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Abstract

Given 0 < p < 1, we prove that a pseudo-random graph G with edge
density p and sufficiently large order has the following property: Consider
any red/blue-colouring of the edges of G and let r denote the proportion
of edges which have colour red. Then there is a Hamilton cycle C so that
the proportion of red edges of C is close to r. The analogue also holds for
perfect matchings instead of Hamilton cycles. We also prove a bipartite
version which is used elsewhere to give a minimum-degree condition for
the existence of a Hamilton cycle in a 3-uniform hypergraph.

1 Introduction

1.1 Overview

It is well known that random graphs, pseudo-random graphs and ε-superregular
graphs have some strong Hamiltonicity properties in common. For instance,
a recent result of Frieze and Krivelevich [10] states that, for every constant
0 < p < 1, with high probability almost all edges of the random graph Gn,p can
be packed into edge-disjoint Hamilton cycles. (They derive this from a similar
result about ε-superregular graphs.)

Hamiltonicity has also been investigated from the viewpoint of (anti-)Ramsey
theory. For example, Albert, Frieze and Reed [1] proved that there is a linear
function k = k(n) such that for every edge-colouring of the complete graph
Kn on n vertices which uses each colour at most k times there is a Hamilton
cycle where each edge has a different colour. This improves bounds by previous
authors. A related problem for random graphs was also considered by Cooper
and Frieze [6].

Here, we prove a related result about colourings of bipartite ε-superregular
graphs (which will imply analogous statements for pseudo-random and random
graphs). Roughly speaking, we prove that given a k-colouring of a sufficiently
large ε-superregular graph G (where ε is sufficiently small) there is a Hamilton
cycle C in G which is strongly multicoloured (or well balanced) in the following
sense: for all colours i, the proportion of edges in C of colour i is close to the
proportion of edges in G which have colour i. We derive this from a related
result about random perfect matchings (Theorem 1.1) which is also a crucial
tool in [12], see Section 1.3.

This paper is organized as follows. In Sections 2 and 3.1 we collect some
tools which we will need in our proofs. In Section 3.2 we then use these tools to
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deduce some simple properties of random perfect matchings in ε-superregular
graphs. The core result of this paper is Lemma 3.8 in Section 3.3, which proves
Theorem 1.1 for special graphs H. In the final section, the remaining results in
this paper are easily deduced from Lemma 3.8 and the results in Section 3.2.

1.2 Statement of results

Given a bipartite graph G = (A,B) with vertex classes A and B, we denote the
edge set of G by E(A,B) and let e(G) = e(A,B) = |E(A,B)|. The density of
a bipartite graph G = (A,B) is defined to be

d(A,B) :=
e(A,B)
|A||B|

.

Given 0 < ε < 1 and d ∈ [0, 1], we say that G is (d, ε)-regular if for all sets
X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| we have (1 − ε)d <
d(X,Y ) < (1 + ε)d. We say that G is (d, ε)-superregular if it is (d, ε)-regular
and, furthermore, if (1−ε)d|B| < dG(a) < (1+ε)d|B| for all vertices a ∈ A and
(1− ε)d|A| < dG(b) < (1 + ε)d|A| for all b ∈ B. This is more or less equivalent
to the traditional notions of ε-regularity and ε-superregularity—see Section 2.

Theorem 1.1 For all positive constants d, ν0, η ≤ 1 there is a positive ε =
ε(d, ν0, η) and an integer N0 = N0(d, ν0, η) such that the following holds for
all n ≥ N0 and all ν ≥ ν0. Let G = (A,B) be a (d, ε)-superregular bipartite
graph whose vertex classes both have size n and let H be a subgraph of G with
e(H) = νe(G). Choose a perfect matching M uniformly at random in G. Then
with probability at least 1− e−εn we have

(1− η)νn ≤ |M ∩ E(H)| ≤ (1 + η)νn.

At first sight it may seem surprising that the only parameter of H that is
relevant here is the number of its edges. However, this is quite natural in view
of the fact that the assertion would be trivial if instead of a perfect matching
one would choose n edges independently and uniformly at random.

The case when H is a sufficiently large induced subgraph of G was proved
earlier by Rödl and Ruciński [13] as a tool in their alternative proof of the
Blow-up Lemma of Komlós, Sárközy and Szemerédi.

From Theorem 1.1 we will also deduce a (weaker) analogue for Hamilton
cycles:

Theorem 1.2 For all integers k and all positive constants d, ν, η ≤ 1 there is a
positive ε = ε(d, ν, η) and an integer N1 = N1(k, d, ν, η) such that the following
holds for all n ≥ N1. Let G = (A,B) be a (d, ε)-superregular bipartite graph
whose vertex classes both have size n. For each 1 ≤ i ≤ k let Hi be a subgraph
of G with e(Hi) = νie(G), where νi ≥ ν. Then G contains a Hamilton cycle C
such that for all 1 ≤ i ≤ k

(1− η)2νin ≤ |C ∩ E(Hi)| ≤ (1 + η)2νin.
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Theorems 1.1 and 1.2 can in turn be used to deduce analogues for non-bipartite
graphs (see the final section for details). For this, we need to modify the
notion of (d, ε)-superregularity as follows. Given 0 < ε < 1 and d ∈ [0, 1],
we say that a graph G with n vertices is (d, ε)-regular if for all disjoint sets
X,Y ⊆ V (G) with |X|, |Y | ≥ εn we have (1 − ε)d < d(X,Y ) < (1 + ε)d.
We say that G is (d, ε)-superregular if it is (d, ε)-regular and, furthermore, if
(1− ε)dn < dG(x) < (1 + ε)dn for all vertices x of G.

