . of subgraphs of G′ as in the beginning of the proof of
Theorem 1.

4 Minors of the infinite grid

We have seen that all minors of the infinite grid are VAP-free, but not ev-
ery VAP-free planar graph is a minor of the infinite grid. In this section we
characterize the graphs that do occur as minors of the grid by more restrictive
conditions on their embeddings.

Let us consider the class G of all plane graphs G such that every point a ∈ R2

has a neighbourhood that contains at most one vertex of G and meets only edges
incident with that vertex. Thus G is VAP-free and every edge accumulation
point arises from edges with a common endvertex. G is already considered in
Bollobás [1, p. 24]. Note that the infinite grid lies in G.

A family of pairwise disjoint cycles in a plane graph is nested if for every two
cycles in the family, one of the cycles is contained in the inner face of the other
cycle.

Theorem 2 Let G be a planar graph. Then the following conditions are equiv-
alent.

(i) G is a minor of the infinite grid.

(ii) G has a drawing in G.

(iii) G has a VAP-free drawing G′ with the property that if some component D
of G′ has an infinite family of nested cycles, then every component other
than D is finite.

Proof. It is easily seen that (i) implies (ii). It is also straightforward to show
that every drawing of G in G satisfies the condition in (iii). Thus (ii) implies
(iii). It remains to prove that (iii) implies (i). If G has at most one infinite
component, then (i) follows from Theorem 1 and the fact that every finite planar
graph is a minor of some large enough finite grid. Thus we may assume that
no component of G′ has an infinite family of nested cycles. We shall prove that
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every component of G′ is a minor of the graph G∗ that is obtained from the
infinite grid by deleting the vertices (0, i), for all i ≥ 1. Since the union of
countably infinite disjoint copies of G∗ is a minor of the infinite grid, this will
imply (i).

Let D be a component of G′. Since D does not have an infinite family of
nested cycles, it is either acyclic or it has a cycle C such that any other cycle
C ′ in D with f(C) ⊆ f(C ′) meets C. If D is acyclic, then clearly it is a minor
of G∗. Thus we may assume that the latter alternative holds. Choose among
the cycles C ′ one that minimizes |V (C)∩ V (C ′)|, and call it C1. Let x1 be any
vertex in V (C) ∩ V (C1). Then every C ′ contains x1 (for if not, then C1 ∪ C ′
would contain a cycle whose inner face contains f(C) and which has less vertices
in common with C than C1, contradicting the choice of C1). Let D1 be the
subgraph of D consisting of all vertices and edges that are contained in the
closure of f(C). We say that an edge x1y ∈ E(D) r E(D1) leads to the right
(left) of x1 if there is a path P of the form x1y . . . z in D such that x1 6= z are
the only vertices of P in D1 and the outer face of D1 ∪P lies on the left (right)
of −→x1y. Note that no edge lies both on the right and on the left of x1 (otherwise
there would be a cycle C ′ in D such that f(C) ⊆ f(C ′) but x1 /∈ C ′). Let
x0 be the predecessor of x1 on ~C. If we look at the edges incident with x1 in
clockwise order beginning with x0x1, then the edges in E(D)r E(D1) leading
to the left of x1 precede those leading to the right of x1. We now partition
the edges in E(D) r E(D1) incident with x1 into two sets: an edge x1y is on
the left of x1 if it precedes all edges leading to the right of x1. All other edges
are said to be on the right of x1. Note that there is no path ~P with vertices
in V (D) r V (D1) beginning at an endvertex of an edge on the left of x1 and
ending at an endvertex of an edge on the right of x1 such that the outer face
of D[V (C) ∪ V (P )] lies on the left of ~P .

We now modify the proof of Theorem 1 in order to embed D inductively as a
minor into G∗. Again, since D is VAP-free, there is a sequence D1 ⊆ D2 ⊆ . . .
of finite connected plane subgraphs of D such that

(1) Dn+1 is obtained from Dn either by adding a new vertex in the outer
face of Dn and joining it to some vertex of Dn, or by adding a new edge
running through the outer face of Dn that joins two vertices of Dn;

(2)
⋃∞
n=1Dn = D.

We inductively embed D as a minor into a plane graph H that is a minor of
G∗. As before we thicken the point set Dn together with its inner faces a little
to obtain a topological disc, and the boundary of the disc can be partitioned
into finitely many intervals such that all edges which have their first point of
intersection with the boundary of the disc in a common interval emanate from
a common endvertex in Dn. Additionally this time we require that no interval
contains the first points of intersection with the boundary of the disc of both
an edge on the left of x1 and an edge on the right of x1.

Again, we may inductively assume that we have embedded Dn as a minor
into a finite connected plane graph Hn such that:
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For every interval I of outgoing edges all emanating from some vertex x ∈
Dn, say, there is a leaf v(I) of Hn that is contained in the branch set of x.
Furthermore, the oriented cyclic order of the intervals is reflected by the oriented
cyclic order of their leaves when the point set Hn together with its inner faces
is thickened and viewed as a disc.

Here H1 is obtained from D1 by joining a new leaf (placed in the outer face
of D1) to every vertex on C, except that x1 is joined to two leaves x`1 (for the
edges on the left of x1) and xr1 (for the edges on the right of x1). Exactly as
in the proof of Theorem 1 we now embed Dn+1 as a minor into a plane graph
Hn+1 obtained from Hn. Thus D is a minor of

⋃∞
n=1Hn =: H. The crucial

point now is that the outer face of Hn+1 lies on the left of both
−−→
x`1x1 and

−−→
x1x

r
1.

Using this, it is easy to embed H inductively as a minor into G∗. (First embed
D1 as a minor into a finite subgrid of G∗ such that (−1, 0), (0, 0) and (1, 0)
lie on the boundary of the subgrid and also belong to the branch set of x1.
Gradually extend this to a minor-embedding of Hn into G∗ such that leaves of
Hn belonging to intervals of edges on the left (right) of x1 are embedded on the
respective side of the ray in G∗ which passes through all (0, i), i ≥ 1.) �

Remark. Note that every minor of the infinite grid has a drawing in G
whose edges are polygonal arcs. Together with Theorem 2 this implies that
every graph with a drawing in G has also a drawing in G whose edges are
polygonal arcs.
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[3] R. Diestel and D. Kühn, A universal planar graph under the minor relation,
Journal of Graph Theory 32 (1999), 191–206.

Daniela Kühn,
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