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ABSTRACT. Our main result essentially reduces the problem of finding an edge-decomposition of a balanced
r-partite graph of large minimum degree into r-cliques to the problem of finding a fractional r-clique
decomposition or an approximate one. Together with very recent results of Dukes as well as Montgomery
on fractional decompositions into triangles and cliques respectively, this gives the best known bounds on
the minimum degree which ensures an edge-decomposition of an r-partite graph into r-cliques (subject
to trivially necessary divisibility conditions). The case of triangles translates into the setting of partially
completed Latin squares and more generally the case of r-cliques translates into the setting of partially
completed mutually orthogonal Latin squares.

1. INTRODUCTION

A K,-decomposition of a graph G is a partition of its edge set F(G) into cliques of order r. If G has
a K,-decomposition, then certainly e(G) is divisible by (g) and the degree of every vertex is divisible by
r — 1. A classical result of Kirkman [18] asserts that, when r = 3, these two conditions ensure that K,
has a triangle decomposition (i.e. Steiner triple systems exist). This was generalized to arbitrary r (for
large n) by Wilson [27] and to hypergraphs by Keevash [16]. Recently, there has been much progress
in extending this from decompositions of complete host graphs to decompositions of graphs which are
allowed to be far from complete. In this paper, we investigate this question in the r-partite setting. This
is of particular interest as it implies results on the completion of partial Latin squares and more generally
partial mutually orthogonal Latin squares.

1.1. Clique decompositions of r-partite graphs. Our main result (Theorem 1.1) states that if G is
(i) balanced r-partite, (ii) satisfies the necessary divisibility conditions and (iii) its minimum degree is
at least a little larger than the minimum degree which guarantees an approximate decomposition into
r-cliques, then G in fact has a decomposition into r-cliques. (Here an approximate decomposition is a set
of edge-disjoint copies of K, which cover almost all edges of G.) To state this result precisely, we need
the following definitions.

We say that a graph or multigraph G on (V4,...,V,) is K,-divisible if G is r-partite with vertex classes
Vi,..., Ve and for all 1 < ji,72 <7 and every v € V(G) \ (V}, UV},),

d(v, ‘/31) = d(v, ‘/}2)
Note that in this case, for all 1 < j1,j2,73,74 < r with j1 # jo, j3 # ja, we automatically have
e(Vj1, Vi) = e(Vjy, Vj,). In particular, e(G) is divisible by e(K,) = (5).
Let G be an r-partite graph on (Vi,...,V,) with |[Vi| =--- = |V;| = n. Let

5(G) :=min{d(v,V;): 1 <j<r veV(G)\V;}

An n-approzimate K,-decomposition of G is a set of edge-disjoint copies of K, covering all but at most
nn? edges of G. We define 6% (n) to be the infimum over all § such that every K,-divisible graph G
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on (Vi,...,V,) with [Vi| = --- = |V;| = n and §(G) > én has an n-approximate K,-decomposition. Let
5% := limsup,,_, S?(T (n). Soif e > 0 and G is sufficiently large, K,-divisible and §(G) > (5}7(T+5)n, then
G has an n-approximate K,.-decomposition. Note that it is important here that G is K,-divisible. Take,
for example, the complete r-partite graph with vertex classes of size n and remove [nn]| edge-disjoint
perfect matchings between one pair of vertex classes. The resulting graph G satisfies 6 (G) =n— [nn],
yet has no n-approximate K,-decomposition whenever r > 3.

Theorem 1.1. For every r > 3 and every € > 0 there exists an ng € N and an n > 0 such that the
following holds for alln > ng. Suppose G is a K,-divisible graph on (Vi,...,V,) with |Vi| = --- = |V,| = n.
If 6(G) > (0%, +¢)n, then G has a K,-decomposition.

By a result of Haxell and Rodl [14], the existence of an approximate decomposition follows from that of
a fractional decomposition. So together with very recent results of Dukes [10] as well as Montgomery [21]
on fractional decompositions into triangles and cliques respectively, Theorem 1.1 implies the following
explicit bounds. We discuss this derivation in Section 1.3.

Theorem 1.2. For every r > 3 and every € > 0 there exists an ng € N such that the following holds for
all n > ng. Suppose G is a K,-divisible graph on (Vy,...,V,) with |Vi|=--- = |V,| =n.

(i) If r = 3 and 6(G) > (}8—}1 +¢) n, then G has a Ks-decomposition.
(i) If r >4 and §(G) > (1- m%rg +¢)n, then G has a K,-decomposition.

If G is the complete r-partite graph, this corresponds to a theorem of Chowla, Erdés and Straus [6].
A bound of (1 —1/(10'%72%))n was claimed by Gustavsson [13]. The following conjecture seems natural
(and is implicit in [13]).

Conjecture 1.3. For every r > 3 there exists an ng € N such that the followz’pg holds for all n > ny.
Suppose G is a K,-divisible graph on (Vi,...,V,) with |Vi| =---=|V.|=n. If 6(G) > (1 —1/(r + 1))n,
then G has a K,.-decomposition.

A construction which matches the lower bound in Conjecture 1.3 is described in Section 3.1 (this
construction also gives a similar lower bound on 3;’(7) In the non-partite setting, the triangle case is a long-
standing conjecture by Nash-Williams [22] that every graph G on n vertices with minimum degree at least
3n/4 has a triangle decomposition (subject to divisibility conditions). Barber, Kiihn, Lo and Osthus [3]
recently reduced its asymptotic version to proving an approximate or fractional version. Corresponding
results on fractional triangle decompositions were proved by Yuster [28], Dukes [9], Garaschuk [11] and
Dross [8].

More generally [3] also gives results for arbitrary graphs, and corresponding fractional decomposition
results have been obtained by Yuster [28], Dukes [9] as well as Barber, Kiithn, Lo, Montgomery and
Osthus [2]. Further results on F-decompositions of non-partite graphs (leading on from [3]) have been
obtained by Glock, Kiihn, Lo, Montgomery and Osthus [12]. Amongst others, for any bipartite graph F,
they asymptotically determine the minimum degree threshold which guarantees an F-decomposition.

1.2. Mutually orthogonal Latin squares and K,.-decompositions of r-partite graphs. A Latin
square T of order n is an n X n grid of cells, each containing a symbol from [n], such that no symbol
appears twice in any row or column. It is easy to see that 7 corresponds to a K3-decomposition of the
complete tripartite graph K, ,, , with vertex classes consisting of the rows, columns and symbols.

Now suppose that we have a partial Latin square; that is, a partially filled in grid of cells satisfying the
conditions defining a Latin square. When can it be completed to a Latin square? This natural question
has received much attention. For example, a classical theorem of Smetaniuk [24] as well as Anderson
and Hilton [1] states that this is always possible if at most n — 1 entries have been made (this bound is
best possible). The case r = 3 of Conjecture 1.3 implies that, provided we have used each row, column
and symbol at most n/4 times, it should also still be possible to complete a partial Latin square. This
was conjectured by Daykin and Haggkvist [7]. (Note that this conjecture corresponds to the special case
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of Conjecture 1.3 when r = 3 and the condition of G being K,-divisible is replaced by that of G being
obtained from K, , , by deleting edge-disjoint triangles.)

More generally, we say that two Latin squares R (red) and B (blue) drawn in the same n xn grid of cells
are orthogonal if no blue symbol appears twice next to the same red symbol. In the same way that a Latin
square corresponds to a K3-decomposition of K, ,, », a pair of orthogonal Latin squares corresponds to a
K,-decomposition of Ky, ,, » , Where the vertex classes are rows, columns, red symbols and blue symbols.
More generally, there is a natural bijection between sequences of r — 2 mutually orthogonal Latin squares
(where every pair from the sequence are orthogonal) and K,-decompositions of complete r-partite graphs
with vertex classes of equal size. Sequences of mutually orthogonal Latin squares are also known as
transversal designs. Theorem 1.2 can be used to show the following (see Section 3.2 for details).

Theorem 1.4. For every r > 3 and every € > 0 there exists an ng € N such that the following holds for

allm > ng. Let
o 1%—4 ifr =3,
Cr = 9 _
10773 ZfT’ 24

Let T1,...,Tr—2 be a sequence of mutually orthogonal partial n x n Latin squares (drawn in the same
nxn grid). Suppose that each row and column of the grid contains at most (¢, —e)n non-empty cells and
each coloured symbol is used at most (¢, — e)n times. Then Ti,...,Tr—a can be completed to a sequence
of mutually orthogonal Latin squares.

The best previous bound for the triangle case r = 3 is due to Bartlett [4], who obtained a minimum
degree bound of (1 — 10~*)n. This improved an earlier bound of Chetwynd and Higgkvist [5] as well as
the one claimed by Gustavsson [13].

1.3. Fractional and approximate decompositions. A fractional K,-decomposition of a graph G is
a non-negative weighting of the copies of K, in G such that the total weight of all the copies of K,
containing any fixed edge of G is exactly 1. Fractional decompositions are of particular interest to us
because of the following result of Haxell and Rodl, of which we state only a very special case.

Theorem 1.5 (Haxell and R6dl [14]). For every r > 3 and every n > 0 there exists an ng € N such that
the following holds. Let G be a graph on n > ng vertices that has a fractional K,-decomposition. Then
G has an n-approximate K,-decomposition.

We define 5% (n) to be the infimum over all § such that every K,-divisible graph G on (V1,...,V,) with
Vil = --- =|V;| = n and §(G) > on has a fractional K,-decomposition. Let S}b := limsup,,_, - Sf(r (n).

Theorem 1.5 implies that, for every n > 0, S?ﬂ« < 3% Together with Theorem 1.1, this yields the
following.

Corollary 1.6. For every r > 3 and every € > 0 there exists an ng € N such that the following holds
for all n > ng. Suppose G is a K,-divisible graph on (Vi,...,V.) with |Vi| = -+ = |V;| = n. If
0(G) = (6, +¢e)n, then G has a K,-decomposition.

In particular, to prove Conjecture 1.3 asymptotically, it suffices to show that Sf(r <1-1/(r+1). For
triangles, the best bound on the ‘fractional decomposition threshold’ is due to Dukes [10].

Theorem 1.7 (Dukes [10]). 5}}3 < 3k

For arbitrary cliques, Montgomery obtained the following bound. Somewhat weaker bounds (obtained

by different methods) are also proved in [10].

Theorem 1.8 (Montgomery [21]). For every r > 3, 5% <1— L

10673 -
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Note that together with Corollary 1.6, these results immediately imply Theorem 1.2.

This paper is organised as follows. In Section 2 we introduce some notation and tools which will be
used throughout this paper. In Section 3 we give extremal constructions which support the bounds in
Conjecture 1.3 and we provide a proof of Theorem 1.4. Section 4 outlines the proof of Theorem 1.1 and
guides the reader through the remaining sections in this paper.

2. NOTATION AND TOOLS

Let G be a graph and let P = {U', ..., U*} be a partition of V(G). We write G[U'] for the subgraph
of G induced by U! and G[U', U?] for the bipartite subgraph of G induced by the vertex classes U! and
U2. We will also sometimes write G[U!, U] for G[U!]. We write G[P] := G[U!, ... ,U*] for the k-partite
subgraph of G induced by the partition P. We write U<? for U' U--- U U*"!. We say the partition P is
equitable if its parts differ in size by at most one. Given a set U C V(G), we write P[U] for the restriction
of P to U.

Let G be a graph and let U,V C V(G). We write Ng(U,V) :={v €V : zv € E(G) for all z € U} and
da(U,V) := |Ng(U,V)|. For v € V(G), we write Ng(v,V) for Ng({v},V) and dg(v, V) for dg({v}, V).
If U and V are disjoint, we let eq(U,V) := e(G[U, V).

Let G and H be graphs. We write G — H for the graph with vertex set V(G) and edge set E(G)\ E(H).
We write G\ H for the subgraph of G induced by the vertex set V(G) \ V(H). We call a vertex-disjoint
collection of copies of H in G an H-matching. If the H-matching covers all vertices in G, we say that it
is perfect.

Throughout this paper, we consider a partition Vi,...,V, of a vertex set V' such that |V}| = n for all
1 <j5<r. Given a set U C V, we write

Uj =UnN VJ
We write K, (k) for the complete r-partite graph with vertex classes of size k. We say that an r-partite
graph G on (V4,...,V,) is balanced if |Vi| =--- = |V,|.

We use hierarchies, for example 1/n < a < b < 1, where constants are chosen from right to left. The
notation a < b means that there exists an increasing function f for which the result holds whenever
a < f(b). In order to simplify the presentation, we will not determine these functions explicitly.

Let m,n, N € N with m,n < N. The hypergeometric distribution with parameters N, n and m is the
distribution of the random variable X defined as follows. Let S be a random subset of {1,2,..., N} of
size n and let X :=|SN{1,2,...,m}|. We will frequently use the following bounds, which are simple
forms of Hoeffding’s inequality.

Lemma 2.1 (see [15, Remark 2.5 and Theorem 2.10]). Let X ~ B(n,p) or let X have a hypergeometric
distribution with parameters N,n,m. Then P(|X —E(X)| > t) < 2¢~2*/n.

Lemma 2.2 (see [15, Corollary 2.3 and Theorem 2.10]). Suppose that X has binomial or hypergeometric
distribution and 0 < a < 3/2. Then P(|X — E(X)| > aE(X)) < 2e~*EX)/3,

3. EXTREMAL GRAPHS AND COMPLETION OF LATIN SQUARES

3.1. Extremal graphs. The following proposition shows that the minimum degree bound conjectured in
Conjecture 1.3 would be best possible. It also provides a lower bound on the approximate decomposition
threshold (5% (and thus on the fractional decomposition threshold 07 ).

Proposition 3.1. Let r € N with r > 3 and let n > 0. For infinitely many n, there exists a K,-divisible
graph G on (Vi,..., V) with |[Vi| =--- = |V;| =n and 6(G) = [(1 —=1/(r+1))n| — 1 which does not have
a Ky-decomposition. Moreover, o, >1—1/(r+1) —1.

Proof. Letm € Nwith 1/m < nandlet n:= (r—1)m. Let {U',...,U""'} be a partition of V;U---UV,
such that, for each 1 <i<r—1landeach 1 <j <r, U;- = U"NVj has size m.
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Let G be the intersection of the complete r-partite graph on (Vi,...,V,) and the complete (r —1)-
partite graph on (U',..., U™ !). For each 1 < ¢ <m and each 1 <i <7 —1, let H be a graph formed
by starting with the empty graph on U ¢ and including a g-regular bipartite graph with vertex classes
(U}l,U;Q) for each 1 < j; < jo < 7. Let H, := H; U--- UH(}"_1 and let G4 := Go U H,. Observe that Gy
is regular, K,-divisible and

3(Gq) = (r—2)m+q.

Now G is (r — 1)-partite, so every copy of K, in G, contains at least one edge of H,. Therefore, any

collection of edge-disjoint copies of K, in G will leave at least

UGy) = e(Gy) — e(H,) (;) = ((r—2)m+q- (;) q) <g>n
= =+ Da/2 - 2)(} )

edges of G, uncovered. Let go := [2m/(r + 1)] — 1. Then ¢(Gy,) > 0, so G4, does not have a K,-
decomposition. Also,

0(Gg) = (r—2)m+[2m/(r+1)] = 1= [(1 - 1/(r +1))n] — 1.
Now let g, := [2m/(r + 1) — nn]. We have 5(an) >((1—-1/(r+1)—mn)n and

Gy,) 2 (m = Cm/(r+ 1) =+ )+ /2 -2 )

= (g —1)(r+1)(r —2)r(r — 1)n/4 > 6(nn — 1)n > qn?.
Thus, 5}%21—1/(7“—{—1)—77. O

3.2. Completion of mutually orthogonal Latin squares. In this section, we give a proof of Theo-
rem 1.4. Note that better bounds on the fractional decomposition threshold would immediately lead to
better bounds on ¢,.. For any r-partite graph H on (V4,...,V;), we let H denote the r-partite complement
of Hon (Vi,...,V,).

Proof of Theorem 1.4. By making £ smaller if necessary, we may assume that ¢ < 1. Let ng € N be
such that 1/ng < &,1/r. Use Tq,...,T,—2 to construct a balanced r-partite graph G with vertex classes
Vj =[n| for 1 < j <r as follows. For each 1 <i,j,k <n and each 1 <m < r —2,ifin T, the cell (i, )
contains the symbol k, include a K3 on the vertices i € V,_1, 7 € V, and k € V,,. (If the cell (i,7) is
filled in different 7,,, this leads to multiple edges between i € V,_; and j € V,., which we disregard.) For
each 1 < 1,7, k, k" <n and each 1 <m < m’ <r —2 such that the cell (,j) contains symbol & in 7, and
symbol k' in 7,,/, add an edge between the vertices k € V,,, and k' € V,,,s.

If » = 3, then G is an edge-disjoint union of copies of K3, so G is K3-divisible. Then G is also K3-
divisible and §(G) > (101/104 + €)n. So we can apply Theorem 1.2 to find a Ksz-decomposition of G
which we can then use to complete 77 to a Latin square.