Theorem 1.3 For all integers k and all positive constants d, ν, η ≤ 1 there is a
positive ε = ε(d, ν, η) and an integer N2 = N2(k, d, ν, η) such that the following
holds for all n ≥ N2. Let G be a (d, ε)-regular graph with n vertices. For each
1 ≤ i ≤ k, let Hi be a subgraph of G with e(H) = νie(G), where νi ≥ ν for all
i ≥ k. Then

(i) G contains a Hamilton cycle C such that for all i
(1− η)νin ≤ |C ∩ E(Hi)| ≤ (1 + η)νin;

(ii) if n is even then G contains a perfect matching M such that for all i
(1− η)νin/2 ≤ |M ∩ E(Hi)| ≤ (1 + η)νin/2.

Note that the assertion is not even trivial (but much easier to prove) in the
special case where G is the complete graph Kn. Moreover, Let Gn,p be a random
graph on n vertices obtained by connecting each pair of vertices with probability
p (independently of all the other pairs). For given 0 < p < 1 and n sufficiently
large, Gn,p is (p, ε)-superregular with high probability (in fact the probability
that this is not the case is easily seen to decrease exponentially in n). Thus
the assertion of Theorem 1.3 holds with high probability in this case. Also, if
G is dn-regular and the second eigenvalue of the adjacency matrix is at most
λdn for sufficiently small λ, then G is (d, ε)-superregular (see e.g. Chung [7],
Theorem 5.1) so the result applies in this case, too (such graphs are often called
pseudo-random graphs).

1.3 Application: Loose Hamilton cycles in 3-uniform hyper-
graphs

A fundamental theorem of Dirac states that every graph on n vertices with
minimum degree at least n/2 contains a Hamilton cycle. In [12], we prove an
analogue of this for 3-uniform hypergraphs, which we describe below. All the
results proved in this paper except Theorems 1.2 and 1.3 and Lemma 3.8 are
used as a tool in [12].

One way to extend the notion of the minimum degree of a graph to that of
a 3-uniform hypergraph H is as follows. Given two distinct vertices x and y
of H, the neighbourhood N(x, y) of (x, y) in H is the set of all those vertices z
which form a hyperedge together with x and y. The minimum degree δ(H) is
defined to be the minimum |N(x, y)| over all pairs of vertices of H.

We say that a 3-uniform hypergraph C is a cycle of order n if there exists a
cyclic ordering v1, . . . , vn of its vertices such that every consecutive pair vivi+1

lies in a hyperedge of C and such that every hyperedge of C consists of 3 con-
secutive vertices. A cycle is tight if every three consecutive vertices form a
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hyperedge. A cycle of order n is loose if it has the minimum possible number of
hyperedges among all cycles on n vertices. A Hamilton cycle of a 3-uniform hy-
pergraph H is a subhypergraph of H which is a cycle containing all its vertices.
The following result is proved in [12].

Theorem 1.4 For each ε > 0 there is an n0 = n0(ε) such that every 3-uniform
hypergraph H with n ≥ n0 vertices and minimum degree at least n/4 + εn
contains a loose Hamilton cycle.

The bound on the minimum degree is essentially best possible in the sense
that there are hyergraphs with minimum degree dn/4e − 1 which do not even
contain some (not necessarily loose) Hamilton cycle. Recently, Rödl, Ruciński
and Szemerédi [14] proved that if the minimum degree is at least n/2 + εn and
n is sufficiently large, then one can even guarantee a tight Hamilton cycle. This
is also best possible up to the error term (they announced in [14] that the error
term εn can in fact be omitted).

2 Notation and a probabilistic estimate

Given a graph G, we write NG(x) for the neighbourhood of a vertex x in
G and let dG(x) := |NG(x)|. Given ε > 0, we say that G is ε-regular if
for all sets X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| we have
|d(A,B) − d(X,Y )| < ε. This (more traditional) notion of regularity is more
or less equivalent to the one defined in the introduction. Indeed, clearly every
(d, ε)-regular graph is also 2εd-regular (and thus 2ε-regular). Conversely, if
d = d(A,B) ≥

√
ε then every ε-regular bipartite graph (A,B) is (d,

√
ε)-regular.

Given a positive number ε and sets A,Q ⊆ T , we say that A is split ε-fairly
by Q if ∣∣∣∣ |A ∩Q||Q|

− |A|
|T |

∣∣∣∣ ≤ ε.
Thus, if ε is small and A is split ε-fairly by Q, then the proportion of all those
elements of T which lie in A is almost equal to the proportion of all those
elements of Q which lie in A. We will use the following version of the well-
known fact that if Q is random then it tends to split large sets ε-fairly. It is
an easy consequence of standard large deviation bounds for the hypergeometric
distribution, see e.g. [12] for a proof.

