LOOSE HAMILTON CYCLES IN HYPERGRAPHS
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ABSTRACT. We prove that any k-uniform hypergraph on n vertices with minimum degree
at least ﬁ + o(n) contains a loose Hamilton cycle. The proof strategy is similar to that
used by Kiihn and Osthus for the 3-uniform case. Though some additional difficulties arise
in the k-uniform case, our argument here is considerably simplified by applying the recent
hypergraph blow-up lemma of Keevash.

1. INTRODUCTION

A fundamental theorem of Dirac [3] states that any graph on n vertices with minimum
degree at least n/2 contains a Hamilton cycle. A natural question is whether this theorem
can be extended to hypergraphs.

For this, we first need to extend the notions of minimum degree and of Hamilton cycles
to hypergraphs. A k-uniform hypergraph or k-graph H consists of a vertex set V and a
set of edges each consisting of k vertices. We will often identify H with its edge set and
write e € H if e is an edge of H. Given a k-graph H, we say that a set of kK — 1 vertices
T € (k‘—/l) has neighbourhood Ng(T) = {x € V : {z} UT € H}. The degree of T is
di—1(T) = |[Ng(T)|. The minimum degree of H is the minimum size of such a neighbourhood,
that is, dg—1(H) = min{dy_1(T): T € (V) }-

We say that a k-graph C'is a cycle of order n if its vertices can be given a cyclic ordering
v1,...,0, SO that every consecutive pair v;,v;4+1 lies in an edge of C' and every edge of C
consists of k consecutive vertices. A cycle of order n is tight if every set of k consecutive
vertices forms an edge; it is loose if every pair of adjacent edges intersects in a single vertex,
with the possible exception of one pair of edges, which may intersect in more than one vertex.
This final condition allows us to consider loose cycles whose order is not a multiple of £ — 1.
Figure 1 shows the structure of each of these cycle types. A Hamilton cycle in a k-graph H
is a sub-k-graph of H which is a cycle containing every vertex of H.

Ro6dl, Ruciniski and Szemerédi [11, 12] showed that for any 1 > 0 there is an ng so that if
n > ng then any k-graph H on n vertices with minimum degree d;_1(H) > n/2 +nn contains
a tight Hamilton cycle (this improved an earlier bound by Katona and Kierstead [6]). They
gave a construction which shows that this result is best possible up to the error term nn. In
this paper, we prove the analogous result for loose Hamilton cycles.

Theorem 1.1. For all k > 3 and any n > 0 there exists ng so that if n > ng then any k-graph

H on n vertices with 6x—1(H) > (2(k—1—1) + n)n contains a loose Hamilton cycle.

The case when k£ = 3 was proved by Kiithn and Osthus [9]. We will use a similar method of
proof for general k-graphs, but this will be greatly simplified by the use of the recent blow-up
lemma of Keevash [7].

Proposition 2.1 shows that Theorem 1.1 is best possible up to the error term nn. In
fact, Proposition 2.1 actually tells us more than this, namely that up to the error term, this
minimum degree condition is best possible to ensure the existence of any (not necessarily
loose) Hamilton cycle in H. This means that the minimum degree needed to find a Hamilton
cycle in a k-graph of order n is ﬁ + o(n).
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supported by the EPSRC, grant no. EP/E02162X/1. P. Keevash was partially supported by the ERC, grant
no. 239696, and by the EPSRC, grant no. EP/G056730/1.
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FIGURE 1. Segments of a tight cycle (top), a generic cycle (middle) and a
loose cycle (bottom).

Whilst finalizing this paper we learnt that Han and Schacht [5] independently and simul-
taneously proved Theorem 1.1, using a different approach. The result in [5] also covers the
notion of a k-uniform ¢-cycle for ¢ < k/2 (here one requires consecutive edges to intersect
in precisely ¢ vertices). More recently Kithn, Mycroft and Osthus [10] further developed the
method of Han and Schacht to include all ¢ such that k& — ¢ 1 k (the remaining values of ¢ are
covered by the results of Rodl, Rucifiski and Szemerédi [11, 12]).

There is also the notion of a Berge-cycle, which consists of a sequence of vertices where
each pair of consecutive vertices is contained in a common edge. This is less restrictive than
the cycles considered in this paper. Hamiltonian Berge-cycles were studied in [2].