Suppose now that r > 4. Observe that G consists of an edge-disjoint union of cliques Hy, ..., H, such
that, for each 1 < ¢ < g, H; contains an edge of the form xy where x € V,._; and y € V.. We have
q < (¢, —e)n?. We now show that we can extend G to a graph which has a K,-decomposition. We
will do this by greedily extending each H; in turn to a copy H/ of K,. Suppose that 1 < p < ¢ and we
have already found edge-disjoint H7, ... ,H]’)_l. Given v € V(G), let s(v,p — 1) be the number of graphs
in {H{,...,H, |} U{H,,...,H;} which contain v. Suppose that s(v,p —1) < 10(c, — *)n/9 for all
v € V(G). Foreach 1 <j <r, let Bj :={veV,:s(v,p—1)>10(¢, —e)n/9}. We have

q In
3.1 Bj|< ——— < —.
(3.1) 1B5l < 10(c, —€)n/9 ~ 10
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Let Gp_1 := GUJ’_} (H! — H;). Note that

(3.2) 5(Gp_1) > (1 —10(c, — £2)/9)n.
We will extend H), to a copy of K, as follows. Let {j1,...,jm} ={j:1<j <rand V(H,)NV; = 0}. For
cach j; in turn, starting with ji, choose one vertex z;, from the set N | (V(Hp) U{zj, ..., x5 1 Vi \

Bj,). This is possible since (3.1) and (3.2) imply
dép,l(V(Hp) U {le’ s 7‘T]'i71}7 ij \ sz‘) > (1/10 - (T - 1)10(61” - 52)/9)n > 0.

Let H,, be the copy of K, with vertex set V (H,)U{z; :1 < j <r and V(H,)NV; = 0}. By construction,
for every v € V(G), the number s(v,p) of graphs in {Hj,..., H,} U {Hpt1,..., H,} which contain v
satisfies s(v,p) < 10(c, — €2)n/9.

Continue in this way to find edge-disjoint Hj,..., H; such that s(v,q) < 10(c, — *)n/9. Let G, :=
Ui<i<q Hi- We have 5(Gy) > (1 —10(c, — 62)/3)11 = (1 —1/10°3 + 102/9)n and, since Gy is an edge-
disjoint union of copies of K,, we know that G, is K,-divisible. So we can apply Theorem 1.2 to find
a K,-decomposition F of éq. Note that F' := F U Ulgigq H! is a K,-decomposition of the complete
r-partite graph. Since H; C H for each 1 < i < ¢, we can use F’ to complete Ty, ..., T,_2 to a sequence
of mutually orthogonal Latin squares. (I

4. PROOF SKETCH

Our proof of Theorem 1.1 builds on the proof of the main results of [3], but requires significant new
ideas. In particular, the r-partite setting involves a stronger notion of divisibility (the non-partite setting
simply requires that r — 1 divides the degree of each vertex of G and that (g) divides e(G)) and we have
to work much harder to preserve it during our proof. This necessitates a delicate ‘balancing’ argument
(see Section 10). In addition, we use a new construction for our absorbers, which allows us to obtain the
best possible version of Theorem 1.1. (The construction of [3] would only achieve 1 —1/3(r — 1) in place
of 1-1/(r+1).)

The idea behind the proof is as follows. We are assuming that we have access to a black box approximate
decomposition result: given a K,-divisible graph G on vertex classes of size n with §(G) > (S?Q +en
we can obtain an approximate K,-decomposition that leaves only nn? edges uncovered. We would like
to obtain an exact decomposition by ‘absorbing’ this small remainder. By an absorber for a K,-divisible
graph H we mean a graph Ay such that both Ay and Ay U H have a K,.-decomposition. For any fixed
H we can construct an absorber Ap. But there are far too many possibilities for the remainder H to
allow us to reserve individual absorbers for each in advance.

To bridge the gap between the output of the approximate result and the capabilities of our absorbers,
we use an iterative absorption approach (see also [3] and [19]). Our guiding principle is that, since we have
no control on the remainder if we apply the approximate decomposition result all in one go, we should
apply it more carefully. More precisely, we begin by partitioning V(G) at random into a large number of
parts UL, ..., U*. Since k is large, GU, ..., Uk] still has high minimum degree, and, since the partition
is random, each G[U?] also has high minimum degree. We first reserve a sparse and well structured
subgraph J of G[U!,...,U*], then we obtain an approximate decomposition of G[U*, ..., U¥] - J leaving
a sparse remainder H. We then use a small number of edges from the G[U?] to cover all edges of H U .J
by copies of K,. Let G’ be the subgraph of G consisting of those edges not yet used in the approximate
decomposition. Then all edges of G’ lie in some G'[U?], and each G'[U] has high minimum degree, so
we can repeat this argument on each G’[U?]. Suppose that we can iterate in this way until we obtain a
partition Wi U --- U Wy, of V(G) such that each W; has size at most some constant M and all edges of
G have been used in the approximate decomposition except for those contained entirely within some W;.
Then the remainder is a vertex-disjoint union of graphs Hi, ..., H,,, with each H; contained within W;.
At this point we have already achieved that the total leftover Hy U ---U H,, has only O(n) edges. More
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importantly, the set of all possibilities for the graphs H; has size at most 2 “m = O(n), which is a small
enough number that we are able to reserve special purpose absorbers for each of them in advance (i.e.
right at the start of the proof).

The above sketch passes over one genuine difficulty. Recall that H C G[U',...,U*] denotes the
sparse remainder obtained from the approximate decomposition, which we aim to ‘clean up’ using a well
structured graph J set aside at the beginning of the proof, i.e. we aim to cover all edges of H U J with
copies of K, by using a few additional edges from the G[U?]. So consider any vertex v € U{ (recall that
Uj’f =U'n Vj). In order to cover the edges in H U J between v and U?, we would like to find a perfect
K,_i-matching in N(v) N U?. However, for this to work, the number of neighbours of v inside each of
U2,...,U? must be the same, and the analogue must hold with U? replaced by any of U?,..., U*. (This
is in contrast to [3], where one only needs that the number of leftover edges between v and any of the
parts U’ is divisible by r, which is much easier to achieve.) We ensure this balancedness condition by
constructing a ‘balancing graph’ which can be used to transfer a surplus of edges or degrees from one part
to another. This ‘balancing graph’ will be the main ingredient of J. Another difficulty is that whenever
we apply the approximate decomposition result, we need to ensure that the graph is K,-divisible. This
means that we need to ‘preprocess’ the graph at each step of the iteration.

The rest of this paper is organised as follows. In Section 5, we present general purpose embedding
lemmas that allow us to find a wide range of desirable structures within our graph. In Section 6,
we detail the construction of our absorbers. In Section 7, we prove some basic properties of random
subgraphs and partitions. In Section 8, we show how we can assume that our approximate decomposition
result produces a remainder with low maximum degree rather than simply a small number of edges. In
Section 9, we clean up the edges in the remainder using a few additional edges from inside each part of
the current partition. However, we assume in this section that our remainder is balanced in the sense
described above. In Section 10, we describe the balancing operation which ensures that we can make this
assumption. Finally, in Section 11 we put everything together to prove Theorem 1.1.

5. EMBEDDING LEMMAS

Let G be an r-partite graph on (V1,...,V;) and let P = {U',U?%,...,U*} be a partition of V(G).
Recall that U; := U' NV for each 1 <4 <k and each 1 < j <r. We say that a graph (or multigraph)
H is P-labelled if:

(a) every vertex of H is labelled by one of: {v} for some v € V(G); U; for some 1 <i<k, 1<j<ror
Vj for some 1 < j <

(b) the vertices labelled by singletons (called root vertices) form an independent set in H, and each
v € V(G) appears as a label {v} at most once;

(c) for each 1 < j < r, the set of vertices v € V(H) such that v is labelled L for some L C V; forms an
independent set in H.

Any vertex which is not a root vertex is called a free vertexr.

Let H be a P-labelled graph and let H' be a copy of H in G. We say that H' is compatible with its
labelling if each vertex of H gets mapped to a vertex in its label.

Given a graph H and U C V(H) with e(H[U]) = 0, we define the degeneracy of H rooted at U to be
the least d for which there is an ordering vy, ..., v, of the vertices of H such that

o there is an a such that U = {v1,...,v,} (the ordering of U is unimportant);
e for a < j < b, v; is adjacent to at most d of the v; with 1 <7 < j.

The degeneracy of a P-labelled graph H is the degeneracy of H rooted at U, where U is the set of root
vertices of H.

In the proof of Lemma 10.9, we use the following special case of Lemma 5.1 from [3] to find copies of
labelled graphs inside a graph G, provided their degeneracy is small. Moreover, this lemma allows us to
assume that the subgraph of G used to embed these graphs has low maximum degree.
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Lemma 5.1. Let 1/n < n<e,1/d,1/b <1 and let G be a graph on n vertices. Suppose that:

(i) for each S C V(G) with |S| < d, dg(S,V(G)) > en.
Let m < nn? and let Hy, ..., H,, be labelled graphs such that, for every 1 < i < m, every vertex of H; is
labelled {v} for some v € V(G) or labelled by V(G) and that property (b) above holds for H;. Moreover,
suppose that:

(ii) for each 1 <i <m, |H;| <b;

(iii) for each 1 < i < m, the degeneracy of H; (rooted at the set of vertices labelled by singletons) is at

most d;
(iv) for each v € V(G), there are at most nn graphs H; with some vertex labelled {v}.

Then there exist edge-disjoint embeddings ¢(H1), ..., ¢(Hn) of Hi, ..., H,, compatible with their labellings
such that the subgraph H :=J;", ¢(H;) of G satisfies A(H) < en.

We will also use the following partite version of the lemma to find copies of P-labelled graphs in an
r-partite graph G. We omit the proof since it is very similar to the proof of Lemma 5.1 in [3] (for details,
see [26]).

Lemma 5.2. Let 1/n < n < &,1/d,1/b,1/k,1/r < 1 and let G be an r-partite graph on (V1,...,V;)
where |Vi| = -+ = |V;| =n. Let P ={U',...,U*} be a k-partition of V(G). Suppose that:
(i) for each 1 <i <k and each 1 < j <r, if S CV(G)\V; with |S| <d then dg(S, U;) > alUj\
Let m < nn? and let Hy,. .., H,, be P-labelled graphs such that the following hold:
(ii) for each 1 <1i <m, |H;| < b;
(iii) for each 1 <i < m, the degeneracy of H; is at most d;
(iv) for each v € V(G), there are at most nn graphs H; with some vertex labelled {v}.

Then there exist edge-disjoint embeddings ¢(Hi),...,¢(Hp) of Hi,...,Hy in G which are compatible
with their labellings such that H = J,<;<,, #(H;) satisfies A(H) < en. O

6. ABSORBERS

Let H be any r-partite graph on the vertex set V- = (V1,...,V,). An absorber for H is a graph A such
that both A and AU H have K,-decompositions.

Our aim is to find an absorber for each small K,-divisible graph H on V. The construction develops
ideas in [3]. In particular, we will build the absorber in stages using transformers, introduced below, to
move between K,-divisible graphs.

Let H and H' be vertex-disjoint graphs. An (H, H'),-transformer is a graph T' which is edge-disjoint
from H and H' and is such that both T U H and T'U H’ have K,-decompositions. Note that if H' has
a K,.-decomposition, then T'U H' is an absorber for H. So the idea is that we can use a transformer to
transform a given H into a new graph H’, then into H” and so on, until finally we arrive at a graph
which has a K,.-decomposition.

Let V = (W4,...,V,). Throughout this section, given two r-partite graphs H and H' on V, we say
that H' is a partition-respecting copy of H if there is an isomorphism f : H — H’ such that f(v) € V}
for every vertex v € V(H)NVj.

Given r-partite graphs H and H' on V, we say that H' is obtained from H by identifying vertices if
there exists a sequence of r-partite graphs Hy, ..., Hs on V such that Hy = H, H; = H' and the following
holds. For each 0 < ¢ < s, there exists 1 < j; < r and vertices z;,y; € V(H;) NV}, satisfying the following:

(i) N, (x:) NV Ng,(yi) = 0.

(ii) H;y1 is the graph which has vertex set V/(H;) \ {y;} and edge set E(H; \ {y:}) U{vz; : vy; € E(H;)}
(i.e., H;11 is obtained from H; by identifying the vertices z; and ;).

Condition (i) ensures that the identifications do not produce multiple edges. Note that if H and H' are

r-partite graphs on V and H' is a partition-respecting copy of a graph obtained from H by identifying
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vertices then there exists a graph homomorphism ¢ : H — H' that is edge-bijective and maps vertices in
Vj to vertices in V; for each 1 < j <.

In the following lemma, we find a transformer between a pair of K,-divisible graphs H and H' whenever
H' can be obtained from H by identifying vertices.

Lemma 6.1. Let r > 3 and 1/n < n <€ 1/s < &,1/b,1/r < 1. Let G be an r-partite graph on
V=Wi,...,V,) with |Vi| = --- = [Vi| = n. Suppose that 6(G) > (1 —1/(r +1) +&)n. Let H and H' be
vertez-disjoint K,-divisible graphs on V with |H| < b. Suppose further that H' is a partition-respecting
copy of a graph obtained from H by identifying vertices. Let B CV be a set of at most nn vertices. Then

G contains an (H, H'),-transformer T such that V(T)N B C V(H U H') and |T| < s°.

In our proof of Lemma 6.1, we will use the following multipartite asymptotic version of the Hajnal—
Szemerédi theorem.

Theorem 6.2 ([17] and [20]). Let r > 2 and let 1/n < e,1/r. Suppose that G is an r-partite graph on
V..., Vo) with |[Vi| = --- = |V, =n and §(G) > (1—1/r+¢e)n. Then G contains a perfect K,-matching.

Proof of Lemma 6.1. Let ¢ : H — H' be a graph homomorphism from H to H’ that is edge-bijective
and maps vertices in V; to V; for each 1 < j <.
Let T be any graph defined as follows:
(a) For each zy € E(H), Z*™ := {2z} : 1 < j < rand x,y ¢ V;} is a set of r — 2 vertices. For each
v € V(H), let Z% == Uyeny @) 2"
(b) For each x € V(H), S* is a set of (r — 1)s vertices.
(¢) For all distinct e, e’ € F(H) and all distinct , 2’ € V(H), the sets Z¢, Z¢, $*, §* and V(H U H')
are disjoint.

)
) Eg :={zz:xz € V(H) and z € Z*}.

) Egr = {¢p(x)z:x € V(H) and z € Z*}.
) Bz :={wz:e€ E(H) and w,z € Z¢}.
) Es:={zv:xz € V(H) and v € S*}.
g Ey :={¢(x)v:xz € V(H) and v € S7}.
)
)
)

—~
o e

For each x € V(H), FY} is a perfect K,_j-matching on S* U Z*.
For each x € V(H), F¥ is a perfect K,_j-matching on S*.

For each x € V(H), F{ and Fy are edge-disjoint.

For each x € V(H), Z* is independent in FY'.

(n) E(T):==EgUEy UEzUEsUEgUU, ey E(FT U FY).

IT| = [H|+ [H'|+ Y |20+ Y |8°|=|H|+|H'|+(r—2)e(H)+ (r - 1)s|H| < s
ecE(H) z€V(H)
Let T; be the subgraph of T' with edge set Ey U Efpr UEy and let To :=T — T3. So E(Ty) = Eg U E’S U
Usev(m E(FT UFY). In what follows, we will often identify certain subsets of the edge set of T" with the
subgraphs of T' consisting of these edges. For example, we will write Eg[{x}, S¥] for the subgraph of T'
consisting of all the edges in Fg between z and S*. Note that there are several possibilities for T' as we
have several choices for the perfect K,_;-matchings in (j) and (k).
Lemma 6.1 will follow from Claims 1 and 2 below.

Claim 1: If T satisfies (a)—(n), then T is an (H, H'),-transformer.

Proof of Claim 1. Note that H U Ey U Ez can be decomposed into e(H) copies of K,, where each copy
of K, has vertex set {z,y} U Z% for some edge zy € E(H). Similarly, H' U Eg U Ez can be decomposed
into e(H) copies of K.
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Vg Y

Zry

FIGURE 1. Left: Subgraph of T} associated with zy € E(H). Right: Subgraph of T5
associated with € V(H) in the case when r = 4.

For each « € V(H), note that (Eg U Eg)[{¢(x)}, STUZ*]UFT and Eg[{z}, ST]UFy are edge-disjoint
and have K, -decompositions. Since

T,UEy = |J ((BrUEy){e@)},s"uzluFT)u | (Bsl{z},S"1UFY),
€V (H) z€V(H)

it follows that ToUFEy: has a K,-decomposition. Similarly, for eachx € V(H), (EgUEg)[{x}, STUZ*|UF}
and Eg[{¢(z)}, S*JUFY are edge-disjoint and have K,-decompositions, so ToUEy has a K,-decomposition.

To summarise, HUEgUEy;, HUEg UE 7, ToUEg and ToUE g all have K,.-decompositions. Therefore,
TUH = (HUEgUEZ)U(T2UEg) has a K,-decomposition, as does TUH' = (H'UEy UEZz)U(T2UE).
Hence T is an (H, H'),-transformer.

Claim 2: G contains a graph T satisfying (a)—(n) such that V(T)N B C V(H U H').

Proof of Claim 2. We begin by finding a copy of T in G. It will be useful to note that, for any graph T’
which satisfies (a)-(n), Ty is r-partite with vertex classes (V(HUH')NV;)U{z}" : xy € E(H) and z,y ¢
V;} where 1 < j <r. Also, T[V(H U H')] is empty and every vertex z € V(T1) \ V(H U H') satisfies

(6.1) dr,(z) =2+ (r—3)+2=r+1.