Proposition 2.1 For each 0 < ε < 1 there exists an integer q0 = q0(ε) such
that the following holds. Given t ≥ q ≥ q0 and a set T of size t, let Q be a
subset of T which is obtained by successively selecting q elements uniformly at
random without repetitions. Let A be a family of at most q10 subsets of T such
that |A| ≥ εt for each A ∈ A. Then with probability at least 1/2 every set in A
is split ε-fairly by Q.

3 Perfect matchings in superregular graphs

In this section, we collect and prove several results about (random) perfect
matchings in bipartite superregular graphs G which we will all need to prove

4



Theorems 1.1 and 1.2. Moreover, Lemmas 3.6 and 3.7 will also be used in [12].
The main result of this section is Lemma 3.8. Given a reasonably regular small
subgraph H of G, it gives precise bounds on the likely number of all those edges
of H that are contained in a random perfect matching M of G. This is proved
in the third subsection. In the first subsection, we collect some tools which we
will need in the other two subsections. In the second subsection, we give likely
upper bounds on the number of all those edges of an arbitrary sparse subgraph
H of G that are contained in a random perfect matching and on the number of
cycles in the union of two random perfect matchings in G.

3.1 Known results on counting perfect matchings

We use the following version of Stirling’s inequality (the bound is a weak form
of a result of Robbins, see e.g. [4]):

Proposition 3.1 For all integers n ≥ 1 we have(n
e

)n
≤ n! ≤ 3

√
n
(n

e

)n
. (1)

We will frequently use the following immediate consequence of the lower bound
in Stirling’s inequality: (

n

k

)
≤
(en
k

)k
. (2)

We will also use that

1− x ≥ e−x−x
2

for all 0 < x < 0.45 (3)

(see e.g. [4, Section 1.1]).
We also need the following result of Brégman [5] which settles a conjecture

of Minc on the permanent of a 0-1 matrix. (A short proof of it was given by
Schrijver [15], see also [3]). We state this result in terms of an upper bound on
the number of perfect matchings of a bipartite graph.

Theorem 3.2 The number of perfect matchings in a bipartite graph G = (A,B)
is at most ∏

a∈A
(dG(a)!)1/dG(a).

An application of Stirling’s inequality (Proposition 3.1) to Theorem 3.2 im-
mediately yields the following.

Corollary 3.3 For all ε > 0 there is an integer d = d0(ε) so that the following
holds: Let G = (A,B) be a bipartite graph with |A| = |B| = n and let m(G)
denote the number of perfect matchings in G. Then

m(G) ≤ (1 + ε)n
∏
a∈A

max{dG(a), d0}
e

.
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A very useful lower bound on the number of perfect matchings in a k-regular
bipartite graph is provided by the following result by Egorichev [8] and Falik-
man [9], which was formerly known as the van der Waerden conjecture.

Theorem 3.4 Let G be a k-regular bipartite graph whose vertex classes have
size n. Then the number of perfect matchings in G is at least (k/n)nn!.

To bound the number of perfect matchings in superregular graphs, we will
use the following theorem of Alon, Rödl and Ruciński [2]. (Actually, we will
only apply the lower bound, which is based on Theorem 3.4. The upper bound
in Theorem 3.5 is an easy consequence of Corollary 3.3.) Note that their result
is stated slightly differently in [2] as the definition of (d, ε)-superregularity in [2]
is slightly different.

Theorem 3.5 For every 0 < ε < 1/4 there exists an integer n1 = n1(ε) such
that whenever d > 0 and G is a (d, ε)-superregular bipartite graph whose vertex
classes both have size n ≥ n1, then the number m(G) of perfect matchings in G
satisfies

(d(1− 4ε))nn! ≤ m(G) ≤ (d(1 + 4ε))nn!.

3.2 Simple properties of random perfect matchings

Based on the results in Section 3.1, we can easily deduce the next lemma, which
implies that if we are given a (super-)regular graph G and a ‘bad’ subgraph F
of G which is comparatively sparse, then a random perfect matching of G will
probably only contain a few bad edges. The ‘moreover’ part will only be used
in [12], the assertion about (d, ε)-regular graphs will be used in [12] and the
proof of Theorem 1.1.

Lemma 3.6 For all positive constants ε and d with d ≤ 1 and ε ≤ 1/6 there
exists an integer n0 = n0(ε, d) such that the following holds. Let G be a (d, ε)-
superregular graph whose vertex classes A and B satisfy |A| = |B| =: n ≥ n0.
Let M be a perfect matching chosen uniformly at random from the set of all
perfect matchings of G. Let F be a subgraph of G such that all but at most
∆′n vertices in F have degree most ∆′dn, where 1/2 ≥ ∆′ ≥ 18ε. Then the
probability that M contains at least 9∆′n edges of F is at most e−2εn. Moreover,
the statement also holds if we assume that G is dn-regular, where dn ∈ N.