2. EXTREMAL EXAMPLE AND OUTLINE OF THE PROOF
The next proposition shows that Theorem 1.1 is best possible, up to the error term nn.

Proposition 2.1. For all integers k > 3 and n > 2k — 1, there exists a k-graph H on n
vertices such that oy_1(H) > [57| — 1 but H does not contain a Hamilton cycle.

Proof. Let V7 and V5 be disjoint sets of size [575] — 1 and n — [57%5] + 1 respectively.

Let H be the k-graph on the vertex set V = V; U V5, with e € (Z) an edge if and only if
e N Vi # (0, that is, if e contains at least one vertex from V;. Then H has minimum degree
Op—1(H) = [55%5 | — 1. However, any cyclic ordering of the vertices of H must contain 2k — 2
consecutive vertices vq,...,v9_o from V5, but then v,_; and v, cannot be contained in a
common edge consisting of k& consecutive vertices, and so H cannot contain a Hamilton cycle.
O

In our proof of Theorem 1.1 we construct the loose Hamilton cycle by finding several paths
and joining them into a spanning cycle. Here a k-graph P is a path if its vertices can be given
a linear ordering such that every edge of P consists of k consecutive vertices, and so that
every pair of consecutive vertices of P lie in an edge of P. Similarly as for cycles, we say that
a path P is loose if edges of P intersect in at most one vertex. The ordering of the vertices
of P naturally gives an ordering of the edges of P. We say that any vertex of P which lies in
the initial edge of P, but not the second edge of P, is an initial vertex. Similarly, any vertex
of P which lies in the final edge of P but not the penultimate edge is a final vertez. Also, we
refer to vertices of P which lie in more than one edge of P as link vertices. Thus, for example,
a loose path P has k — 1 initial vertices, k — 1 final vertices, and one link vertex in each pair
of consecutive edges.

In Section 3, we shall introduce various ideas we will need in the proof of Theorem 1.1.
In particular, we will state a version of the hypergraph regularity lemma due to Rédl and
Schacht [13] and Theorem 3.3 due to Keevash [7]. The latter provides a useful way of ap-
plying the hypergraph blow-up lemma. In Section 4, we shall prove various auxiliary results,
including a result on finding loose paths in complete k-partite k-graphs, and an approximate
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minimum degree condition to guarantee a near-perfect packing of H with a particular k-graph
Apg. Finally, in Section 5 we shall prove Theorem 1.1 as follows.

2.1. Imposing structure on H. In Section 5.1 we use the hypergraph regularity lemma
to split H into k-partite k-graphs H® on disjoint vertex sets X*. These k-graphs H* will be
suitable for embedding almost spanning loose paths, and all the vertices of H not contained
in any of the X* will be included in an ‘exceptional’ loose path L. (actually, if |V (H)| is not
divisible by £ — 1, then L. will contain two consecutive edges which intersect in more than
one vertex). The requirement that H® contains an almost spanning loose path means that the
vertex classes of the H® must have suitable size. We achieve this by first defining a suitable
‘reduced k-graph’ R of H. Then we cover almost all vertices of R by copies of a suitable
auxiliary k-graph Ay. For each copy of Ay, the corresponding sub-k-graph of H is then split
into the same number of disjoint H*.

2.2. The linking strategy. In Section 5.3 we shall use the structure imposed on H to find
a Hamilton cycle in H by the following process.

(a) The k-graphs H' are connected by means of a walk W = eq,...,e, in the ‘supple-
mentary graph’. This graph (which we will define in Section 5.2) has vertices 1,...,t'
corresponding to the k-graphs H°.

(b) Using Lemma 5.2, each edge e; of W is used to create a short ‘connecting’ loose path
L; in H joining two different H's.

(c) L. and the paths L; are extended to ‘prepaths’ (these can be thought of as a path
minus an initial vertex and a final vertex) L} = IpL.Fp and L;-‘ = I;L;F;, where Iy, Fy
and all I;, Fj are sets of size k — 2. These prepaths have the property that there are
large sets I ]’ and Fj' such that L7 can be extended to a loose path by adding any vertex
of I} as an initial vertex and any vertex of I as a final vertex. Similarly there are
large sets I 41 and F{ so that L} can be extended to a path by adding any vertex of
I;, , as an initial vertex and any vertex of Fj as a final vertex. I7,; and Fj both lie
in the same H® (for all j = 0,..., /).