So T has degeneracy r + 1 rooted at V/(H U H'). Since 6(G) > (1 —1/(r+1) +&/2)n + |B|, we can find
a copy of Th in G such that V(Th)N B C V(H U H").

We now show that, after fixing T, we can extend T to T by finding a copy of T5. Consider any ordering
T1,...,T|g) on the vertices of H. Suppose we have already chosen S*!,..., S%—1, Ffl, .. .,leqfl and
F3', ..., Fy" " and we are currently embedding S%¢. Let B’ := BUV(T}y) U Ug;ll S%i; that is, B’ is the
set of vertices that are unavailable for S%¢, either because they have been used previously or they lie B.
Note that |B’| < |T'|+|B]| < 2nn. We will choose suitable vertices for S in the common neighbourhood
of x4 and ¢(zg).

To simplify notation, we write x := z, and assume that € V; (the argument is identical in the other
cases). Choose a set V' C (Ng(x) N Ng(¢(x))) \ B’ which is maximal subject to |V3]| =+ = |V}/| (recall
that Vj’ =V'n Vj). Note that for each 2 < j < r, we have

Vilz (1 =1/(r+ 1) +en = (1/(r+1) —g)n—|B'| = (1 = 2/(r + 1))n.
Let n’ := |V3]. For every 2 < j <r and every v € V(G) \ Vj, we have
(6.2) dg(v,Vj)>n'—(1/(r+1) —e)n > (1 -1/(r = 1) +e)n’.
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Roughly speaking, we will choose S* as a random subset of V’. For each 2 < j < r, choose each vertex
of V; independently with probability p := (1 +¢/8)s/n’ and let S’ be the set of chosen vertices. Note
that, for each j, E(|S}]) = n'p = (1 +£/8)s. We can apply Lemma 2.2 to see that

P(|[Sj] — (1 +¢/8)s| = es/8) < P(|[S}] — (1 +¢/8)s| = eE(|S}])/10)
(6.3) < 2e7/30 < 1 /4(r — 1).

Given a vertex v € V(G) and 2 < j < r such that v ¢ V}, note that

E(da(v, S)) (622) 1-1/(r=1D)+emp>1—-1/(r—1)+¢)s.

We will say that a vertex v € V(G) is bad if there exists 2 < j < r such that v ¢ V; and dg(v,S}) <
(1-1/(r—1)+3¢/4)s, that is, the degree of v in S} is lower than expected. We can again apply Lemma 2.2
to see that

P(da(v,8}) < (1= 1/(r — 1) + 32/4)s) < P(|dg (v, S}) — E(dg(v, S}))| > £s/4)

< P(|dc(v, S}) — E(d(v, S}))| > eE(da(v, S5))/10)
267525/600‘

So P(v is bad) < 2(r — 1)e—"5/600 < e=s"?. Let § = Uj—y Sj- We say that the set S’ is bad if S" U Z*
contains a bad vertex. We have

P(S" is bad) < Z P(v € 8" and v is bad) + Z P(v is bad)

veV/’ veEZ®
= Z P(v € S")P(v is bad) + Z P(v is bad)
veV’ vEZLT
, B B _gl/2 _gl/2
(6.4) <(np+(b—-1)(r—2))e < 2se <1/4.

We apply (6.3) and (6.4) to see that with probability at least 1/2, the set S’ chosen in this way is not
bad and, for each 2 < j < r, we have s < |5} < (1+¢/4)s. Choose one such set S’. Delete at most es/4
vertices from each S} to obtain sets ST satisfying [S5] = --- = [SF| = s. Let 5% := Jj_, 7. Since " was
not bad, for each 2 < j < r and each vertex v € (ST U Z%) \ V;,

(6.5) dg(v,S7) > (1= 1/(r — 1)+ 3e/4)s —es/d = (1 — 1/(r — 1) +/2)s.

We now show that we can find Fy and F¥ satisfying (j)—(m). Let G* := G[Z* U S*] — G[Z*]. Note
that G” is a balanced (r — 1)-partite graph with vertex classes of size n, where s <mn, < s+ (r —2)(b—
1)/(r—1) < s+ b. Using (6.5), we see that

~

(G*)>(1—-1/(r—1)+¢/2)s>(1—-1/(r—1)+¢/3)n,.

So, using Theorem 6.2, we can find a perfect K,_j-matching Fy in G*. Finally, let G’ := G — F{ and
use (6.5) to see that

5(G'[S8*]) > (1—1/(r —1) +¢/3)s.

So we can again apply Theorem 6.2, to find a perfect K,_j-matching F in G'[S*]. In this way, we find
a copy of T satisfying (a)—(n) such that V(T)N B C V(H UH"). O
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We now construct our absorber by combining several suitable transformers.

Let H be an r-partite multigraph on V' = (V1,...,V;) and let zy € E(H). A K,-expansion of xy is
defined as follows. Consider a copy Fy, of K, on vertex set {uy,...,u,} such that u; € V; \ V(H) for all
1 <j <r. Let ji,j2 be such that x € V;; and y € V},. Delete vy from H and uj uj, from F,, and add
edges joining x to uj, and joining y to wj,. Let Heyp, be the graph obtained by K,-expanding every edge
of H, where the Fy, are chosen to be vertex-disjoint for different edges xy € E(H).

Fact 6.3. Suppose that the graph H' is obtained from a graph H by K,.-expanding the edge xy € E(H)
as above. Then the graph obtained from H' by identifying x and w;, is H with a copy of K, attached to
x.

Let h € N. We define a graph M}, as follows. Take a copy of K, on V (consisting of one vertex in each
V;) and replace each edge by h multiedges. Let M denote the resulting multigraph. Let M}, := My
be the graph obtained by K,-expanding every edge of M. We have |Mp| = r + hr (;) Note that M;,
has degeneracy r — 1. To see this, list all vertices in V(M) (in any order) followed by the vertices in
V(Mp \ M) (in any order).

We will now apply Lemma 6.1 twice in order to find an (H, M},),-transformer in G.

Lemma 6.4. Let r > 3 and 1/n < n < 1/s < ¢,1/b,1/r < 1. Let G be an r-partite graph on
V = (Vi,...,Vy) with |Vi| = --- = |V;| = n. Suppose that 5(G) > (1 —1/(r +1) +&)n. Let H be a
K, -divisible graph on V with |H| < b. Let h := e(H)/(g) Let Mj be a partition-respecting copy of My,
on V which is vertex-disjoint from H. Let B CV be a set of at most nn vertices. Then G contains an
(H, M}),-transformer T such that V(T)N B C V(HUM]) and |T| < 3s*.

Proof. We construct a graph Hj,y as follows. Start with the graph H. For each edge of H, arbitrarily
choose one of it endpoints = and attach a copy of K, (found in G\ ((V(H UM;)UB)\ {z})) to z. The
copies of K, should be chosen to be vertex-disjoint outside V(H). Write Hyy for the resulting graph.
Let H/,, be a partition-respecting copy of Hexp, in G\ (V(Hay UM} ) U B). Note that we are able to find

exp
these graphs since both have degeneracy r — 1 and 6(G) > (1 —1/(r 4+ 1) +&)n.

By Fact 6.3, Hyt is a partition-respecting copy of a graph obtained from Héxp by identifying vertices,
and this is also the case for Mj. To see the latter, for each 1 < j < r, identify all vertices of Héxp lying
in V;. (We are able to do this since these vertices are non-adjacent with disjoint neighbourhoods.)

Apply Lemma 6.1 to find an (Hey,, Hatt)r-transformer 7" in G — Mj, such that V(T")N B C V(H) and
|T"| < s*. Then apply Lemma 6.1 again to find an (H/,, M} ) -transformer 7" in G — (Hayy UT”) such
that V(I"") N B C V(Mj) and |T"| < s°.

Let T:=T'UT"UH/,, U (Ha — H). Then T is edge-disjoint from H U M;. Note that

exp
TUH = (T'UHy) U(T" UH._) and

exp
TUM;, = (T'UHg,)U(T"UM,)U (Hay — H),

both of which have K,-decompositions. Therefore T is an (H, M) ),-transformer. Moreover, |T| < 3s2.
Finally, observe that V(T) N B = V(T" UT" U Hut) N B C V(H U MJ). O

We now have all of the necessary tools to find an absorber for H in G.

Lemma 6.5. Let r > 3 and let 1/n < n < 1/s < €,1/b,1/r < 1. Let G be an r-partite graph on
V = (Vi,...,V,) with |[Vi| = --- = |V,| = n. Suppose that 6(G) > (1 —1/(r + 1) +&)n. Let H be a
K, -divisible graph on V with |H| < b. Let B CV be a set of at most nn vertices. Then G contains an
absorber A for H such that V(A)N B C V(H) and |A| < s3.

Proof.  Let h := e(H)/(}). Let G’ := G\ (V(H) U B). Write hK, for the graph consisting of

h vertex-disjoint copies of K. Since 0(G’) > (1 — 1/(r + 1) + £/2)n, we can choose vertex-disjoint
(partition-respecting) copies of M} and hK, in G’ (and call these M), and hK, again). Use Lemma 6.4



CLIQUE DECOMPOSITIONS OF MULTIPARTITE GRAPHS AND COMPLETION OF LATIN SQUARES 13

to find an (H, My,),-transformer T' in G — hK, such that V(T') N B C V(H) and |T'| < 3s%. Apply
Lemma 6.4 again to find an (hK,, My),-transformer 7" in G — (H U T") which avoids B and satisfies
|T"| < 3s2. Tt is easy to see that T := T" UT" U M}, is an (H, hK,),-transformer.

Let A := T UhK,. Note that both A and AUH = (T'U H) U hK, have K,-decompositions. So A is
an absorber for H. Moreover, V(A)N B CV(T')N B C V(H) and |A| < s3. O

6.1. Absorbing sets. Let H be a collection of graphs on the vertex set V = (V1,...,V;). We say that
A is an absorbing set for ‘H if A is a collection of edge-disjoint graphs and, for every H € H and every
K,-divisible subgraph H' C H, there is a distinct Ay € A such that Ay is an absorber for H'.

Lemma 6.6. Let r >3 and 1/n < n < e, 1/b,1/r < 1. Let G be an r-partite graph on V = (V1,...,V,)
with |Vi| = --- = |Vi| = n. Suppose that §(G) > (1 —1/(r + 1)+ &)n. Let m < nqn? and let H be a
collection of m edge-disjoint graphs on V.= (Vq,...,V,) such that each vertex v € V' appears in at most
nn of the elements of H and |H| < b for each H € H. Then G contains an absorbing set A for H such
that A(UA) < en.

We repeatedly use Lemma 6.5 and aim to avoid any vertices which have been used too often.

Proof. Enumerate the K,-divisible subgraphs of all H € H as Hy,..., H,. Note that each H € ‘H
b b
can have at most 2¢F) < 2(2) K, -divisible subgraphs so m’ < 2(2)7]712. For each v € V(G) and each
b

0 < j < m,let s(v,7) be the number of indices 1 < i < j such that v € V(H;). Note that s(v,j) < 2(2)1711.
Let s € N be such that n < 1/s < ¢,1/b,1/r. Suppose that we have already found absorbers

Ai,..., A for Hy,...,Hj_q respectively such that |A4;| < s3, for all 1 < i < j — 1, and, for every

v eV(G),

(6.6) da, , (v) <nM?n+ (s(v,j — 1)+ 1)s°,

where Gj_1 := Ulgigj—l A;. We show that we can find an absorber A; for H; in G — G;_1 which satisfies
(6.6) with j replacing j — 1.
Let B:={v e V(G):dg, ,(v) > n'/2n}. We have

83 b
(Gj-1) < 2m’(2) 2(2)4&77”256 < 1/3

|B| < = >
ni/2n nl/2n nl/2n -
We have

. (6.6)
5(G—-Gi) > (1 =1/(r+1)+e)n—n"n—(s(v,j —1) +1)s°

v

1-1/(+1) +e)n—1"n— 2 nm+1)s3 > (1 — 1/(r + 1) +/2)n.

So we can apply Lemma 6.5 (with £/2, '/3, G — G,_1 and H; playing the roles of ¢, n, G and H) to find
an absorber A; for H; in G — G;_; such that V(4;) N B C V(H;) and |A;| < s3.

We now check that (6.6) holds with j replacing j —1. If v € V(G) \ B, this is clear. Suppose then that
veB. If veV(A;), then v € V(H;) and s(v,j) = s(v,j — 1) + 1. So in all cases,

da, (v) <0+ (s(v,§) + 1)s™.

Continue in this way until we have found an absorber A; for each H;. Then A :={A4;:1<i<m'} is
an absorbing set. Using (6.6),

A(UA) = A(G) <00+ (2(3)7771 +1)s% < en,

as required. O
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7. PARTITIONS AND RANDOM SUBGRAPHS

In this section we consider a sequence Pi,..., P, of successively finer partitions which will underlie
our iterative absorption process. We will also construct corresponding sparse quasirandom subgraphs R;
which will be used to ‘smooth out’ the leftover from the approximate decomposition in each step of the
process.

Let G be an r-partite graph on (Vi,...,V;). An (o, k,d)-partition for G on (Vi,...,V,) is a partition
P ={U',...,U*} of V(G) such that the following hold:

(Pal) for each 1 < j <, {UjZ :1 <4 <k} is an equitable partition of Vj (recall that U]Zf =U'N Vi);
(Pa2) for each 1 <i <k, |U}| =--- = |Ul;
(Pa3) for each v € V(G), each 1 <i<kandeach1<j<r,

|da(v,U}) — da(v, Vi) /K| < a|U;

(Pad) for each 1 <i <k, each 1 <j <r and eachv ¢ Vj, dg(v,U]’f) > 6|U]’\
We say that P = {U',...,U*} is a k-partition if it satisfies (Pal) and (Pa2).

The following proposition guarantees a (n~'/3/2,k, & — n~1/3/2)-partition of any sufficiently large
balanced r-partite graph G with §(G) > dn. To prove this result, it suffices to consider an equitable

partition Ujl, Uj2, ce Uf of V; chosen uniformly at random (with ]Uj1| <... < |U]k|)

Proposition 7.1. Let k,r € N. There exists ng such that if n > ng and G is any r-partite graph
on (Vi,...,Vp) with |Vi| = --- = |V;| = n and 6(G) > dn, then G has a (v,k,§ — v)-partition, where
vi=n"13/2. O

We say that P1,Pa,..., Py is an (a, k, §, m)-partition sequence for G on (Vq,...,V,) if, writing Py :=
V(@)
(S1) for each 1 < i < /¢, P; refines P;_q;
(S82) for each 1 <i </ and each W € P;_1, P;[W] is an (a, k, 0)-partition for G[W];
(S3) for each 1 < i </, all 1 < jy,jo2,j3 < r with j; # jo, js, each W € P;_1, each U € P;[W] and each
v E le,
’dG(U’ sz) - dG(Ua Uj3)| < a‘Ujd |;

(S4) for each U € Py and each 1 < j <, |[U;j| =m or m — 1.
Note that (S2) and (Pa2) together imply that |U;,| = |Uj,| for each 1 < i < £, each U € P; and all
L<jija<r.

By successive applications of Proposition 7.1, we immediately obtain the following result which guar-
antees the existence of a suitable partition sequence (for details see [26]).

Lemma 7.2. Let k,r € N with k > 2 and let 0 < o < 1. There exists mg such that, for all m’ > my,
any K,-divisible graph G on (Vi,...,V;) with |Vi| = -+ = |V;| = n > km/ and 6(G) > on has an
(v, ky & — o, m)-partition sequence for some m’ < m < km/. O

Suppose that we are given a k-partition P of G. The following proposition finds a quasirandom
spanning subgraph R of G so that each vertex in R has roughly the expected number of neighbours in
each set U € P. The proof is an easy application of Lemma 2.1.

Proposition 7.3. Let 1/n < «a,p,1/k,1/r < 1. Let G be an r-partite graph on (Vi,...,V,) with
[Vi| = --- = |V.| = n. Suppose that P is a k-partition for G. Let S be a collection of at most n® subsets
of V(G). Then there exists R C G[P] such that for all 1 < j <, all distinct z,y € V(G), allU € P and
all SeS§:

d |dR(fL', UJ) - pdG[P] (x7UJ)| < Oé|Uj|,'



CLIQUE DECOMPOSITIONS OF MULTIPARTITE GRAPHS AND COMPLETION OF LATIN SQUARES 15

b ’dR({xv y}a UJ) - deG[P]({x? y}7 U])’ < Oé|U]|,
e |da(y, Nr(z,Uj)) = pda(y, Nepp)(z, Uj))| < o|Ujl;
e |dr(y, Sj) — pdaip(y, Sj)| < an. O
We need to reserve some quasirandom subgraphs R; of G at the start of our proof, whilst the graph
G is still almost balanced with respect to the partition sequence. We will add the edges of R; back after

finding an approximate decomposition of G[P;] in order to assume the leftover from this approximate
decomposition is quasirandom. The next lemma gives us suitable subgraphs for R;.