Proof. First suppose that F has maximum degree at most ∆′dn. Let F ′ ⊇ F
be a subgraph of G such that dF ′(a) = ∆′dn for each vertex a ∈ A. (Such an
F ′ exists since dG(a) ≥ (1 − ε)dn ≥ ∆′dn as G is (d, ε)-superregular.) Given
a set A′ ⊆ A, we denote by F ′A′ the bipartite graph with vertex classes A and
B in which every vertex a ∈ A′ is joined to all the vertices b ∈ NF ′(a) while
every vertex a ∈ A \A′ is joined to all the vertices b ∈ NG(a) \NF ′(a). For an
integer q ≥ e2∆′n, let m(q) denote the number of perfect matchings in G which
contain precisely q edges from F ′. Every such matching M ′ can be obtained by
first fixing a q-element set A′ ⊆ A and then choosing a perfect matching in the
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graph F ′A′ . (So the elements of A′ correspond to the q endvertices of the edges
in M ′ ∩ E(F ′).) If we apply Corollary 3.3 to F ′A′ we now obtain

m(q) ≤
(
n

q

)
(1 + ε)n

(
∆′dn

e

)q ((1 + ε)dn
e

)n−q
(2)

≤
(

en
q

)q (dn
e

)n
(∆′)q(1 + ε)2n.

Let m(G) denote the number of perfect matchings in G. Then the lower bound
in Theorem 3.5 implies that

m(G) ≥ (d(1− 4ε))nn!
(1)

≥
(

(1− 4ε)dn
e

)n
.

Thus the probability m(q)/m(G) that M contains exactly q edges from F ′ is
at most (

en∆′

q

)q
(1 + 5ε)3n ≤ e−q(1 + 5ε)3n ≤ e(15ε−∆′)n ≤ e−3εn.

(To see the first inequality, use that q ≥ e2∆′n.) By summing this bound over
all q ≥ e2∆′n, we find that the probability that M contains at least e2∆′n
edges of F ′ is at most ne−3εn ≤ e−2εn. Since F ⊆ F ′, this implies that with
probability at most e−2εn the matching M contains at least e2∆′n edges of F .
If F is now allowed to have up to ∆′n vertices whose degree is larger than ∆′dn,
this can increase the number of edges of F in M by at most ∆′n, which implies
the result.

The same proof also works in the case were G is dn-regular. We now use
the lower bound m(G) ≥ dnn! ≥ (dn/e)n which follows from Theorem 3.4 and
inequality (1). �

In the following lemma we will use Theorems 3.4 and 3.5 to show that a
randomly chosen 2-factor in a (super-)regular graph G will typically only con-
tain few cycles. We will need this fact in the proof of Theorem 1.2 (and in [12]
again, as mentioned earlier). A similar observation was also used in Frieze and
Krivelevich [10]. The ’moreover’ part will only be used in [12].

Lemma 3.7 For all positive constants ε < 1/64 and d ≤ 1 there exists an
integer n0 = n0(ε, d) such that the following holds. Let G be a (d, ε)-superregular
graph whose vertex classes A and B satisfy |A| = |B| =: n ≥ n0. Let M1 be
any perfect matching in G. Let M2 be a perfect matching chosen uniformly at
random from the set of all perfect matchings in G−M1. Let R = M1∪M2 be the
resulting 2-factor. Then the probability that R contains more than n/(log n)1/5

cycles is at most e−n. Moreover, the statement also holds if we assume that G
is dn-regular, where dn ∈ N, and that G and M1 are disjoint.

Proof. Let G′ := G−M1. Let m(G′) denote the number of perfect matchings
in G′. Since the deletion of a perfect matching from G still leaves a (d, 2ε)-
superregular graph, Theorem 3.5 implies that

m(G′) ≥ ((1− 8ε)d)nn!
(1),(3)

≥ e−9εn

(
dn

e

)n
.
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Let k := n/(log n)1/2 and `′ := (logn)1/4. Given an integer ` ≤ `′, let fk,`
denote the number of 2-factors of G which contain M1 and have at least k
cycles of length 2`. We will now find an upper bound on fk,`. For this, note
that the number of possibilities for choosing a set Ck,` of k disjoint cycles of
length 2` in G where every second edge is contained in M1 is at most

1
k!
n`k

(1)

≤
( e
k
n`
)k

=: ck,`.

(Indeed, each such cycle of length 2` is determined by an ordered choice of
` edges in M1.) By Corollary 3.3, given some Ck,` as above, the number of
matchings on the remaining vertices of G−M1 is at most

(1 + ε)2n

(
dn

e

)n−k`
≤ e2εn

(
dn

e

)n−k`
=: dk,`.

Hence we have that fk,` ≤ ck,`dk,`. Altogether, this implies that the probability
fk,`/m(G′) that a random 2-factor R (chosen as in the statement of the lemma)
contains at least k cycles of length 2` can be bounded as follows.

fk,`
m(G′)

≤ e11εn
( e
k
n`
)k ( e

dn

)k`
= e11εn

(
e`+1

kd`

)k
≤ e11εnk−k/2 ≤ e−2n.

To derive the third inequality, we used the fact that (e/d)`
′

(and thus (e/d)`) is
small compared to k. For the final one, we used that k log k is large compared
to n.

Hence the probability that there is an ` ≤ `′ such that the random 2-factor
R contains at least k cycles of length 2` is at most `′e−2n ≤ e−n. Note that
the number of cycles of length at least 2`′ in R is at most 2n/(2`′). Thus with
probability at least 1 − e−n the number of cycles in R is at most k`′ + n/`′ =
2n/(log n)1/4, which implies the first part of the lemma.