(d) For each H' and for all those pairs I i1
L, inside H ¢ from Fito I}, . For each i, we will use the hypergraph blow-up lemma
(in the form of Theorem 3.3) to ensure that together all those L which lie in H  use

F]{ which lie in H?, we choose a loose path

all the remaining vertices of H*.
(e) The loose Hamilton cycle is then the concatenation LYL\ L3 ... LyL;Ly,,.

2.3. Controlling divisibility. Note that the number of vertices of a loose path is 1 modulo
k — 1. So in order to apply Theorem 3.3 to obtain spanning loose paths in a subgraph of
H', we need this subgraph to satisfy this condition. So we choose our paths sequentially to
satisfy the following congruences modulo k — 1.
(a) L. is chosen with |V(H)\ V(L.)| = —1.
(b) Let X%(j — 1) be the subset of X’ obtained by removing V(L1),...,V(L;j—1). (All
the X? will be disjoint from V(L.).) Let d; be the number of times that W visits
H!. When choosing Lj, for every X ¢ it traverses (except the final one) we arrange to
intersect X?(j — 1) in a set of size = t;(j) = | X*(j — 1)| + d; (the size modulo k — 1 of
the intersection of L; with the final X ¢ it traverses is then determined by the sizes of
the other intersections). The choice of L. in (a) ensures that after all L; have been
picked, the remaining part X*(¢) of X* has size = —d;.
(c) Each L;j is extended to a prepath L7 by adding I; and Fj. Similarly, L. is extended
into a prepath L? by adding Iy and Fy. Now the remaining part of X* has size = d;.
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(d) It remains to select d; paths L) within each X% each uses = 1 vertices, so the
divisibility conditions are satisfied.

3. REGULARITY AND THE BLOW-UP LEMMA

3.1. Graphs and complexes. We begin with some notation. By [r] we denote the set of
integers from 1 to r. For a set A, we use (‘2) to denote the collection of subsets of A of size k,

and similarly ( <Ak) to denote the collection of non-empty subsets of A of size at most k. We
write £ = y £ z to mean that y — 2 < < y + 2. We shall omit floors and ceilings throughout
this paper whenever they do not affect the argument.

A hypergraph H consists of a vertex set V(H) and an edge set, such that each edge e of
the hypergraph satisfies e C V(H). So a k-graph as defined in Section 1 is a hypergraph in
which all the edges are of size k. We say that a hypergraph H is a k-complex if every edge
has size at most k£ and H forms a simplicial complex, that is, if e; € H and ey C ey then
es € H. As for k-graphs we identify a hypergraph H with the set of its edges. So |H]| is the
number of edges in H, and if G and H are hypergraphs then G \ H is formed by removing
from G any edge which also lies in H. If H is a hypergraph with vertex set V' then for any
V' C V the restriction H[V'] of H to V' is defined to have vertex set V’ and all edges of H
which are contained in V' as edges. Also, for any hypergraphs G and H we define G — H to
be the hypergraph G[V (G) \ V(H)].

We say that a hypergraph H is r-partite if its vertex set X is divided into r pairwise-
disjoint parts Xi,...,X,, in such a way that for any edge e € H, |eN X;| < 1 for each i. We
call the X; the vertex classes of H and say that the partition Xq,..., X, of X is equitable
if all the X; have the same size. We say that a set A C X is r-partite if |[AN X;| < 1
for each i. So every edge of an r-partite hypergraph is r-partite. In the same way we may
also speak of r-partite k-graphs and r-partite k-complexes. Given a k-graph H, we define a
k-complex HS = {e;: e; C eg and ey € H} and a (k — 1)-complex H< = {e1: e; C ey and
es € H}. Conversely, for a k-complex H we define the k-graph H_ to be the ‘top level’ of H,
ie. H_.={ec H: |e| =k}. (Here V(H) =V (HS) =V (H<) =V(H-).)

Given a k-graph G and a set W of vertices of G, we denote by G[W] the sub-k-graph of
G obtained by removing all vertices and edges not contained in W (in this case, we say G is
restricted to W). For a k-graph G and a sub-k-graph H C G write G—H for G[V(G)\V (H)].