Lemma 7.4. Let 1/m < a < p,1/k,1/r < 1. Let G be an r-partite graph on (V1,...,V;) with |Vi| =
o = |V;|. Suppose that Pi,..., Py is a (1,k,0,m)-partition sequence for G. Let Py := {V(G)} and,
for each 0 < q < (, let G4 := G[P,]. Then there exists a sequence of graphs Ru,..., Ry such that
R, C Gy — Gy—1 for each q and the following holds. For all1 < q </, all1 <j<vr, all W € Py_1, all
distinct x,y € W and all U € Py[W]:

(i) |dr,(2,Uj) — pdc,(z,Uj)| < a|Uj|;

(i) [dr,({z,y},Uj) = p*da,({z, v}, Uj)| < alUjl;
(iii) dG;+1(yaNRq(x7Uj)) > pda,., (v, Na,(z,U;)) — 3p°|Uj|, where Gyy1 = Gay1 — Ry if g < 0 — 1,
G =G and Goyy = G.
Proof. For 1 < g < ¢, we say that the sequence of graphs R1,..., R, is good if R; C G; — G;—1 and for
all1 <i<gq,alll1 <j<r all W e P;_q, all distinct z,y € W and all U € P;[W]:
(a) (i) and (ii) hold (with ¢ replaced by 17);
(b) |dGi+1 (yv NRi (:L‘a UJ)) - pdGH—l(y? NGi (l’, Uj))| < O‘|Uj|;
(C) if 4 < q— 1? dRi+1 (y7NRi(x7 Uj)) < pdGi+1 (yv NRi(fL‘a UJ)) + a|Uj|'

Suppose 1 < ¢ < ¢ and we have found a good sequence of graphs Ry,..., R,—1. We will find R, such
that Ry,..., R, is good. Let W € P,_1, let S; be the empty set and, if ¢ > 2, let W’ € P,_5 be such that
W C W and let S; := {Ng,_,(z,W) : € W'}. Apply Proposition 7.3 (with |[W|/r, Gqy1[W], Py[W]
and S, playing the roles of n, G, P and S) to find Ry C Gg41[W][Py[W]] = G4[W] such that:

|dry, (2, Uj) — pda, (z,Uj)| < e|Uj],

ldry ({2, 9}, U;) = pPde, ({2, 9}, Uj)l < alUj],

|dG,1 (Y, Nry (2, Uj)) — pda,,, (v, Na, (2, Uj))| < alUj],

(7.1) |dry, (4, S5) — pda, (y, S5)| < alWjl,
forall 1 <j <r, all distinct z,y € W, allU € Py[W] and all S € ;. Set Ry := Uyep, , Rw- 1t is clear

that Ry,..., R, satisfy (a) and (b). We now check that (c) holds when 1 <i=¢—1. Let 1 <j <,
W € Pyo, x,y € W be distinct and U € P,_1[W]. If y ¢ U, then dg,(y,U;) = 0 and so (c) holds. If
y € U, then dg,(y, Nr,_,(z,U)) = dry, (y, Nr,_,(z,U)) and (c) follows by replacing W and S by U and
Ng,_,(z,U) in property (7.1). So Ry, ..., R, is good.

So G contains a good sequence of graphs Ry, ..., Ry. We will now check that this sequence also satisfies
(iii). If ¢ = ¢, this follows immediately from (b). Let 1 < ¢ < ¢, 1 <j <r, W € Py_1, z,y € W be
distinct and U € P,[W]. We have

(c)
dry (Y, Nr,(2,Uj)) < pdg,,, (y, Nr,(2,U;)) + a|Uj]

(b)
< p*da,., (v, Na, (2,U5)) + (ap + ) |U;| < 20%|U;].

Therefore,
der (4, Nr,(2,Uj)) = da,,, (v, Nr, (2, Uj)) — dryyy (y, N, (2, Uj))

(b)
> pde,., (y, Na, (z,Uj)) — 3p°|Uj .
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So Ry, ..., Ry satisfy (i)—(iii). O

We apply Lemma 7.4 when Py,..., Py is an (a, k,1 — 1/r + £, m)-partition sequence for G to obtain
the following result. For details of the proof, see [26].

Corollary 7.5. Let 1/m < o < p,1/k < ¢,1/r < 1. Let G be a K,-divisible graph on (V1,...,V;)
with V1| = -+ = |V,|. Suppose that P1,..., Py is an (o, k,1 — 1/r 4+ €, m)-partition sequence for G. Let
Py = {V(G)} and G4 := G[P,] for 0 < q < L. There exists a sequence of graphs R, ..., Ry such that
R, C Gy — Gg—1 for each 1 < q < £ and the following holds. For all 1 < q < £, all 1 < j,j' <r, all
W € Py1, all distinct z,y € W and all U,U" € Py[W]:

() d, (2,U;) < pda, (. U) + olU; ;

(i) dr,({z,y},U;) < (p* + @)|Uj];

(iii) if x ¢ UV U UV; UV, |dg,(z,U;) — dg,(z, Uj’./)\ < 3a|Uj|;

(iv) ifc ¢ U, y e U and x,y ¢ V;, then

der  (y, Nr,(2,U))) = p(1 = 1/(r = 1))dg, (x,U;) + p°/*|Uj],
where G;Jrl =Gy41 — Rgy1 if ¢ <€ —1 and G’EJrl =G. O

8. A REMAINDER OF LOW MAXIMUM DEGREE

The aim of this section is to prove the following lemma which lets us assume that the remainder of G
after finding an n-approximate decomposition has small maximum degree.

Lemma 8.1. Let 1/n K a < n <K€ v <K e < 1/r < 1. Let G be an r-partite graph on (Vi,...,V,)

with [Vi| = --- = |Vi| = n and 6(G) > (5?<r + e)n. Suppose also that, for all 1 < ji,72 < r and every
v ¢ ‘/jl U ‘/jQ’
(8'1) ‘dG(vah) - dG(v’I/}z)| < an.

Then there exists H C G such that G — H has a K,-decomposition and A(H) < yn.

Our strategy for the proof of Lemma 8.1 is as follows. We first remove a sparse random subgraph
H of G and then choose an n-approximate K,.-decomposition of G — H. Now consider the remainder
R obtained from G by deleting all edges in the copies of K, in this decomposition. Suppose that v is
a vertex whose degree in R is too high. Our aim will be to find a K,_j-matching in a sparse random
subgraph whose vertex set is the neighbourhood of v in G. Each vertex in this random subgraph sees,
on average, at most pdg(v)/(r — 1) < (1 = 1/(r — 1) + e)dg(v)/(r — 1) vertices in each other part, so
Theorem 6.2 alone is of no use. But Theorem 6.2 can be combined with the Regularity lemma in order
to find the desired K,-matching.

8.1. Regularity. In this section, we introduce a version of the Regularity lemma which we will use to
prove Lemma 8.1.

Let G be a bipartite graph on (A, B). For non-empty sets X C A, Y C B, we define the density of
G[X,Y] to be dg(X,Y) :=eq(X,Y)/|X||Y|. Let ¢ > 0. We say that G is e-regular if for all sets X C A
and Y C B with |X| > ¢|A| and |Y| > ¢|B| we have

lda(A, B) —dg(X,Y)| <e.
The following simple result follows immediately from this definition.

Proposition 8.2. Suppose that 0 < ¢ < o < 1/2. Let G be a bipartite graph on (A, B). Suppose that
G is e-regular with density d. If A* C A, B’ C B with |A'| > «|A| and |B'| > «|B| then G[A", B'] is
e/a-reqular and has density greater than d — €. O
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Proposition 8.2 shows that regularity is robust, that is, it is not destroyed by deleting a small number
of vertices. The next observation allows us to delete a small number of edges at each vertex and still
maintain regularity. The proof again follows from the definition.

Proposition 8.3. Let n € N and let 0 < v < ¢ < 1. Let G be a bipartite graph on (A, B) with
|A| = |B| = n. Suppose that G is e-reqular with density d. Let H C G with A(H) < yn and let
G' .= G — H. Then G’ is 2e-reqular and has density greater than d — /2. O

The following proposition takes a graph G on (V1,...,V;) where each pair of vertex classes induces an
e-regular pair and allows us to find a K,-matching covering most of the vertices in G. Part (i) follows
from Proposition 8.2 and the definition of regularity. For (ii), apply (i) repeatedly until only [¢!/"n]
vertices remain uncovered in each V.

Proposition 8.4. Let 1/n < ¢ < d,1/r < 1. Let G be an r-partite graph on (Vi,...,V,) with |Vi| =
-+ = |Vp| = n. Suppose that, for all 1 < ji < jo < r, the graph G|V}, V},] is e-reqular with density at
least d.
(i) For each 1 < j <, let W; CV; with |W;| = [e/"™n]. Then G[Wr,...,W,] contains a copy of K,.
(ii) The graph G contains a K.-matching which covers all but at most 2rel/Tn vertices of G. ]

We will use a version of Szemerédi’s Regularity lemma [25] stated for r-partite graphs. It is proved in
the same way as the non-partite degree version.

Lemma 8.5 (Degree form of the r-partite Regularity lemma). Let 0 < e < 1 and ko,r € N. Then there
is an N = N(e,ko,r) such that the following holds for every 0 < d < 1 and for every r-partite graph G
on (Vi,...,V;) with |Vi| = --- = |V,| = n > N. There exists a partition P = {U°,... , U*} of V(Q),
m € N and a spanning subgraph G' of G satisfying the following:

(ii) for each 1 < j <, |U]Q| <en;
(iii) for each 1 <i <k and each 1 <j <r, |U]Z| =m;
(iv) for each 1 < j <r and each v € V(G), dg/(v,V}) > dg(v,V;) — (d+e)n;

)

(v) for all but at most ek? pairs U;ll, U;j where 1 <i1,ip <k and 1 < ji < jo <, the graph G'[U},

U:?]
is e-reqular and has density either O or > d. "
We define the reduced graph R as follows. The vertex set of R is the set of clusters {U]’ 1 <
i <kand1l < j < r}. Foreach U U € V(R), UU' is an edge of R if the subgraph G'[U,U’] is e-
regular and has density greater than d. Note that R is a balanced r-partite graph with vertex classes
W; = {UJ’ :1<i <k} for 1 <j<r. The following simple proposition relates the minimum degree of
G and the minimum degree of R.

Proposition 8.6. Suppose that 0 < 2¢ < d < ¢/2. Let G be an r-partite graph on (Vi,...,V,) with
Vi| = = |Vi| = n and (G) > en. Suppose that G has a partition P = {U°, ..., U*} and a subgraph
G' C G as given by Lemma 8.5. Let R be the reduced graph of G. Then 6(R) > (¢ — 2d)k. O

8.2. Degree reduction. At the beginning of our proof of Lemma 8.1, we will reserve a random subgraph
H of G. Proposition 8.8 below ensures that we can partition the neighbourhood of each vertex so that H
induces e-regular graphs between these parts. In our proof of Proposition 8.8, we will use the following
well-known result for which we omit the proof.

Proposition 8.7. Let 1/n < ¢ < d,p < 1. Let G be a bipartite graph on (A, B) with |A| = |B| = n.
Suppose that G is e-regular with density at least d. Let H be a graph formed by taking each edge of G

independently with probability p. Then, with probability at least 1 —1/n?, H is 4e-reqular with density at
least pd/2. O
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Proposition 8.8. Let 1/n < a < 1/N < 1/kg <e* < d< p<e,1/r <1. Let G be an r-partite graph
on (Vi,...,V;) with |Vi| = --- = [Vs| = n and 6(G) > (1 — 1/r + )n. Suppose that for all 1 < jy,jo <
and every v ¢ Vj, UV, |da(v,V},) —da(v, Vj,)| < an. Then there exists H C G satisfying the following
properties:
(i) For each 1 < j < r and each v € V(G), |du(v,V;) — pdg(v,V)] < an. In particular, for any
1 <j1,j2 <1 such that v ¢ Viy UV, |dH(UaV}1) - dH(“?‘/JQN < 3an.
(ii) For each vertexv € V(G), there exists a partition P(v) = {U°(v),...,U* (v)} of Ng(v) and m, € N
such that:
g kO < kv < N;'
o foreach1<j<r, ]U]Q(v)| <e*n;
o for each 1 <i <k, and each 1 < j <r such that v & Vj, ]UZ( )| = my;
o foreach 1 <i<k,and alll < ji < jo <r such thatv ¢ V; UV, the graph H[U;l(v),U;Q(v)]
s €*-regular with density greater than d.

Roughly speaking, (ii) says that for each v € V(G) the reduced graph of H[Ng(v)] has a perfect
K,_1-matching.

Proof. Let H be the graph formed by taking each edge of G independently with probability p. For
each 1 < j <r and each v € V(G), Lemma 2.1 gives

P(|dg (v, V;) — pdp (v, V;)| > an) < 2e72°" < 1/rn?.
So the probability that there exist 1 < j <r and v € V(G) such that |dy (v, V) — pdg(v,V;)| > an is at
most rn/rn? = 1/n. Let 1 < j1,jo < 7. Note that if v ¢ V;, UV}, and |dg (v, V;) — pda(v, V;)| < an for
J =J1,J2, then
|dH(7)7 V]l) - dH(U7 ij)‘ < ‘pdg(v, le) - ,Odg(’l), Vv]z)| + 2an < 3an.
So H satisfies (i) with probability at least 1 — 1/n.

We will now show that H satisfies (ii) with probability at least 1/2. We find partitions of the neigh-
bourhood of each vertex v € V(G) as follows. To simplify notation, we will assume that v € V; (the
argument is identical for the other cases). For all 2 < ji,jo < 7, we have |dg(v,V},) — dg(v,V},)| < an.
So, there exists n, and, for each 2 < j < r, a subset V;(v) C Ng(v,V;) such that |V;(v)| > dg(v,V;) —an
and

Vj(0)| = ny 2 8(G) = (1 - 1/r)n.
Let G, denote the balanced (r — 1)-partite graph G[Va(v), ..., V,.(v)]. Note that

. n 1
2 v > v T 2 1- v
(8.2) 0(Gy) >n T—I—sn < T_1+5>n
Apply Lemma 8.5 (with €*/4, 2d/p, ko and G, playing the roles of ¢, d, ko and G) to find a partition
Qv) = {WOw),..., Wk (v)} of V(G,) satisfying properties (i)-(v) of Lemma 8.5. Let m,, := |[W}(v)|.
Let R, denote the reduced graph corresponding to this partition. Proposition 8.6 together with (8.2)
implies that

S(Ry) > (1—1/(r —1) 4+ ¢/2)k,

So we can use Theorem 6.2 to find a perfect K,_j-matching M, in R,. Let U%(v) := W%(v) U (Ng(v) \
V(G,)). Note that for each 2 < j < r, |[U}| < [W?| + an < e*n. Let P(v) := {U°(v),. UM (v)} be
a partition of Ng(v) which is chosen such that, for each 1 < i < ky, {U; fv):2 <3 § r} induces a
copy of K,_1 in M,. By the definition of R,, for each 1 < ¢ < k, and all 2 < j1 < j2 < r, the graph

G[UJ’:1 (v), UJ’Q( v)] is €* /4-regular with density greater than 2d/p.

Fix 1 <4 < ky and 2 < ji < jo < r. Proposition 8.7 (with m,, €*/4, 2d/p, G[U;, (v), U}, (v)] and
HI[Uj, (v), Uj, (v)] playing the roles of n, €, d, G and H) gives that H[Uj (v), U}, (v)] is *-regular and has
density greater than d with probability at least 1 — 1/m2.
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We require the graph H [U;1 (v), U]g (v)] to be e*-regular with density greater than d for every edge
U;l (v)U;2 (v) € E(M,). There are k, choices for i and, for each i, there are (Tgl) choices for j; and jo.
So the probability that, for fixed v € V/(G), there exists an edge Uj, (v)Uj, (v) € E(M,) which fails to be
e*-regular with density greater than d is at most

, 1 1

kpr®— < —

5 .
mi  2rn

We multiply this probability by rn for each of the rn choices of v to see that H satisfies property (ii) with
probability at least 1 — rn/2rn = 1/2. Hence, the graph H satisfies both (i) and (ii) with probability at
least 1/2 —1/n > 0. So we can choose such a graph H. O

In order to find an n-approximate K,.-decomposition in a graph G, we would like to use the definition
of 3% which requires G to be K,-divisible. The next proposition shows that, provided that dg(v,Vj,) is
close to dg(v,Vj,) for all 1 < ji,jo < rand v ¢ V;, UV),, G can be made K,-divisible by removing only
a small number of edges.

Proposition 8.9. Let 1/n < a < v < 1/r < 1. Let G be an r-partite graph on (Vi,...,V,) with
Vi| = -+ = V| = n and §(G) > (1/2 + 2v/r)n. Suppose that, for all 1 < ji,jo < r and every
veV(G)\ (V;, UVy), lda(v,Vy) —dg(v,Vj,)| < an. Then there exists H C G such that G — H is
K, -divisible and A(H) < yn.

To prove Proposition 8.9, we require the following result whose proof is based on the Max-Flow-Min-
Cut theorem.

Proposition 8.10. Suppose that 1/n < a < & < 1. Let G be a bipartite graph on (A, B) with
|A| = |B| = n. Suppose that 6(G) > (1/2 + 4&)n. For every vertex v € V(G), let n, € N be such that
(E—a)n <ny < (E+a)n and such that Y, 4N = D _pcg . Then G contains a spanning graph G’ such
that der (v) = ny, for every v € V(G).

Proof. @ We will use the Max-Flow-Min-Cut theorem. Orient every edge of G towards B and give
each edge capacity one. Add a source vertex s* which is attached to every vertex a € A by an edge of
capacity ng. Add a sink vertex t* which is attached to every vertex in b € B by an edge of capacity ny.
Let o : =" acANa = Zbe g M- Note that an integer-valued co-flow corresponds to the desired spanning
graph G’ in G. So, by the Max-Flow-Min-Cut theorem, it suffices to show that every cut has capacity at
least cg.