The proof of the ‘moreover’ part of Lemma 3.7 is almost the same, except that
we use the lower bound m(G) ≥ (dn/e)n on the number of perfect matchings
in G which follows from Theorem 3.4 by an application of (1). �

3.3 Counting perfect matchings which contain a given number
of edges of an almost regular subgraph

Lemma 3.8 For each positive constant β 6= 1 there is a constant f(β) with
0 < f(β) ≤ 1 such that the following holds. Suppose that α, ε, ξ, c′ and d are
positive constants with ε � α, c′, d ≤ 1 and α, c′ � ξ � f(β) ≤ 1. There
exists an integer n0 = n0(α, ε, ξ, c′, d) for which the following is true. Let G
be a bipartite (d, ε)-superregular graph whose vertex classes V and W satisfy
|V | = |W | =: n ≥ n0. Let H be a subgraph of G with vertex classes C ⊆ V and
D ⊆W where c′n ≤ |C| = cn ≤ 2c′n and

αdn ≤ dH(v) ≤ (1 + ξ)αdn for all vertices v ∈ C.

Let M be a perfect matching chosen uniformly at random from the set of all
perfect matchings in G. Then
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(i) P (|M ∩ E(H)| ≤ βαcn) ≤ e−f(β)αcn if β < 1,

(ii) P (|M ∩ E(H)| ≥ βαcn) ≤ e−f(β)αcn if β > 1.

The intuition behind this result is the following (see also the remark after The-
orem 1.1): If the inclusion of the edges of G into the random perfect matching
M would be mutually independent and equally likely, then the probability that
a given edge e is contained in M would be close to |M |/e(G). Thus the ex-
pected value of |M ∩E(H)| would be close to ne(H)/e(G) which in turn is close
to n(αdn)(cn)/(dn2) = αcn. The above result would thus immediately follow
by an application of some large deviation bound on the tail of the binomial
distribution.

The basic strategy of the proof is similar to that of [13], where the authors
assume that H is a sufficiently large induced subgraph of G. The main difficulty
of our proof is due to the fact that H is assumed to be rather small compared
to G.

Proof. Let m(G) denote the total number of perfect matchings in G. If we
apply Stirling’s formula (1) to the lower bound in Theorem 3.5, we obtain

m(G) ≥
(

(1− 4ε)dn
e

)n (3)

≥
(
dn

e

)n
e−5εn. (4)

Given a ≤ cn, let m(a) be the number of perfect matchings in G which meet
E(H) in precisely a edges. Our aim is to show that m(a) is much smaller
than m(G) if a is significantly smaller or larger than αcn. Let

∑
J denote the

summation over all matchings J in H of cardinality a. Given such a matching
J , let m(J) denote the number of perfect matchings M ′ in G(J) := G−V (J)−
E(H). Thus M ′ together with J forms a perfect matching of G which intersects
H in exactly a edges and so m(a) =

∑
J m(J). We claim that for all matchings

J as above, we have

m(J) ≤
(
dn

e

)n−a
e−αcn−aeξa+5εn. (5)

The first term is the roughly the bound we would get if we would just use the
fact that G(J) has maximum degree (1 + ε)dn. The second term is a small but
crucial improvement on this estimate. The third term is an insignificant error
term.

We now prove (5). By Corollary 3.3, we have

m(J) ≤ (1 + ε)n−a
∏

v∈V \V (J)

max{dG(J)(v), d0(ε)}
e

, (6)

where d0(ε) is the integer defined in Corollary 3.3. Thus we have reduced the
problem of bounding m(J) to that of finding accurate upper bounds on the
degrees of the vertices in G(J). Recall that the vertex classes of H are C and
D and that ∆(G) ≤ (1 + ε)dn since G is (d, ε)-superregular. For a vertex
v ∈ C \ V (J) we have

dG(J)(v) ≤ dn(1 + ε− α) =: qH .
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We say that a vertex v ∈ V \ V (H) is average for J if in the graph G it has
at least (1 − ε)d(a − εn) neighbours in W ∩ V (J). Let V av be the set of such
vertices. For v ∈ V av, we have

dG(J)(v) ≤ dn(1 + ε− (1− ε)(a/n− ε)) =: qJ .

Since G is (d, ε)-superregular, we have that |V av| ≥ n − cn − εn if a ≥ εn. If
a ≤ εn, then trivially every vertex in v ∈ V \V (H) is average for J , so the above
bound on |V av| holds in this case, too. Moreover, note that both qH ≥ d0(ε)
and qJ ≥ d0(ε) since n is sufficiently large compared to ε. Thus, inserting all
these bounds into (6) gives

m(J) ≤ (1 + ε)nea−n(qH)|C\V (J)|(qJ)|V
av |((1 + 2ε)dn)n−a−|C\V (J)|−|V av |.

Now note that qJ ≤ (1 + 2ε)dn to deduce that the right hand side is maximized
if |V av| is minimized. Thus

m(J) ≤ eεnea−n(qH)cn−a(qJ)(1−c−ε)n((1 + 2ε)dn)εn

≤
(
dn

e

)n−a
expQ, (7)

where Q := εn+QH +QJ + 2ε(εn) and

QH :=(ε− α)(cn− a),
QJ :=[ε− (1− ε)(a/n− ε)][(1− c− ε)n].