Let X1,...,X, be pairwise-disjoint sets of vertices, and let X = X; U---U X,.. Given
Ae( [<T ,1), we write K 4(X) for the complete |A|-partite |A|-graph whose vertex classes are all
the X; with i € A. The index of an r-partite subset S of X is i(S) = {i € [r] : S N X; # 0}.
Furthermore, given any set B C i(.S), we write Sp = SN |J;cp X;. Similarly, given A € (g}ﬂ)
and an r-partite k-graph or k-complex H on the vertex set X we write H 4 for the collection
of edges in H of index A and let Hy = {0}. In particular, if H is a k-complex then Hy; is
the set of all those vertices in X; which lie in an edge of H (and thus form a (singleton) edge
of H). In general, we will often view H4 as an r-partite |A|-graph with vertex set X. Also,
given a k-complex H we similarly write H, < = Ugc 4 Hp and Hy< = g4 Hp. We write
H for the |A|-graph whose edges are those r-partite sets S C X of index A for which all
proper subsets of S belong to H. (In other words, a set S with index A satisfies S € HY if and
only if for all j < |A| the edges of H which have size j and are subsets of S form a complete
Jj-graph on |S| vertices.) Then the relative density of H at index A is da(H) = |Ha|/|H}|.
The absolute density of Ha is d(Ha) = [Ha|/|Ka(X)|. (Note that [Ka(X)| = ]];ca | Xi|.) If
H is a k-partite k-complex we may simply write d(H) for d(Hj). Similarly, the density of a
k-partite k-graph H on X = X3 U---U Xy, is d(H) = |[H|/[ K (X)]-
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Finally, for any vertex v of a hypergraph H, we define the vertez degree d(v) of v to be the
number of edges of H which contain v. Note that this is not the same as the degree defined
earlier, which was for sets of £k — 1 vertices. The mazimum vertex degree of H is then the
maximum of d(v) taken over all vertices v € V(H). The vertex neighbourhood VN (v) of v
is the set of all vertices u € V(H) for which there is an edge of H containing both u and wv.
For a k-partite k-complex H on the vertex set X1 U---U Xy we also define the neighbourhood
complex H(v) of a vertex v € X; for some ¢ to be the (k — 1)-partite (k — 1)-complex with
vertex set (J;,; X; and edge set {e € H :eU{z} € H}.

3.2. Regular complexes. In this subsection we shall define the concept of regular complexes
(which was first introduced in the k-uniform case by R6dl and Skokan [15]) in the form used
by Rodl and Schacht [13, 14]. This is a generalization of the standard concept of regularity
in graphs, where we say that a bipartite graph B on vertex classes U and V forms an e-
regular pair if for any U’ C U and V' C V with |U’'| > €|U| and |[V’| > €|V| we have
d(B[U'UV']) =d(B) *+e.

In the same way, we say that a k-complex G is regular if the restriction of G to any large
subcomplex of lower rank has similar densities to G. More precisely, let G be an r-partite
k-complex on the vertex set X = X;U---UX,. For any A € (Q) we say that G 4 is e-reqular
if for any H C G 4< with |H}| > €|G%| we have -

‘GAﬂHjZ‘
DA Al - du(G) £
R (@)

We say G is e-regular if G 4 is e-regular for every A € ([;]]c) Note that if G is a graph without
isolated vertices, then the definition in the previous paragraph is equivalent to the 2-complex
G= being e-regular. To illustrate the definition for k = 3, suppose that A = [3]. Then for
instance the top level of G|y is the bipartite subgraph of G induced by X; and X3 and G
is the set of (graph) triangles in G. So roughly speaking, the regularity condition states that
if we consider a subgraph of Gy U Gy 33 U G2 3y which spans a large number of triangles,
then the proportion of these which also form an edge of G 4 is close to da(G), i.e. close to the
proportion of (graph) triangles in G between X7, X5 and X3 which form an edge of G.
Roughly speaking, the hypergraph regularity lemma states that an arbitrary k-graph can be
split into pieces, each of which forms a regular k-complex. The version of the regularity lemma
we shall use also involves the notion of a ‘partition complex’, which is a certain partition of
the edges of a complete k-complex. As before, let X = X7 U---U X, be an r-partite vertex
set. A partition k-system P on X consists of a partition P4 of the edges of K4(X) for