Consider a minimal cut C. Let S C A be the set of all vertices a € A for which s*a ¢ C and let T C B
be the set of all b € B for which bt* ¢ C. Let S':= A\ S and T' := B\ T. Then C has capacity

c= Z ns +eq(S,T) + Z ng.
ses’ teT’

First suppose that |S| > (1/2 —2¢)n. In this case, since §(G) > (1/2 + 4€)n, each vertex in T receives
at least 2&n edges from S. So

c> Z ne +2|T)n > Z ne +|T|(§ + a)n > co.
teT teT
A similar argument works if |T| > (1/2 — 2¢)n. Suppose then that |S|,|T| < (1/2 — 2{)n. Then
IS’ |T"| > (1/2 + 2&)n and
c> Z ng + Z ne > (18| + 7)€ — a)n > (n +4&n)(€ — a)n > (€ + a)n® > co,
ses’ teT”’

as required. 0
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We now use Proposition 8.10 to prove Proposition 8.9.
Proof of Proposition 8.9. For each v € V(G), let
my = min{dg(v,V;) : 1 < j < r with v ¢ V;}.
For each 1 < j <r and each v ¢ V}, let a, ; := dg(v,V;) — m,. Note that,
(8.3) 0<ay; <an.

Foreach 1 <j <7, let N;:= Zvevj m,. We have, for any 1 < jq1, 72 <,

[Nj, — Nj,| = Z (da(v, Vi) = avjy) — Z (da(v, Vi) — avi)
veVj, veVj,
(8. 3)
(8.4) =D Gujp = Y aug| < on’.
veVy, veVj,

Let N := min{N; : 1 < j < r} and, for each 1 < j < r, let M; := N;j — N. Note that (8.4) implies
0<M; < an?. For each 1 < j < r and each v € Vj, choose p, € N to be as equal as possible such that
Zvevj pv = M;. Then

(8.5) 0<p,<an+1.
Let & :=~/2r. For each 1 < j <7 and each v ¢ V}, let
Nyj = [€n] + ayj + Do.
Using (8.3) and (8.5), we see that,
(8.6) &n < nyj < (€4 3a)n.

We will consider each pair 1 < j; < jo < r separately and choose Hj, ;, = H[V},V},]. Fix 1 < ji <
j2 < r and observe that,

Y gy =D ([en] +avg, +po) = [Enln+ > avj, + Mj,

veVj, veVj, veVj,
= [én]n + M;j, + Z (dG(Uavjé) —my) = [Enin + Mj, + eG(VJth) - Nj,
veVy
= [Enln = N +eq(V;,, Vj,) = Z Ny, jy -
vEVjy

Let Gj, j, :== G[V},,V},] and note that (G, ;,) > (1/2+4&)n. Apply Proposition 8.10 (with 3a, &, G, s,
Vj, and Vj, playing the roles of , §, G, A and B) to find Hj, j, C Gy, j, such that dp;  (v) = ny,, for
every v € Vj, and dg; ,, (v) = n,j, for every v € Vj,.

Let H := U <, <jp<, Hj1jo- By (8.6), we have A(H) < 2rén = yn. For any 1 <j <r and any v ¢ V},
we have

de—u(v,Vj) = dg(v,V;) — du(v,V)) = dg(v,Vj) — n
= dG(U’ V}) - [5”1 - dG(Ua V}) + My — Dy =My — Py — [fn—|
So G — H is K,-divisible. O
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We now have all the necessary tools to prove Lemma 8.1. This lemma finds an approximate K-
decomposition which covers all but at most yn edges at any vertex.

Proof of Lemma 8.1. The lemma trivially holds if » = 2, so we may assume that r > 3. In particular,
by Proposition 3.1, §(G) > (1 —1/(r + 1) + €/2)n. Choose constants N, ko, €*, d and p satisfying

NI/ N<Kl/k<ef<kd<gp<nr.
Apply Proposition 8.8 to find a subgraph H; C G satisfying properties (i)—(ii).
Let G1 := G — H;. Using (8.1) and that H; satisfies Proposition 8.8(i), for all 1 < ji,jo < r and each
v ¢ Vi, UV,
|dG1 (U7 VJ1) —dg, (’U, ‘/32)| < ‘dG(U’ %1) - dG(“? ij)’ + |dH1 (’U? V]l) —dm, (’U? VJ2)|

< an + 3an = 4an.

Note also that §(G1) > 3n/4. So we can apply Proposition 8.9 (with Gy, 4 and /2 playing the
roles of G, o and ) to obtain Hy C G; such that Gy — Hy is K,-divisible and A(Hz2) < yn/2. Then
5(G1 — Hy) > (5% +¢/2)n, so we can find an n-approximate K,-decomposition F of G1 — Ha.

Let Gy := G1 — Hy — | F be the graph consisting of all the remaining edges in G; — Ha. Let

B:={v e V(Q) :dg,(v) > n'/*n}.
Note that
(8.7) |B| < 2e(Gy)/n*n < 2n'/?n.

Let 71 :={F € F: FNB =10} and let G3 := G —|JF1. If v € B, then Ng,(v) = Ng(v). Suppose that
v ¢ B. For any u € B, at most one copy of K, in F \ F; can contain both u and v. So there can be at
most (r — 1)|B| edges in [J(F \ F1) that are incident to v and so

das(v) < dp, (v) + dp, (V) + dg, (v) + (r = 1)| B
(8.8) < (r=1)(p+)n+yn/2 400 +2(r — 1)n'/?n < yn.

Label the vertices of B = {v1,vg, ... ,v|B|}. We will use copies of K, to cover most of the edges at each
vertex v; in turn. We do this by finding a K,_j-matching M; in Hi[Ng,(v;)] = H1[Ng(v;)] in turn for
each i. Suppose that we are currently considering v := v; and let M := Ulg j<i M;. To simplify notation,
we will assume that v € V; (the proof in the other cases is identical).

Let P(v) = {U%v),...,U* (v)} be a partition of Ng(v) satisfying Proposition 8.8(ii). We can choose
a partition Q(v) = {W°(v),..., Wk (v)} of Ng(v) and m! > m, — |B| such that, for each 1 < i < ky:

o Wi(v) C U (v);
e Wi(v)N B = 0
o for each 2 < j <r, |W;(v)| =ml,.
Note that, using (8.7), [WOo(v)| < |U°(v)| + |Blko,r < r(e*n + 2n/?nk,) < 2e*rn.

By Proposition 8.8(ii), for each 1 < i < k, and all 2 < j; < ja < r, the graph Hl[U]Z:1 (v),UJ’:Q(v)] is
e*-regular with density greater than d. So Proposition 8.2 implies that H; [VV;1 (v), W}Z (v)] is 2e*-regular
with density greater than d/2. Let Hj := H; — M. Using (8.7), we have A(M[W} (v), W} (v)]) < |B| <
171/3m;. So we can apply Proposition 8.3 (with m/, 171/3 and 2¢* playing the roles of n, v and ¢) to see
that H] [I/VJZ1 (v), W;2 (v)] is 4e*-regular with density greater than d/3.

We use Proposition 8.4 (with m/, 4¢*, d/3 and r — 1 playing the roles of n, &, d and r) to find a
K,_i-matching covering all but at most 2(r — 1)(4e*)/("=Dm! vertices in H}[W*(v)] for each 1 < i < k.
Write M; for the union of these K,_i-matchings over 1 <14 < k,. Note that M; covers all but at most

(8.9) WO ()| + 2(r — 1)(4e*)Y V! ke, < 2e*rn + 2(r — 1)(4e*)/ " Vn < 4n

vertices in Ng(v).
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Continue to find edge-disjoint M, ..., M|p. For each 1 < i < [B|, M := {v; UK : K € M;} is
an edge-disjoint collection of copies of K, in Gz covering all but at most yn edges at v; in G. Write
M= Ui p M] and let H = Gz —UM' = G —U(F1 UM’). Then G — H = J(F1 UM’) has a
K,-decomposition and A(H) < n, by (8.8) and (8.9). O

9. COVERING A PSEUDORANDOM REMAINDER BETWEEN VERTEX CLASSES

After applying Lemma 8.1, we are left with a graph H such that H[P] has low maximum degree. We
will add a suitable quasirandom graph R to H to be able to assume that the remainder H' = RU H is
actually quasirandom. The results in this section will allow us to cover any remaining edges in H'[P]
using only a small number of edges from H' — H'[P]. This is done by finding, for each z € V(G), suitable
vertex-disjoint copies of K, inside H' — H'[P] such that each copy of K,_; forms a copy of K, together
with the edges incident to x in H'[P].

Lemma 9.1. Let r > 2 and 1/n < 1/k,1/r,p < 1. Let G be an r-partite graph on (Vi,...,V,) with
Vil = =|Vi| =n. Let ¢ < krn and let W' ... W2 C V(G). Suppose that:
(i) for each 1 < i < q, there exists 1 < j; < r and n; € N such that, for each 1 < j <r, |WJZ| =0if
Jj=7i and |W;| =n; otherwise;
(ii) for each 1 <i<gq, 5(G[WZ]) > (1 =1/(r=1)n; + 9kr? p?/?n;
(iii) for all 1 < iy <ig < gq, |[Wh NW2| < 2rp?n; ‘
(iv) each v € V(Q) is contained in at most 2kpn of the W*.
Then there exist edge-disjoint Tt, ..., T, in G such that each T; is a perfect K,_1-matching in GIW?.
The W* in Lemma 9.1 will play the role of vertex neighbourhoods later on. The proof of Lemma 9.1

is similar to that of Lemma 10.7 in [3], we include it here for completeness. We will use the following
result.

Proposition 9.2 (Jain, see [23, Lemma 8|). Let X1,...,X,, be Bernoulli random variables such that,
forany 1 < s <n and any =1,...,xs—1 € {0,1},

IP(XS =1 ’ Xl = xla"'aXS—l :ws—l) Sp
Let X =57 X; and let B ~ B(n,p). Then P(X > a) <P(B > a) for any a > 0.

Proof of Lemma 9.1. Set t := [8krp3/2n]. Let G; := G[W'] for 1 < i < q. Suppose we have already
found T7,...Ts_1 for some 1 < s < q. We find T as follows.

Let Hy_y := US| T; and G, := Gy — Hy_1[W?]. If A(Hs_1[W?]) > (r — 2)p*?n, let T},..., T} be
empty graphs on W#. Otherwise, (ii) implies

S(cY 1 2 3/2 1 3/2
> R > _ - _ _
0(GY) = (1 —)ns + 8k > (L= s+ (r=2)(t = 1)

and we can greedily find ¢ edge-disjoint perfect K,_j-matchings 77, ...,/ in G, using Theorem 6.2. In

either case, pick 1 <4 < ¢ uniformly at random and set T := T}. It suffices to show that, with positive
probability,
A(H, 1 [W?]) < (r —2)p%?n forall 1 <s<gq.
Consider any 1 < i < g and any w € W*. For 1 < s < ¢, let Ysi’w be the indicator function of the event
that T contains an edge incident to w in Gj. Let X% := 7 V", Note dp, (w, W) < (r — 2) X",

So it suffices to show that, with positive probability, X bW < p3/ 2pfor all 1 <i < g and all we W

Fix 1 <i < gand w € W*'. Let J%* be the set of indices s # 4 such that w € W?; (iv) implies
|J5%| < 2kpn. If s ¢ J¥¥ U {i}, then w ¢ W* and Y5 = 0. So
(9.1) X <14 > vie

seJibw
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Let s1 < -+ < 8| yiw| be an enumeration of J¥. For any b < |J*¥|, note that

iii)

. . (
d,, (w, W*) < [W'nW?*| < 2rp*n.
So at most 2rp?n of the subgraphs T} that we picked in G, contain an edge incident to w in G;. Thus

? T Sp—-1

for all yi,...,y5-1 € {0,1} and 1 < b < |[J*¥|. Let B ~ B(|J"™|, p'/?/4k). Using Proposition 9.2,
Lemma 2.1 and that |J"*| < 2kpn, we see that
4 (9.1) .
P(X" > p?Pn) <P( Y Vi™ > 3p%?n/4) <P(B > 3p**n/4)
seJbhw
<P(|B —E(B)| > p*/*n/4) < 2¢=#"7/16k

There are at most grn < kr?n? pairs (i,w), so there is a choice of T, ... , Ty such that Xiw < p3/2n for
all 1 <i<gqandall we W O

The following is an immediate consequence of Lemma 9.1.

Corollary 9.3. Let r > 2 and 1/n < 1/k,1/r,p < 1. Let G be an r-partite graph on (Vi,...,V,) with
Vil = -+ = |Vi| = n. Let UW C V(QG) be disjoint with |Wy| = --- = |W,| > |n/k]. Suppose the
following hold:

(i) forall1 < ji,jo <rand allz € U\ (V;, UV},), da(x, Wy,) = da(z, Wj,);

(ii) for all1 < j <r and all x € U\ U;, 6(G[Ng(z, W)]) > (1 — 1/(r — 1))dg(z, W;) + 9%krp®/2|W|;
(iii) for all distinct z,2" € U, |Ng(z, W) N Ng(a',W)| < 2p*|W|;

(iv) for ally € W, dg(y,U) < 2kp|W1.
Then there exists Gy C G[W] such that GIU, W|UGw has a K,-decomposition and A(Gy) < 2krp|W1|.

Proof. Let q:= |U|andlet u',... u? be an enumeration of U. Foreach 1 < i < ¢, let W* := Ng(u', W).
Note that ¢ < kr|W;|. Apply Lemma 9.1 (with G[W] and |W;| playing the roles of G and n) to obtain
edge-disjoint perfect K,_j-matchings 7" in each G[W?']. Let Gy := |JL, T*. Then G[U, W] U Gy has a
K,-decomposition. For each y € W, we use (iv) to see that dg,, (y) < (r —1)dg(y,U) < 2krp|Wh|. O

If we are given a k-partition P of the r-partite graph G, we can apply Corollary 9.3 repeatedly with
each U € P playing the role of W to obtain the following result.

Corollary 9.4. Letr > 2 and 1/n < p < 1/k,1/r < 1. Let G be an r-partite graph on (V1,...,V,) with
Vi|=-- = |V;| =n. Let P = {U",...,U*} be a k-partition for G. Suppose that the following hold for
all2 <i<k:

(i) for all1 < jy1,52 <71 and all x E‘U<" \ (AV]1 UVi,), dg(x, U;l) =dg(z, U;Q); | |

(ii) for all1 <j <7 and allz € US'\'V;, 0(G[Ng(z,U")] = (1 = 1/(r — 1))dg(z, Uj) + Yerp3/2|UY);
(ili) for all distinct x,2" € U<', [Ng(z,U") N Ng(z',U")| < 2p?|U";

(iv) for ally € U', dg(y, U<") < 2kp|Uf|.
Then there exists Go € G — G[P] such that G[P]|UGq has a K,-decomposition and A(Go) < 3rpn.

Proof. For each 2 < i <k, let G; := GU<*,U"] U G[U"]. Apply Corollary 9.3 to each G; with U<,
U’ playing the roles of U, W to obtain G} C G[U?] such that G[U<%,U’] U G} has a K,-decomposition
and A(G}) < 2krp[n/k] < 3rpn. Let Gy := Uf:g G’ . Then G[P]U Gy has a K,-decomposition and
A(Gy) < 3rpn. O
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10. BALANCING GRAPH

In our proof we will consider a sequence of successively finer partitions Pi,..., Py in turn. When
considering P;, we will assume the leftover is a subgraph of G — G[P;_1] and aim to use Lemma 8.1 and
then Corollary 9.4 to find copies of K, such that the leftover is now contained in G — G[P;] (i.e. inside
the smaller partition classes). However, to apply Corollary 9.4 we need the leftover to be balanced with
respect to the partition classes. In this section we show how this can be achieved.

Let P = {U',...,U*} be a k-partition of the vertex set V = (V1,...,V,) with |Vi| = --- = |V,| = n.
We say that a graph H on (Vi,...,V;) is locally P-balanced if

di(v,U}) = du(v, U;IQ)

forall 1 <i <k, all 1 < jj,jo <randallve U\ (V; UVj,). Note that a graph which is locally
P-balanced is not necessarily K,-divisible but that H[U?] is K,-divisible for all 1 < i < k.

Let v > 0. A (v, P)-balancing graph is a K,-decomposable graph B on V such that the following holds.
Let H be any K,-divisible graph on V with:
(P1) e(HN B) =0; '
(P2) |du(v,U})) —du(v,Uj,)| <ynforall 1 <i <k, all 1 <ji,jo <randallv¢gVy UV,
Then there exists B’ C B such that B — B’ has a K,-decomposition and

dgup (v, U},) = dyup (v, U},)

forall2 <i<k,alll<jj,jo<randallveU<\(V; UV,).
Our aim in this section will be to prove Lemma 10.1 which finds a (v, P)-balancing graph in a suitable
graph G.

Lemma 10.1. Let 1/n < v < v < 1/k < e < 1/r <1/3. Let G be an r-partite graph on (Vi,...,V;)
with V1| = --- = |Vu| = n. Let P = {U,...,U*} be a k-partition for G. Suppose dg(v,U;) >
(1=1/(r+1)+e)|Uj| for all 1 <i <k, all1 <j <7 and all v ¢ V;. Then there exists B C G which is
a (v, P)-balancing graph such that B is locally P-balanced and A(B) < v'n.