Note that, we made use of the fact that 1 + x ≤ ex three times in order to
obtain (7). Now observe that

QH ≤ −αcn+ αa+ εn,

QJ ≤ εn− a(1− c− ε)(1− ε) + εn ≤ −a(1− 2c) + 2εn.

Altogether, we thus have

Q ≤ εn− αcn+ αa+ εn− a+ 2ac+ 2εn+ εn ≤ −αcn− a+ ξa+ 5εn,

which proves (5).
Let pa denote the probability that a perfect matching which is chosen uni-

formly at random in the set of all perfect matchings in G contains exactly a
edges of H. Thus pa = m(a)/m(G) =

∑
J m(J)/m(G). Let |

∑
J | denote the

number of summands, i.e. the number of matchings in H of cardinality a. Each
matching of cardinality a in H can be obtained by first choosing a subset of
a vertices in C and then choosing one neighbour in H for each vertex in this
subset. Thus, writing (x/0)0 := 1 for all x > 0, it follows that

|
∑
J

| ≤
(
cn

a

)
((1 + ξ)αdn)a

(2)

≤
(

e1+ξαcdn2

a

)a
. (8)
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Since the bound (5) on m(J) is independent of J , we can now combine (4) and
(5) to obtain

pa =
∑
J

m(J)
m(G)

≤ |
∑
J

|
( e
dn

)a
e5εne−αcn−aeξa+5εn

(8)

≤
(eαcn

a

)a
e−αcne2ξa+10εn.

Now define β′ by a = β′αcn and let g(β′) := log{(e/β′)β′/e}. Then

pa ≤

((
e
β′

)β′
e−1

)αcn
e2ξa+10εn ≤ exp

{
αcn(g(β′) + 2ξβ′ + ξ)

}
.

Now set µ := αcn to obtain

pa ≤ exp{µ(g(β′) + ξ(1 + 2β′))}.

(Note that if ξ = 0 and β′ < 1, this would be exactly the standard Chernoff
bound on the probability that X ≤ β′µ, where X has a binomial distribution
with mean µ, see e.g. Theorem A.12 in [3].) It is easy to check that g(β′) < 0
if β′ 6= 1.

The assertion (i) (i.e. the case β < 1) of the lemma now follows with f(β) :=
−g(β)/4 by summing over all values of a between 1 and βµ. Indeed, as g(β′) is
negative and increasing for β′ < 1, we have

P (|M ∩ E(H)| ≤ βαcn) ≤ βµ exp{µg(β) + 3ξ} ≤ βµ exp{µg(β)/2},

as required. To prove the assertion (ii) of the lemma, we first consider the case
1 < β ≤ β′ ≤ e2. As g(β′) is negative and decreasing for β′ > 1, it follows that

pa ≤ exp{µ(g(β) + 17ξ)} ≤ exp{µg(β)/2}.

Next consider the case that β′ ≥ e2. It is easy to check that g(β′) ≤ −β′. Thus

pa ≤ exp{µ(−β′ + ξ(1 + 2β′))} ≤ exp{−µβ′/2}.

Similarly to the case (i), the assertion of the lemma in case (ii) now follows by
summing the bounds on pa over all values of a between βµ and cn. �

4 Proof of Theorems 1.1–1.3

We will prove Theorem 1.1 by decomposing H into small ‘almost regular’ sub-
graphs Hij and a small remainder F . We will apply Lemma 3.8 to each of the
Hij separately and then use Lemma 3.6 to show that a random perfect matching
contains only a negligible number of edges of F .

Proof of Theorem 1.1. By adding all the vertices in V (G) \ V (H) to H,
we may assume that H is a spanning subgraph of G. Set β := 1 + η/4, define
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f(β) as in the statement of Lemma 3.8 and choose parameters α, ε, ξ, c′ so that
0 < ε � α, c′, d ≤ 1 and c′ � α � ξ � ν, η, f(β). Thus the restrictions in
the statement of Lemma 3.8 are satisfied. Choose N0 to be sufficiently large
compared to both 1/ε and the integer n0(α, ε, ξ, c′, d) defined in Lemma 3.8.
Finally, fix a constant c such that cn ∈ N and c′ ≤ c ≤ 2c′.

First, we prove the upper bound in Theorem 1.1. Let ` be the smallest
integer so that eξ`/2α > 1 + ε. Thus

` ≤ 2
ξ

log(2/α) ≤ 1/
√
c. (9)

Let A0 be the set of vertices in A with dH(a) < αdn. For all i ≥ 1, let
αi := eξ(i−1)/2α. Thus

αi+1 ≤ (1 + ξ)αi (10)

since eξ/2 ≤ 1 + ξ (see e.g. [4, Section 1.1]). Moreover,

1 + ε < α`+1 ≤ 2. (11)

For all i with 1 ≤ i ≤ `, let Ai be the set of vertices in a ∈ A with αidn ≤
dH(a) < αi+1dn. Since G is (d, ε)-superregular and thus dH(a) ≤ dG(a) ≤
(1 + ε)dn for each a ∈ A, it follows that the Ai with 0 ≤ i ≤ ` give a partition
of A.