each A € ([<T,]€) We refer to the partition classes of P4 as cells. So every edge of K4(X)
is contained in precisely one cell of P4. P is a partition k-complex on X if it also has the
property that whenever S, 5" € K4(X) lie in the same cell of P4, we have that Sp and S5 lie
in the same cell of Pg for any B C A. This property of S, S’ forms an equivalence relation on
the edges of K 4(X), which we refer to as strong equivalence. To illustrate this, again suppose
that k = 3 and A = [3]. Then if P is a partition k-complex, Py, Py and Py3y together
yield a vertex partition @1 refining X1, Xo, X3. ()1 naturally induces a partition ()3 of the 3
complete bipartite graphs induced by the pairs X;, X;. Py 0y, P23y and Py 3y also yield a
partition @), of these complete bipartite graphs. The requirement of strong equivalence now
implies that Q) is a refinement of Q2. At the next level, Q) naturally induces a partition Q3
of the set of triples induced by X7, Xo and X3. As before, strong equivalence implies that the
partition P23y of these triples is a refinement of Q3.
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Let P be a partition k-complex on X = X; U ---U X,. For i € [k], the cells of Pf;, are
called clusters (so each cluster is a subset of some X;). We say that P is vertez-equitable
if all clusters have the same size. P is a-bounded if |P4| < a for every A (i.e. if K4(X) is
divided into at most a cells by the partition P4). Also, for any r-partite set Q € ( fk), we
write Cq for the set of all edges lying in the same cell of P as @, and write Cg< for the
r-partite k-complex whose vertex set is X and whose edge set is Ugcg Cqr- (Since P is a
partition k-complex, Cp< is indeed a complex.) The partition k-complex P is e-regular if

Cos< is eregular for every r-partite Q € ( é(k)

Given a partition (kK — 1)-complex P on X and A € ([,:]), we can define an equivalence
relation on the edges of K4(X), namely that S,5" € K4(X) are equivalent if and only if
Sp and S lie in the same cell of P for any strict subset B C A. We refer to this as weak
equivalence. Note that if the partition complex P is a-bounded, then K 4(X) is divided into
at most a* classes by weak equivalence. If we let G be an r-partite k-graph on X, then we
can use weak equivalence to refine the partition {G4, K4(X)\ Ga} of K4(X) (i.e. two edges
of G4 are in the same cell if they are weakly equivalent and similarly for the edges not in
G4). Together with P, this yields a partition k-complex which we denote by G[P]. If G[P]
is e-regular then we say that G is perfectly e-reqular with respect to P. Note that if G[P] is
e-regular then P must be e-regular too.

Finally, we say that r-partite k-graphs G and H on X are v-close if |G4AH 4] < v| K 4(X)|
for every A € ([Z]), that is, if there are few edges contained in G but not in H and vice versa.

We can now present the version of the regularity lemma we shall use to split our k-graph
H into regular k-complexes. It actually states that there is some k-graph G which is close
to H and which is regular with respect to some partition complex. This will be sufficient for
our purposes, as we shall avoid the use of any edges in G\ H, so every edge used will lie in
both G and H. There are various other forms of the regularity lemma for k-graphs which
give information on H itself (the first of these were proved in [15, 4]) but these do not have
the hierarchy of densities necessary for the application of the blow-up lemma (see [7] for a
fuller discussion of this point). The version below is due to Rédl and Schacht [13] (actually
it is a very slight restatement of their result).

Theorem 3.1 (Theorem 14, [13]). Suppose integers n,a,r, k and reals €,v satisfy 1/n < € <
1/a < v,1/r,1/k and where alr divides n. Suppose also that H is an r-partite k-graph whose
vertex classes Xi,...,X, form an equitable partition of its vertex set X, where |X| = n.
Then there is an a-bounded e-reqular vertez-equitable partition (k — 1)-complex P on X and
an r-partite k-graph G on X that is v-close to H and perfectly e-reqular with respect to P.

Here (and later on) we write 0 < a1 < as < a3 < ag < 1 to mean that we can choose the
constants a1,...,as4 from right to left. More precisely, there are increasing functions f1, fa, f3
such that, given a4, whenever we choose some a3 < f3(aq), az < fao(az) and a; < fi1(az), all
calculations needed in the proof of the subsequent statement are valid. Hierarchies with more
constants are defined similarly.

One important property of regular complexes is that they remain regular when restricted to
a large subset of their vertex set. For regular k-partite k-complexes this property is formalised
by the following lemma, a special case of Lemma 6.18 in [7].