The balancing graph B will be made up of two graphs: Beqge, an edge balancing graph (which balances
the total number of edges between appropriate classes), and Bgeg, a degree balancing graph (which
balances individual vertex degrees). These are described in Sections 10.1 and 10.2 respectively.

10.1. Edge balancing. Let P = {U',...,U*} be a k-partition of the vertex set V = (V4,...,V,) with

Vil =---=|V;| =n. Let v > 0. A (v,P)-edge balancing graph is a K,-decomposable graph Bggge on V'

such that the following holds. Let H be any K,-divisible graph on V' which is edge-disjoint from Beqge

and satisfies (P2). Then there exists Bédge C Bedge such that Begge — Bédge has a K,.-decomposition and
eHUB;dge(Uﬁ? U;;) = eHUBédge (Ujlll ) sz;)

for all 1 <i; <19 <k and all 1 < jq,jo, 53 <7 with j1 # ja, js3-

In this section, we first construct and then find a (v, P)-edge balancing graph in G.

For any multigraph G on W and any e € W2, let mg(e) be the multiplicity of the edge e in G. We say
that a K,-divisible multigraph G on W = (W1, ..., W,) is irreducible if G has no non-trivial K,-divisible
proper subgraphs; that is, for every H C G with e(H) > 0, H is not K,-divisible. It is easy to see that
there are only finitely many irreducible K,-divisible multigraphs on W. In particular, this implies the
following proposition.

Proposition 10.2. Let r € N and let W = (W1, ..., W,). Then there exists N = N (W) such that every
irreductble K, -divisible multigraph on W has edge multiplicity at most N. ]

Let P = {U',...,U*} be a partition of V = (Vi,...,V;). Take a copy K of Kr(k) with vertex set
(Wi,...,W,) where Wj:{wjl-,...,wf} for each 1 < j <r. Foreach 1 <i <k, let W*:= {w; 1< <
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r}. Given a graph H on V, we define an ezcess multigraph EM(H) on the vertex set V(K as follows.
Between each pair of vertices wﬁ, wﬁ such that wﬁ wﬁ € E(K) there are exactly
e (U™ U;j) - min{eH(Uél,U;?) 1<y, <rj#75}

Ji?

multiedges in EM(H).

Proposition 10.3. Let r € N with r > 3. Let P = {U',...,U*} be a k-partition of the verter set
V=0W,...,V;) with |Vi| = -+ = |V,| = n. Let H be any K,-divisible graph on V satisfying (P2).
Then the excess multigraph EM(H) has a decomposition into at most 3vk*r?n? irreducible K,-divisible
multigraphs.

Proof. First, note that for any 1 < iy,i9 < k, any 1 < j1,jo, j3 < r with j; # jo,j3 and any v € U;ll,
we have |dg (v, U;;) —dp (v, U;§)| < yn by (P2). Therefore,
(10.1) len (UL, U2) — e (U

Jl,U;§)| < ’yn\U;I\ < yn?.

1
We claim that, for all wiwi? € E(K),

12

(10.2) MEM(H) (w;iwh) < 3yn?.
Let 1 < j1,75 <r with j1 # j5. Let 1 < j <r with j # j1,7;. Then
len(U;),U2) = en(U;t, UR)| < len (U}, UR) = en (U U + len (U UP?) — en (U UP))

+ \eH(UJ?, U]m) — €H<U;il, U;;)’

So (10.2) holds. '
We will now show that EM(H) is K,-divisible. Consider any vertex wi € V(EM(H)) and any
1 < ja,j3 < 7 such that j; # jo, j3. Note that, since H is K,-divisible,

k
deno) (W Wi,) = ZmEM(H) (wjy, wj,)
=1

k

—en(U;},V,) = > _min{en (U}, Uj) : 1< 4,5 <rj#j'}
i=1

k
= eH(U]levv_Y?B) - Zmin{eH(U]Z'laU]z") 1< jaj, <rj 7&],}
i=1

k
= ZmEM(H) (wﬁ,w%) = dEM(H) (wﬁa ijs)
i=1

So EM(H) is K,-divisible and therefore has a decomposition F into irreducible K,-divisible multigraphs.
By (10.2), there are at most 3yn? edges between any pair of vertices in EM(H), so |F| < (3yn?)e(K) <
3vk2r2n?. O

Let N = N(V(K)) be the maximum multiplicity of an edge in any irreducible K,-divisible multigraph
on V(K) = (Wi,...,W,) (N exists by Proposition 10.2). Label each vertex w; of K by U]’ Let K(N)
be the labelled multigraph obtained from K by replacing each edge of K by N multiedges.

We now construct a P-labelled graph which resembles the multigraph K (N) (when we compare relative
differences in the numbers of edges between vertices) and has lower degeneracy. Consider any edge

e= wﬁ wg € E(K(N)). Let 6(e) be the graph obtained by the following procedure. Take a copy K. of
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KW Wiz] — wﬁ wﬁ (K. inherits the labelling of K[W®% W]). Note that K[W® W] is a copy of K,

if i1 = i2 and a copy of the graph obtained from K, , by deleting a perfect matching otherwise. Join wit

7
to the copy of w;z in K. and join w;z to the copy of w;i in K.. Write 6(e) for the resulting P-labelled
graph (so the vertex set of f(e) consists of w;{, w;z as well as all the vertices in K.). Choose the graphs
K. to be vertex-disjoint for all e € E(K(N)). For any K’ C K(N), let (K') := [J{6(e) : e € E(K")}.
To see that the labelling of 6(/(N)) is actually a P-labelling, note that for any Uj}, the set of vertices
labelled U]’f forms an independent set in O(K(N)). Moreover, note that (K (N)) has degeneracy r — 1.
To see this, list its vertices in the following order. First list all the original vertices of V' (K'). These form
an independent set in (K (N)). Then list the remaining vertices of (K (N)) in any order. Each of these

vertices has degree r — 1 in (K (NV)), so the degeneracy of (K (N)) can be at most r — 1.

Proposition 10.4. Let P = {U',...,U*} be a k-partition of the vertex set V. = (Vi,...,V;) with
Vil = -+ = |Vi| =n. Let J = ¢(0(K(N))) be a copy of (K (N)) on V which is compatible with its
P-labelling. Then the following hold:

(i) J is K,-divisible and locally P-balanced;

(ii) for any multigraph H C K(N), any 1 <iy,i2 < k and any 1 < j; < jo <'r,

eotormy (UL, U2) = e (Wi, W) 4 mp (w?w?).

g2
Proof. We first prove that J is K,-divisible. Consider any x € V(6(K(N))). If x = w§ € V(K), then
dj(¢(x), V) = Nk for all 1 < j; < r with j; # j (since for each edge w;w;i € E(K), x has exactly N
neighbours labelled U in (K (N))). If z ¢ V(K), x must appear in a copy of K in (e) for some edge
e € E(K(N)). In this case, dj(¢(x),V;) =1 for all 1 < j < r such that ¢(z) ¢ V;. So J is K,-divisible.
To see that J is locally P-balanced, consider any z € V(0(K(N))). If z = wj € V(K), then ¢(z) € U;
and dj(¢(z),Uj) = N for all 1 < ji <r with ji; # j. Otherwise, z must appear in a copy of K. in 6(e)
for some edge e = wﬁwﬁ € E(K(N)). Let i,j be such that ¢(z) € U;-' (so i € {i1,ia}). If i1 # io, then
dj($(x),U}) =0 for all 1 < j" <r. If iy =iy, then dy(¢(x),Uj,) = 1 for all 1 < j" <r with j" # j. So J
is locally P-balanced. Thus (i) holds.
We now prove (ii). Let 1 < i1,i9 < k and 1 < j; < jo < r. Consider any edge w;w;,, € E(K(N)). The
P-labelling of 0(K(N)) gives
0 if {i,i'} # {i1, 42},
(103 Comtuiaty Ui UR) =42 5 {G.9), W)} = (.30, (2, )}
1 otherwise.

Let H C K(N). Then (ii) follows from applying (10.3) to each edge in H. O

The following proposition allows us to use a copy of (K (N)) to correct imbalances in the number of
edges between parts U;ll and U;; when EM(H) is an irreducible K,-divisible multigraph.

Proposition 10.5. Let P = {U',...,U*} be a k-partition of the vertex set V. = (Vq,...,V,) with
Vil = -+ = Vo] = n. Let H be a graph on V such that EM(H) = I is an irreducible K,-divisible
multigraph. Let J = ¢(0(K(N))) be a copy of 0(K(N)) on V' which is compatible with its P-labelling and
edge-disjoint from H. Then there exists J' C J such that J —J' is K,.-divisible and H' := HU.J' satisfies
for all 1 <iy <ig <k and all 1 < jy1, o, j3 < r with j1 # j2, js3.

Proof. Recall that IV denotes the maximum multiplicity of an edge in an irreducible K,-divisible
multigraph on V(K). So we may view I as a subgraph of K(N). Let J := J — ¢(6(I)). For all
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1 <igp <ig <k, let
Diqjia = mln{eH(szll’ Uz2) 1< j17j27 < T’,jl 7é 32}
Proposition 10.4 gives, for all 1 < iy <io < k and all 1 < j1,jo < r with j; # jo,

er (U5, U32) = egox oy (U Us2) = egoq (U5, U32)
= exevy (W, W™2) + N — (e (W™, W”)erl(w w}?))
= e 1(WH W2) + N —my(wiiwi?).

Recall that T = EM(H), so ey (U™ U”) mj(w w 2) + iy i, and

J1?

6H/(U;11, U”) = eH(U;;, U”) +e J,(Ujl1 , U”) = er(n)—1(W", W) + N + pj, i,

Note that the right hand side is independent of ji, j2. Thus (10.4) holds. O

The following proposition describes a (v, P)-edge balancing graph based on the construction in Propo-
sitions 10.4 and 10.5

Proposition 10.6. Let k,r € N with r > 3. Let P = {U',... ,U*} be a k-partition of the vertex set
V= (,...,V,) with |Vi| = -+ = |Vu| = n. Let Ji,...,Js be a collection of £ > 3vk*r?n? copies
of (K (N)) on V which are compatible with their labellings. Let {Ai,...,An} be an absorbing set for
Ji,...,Jo on V. Suppose that Jy,...,Jg, A1, ..., Ay are edge-disjoint. Then Begge := Ule JiuUm, A
s a ( , P)-edge balancing graph.

Proof. Let H be any K,-divisible graph on V' which is edge-disjoint from Begee and satisfies (P2).
Apply Proposition 10.3 to find a decomposition of EM(H) into a collection Z = {I1, ..., Iy} of irreducible
K,-divisible multigraphs, where ¢ < 3vyk%r?n? < (. If ¢/ = 0, let BeGlge C Bedge be the empty graph. If
¢ > 0, we proceed as follows to find Bedge Let Hy,...,Hy be graphs on V which partition the edge set
of H and satisfy EM(Hy) = I for each 1 < s < /'. (TO find such a partition, for each 1 < s < ¢’ form H,
by taking one U“U 22—edge from H for each edge wj; ;3 in I;. Let Hy consist of all the remaining edges.)
Apply Proposltlon 10.5 for each 1 < s < ¢’ with H and Js playing the roles of H and J to find J. C J;
such that Js; — J. is K,-divisible and H’ := H; U J. satisfies
(10.5) EH/(UZ1 UZQ) = eH/(UZl UZQ)

J1’ J17’
for all 1 < iy < ip < k and all 1 < j1,72,73 < r with j; # j2,73. Let B’

edge
implies that the graph H' := H U Bgdge = Ui:l H satisfies

.= U, J.. Then (10.5)

e (U,U2) = e (U2, U)

for all 1 <11 < iy < kand all 1 < jq, o, j3 < r with j1 # ja, js3.
We now check that Beqge and Begge — Bédge are K,.-decomposable. Recall that every absorber A; is
K,-decomposable. Also recall that, for every 1 < s < ¢, Jg is K,-divisible, by Proposition 10.4(i). Since
{A1,..., Ay} is an absorbing set, it contains a distinct absorber for each Js. So for each 1 < s < ¢,
there exists a distinct 1 < 75 < m such that A;; U Js has a K,-decomposition. Therefore Begge is K-
decomposable. To see that Begge — Bédge is K,-decomposable, recall that for each 1 < s < ¢, J;—J. is a
K,-divisible subgraph of J,. So for each 1 < s < /, there exists a distinct 1 < js < m such that, if s < ¢,
Aj U (Js — J.) has a K,-decomposition and, if s > ¢, A; U J has a K,-decomposition. So we can find

a K,.-decomposition of

E/
Bedge — Bhage = J(Js = J)) U U Js U UA
s=1 s=0"+1

Therefore, Begge is a (7, P)-edge balancing graph. O
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The next proposition finds a copy of this (v, P)-edge balancing graph in G.

Proposition 10.7. Let 1/n < v < v < 1/k < ¢ < 1/r < 1/3. Let G be an r-partite graph on
(Vi,..., V) with [Vi| = --- = |V;| = n. Let P = {UY,...,U*} be a k-partition for G. Suppose that
dg(’U,U;) >(1-1/(r+1) +5)\U;| foralll1 <i <k, alll1 <j<r andallv ¢ V;. Then there exists a
(77, P)-edge balancing graph Beqge C G such that Bedge is locally P-balanced and A(Bedge) < 7'n.

Proof. Let v be such that v < 71 < 7. Recall that §(K(N)) is a P-labelled graph with degeneracy
r — 1 and all vertices of (K (N)) are free vertices. Also,

0(K(N))| < |K| + 2re(K)N = kr + 2rk? (;) N < k%3N,

Let £ := [3vk%*r?n?] < 4Y/2n%. We can apply Lemma 5.2 (with /2, vy, 7 — 1, k>N and (K (N))
playing the roles of 7, ¢, d, b and H;) to find edge-disjoint copies Ji,...,J; of (K (N)) in G which are
compatible with their labellings and satisfy A(Uf:1 Ji) < yin.

Let G’ := G[P] — J'_, Ji and note that

G > (1 —1/(r+1)+e)n—[n/k] —yn > (1-1/(r+1)++)n.

Apply Lemma 6.6 (with 1, 7//2, k?>r3N and G’ playing the roles of 7, ¢, b and G) to find an absorbing
set A for Jy,...,Jy in G’ such that A(J.A) < ~'n/2.

Let Bedge 1= Ule Ji UJA. Then Begge is a (7, P)-edge balancing graph by Proposition 10.6. Also,
A(Bedge) < 7'n. Note that for each 1 < i < k, Beqge[U'] = Uf;:l Js[U] (this is the reason for finding A

in G[P]). Moreover, each Jy is locally P-balanced by Proposition 10.4(i). Therefore Begge is also locally
P-balanced. O

10.2. Degree balancing. Let P = {U"', ..., U"} be a k-partition of the vertex set V = (Vi,...,V,) with

Vil =--- = |V;| =n. Let v > 0. A (v,P)-degree balancing graph is a K,-decomposable graph Bges on

V' such that the following holds. Let H be any K,-divisible graph on V satisfying:

(Q1) e(H N Buog) =0;

(Q2) €H(U;11,UJZ22) = BH(U;ll,Uji) for all 1 <11 < iy < kand all 1 < jq,jo,j3 < r with j1 # ja, js;

(Q3) \dH(v,U;Q) —du(v, UL )| < 4|Uj, | for all 2 < i <k, all 1 < j1,j2,53 < 7 with ji # ja,j3 and all
vE Uﬁz.

Then there exists Béeg C Byeg such that Bgeg — Béeg has a K,-decomposition and
duupy,, (0, Uj) = duus; (v, U},)

forall2 <i <k, alll<jj,jo<randallveU<\(V;UV,).

We will build a degree balancing graph by combining smaller graphs which correct the degrees between
two parts of the partition at a time. So, let us assume that the partition has only two parts, i.e., let
P = {U',U?} partition the vertex set V = (Vi,...,V,). We begin by defining those graphs which will
form the basic gadgets of the degree balancing graph. Let Dy be a copy of K,(3) with vertex classes
{wg- :1<i<3}for1<j<r Foreachl <i<3 let Wi:= {w; :1 < j <r}. We define a labelling
L:V(Dgy) — {Ujl, sz :1 < j <r} as follows:

; Ul ifi=1,2,
Lwj) = {sz ifi=3
: .

Suppose that x,y are distinct vertices in Ujl1 where 1 < j; < 7. Obtain the P-labelled graph D, , by
taking the labelled copy of Dy and changing the label of wjl»1 to {z} and wj2~1 to {y}. Let 1 < jo <7 be
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such that js # ji. Let Dx_w be the P-labelled subgraph of D, , which has as its vertex set
Whu{wf } U (W2 {w] }),

contains all possible edges in W1\ {w1 }, all possible edges in W3\ {w , all edges of the form wjl1 w?
and w]wjz1 where 1 < j < r and j# 31,32, as well as the edges w]lw]l2 and w]lw;’2 (Note that if we

were to identify the vertices w!
in common.)

and w we would obtain two copies of K, which have only one vertex

J

FIGURE 2. A copy of Diﬁy when r = 4 and z,y € UJ.