We now define a partition of the edge set of H into graphs Hij . Given
1 ≤ i ≤ `, define qi by |Ai| = qicn and let q(i) := bqic. We partition the vertices
in Ai into q(i) + 1 parts Aij with 0 ≤ j ≤ q(i) as follows: the partition is
arbitrary except that we require that |Aij | = cn for all j ≥ 1. Thus |Ai0| < cn
and so ∑̀

i=1

|Ai0| ≤ `cn ≤
√
cn ≤ αn. (12)

Let Hij be the subgraph of H induced by Aij and B. Then for all a ∈ Aij , we
have

αidn ≤ dHij (a) < αi+1dn
(10)

≤ (1 + ξ)αidn. (13)

Let H00 be the subgraph of H which is induced by A0 and B. Given 1 ≤ i ≤ `,
let Hi0 be the subgraph of H which is induced by Ai0 and B. Let F denote the
union of all the Hi0 with 0 ≤ i ≤ `. Then

e(F ) ≤ αdn|A0|+
∑̀
i=1

|Ai0|αi+1dn
(11),(12)

≤ αdn2 + 2αdn2 ≤ 4αe(G) ≤ ηe(H)/4.

(14)
Let M be a perfect matching chosen uniformly at random from the set of all
perfect matchings in G. Let Xij := |M ∩ E(Hij)| and µi := αicn. (Note that
µi can be thought of as roughly the expected value of Xij). Then for all i, j
with i, j ≥ 1 we can apply Lemma 3.8(ii) to Hij to see that with probability
at least 1 − e−f(β)µi we have Xij ≤ βµi (apply the lemma with αi taking on
the role of the parameter α there). Moreover, we can apply Lemma 3.6 to F
as follows: Let ∆′ := α. Then (12) implies that at most ∆′n vertices of F have
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degree more than ∆′dn. Thus Lemma 3.6 implies that with probability at least
1− e−2εn we have

|M ∩ E(F )| ≤ 9αn ≤ ηνn/2.

But F and the sets E(Hij) with i, j ≥ 1 form a partition of E(H) and so with
probability at least 1− e−2εn −

∑`
i=1 q(i)e

−f(β)µi ≥ 1− e−εn we have

|M ∩ E(H)| ≤ ηνn/2 + β
∑̀
i=1

q(i)µi ≤ ηνn/2 + β
∑̀
i=1

|Ai|αi.

Now use the fact that
∑`

i=1 |Ai|αidn ≤ e(H) ≤ (1 + ε)νdn2 to see that |M ∩
E(H)| ≤ ηνn/2 + β(1 + ε)νn ≤ (1 + η)νn, as required.

The proof of the lower bound is almost exactly the same: in this case, we let
β = 1−η/4. The graphs Hij are defined as before. We now apply Lemma 3.8(i)
to Hij to see that with probability at least 1−

∑`
i=1 q(i)e

−f(β)µi ≥ 1− e−εn we
have Xij ≥ βµi for all i, j with i ≥ 1. Thus with probability at least 1− e−εn,
we have

|M ∩ E(H)| ≥ β
∑̀
i=1

q(i)µi ≥ β
∑̀
i=1

(|Ai| − cn)αi
(11)

≥ β
∑̀
i=1

|Ai|αi − 2β`cn

(9)

≥ β
∑̀
i=1

|Ai|αi − 4
√
cn ≥ β

∑̀
i=1

|Ai|αi − ηνdn/2. (15)

But

∑̀
i=1

|Ai|αidn
(10)

≥ (1− 2ξ)
∑̀
i=1

|Ai|dnαi+1 ≥ (1− 2ξ)(e(H)− e(F ))

(14)

≥ (1− 2ξ)(1− η/4)e(H) ≥ (1− η/2)νdn2,

which implies the result together with (15). �

We can now easily deduce Theorem 1.2 from Theorem 1.1 and Lemma 3.7.

Proof of Theorem 1.2. Put ε := min{1/64, d/5, ε(d, ν, η/2)/2} where
ε(d, ν, η/2) is as defined in Theorem 1.1. Let N1 be sufficiently large compared
to 1/η, 1/ν and k as well as larger than n0(ε, d) and N0(d, ν, η/2) defined in
Lemma 3.7 and Theorem 1.1 respectively.

Choose a perfect matching M1 uniformly at random in G and then choose a
perfect matching M2 uniformly at random in G−M1. Lemma 3.7 implies that
with probability at least 1−e−n the resulting 2-factor R = M1∪M2 contains at
most (n/ log n)1/5 cycles. Moreover, Theorem 1.1 implies that we may assume
that

(1− η/2)2νin ≤ |R ∩ E(Hi)| ≤ (1 + η/2)2νin (16)

for all i ≤ k. Thus it suffices to prove that there is a Hamilton cycle C in G
which has sufficiently many edges in common with R. This is achieved using a
standard argument based on expansion properties of G.
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Let C ′ be any cycle in R with the property that there are adjacent vertices
x and y on C ′ such that x has a neighbour z outside C ′. (Using that G is
(d, ε)-superregular, it is easy to see that such a cycle always exists unless R is
already a Hamilton cycle. Indeed, since δ(G) ≥ (1 − ε)dn, each cycle in R of
length at most dn will have a neighbour outside and thus can be taken to be C ′.
On the other hand, |NG(X)| ≥ (1−ε)n for any set X of size at least dn/2 ≥ εn
which lies in one of the vertex classes of G. This implies that if all the cycles
in R have length at least dn and R is not a Hamilton cycle then we can take
for C ′ any cycle of R.)

Let C ′′ denote the cycle in R which contains z. Let P denote the path
obtained from C ′ ∪ C ′′ by adding the edge xz and deleting xy as well as one
of the edges on C ′′ adjacent to z. Note that the length of P is odd. If one of
the endpoints of P has a neighbour outside P , we can further enlarge P in a
similar way. So suppose we can no longer enlarge P in this way and view P
as a directed path whose first vertex is denoted by x and whose final vertex is
denoted by y. Thus all the neighbours of x and y lie on P . Moreover, since P
is odd, x and y lie in different vertex classes of G.

We claim that there is a cycle C∗ which has the same vertex set as P . Let
X1 be the set consisting of the first bdG(x)/2c neighbours of x on P and let
X2 consist of all other neighbours. Define Y1 and Y2 similarly. It is easily
seen that either (i) all vertices in Y1 come before all those in X2 or (ii) all
vertices in X1 come before those in Y2. Suppose first that (i) holds. Note that
|Xi|, |Yj | ≥ δ(G)/4 ≥ (1 − ε)dn/4 ≥ εn and so the (d, ε)-superregularity of G
implies that there is an edge e ∈ E(G) between a predecessor p of some vertex
y1 ∈ Y1 and a successor s of some vertex x2 ∈ X2. We thus obtain a cycle
C∗ whose vertex set is V (P ) by removing the edges py1 and x2s from P and
adding the three edges e, xx2 and yy1. The case (ii) is identical except that we
now consider the predecessors of the vertices in X1 and the successors of the
vertices in Y2.

Altogether, we have now constructed a 2-factor where the number of cycles
has decreased. Continuing in this way, we eventually arrive at a Hamilton
cycle C. It is easy to check that the symmetric difference of C and R contains
only at most 5(n/ log n)1/5 ≤ ηνn/2 edges. Together with (16) this shows
that C is as required in the theorem. �

It remains to deduce Theorem 1.3 from Theorems 1.1 and 1.2.

Proof of Theorem 1.3. First suppose that n is even. Set n′ := n/2.
Consider a random partition of the vertex set of G into two sets A and B of
equal size. Let G′ be the bipartite subgraph of G between A and B. Lemma 2.1
implies that we may assume that the graph G′ is (d, 2ε)-superregular (in the
bipartite sense) if n is sufficiently large compared to ε. Also, Lemma 2.1 implies
that we may assume that the density of the bipartite subgraph of Hi between
A and B is still close to νid for all i ≤ k. Thus we can apply Theorems 1.1
and 1.2 in this case.

Now suppose that n is odd and set n′ := bn/2c. Delete any vertex x from
the vertex set of G. Again, Lemma 2.1 implies that we may assume that the
bipartite graph G′ = (A,B) constructed as above on the remaining 2n′ vertices
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is (d, 3ε)-superregular if n is sufficiently large compared to ε. Moreover, we may
assume that for all i ≤ k the density of the bipartite subgraph of Hi between
A and B is still very close to that of Hi i.e. close to νid. Thus we may apply
Theorem 1.2 to obtain a Hamilton cycle C ′ which satisfies

(1− η/2)2νin′ ≤ |C ′ ∩ E(Hi − x)| ≤ (1 + η/2)2νin′.

Let P be a Hamilton path obtained from C ′ by adding an edge between x and
some vertex y ∈ C ′ and deleting one of the two edges on C ′ incident to y. As
in the proof of Theorem 1.2, one can easily show that one can transform P
into a Hamilton cycle C by deleting two and adding three edges. Then C is as
required in Theorem 1.3(i). �
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[2] N. Alon, V. Rödl and A. Ruciński, Perfect matchings in ε-regular graphs,
Electronic J. Combinatorics 5 (1998), #R13.

[3] N. Alon and J. Spencer, The Probabilistic Method (2nd edition), Wiley-
Interscience 2000.

[4] B. Bollobás, Random Graphs (2nd edition), Cambridge studies in Ad-
vanced Mathematics 73, Cambridge University Press 2001.

[5] L.M. Brégman, Some properties of nonnegative matrices and their perma-
nents, Soviet Mathematics Doklady 14 (1973), 945–949.

[6] C. Cooper and A. Frieze, Multicoloured Hamilton cycles in random graphs;
an anti-Ramsey threshold, Electronic J. Combinatorics 2 (1995), #R19.

[7] F.R.K. Chung, Spectral Graph Theory, CBMS monograph no. 92, American
Mathematical Society, 1997.

[8] G.P. Egorichev, The solution of the van der Waerden problem for perma-
nents, Dokl. Akad. Nauk SSSR 258 (1981), 1041–1044.

[9] D.I. Falikman, A proof of the van der Waerden’s conjecture on the perma-
nent of a doubly stochastic matrix, Mat. Zametki 28 (1981), 931–938.

[10] A. Frieze and M. Krivelevich, On packing Hamilton cycles in ε-regular
graphs, preprint 2003.

[11] S. Janson, T.  Luczak and A. Ruciński, Random graphs, Wiley-Interscience
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