As in Section 10.1, we would like to reduce the degeneracy of D,,. The operation § (which will be
familiar from Section 10.1) replaces each edge of D, , by a P-labelled graph as follows. Consider any
edge e = w;;w;i € E(D,,). Take a labelled copy D, of Do[W', W2] — wiwi? (D, inherits the labelling
of Do[W% ,W2]). Note that Do[W%, W] is a copy of K, if i1 = iy and a copy of the graph obtained
from K, , by deleting a perfect matching otherwise. Join wi1 to the copy of w;i in D, and join w;i to the
copy of wg in D, (so the vertex set of f(e) consists of wjg, w]4 as well as all the vertices in D.). Write
f(e) for the resulting P-labelled graph. Choose the graphs D, to be vertex-disjoint for all e € E(D, ).
For any D' C Dy, let §(D’) :=J{6(e) : e € E(D’)}. The graph (D, ,) has the following properties:
(01) |0(Day)| < 3r + 2r32(;) < 10r® (since we add at most 2re(K,(3)) new vertices to obtain 6(D,,y)

from D, ,);
(02) 6(D; ) has degeneracy r — 1 (to see this, take the original vertices of D, , first, followed by the
remaining vertices in any order).

Suppose that H is a graph on V and z,y € U1 Suppose that dg(z, U2) is currently too large and

du(y,U; > ) is too small. The next proposition allows us to use copies of Q(Dm_w) to ‘transfer’ some of this
surplus from T to y.

Proposition 10.8. Let P = {U',U?} be a partition of the vertex set V.= (Vq,...,V,). Let 1 < ji,jo <
with j1 # j2 and suppose x,y € U1 Suppose that D1 = ¢(0(Dyy)) is a copy of §(Dyy) on V which is
compatible with its labelling. Let Dg =¢(0(D x_>y)) C D1. Then the following hold:

(i) both Dy and Dy are K,-divisible;
(ii) D is locally P-balanced;
(iil) for any 1 < js,ja < r with j4 # j2 and any v € UL\ (Vj, UV},),

-1 ifv=2x and j3 = js,
dp,(v,U3) —dp,(v,UZ) =1 ifv=y and j3 = ja,
0 otherwise.

Proof. First we show that (i) holds. Consider any v € V(0(D,y)). If v € V(D, ), then dp, (¢(v), V;)
3 for all 1 < j < such that ¢(v) ¢ V;. Otherwise, v appears in a copy of D, for some edge e € E(D,

)
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and dp, (¢(v), V) =1 for all 1 < j < r such that ¢(v) ¢ V;. So Dy is K,-divisible. For Dy, consider any

v e V(@D wﬁy)) Ifve V(Dxﬁy) then dp,(¢(v),V;) =1 for all 1 < j < r with ¢(v) ¢ V;. Otherwise,

v appears in a copy of D, for some edge e € E(D;,Hy) and dp,(¢(v),V;) =1 for all 1 < j < r such that
¢(v) ¢ V;. So Dy is K,-divisible.

For (ii)7 consider any v € V(6(D,,)). First suppose v = w} € V(Dyy). If i = 1,2, then ¢(v) € Uj
and le(cb(v),Ujl,) =2forall 1 <j <r with j/ # j. If i = 3, then ¢(v) € Uj2 and le(ng(v),Uj%) =1
for all 1 < j/ < r with j/ # j. Otherwise, v must appear in a copy of D, in f(e) for some edge
e = whw;z € E(Dgy). Let 4,5 be such that ¢(v) € U; If 41,92 € {1,2} or if ¢y = ip = 3, then
dp, (¢(v), U] )=1for all 1 <j <r with j/ # j. Otherwise, le(cb(v),U]’f,) =0forall<j <r.SoD
is locally P-balanced.

Property (iii) will follow from the P-labelling of 9(Dxﬁy) Note that

0 if j" € {j1, 2} 1 if j = jo
dp,(z,U%) = e b d dp, (y,U%) = ’
D2, Uy) {1 otherwise an D2(9, Uy) 0 otherwise.

The only other edges ab in D2 of the form U 12 are those which appear in the image of D, for some
e = wj w ,, € E(D3}%,,) with i = 1,2. Note that such e must be incident to z or y and that a and b are new
vertices, i.e., a,b ¢ V(D#,,). But for any v € ¢(D,) N U, we have dp, (v, UJQ,) =1forevery 1 <j <r
such that qﬁ( ) & Vji. It follows that (iii) holds. O

In what follows, given a collection D of graphs and an embedding ¢(D) for each D € D, we write

o(D) :={¢(D) : D € D}.

Lemma 10.9. Letl/n< vy <y <1/r <1/3. Let V. = (V4,...,V,) with |V4| = -- |V|—n Let

= {U,U?} be a 2-partition of V. Let 1 < j1 < r. Then there exists D C {0(D x_>y) x,y € Jl,a: #

v, 1 <j<wr,j#ji1} such that the following hold.

(i) [D] <+'n”

(ii) Each vertex v € V is a root vertex in at most v'n elements of D.

(iii) Suppose that, for each D € D, ¢(D) is a copy of D on V which is compatible with its labelling.
Suppose further that ¢(D) and ¢(D’) are edge-disjoint for all distinct D, D’ € D. Let H be any r-
partite graph on' V- which is edge-disjoint from | ¢(D) and satisfies (Q2) and (Q3). Then there exists
D' C D such that H' := HUJ¢(D’) satisfies the following. For all v € Ujll, and all 1 < jo,j3 < r
such that J 7& J2,73;

dg/(v,U3) = dg(v,U3)
and for all 1 < ja,js <1 and allv € UL\ (V;, UV,, UV},),
dp (v, Uj22) —dyr(v, Uj23) =dpy(v, Uj22) —dg(v, Uj23).
In particular, H' satisfies (Q2) and (Q3).

Proof. Let p:=+//4(r—1) and m := ]Ujll |. Define an auxiliary graph R on Ujl1 such that A(R) < 2pm

and

(10.6) INR(S)| > p*m/2

for all § C Ujl1 with |S] < 2. It is easy to find such a graph R; indeed, a random graph with edge
probability p has these properties with high probability.
Let

={0(D zay) (Déﬁx) vy € BE(R),1<j<rj#ji}

Each vertex of V' appears as  or y in some G(Dx_w) in D at most 2(r — 1)A(R) < 4(r — 1)pm = v'm
times. In particular, this implies |D| < v'm?2. So D satisfies (i) and (ii).
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We now show that D satisfies (iii). Suppose that, for each D € D, ¢(D) is a copy of D on V which
is compatible with its labelling. Suppose further that ¢(D) and ¢(D’) are edge-disjoint for all distinct
D, D' € D. Let H be any r-partite graph on V which is edge-disjoint from | J ¢(D) and satisfies (Q2) and
(Q3).

Let Jmin :=min{j : 1 < j < j # j1}. For each v € Ujl1 and each jmin < j < r such that j # ji, let

(10.7) F(v,5) = du(v,U}) = du(v, U, ).
By (Q3),
(10.8) |f(v, )] <~v(m+1) < 2ym.

Let Ut (j) be a multiset such that each v € Ujl1 appears precisely max{f(v,j),0} times. Let U~ (j) be
a multiset such that each v € Ujl1 appears precisely max{—f(v,),0} times. Property (Q2) implies that
|UT(43)| = |U~(4)|, so there is a bijection g; : UT(j) — U~ (j).

For each copy «’ of u in UT(j), let P, be a path of length two whose vertices are labelled, in order,

{u}7 Uj117 {gj (ul)}

So P, has degeneracy two. Let S; := {P, : v/ € UT(j)}. It follows from (10.8) that each vertex is used
as a root vertex at most 2ym times in S; and |S;| < 2ym?. Using (10.6), we can apply Lemma 5.1 (with
m, 2, 3, 2, p?/2 and R playing the roles of n, d, b, , € and G) to find a set of edge-disjoint copies T; of
the paths in S; in R which are compatible with their labellings. (Note that we do not require the paths
in 7; to be edge-disjoint from the paths in 7;s for j # j'.) We will view the paths in 7; as directed paths
whose initial vertex lies in UT(j) and whose final vertex lies in U~ (j).

For each jumin < j < 7 such that j # ji, let D; := {0(Di—,) : 7 € E(UT;)}. Let

D:= |J D,CD.
Jmin <J<T
J#n

It remains to show that H := H U ] ¢(D’) satisfies (iii). For each jmin < j < 7 such that j # ji,
let H; := J¢(D;). Consider any vertex v € Ujl1 and let jmin < jo < 7 be such that jo # j;. Now
v will be the initial vertex in exactly a := max{f(v,j2),0} paths and the final vertex in exactly b :=
max{—f(v, j2),0} = a — f(v,j2) paths in Tj,. Let ¢ be the number of paths in 7}, for which v is an
internal vertex. By definition, Hj, contains a + ¢ graphs ¢(D) where D is of the form O(Dgiy) for
some y € Ujll. Also, Hj, contains b + ¢ graphs ¢(D) where D of the form 0(D2.,,) for some z € Ujll.
Proposition 10.8(iii) then implies that

(10.9) d,, (v, Uj22) —dg,, (v, Ufmm) =(b+c)—(a+c)=—f(v,72).
For any jmin < js < r such that js # j1, j2, Proposition 10.8(iii) implies that
(10.10) du,, (v,U) — dy,, (v, U3, ) =0.
Equations (10.9) and (10.10) imply that
dy o) (v, U3,) = dyoon (0, Ug,,) = iy, (0.U5) = di, (0, U5 ) = = (0, 2),
which together with (10.7) gives
(10.11) dg/(v,U3) = d (0, U3 ) = dg(v,U},) —dg (v, U ) — f(v,2) = 0.

Thus, for all v € Ujl1 and all 1 < jag, j3 < r such that j; # ja, js,
dH/(’U, Uj22) = dH/(U, szmin) = dH/(U, U]23)
Finally, consider any 1 < ja, j3 < r and any v € U\ (V}, UV}, UV},). Proposition 10.8(iii) implies that
2 2
dy s (v, Uj,) = dyg(on) (v, Uj;) = 0,
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S0

(10.12) dg(v,U3) = dr(v,U}) = dp (v, U3) — dp (v, U3).

That H' satisfies (Q2) and (Q3) follows immediately from (10.11) and (10.12). O
Let P = {U',U?} partition the vertex set V = (V1,...,V;) with [Vj| = --- = |V,.| = n. We say that

a collection D of P-labelled graphs is a (vy,7')-degree balancing set for the pair (U', U?) if the following
properties hold. Suppose that, for each D € D, ¢(D) is a copy of D on V which is compatible with its
labelling. Suppose further that ¢(D) and ¢(D’) are edge-disjoint for all distinct D, D’ € D.

(a) Each D € D has degeneracy at most r — 1 and |D| < 10r3.

) D] < 7/

) Each vertex v € V is a root vertex in at most 7'n elements of D.

) For each D € D, ¢(D) is K,-divisible and locally P-balanced.

e) Let H be any r-partite graph on V' which is edge-disjoint from |J#(D) and satisfies (Q2) and (Q3).
Then, for each D € D, there exists D’ C D such that ¢(D’) is K,-divisible and, if D' := {D’: D € D}
and H := HUJ ¢(D'), then

(b
(c
(d
(

dH’(UanZI) :dHI(U’UJZQ)
for all 1 < j1,j2 <randallve U\ (Vj UV},).

The following result describes a (v,~')-degree balancing set based on the gadgets constructed so far.

Proposition 10.10. Let 1/n < v <~ < 1/r < 1/3. Let V = (Vi,...,V,) with |[Vi| = --- = |V,| = n.
Let P = {UY,U?} be a 2-partition for V. Then (U',U?) has a (vy,7')-degree balancing set.

Proof. Apply Lemma 10.9 for each 1 < j; < r with 4//r playing the role of 4" to find sets D;, C
{H(Di_w) cx,y € Ujll,x #y,1 < j <rj# ji1} satisfying the properties (i)—(iii). Let D consist of one
copy of 0(D, ) for each 0(Dl_.,) in Uj=1 Dj. We claim that D is a (7,7')-degree balancing set. Note
that each 0(D,,) satisfies |§(D, )| < 1073 and has degeneracy at most r — 1 by (61) and (62), so (a)
holds. For each 1 < j <r, |D;| < fy’nz/r, so (b) holds. Also, each vertex v € V' is used as a root vertex

in at most 7'n/r elements of each D;. Since 6(D, ) and §(D3_,,) have the same set of root vertices, (c)
holds. Property (d) follows from Proposition 10.8(i) and (ii).

It remains to show that (e) is satisfied. Suppose that, for each D € D, ¢(D) is a copy of D on V which
is compatible with its labelling. Suppose further that ¢(D) and ¢(D’) are edge-disjoint for all distinct
D,D’' € D. Let H be any r-partite graph on V which is edge-disjoint from |J¢(D) and satisfies (Q2)
and (Q3). Using property (iii) of D; in Lemma 10.9, we can find D] C D; such that H; := HUJ ¢(D})
satisfies (Q2), (Q3) and

dHl (Ua U]21) = dHl (vv Uj22)

for all v € U{ and all 2 < j1,j2 < r. We can then find D) C Dy such that Hy := Hy U|J #(D}) satisfies
(Q2), (Q3) and
dp,(v,U?) = dp, (v,U3)

for all v € Uj1 where 7 = 1,2 and all 1 < j1,js < r with j # j1, jo. Continuing in this way, we eventually
find D). C D, such that H, := H,_; U|J ¢(D.._,) satisfies

(10.13) d, (v,U}) = dpy, (v,U})
for all 1 < j1,j2 <rand allve UL\ (Vj UV},).

For each D € Dy, if D € D;, then let D’ := D; otherwise let D’ be the empty graph. Let D' := {D’:
D € Uj_, Dj}. For each D' € D', D' is either empty or of the form 0(Di ), so ¢(D') is K,-divisible by

Proposition 10.8(i). By (10.13), D’ satisfies (e). So D satisfies (a)-(e) and is a (v,~’)-degree balancing
set for (U, U?). O
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The following result finds copies of the degree balancing sets described in the previous proposition.

Proposition 10.11. Let 1/n < v < v < 1/k < ¢ < 1/r < 1/3. Let G be an r-partite graph on
(Vi,...,Vs) with [Vi| = --- = |V;| = n. Let P = {U,...,U*} be a k-partition for G. Suppose that
dg(U,U;) >(1-1/(r+1) +5)\U;| foralll1 <i <k, alll1 <j<r andallv ¢ V;. Then there exists a
(77, P)-degree balancing graph Baeg C G such that Bqeg is locally P-balanced and A(Bgeg) < ¥'n.

Proof.  Choose 71, 72 such that v < 71 < 42 < 7. Proposition 10.10 describes a (7, ~v})-degree
balancing set D;, ;, for each pair (U%,U%) with 1 < iy < iy < k. Let D := U1§i1<i2§k Di, ip- We have
|D| < kQ'y%nQ < ’yan and each vertex is used as a root vertex in at most k2’y%n < ~1n elements of D.
By (a), we can apply Lemma 5.2 (with 71, 72, 7 — 1 and 1073 playing the roles of 7, ¢, d and b) to find
edge-disjoint copies ¢(D) of each D € D in G which are compatible with their labellings and satisfy

AU¢(D)) < yan.
Let G' := G[P] — |J ¢(D) and note that

G = (1—1/(r+1)+e)n—[n/k] —yen > (1—1/(r +1) +7)n.

Apply Lemma 6.6 (with y2, 7//2, 10r® and G’ playing the roles of 7, &, b and G) to find an absorbing set
A for ¢(D) in G’ such that A(JA) <~+'n/2.

Let Bgeg := U (D) UUA. Then, A(Bqeg) < ¥'n. For all 1 < iy < iy <k, D;, ;, is a degree balancing
set 50 |J #(Di, i) is locally P-balanced by (d). Since Bgeg[U?] = |J ¢(D)[U?] for each 1 < i < k, the graph
Bgeg must also be locally P-balanced.

We now check that Bgeg is a (7, P)-degree balancing graph. Let H be any K,-divisible graph on V
satisfying (Q1)—(Q3). Consider any 1 < i; < is < k. Note that H[U™ U U™] satisfies (Q1)—(Q3). Since
D;, 4y is a (7,7)-degree balancing set for (U™, U"), there exist D’ C D for each D € D;, ;, such that
¢(D') is K,-divisible and, if D , :={D": D € D;, ;,} and H; ; = HUJ (D, ;,), then

21,82 11,12

dy (v,U22)

11,19

(U’ U;f) = de’l

)12
forall 1 < ji,j2 <randallve UL\ (V;,UV,,). Let Bleg = Ur<iy<ip<k (D}, 3,) and let H' := HU B,
Note that V(U ¢(D;, ;,)) € U yU® for all 1 < iy < iy < k. So we have dg (v, U;fl) =dg (v, U;Q) for all
2<i<k all<j,jo<randallve U<\ (V;, UV,).

It remains to show that Bge, and Bgeg — Béeg both have K,-decompositions. Recall that A is an
absorbing set for ¢(D). So, for any K,-divisible subgraph D* of any graph in ¢(D), A contains an
absorber for D*. Also, A is K,-decomposable for each A € A. Since ¢(D) is K,-divisible for each D € D
by (d), we see that Bqeg has a K,-decomposition. Note that, for each D € Dy, ;,, ¢(D’) is K,-divisible
by (e) and hence ¢(D) — ¢(D’) is also K,-divisible. So

Buaeg — Bliog = | JAU | (6(D) - ¢(D"))

DeD

has a K,-decomposition. Therefore, Bqe, is a (7y, P)-degree balancing graph. O

10.3. Finding the balancing graph. Finally, we combine the edge balancing graph and degree bal-
ancing graph from Propositions 10.7 and 10.11 respectively to find a (-, P)-balancing graph in G.

Proof of Lemma 10.1. Choose constants ; and -9 such that v < 71 < v < +/. First apply
Proposition 10.7 to find a (v, P)-edge balancing graph Beqge € G such that Begge is locally P-balanced
and A(Bedge) < 711. Now G’ := G — Begge satisfies dgr (v, UJZ) >(1-1/(r+1)+ 5/2)|U}] for all v ¢ V7,
so we can apply Proposition 10.11 to find a (72, P)-degree balancing graph Bgeg C G’ such that Bgeg is
locally P-balanced and A(Bgeg) < 7'n/2. Let B := Bedge U Bgeg. Then A(B) < 4'n and B is locally
P-balanced. Also, since both Begqge and Bgeg are K,-decomposable, B is K,-decomposable.
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We now show that B is a (v, P)-balancing graph. Let H be any K,-divisible graph on V satisfying (P1)
and (P2). Since Bggge is a (7, P)-edge balancing graph, there exists B ,, C Bedge such that Begge — B

edge =
has a K,-decomposition and Hy := H U B{adge

édge
satisfies
em (U}, Up2) = e, (U3}, U32)
for all 1 <1i; < iy < kand all 1 < jq,jo,j3 < r with j1 # js, j3.
Note that H; is K,-divisible. Also

|dn, (0,U},) = duy (v, U] < |dp (v,U3,) = di (v, Uj )| + A(Beage) < yn+71n < 72|Uj, |

for all 2 < i <k, all 1 < 51,792,753 < r with j; # jo,j3 and all v € Ujfi. So H; satisfies (Q1)—(Q3) with
Hy and 7, replacing H and 7. Now, Byeg is a (72, P)-degree balancing graph so there exists Bj., € Baeg
such that Beg — Béeg has a K,-decomposition and Hy := H; U Béeg satisfies

d, (v, U;l) =dp, (v, U;Z)

forall2 <i<k,alll<jj,jo<randallveU<\(V;UV,).
Let B’ := Bédge U Béeg. Then B — B’ = (Bedge — Bédge) U (Bdeg — Béeg) has a K,-decomposition. Note

that H U B’ = Hy. So B is a (7, P)-balancing graph. O

11. PROOF OF THEOREM 1.1

In this section, we prove our main result, Theorem 1.1. The idea is to take a suitable partition P of
V(G), cover all edges in G[P] by edge-disjoint copies of K, and then absorb all remaining edges using an
absorber which we set aside at the start of the process. However, for the final step to work, we need that
the classes of P have bounded size. A key step towards this is the following lemma which, for a partition
P into a bounded number of parts, finds an approximate K,.-decomposition which covers all edges of
G[P]. We then iterate this lemma inductively to get a similar lemma where the parts have bounded size
(see Lemma 11.2).

Lemma 11.1. Let 1/n < a < n K p K< 1/k < e < 1/r < 1/3. Let G be a K,-divisible graph on
V..., Vo) with |[Vi| = -+ = |Vi| = n. Let P be a k-partition for G. For each x € V(G), each U € P
and each 1 < j <r, let 0 < d, y; < |Uj|. Let Go € G — G[P], G1 := G — Go and R C G[P]. Suppose the
following hold for all U,U" € P and all 1 < j, j1,j2 < r such that j # j1,J2:

(a) for all z € Uy, |dg(x,Uj,) — dA(;(a:, Uj,)| < o|Ujl;

(b) for all x ¢V, dg, (x,U;) = (3f, +€)|Ujl;

(c) for all x € V(G), dr(z,U;) < pdyu; + a|Usl;

(d) for all distinct x,y € V(G), dp({z,y},U;) < (p* + a)|U;];

(e) for allz ¢ UUU UVy, UVyy, |dr(z,Uj,) — dr(z,Uj,)| < 3a|Uj, |;

(f) for allx ¢ U and all y € U such that z,y ¢ Vj,

de, (y, Nr(w, Uj)) = p(1 = 1/(r = 1))dau, + p°/*|Uj].
Then there is a subgraph H C G1 — G[P] such that G[P|UH has a K,-decomposition and A(H) < 4rpn.

To prove Lemma 11.1, we apply Lemma 8.1 to cover almost all the edges of G[P]. We then balance
the leftover using Lemma 10.1. The remaining edges in G[P] can then be covered using Corollary 9.4.
The graph R in Lemma 11.1 forms the main part of the graph G in Corollary 9.4. Conditions (c¢)—(f)
ensure that R is ‘quasirandom’.

Proof. Write P = {U',...,U*}. Let G5 := G; — R = G — Gy — R. Note that Proposition 3.1 together
with (b) and (c) implies that for any 1 <i < k, any 1 < j <r and any = ¢ Vj,

da, (2, U}) = (6, +e=2p)|Uj| = (1 = 1/(r + 1) +¢/2)|Uj].
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FIGURE 3. Outline for Proof of Lemma 11.1.

Choose constants 71,72 such that n < 73 < 79 < p. Apply Lemma 10.1 (with 1, v, /2, k, Ga2, P
playing the roles of 7, 7/, €, k, G, P) to find a (71, P)-balancing graph B C G5 such that

(11.1) A(B) < yan
and B is locally P-balanced. As B is also K,-decomposable, for all 1 < ji,j2 <7 and all x ¢ Vj; UV,
(112) dB[P](I'?‘/jl) :dB[P](J}:‘/Jé)'

Let G5 := G2[P] — B = G[P] — R — B. Then (b), (c¢) and (11.1) give
5(G3) > (3% +e)n— [n/k| —2pn — yan > (5% +¢/2)n.
Consider any 1 < ji,jo <r and any z ¢ V;, UVj},. Using (a), (e) and (11.2), we have
ldas (2, Vi) = das (2, Vi) < ldgpy(, Viy) = dapy (2, Vi)l + |dr (2, Viy) — dr(x, Vj, )]

< an + 3an = 4an.

So we can apply Lemma 8.1 (with 4a, 1, v1/2, £/2, G5 playing the roles of «, 1, 7, £, G) to find G4 C G3
such that G3 — G4 has a K,-decomposition F; and

(11.3) A(Gy) < yin/2.
The graphs G, G3 — G4 and B are all K,-divisible (and G3 — G4 and B are edge-disjoint), so
Gs IZG—(Gg—G4)—B:(G—G[P]—B)UG4UR

must also be K,-divisible. Note that e(G5 N B) = 0 and G5[P] = G4 U R. Consider any 1 <i <k, any
1<ji,jo<randanyx ¢ V; UV, If x ¢ U, (11.3) and (e) give

|dGs (z, Ujl) —dg; (@, U]Z:Q)’ = |da,ur(z, sz"l) —da,ur(z, U]Z)‘
< A(Gy) + |dr(x, Uj,) — dr(z,U},)| < (11/2 4 3a)n < yin.
If 2 € U?, then we use (a), that B is locally P-balanced and that Gy, R C G[P] to see that
’dG5($, U]ll) - dGs(x7 U;z)‘ < ’dg(l', Ujll) - dg(l', U;g)’ + ’dB(.ZC, Ujll) - dB(xv U;g)‘
< an < yn.

So (P1) and (P2) in Section 10 hold with G5 and v; replacing H and +. Since B is a (71, P)-balancing
graph, there exists B’ C B such that B — B’ has a K,-decomposition F and, for all 2 < i < k, all
1<ji,jo<randall z € U\ (V}, UV},),

(11.4) da.up (T, U;fl) = dg,up (T, UjQ).
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Write Hy := Ule(B — B)[U" and let

Gg ::G5UB,—G0:(G—G[’P]—Go—B)URUG;;UB,.
Note that
(11.5) Gg[P] = RUG4 U B'[P] = G5[P] U B'[P].
We now check conditions (i)—(iv) of Corollary 9.4 (with G playing the role of G). Since Gy C G — G[P],
(i) follows immediately from (11.4). For (ii), suppose that 2 < i < k and z € U~". For any 1 < j < r,
using (c), (11.3) and (11.1), we have
(11.5) . )
dGG(w, U;) < dR(.I', U;) + A(G4) + A(B) < pd%U; + Oé’UjZ-‘ + ’}/171/2 + Yon
(11.6) < pd,, ;i + 2721,
g

Consider any y € Ng, (7, U?). Note that Gg[U?] = G1[U?] — (B — B')[U"]. So, for any 1 < j < r such that
z,y ¢ Vj, we have

dGG(y7NG6(x7 U]z)) > dGe(yv Ng(z, U]l)) = da, (y, Nr(z, U;)) — A(B)
(1= 1/(r = 1)pdy, i + p*/*|U}| = 7am
J

) i 5/4)77i
(1 =1/(r = 1))des(z, Uj) + p”*|Uj| = 372n
(1= 1/(r — 1)dgy (2, Ul) + 9krp®?|U"|.
So (ii) holds.

To see that Gg satisfies property (iii) of Corollary 9.4, note that for all 2 < ¢ < k and all distinct

z, 2’ € U<, (d), (11.1), (11.3) and (11.5) imply that

|Ng (2,U") N Neg (¢, U)| < dr({z, 2"}, U") + A(Ga) + A(B)
< (P* + Q)| U +7in/2 + yan < 202U
Finally, by (c), (11.1), (11.3) and (11.5), for any y € U*, we have that
da(y,U~") < A(R) + A(Ga) + A(B) < 3pn/2 < 2kp|Uj],
and (iv) holds. Hence we can apply Corollary 9.4 to G to find a subgraph Hy C G¢ — Gg[P] such that
Gg|[P] U Hs has a K,-decomposition F3 and A(Hz) < 3rpn. Set H := Hy U Hy C G; — G[P]. We have
A(H) < A(H1) + A(Hz) < A(B) + A(Hz) < 4rpn. Now,

G[P]UH = G9|[P]URUH = G3 U RU H U B[P]
=|JA UG URUHUB[P] = JF UGs[P|UH, U Hy U B[P

— | JF UFR)uGs[PIUH, U BP] "L | J(F U F) UGG U H,
= U(./—"l UF U .7:3).

So G[P]U H has a K,-decomposition F; U Fy U F3. O
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We now iterate Lemma 11.1, applying it to each partition P; in a partition sequence P, ..., Py for
G. This allows us to cover all of the edges in G[Py] by edge-disjoint copies of K, leaving only a small
remainder in Jyep, G[U].

Lemma 11.2. Let 1/m < a < 1 < p < 1/k < e < 1/r < 1/3. Let G be a K,-diwisible graph on
Vi,...,Vp) with |Vi| =--- =|V;| =n. Let P1,..., Py be a (1,k,5}7(r + &/2, m)-partition sequence for G.
For each1<q </, each1 <j<r, each U € Py and each x € V(G), let 0 < dev; < \Uj| be given. Let
Po = {V(G)} and, for each 0 < q < ¢, let G4 := G[Py]. Let Ry,..., Ry be a sequence of graphs such that
R, C Gy — Gy—1 for each q. Suppose the following hold for all 1 < q < £, all 1 < j, j1, jo < 1 such that
J # J1,72, all W € Py, all distinct x,y € W and all U, U’ € Py[W]:

(i) if ¢ > 2, Pg[W] is a (1, k,SUKT + €)-partition for GIW];

)
(11) fo € Uj; |dG($7Uj1) - dG(:L'vUj2)| < O‘|Uj|;
(iil) dr,(z,U;) < pdeu; + a|Ujl;
(iv) dr,({z,y},U;) < (p* + a)|Uj];
(v) ifx ¢ UUU' UV}, UV, |dg,(x,Uj) — dRq(l‘,Uj/é)’ < 3a|Uj, |;
(vi) ife ¢ U, yeU and z,y ¢ V;, then

der, (s Nr,(@,U)) = p(1 = 1/(r = 1))duv; + p**|Uj|

where G;H =Ggp1— Ryp1 ifq<l—1and Gy, :=G.
Then there is a subgraph H C Jycp, GIU] such that G — H has a K,-decomposition.

Proof. We will use induction on ¢. If £ = 1, apply Lemma 11.1 (with €/2, P;, R; and the empty graph
playing the roles of €, P, R and Gy) to find H' C G — G[P1] such that G[P;]UH’ has a K,-decomposition.
Letting H := G — G[P1] — H' C Uyep, G[U], shows the result holds for £ = 1.

Suppose then that ¢ > 2 and the result holds for all smaller £. Note that for each 1 < j < r, each
r ¢ V; and each U € Py, dgp,)—r,(z,Uj) > (5% +¢/3)|U;|, since Ry satisfies (iii) and Py,..., P, is a
(l,k,gk + £/2, m)-partition sequence for G. So we may apply Lemma 11.1 (with /3, P1, R1, G and
(G — G[P2]) U Re playing the roles of ¢, P, R, G and Gy) to find H' C G[P2] — (G[P1] U R2) such that
G[P1] U H' has a K,-decomposition F; and A(H') < 4rpn. Let G* := G — G[P1| — H = G — |J F1, so
G* is K,-divisible. Observe that G* = ycp, G*[U], so G*[U] is K,-divisible for each U € P.

Consider any U € P;. We check that

G*[U],P2lU], ..., PeU], R2[U], ..., Re|U]

satisfy the conditions of Lemma 11.2. Since A(H') < 4rpn < en/4k?, Po[U] is a (l,k‘,gy(r +¢/2)-
partition for G*[U]. For any 3 < ¢ < £ and any W € P,_1, G W] = G[W] since H C G[Ps].
So (i) holds and P»[U],...,PU] is a (1,]{:,5}79 + €/2, m)-partition sequence for G*[U]. For (ii), note
that for any 2 < ¢ < ¢, any 1 < j < r, any U' € Py[U] and any = € U’, dg+(z,U;) = dg(z,Uj).
Conditions (iii)—(v) are automatically satisfied. To see that (vi) holds, note that for any 2 < ¢ < ¢ and
any U’ € Py[U], G;,1[U"] = G41[U’] since H" C G[P2]. So we can apply the induction hypothesis to
G*[U], P2[U], ..., Pe[U], Ra[U], ..., Re[U] to obtain a subgraph Hy € Uyyep, ) G*[U’] such that G*[U] —
Hy has a K,-decomposition Fyy. Set H := Jyep, Hu. Then, H C Jyep, GIU] and G — H has a K-
decomposition F; U UUe7>1 Fu. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let ng € N and n > 0 be such that 1/ny < n < € and choose additional
constants 71, m’, «, p and k such that

I/np<m<l/m <agsn<p<Kl/k<e.
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Let G be any K,-divisible graph on (Vi,...,V,) with |[Vi] = --- = [V,| = n > ng and §(G) > (5% +e)n.
Apply Lemma 7.2 to find an (o, k, 5% +e—a, m)-partition sequence Py, . .., Py for G where m’ < m < km/.
So in particular, by (S3), for each 1 < ¢ < ¢, all 1 < j1, j2, j3 < r with ji # ja, j3, each U € P, and each
S Ujl,

(11.7) da (2, Uj,) — da(z, Uj,)| < o|Uj, |-

Let Py := {V(G)} and Gy := G[P,] for 0 < ¢ < ¢. Note that S?ﬂ +e—a>1-1/r+¢e (with room to
spare) by Proposition 3.1. So we can apply Corollary 7.5 to find a sequence of graphs Ry, ..., Ry such
that Ry C Gy — G4—1 for each 1 < ¢ < ¢ and the following holds. For all 1 < ¢ < ¢, all 1 < j,j' <, all
W € P,_1, all distinct z,y € W and all U, U’ € P,[W],

dr,(z,Uj) < pda,(z,Uj) + a|Uj;
dr,({z,y},Uj) < (p° + a)|Uj];
‘dRq<.iL‘,Uj) — dRq(w,U]/»/)‘ < 304]Uj] ifr g UU Uy Vi UV,
dG:;+1(y7NRq(xv Uj)) > p(l - 1/(T - 1))dGq(x’ Uj) + p5/4’Uj’ if z ¢ Uy €U and z,y ¢ Vjv

where Gf | = Gg41 — Rgy1if ¢ <l —1and G}, :=G.
Let H :={G[U] : U € P;}. Each H € H satisfies |H| < rm. Note that

3(G[P1] = R1) > (6}, +em — [n/k] —2pn > (1 = 1/(r + 1) + £/2)n.

So we can apply Lemma 6.6 (with 71, o, rm and G[P1] — Ry playing the roles of 7, €, b and G) to find
an absorbing set A for H inside G[P;] — R; such that A* := [J A satisfies A(A*) < an.

Let G* := G — A*. Note that both G and A* are K,-divisible, so G* is K,-divisible. Since A(A*) < an
and A* C G[P1], P1,...,Peis an (1,k, S?Q + €/2,m)-partition sequence for G*. For each 1 < g < ¢,
each 1 < j <r, each U € P, and each z € V(G), set d,y, := dg,(x,U;). Using (11.7), (11.8) and that
A* C G[P1], we see that G*, the partition sequence Pi,..., P, and the sequence of graphs Ry,..., Ry
satisfy properties (i)—(vi) of Lemma 11.2 (with € — « playing the role of €). So we may apply Lemma 11.2
to find H C Jyep, G*[U] such that G* — H has a K,-decomposition J7.

Note that H is a K,-divisible subgraph of Uy cp, G[U], so for each U € Py, H[U] C G[U] is K-
divisible. Since A is an absorbing set for H, it contains a distinct absorber for each H[U]. So H U A* has
a K,-decomposition Fy. Thus G = (G* — H) U (H U A*) has a K,-decomposition F; U F>. O

(11.8)
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