Lemma 3.2 (Restriction of regular complexes). Suppose € < € < d < ¢ < 1/k, and that G
is an e-reqular k-partite k-complex on the vertex set X = XyU---UXy such that Gy = X; for
each i and d(G) > d. Let W be a subset of X such that |[W N X;| > ¢|X;| for each i. Then the
restriction GIW| of G to W is € -regular, with d(G[W1]) > d(G)/2 and dy)(G[W]) > dy(G) /2.
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3.3. Robustly universal complexes. Apart from Theorem 3.1, the other main tool we
shall use in the proof of Theorem 1.1 is the recent hypergraph blow-up lemma of Keevash.
This result involves not only a k-complex G, but also a k-graph M of ‘marked’ edges on
the same vertex set. If the pair (G, M) is ‘super-regular’, then this blow-up lemma can be
applied to embed any spanning bounded-degree k-complex in G\ M, that is, within G but
avoiding any marked edges. We will apply this with M = G'\ H where G is the k-graph given
by Theorem 3.1. Super-regularity is a stronger notion than regularity. A result in [7] states
that every e-regular k-complex can be made super-regular by deleting a few of its vertices.
Unfortunately, the notion of hypergraph super-regularity is very technical, but the following
definition from [7] avoids many of these technicalities. Let J' be a k-partite k-complex.
Roughly speaking, we say that J’ is robustly D-universal if the following holds: even after
the deletion of many vertices of .J’, the resulting complex J has the property that one can
find in J a copy of any k-partite k-complex L which has vertex degree at most D and whose
vertex classes are the same as those of J. Condition (i) puts a natural restriction on the
number of vertices we are allowed to delete from the neighbourhood complex of a vertex of J
and condition (iii) states that for a few vertices u of L we can even prescribe a ‘target set’ in

V(J) into which u will be embedded.

Definition. (Robustly universal complexes) Suppose that J' is a k-partite k-complex
on V! = V/U---UV/ with ii} = V! for each ¢ € [k]. We say that J' is (c,cp)-robustly
D-universal if whenever
(i) V; C V] are sets with |[V;| > ¢[V]| for all j € [k], such that writing V = U,y V; and
J = J'[V] we have |J(v)=| > ¢[J'(v)=| for any j € [k] and v € V],
(ii) L is a k-partite k-complex of maximum vertex degree at most D on some vertex set
U=UU---UUy with |U;| = |V}] for all j € [K],
(iii) Ux C U satisfies |Us N Uj| < ¢|Uj| for every j € [k], and sets Z, C V() satisfy
|Zu| > |Vl for each u € Us, where for each u we let i(u) be such that u € Uy,
then J contains a copy of L, in which for each j € [k] the vertices of U; correspond to the
vertices of Vj, and u corresponds to a vertex of Z, for every u € U.,.

So our use of the blow-up lemma will be hidden through this definition. Of course, we shall
also need to obtain robustly universal complexes. This is the purpose of the next theorem,
which states that given a regular k-partite k-complex G with sufficient density, and a k-partite
k-graph M on the same vertex set which is small relative to G, we can delete a small number
of vertices from their common vertex set so that G \ M is robustly universal. It is a special
case of Theorem 6.32 in [7].

Theorem 3.3. Suppose that 1/n € ¢ € ¢p €< d* € d, € 0 < d,c,1/k,1/D,1/C, G is a
k-partite k-complex on V.=V U--- UV, with n < |G| = |V;| < Cn for every j € [k], G is
e-regular with d)(G) > d and d(Gpy) > da, and M C G= with |M| < 0|G=|. Then we can
delete at most 20'/3|V;| vertices from each V; to obtain V! = V] U---U V!, G' = G[V'] and
M' = M[V'] such that

(i) d(G') > d* and |G'(v)=| > d*|G_|/|V]]| for every v € V!, and

(i) G\ M’ is (¢, co)-robustly D-universal.

4. PRELIMINARY RESULTS

In this section we will collect the preliminary results we need to prove Theorem 1.1. In
order to apply Theorem 3.3, we need to know under what conditions we can find particular
loose paths in complete k-partite k-graphs, which is the topic of the next subsection.
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4.1. Loose paths in complete graphs. The problem of when we can find particular loose
paths in a complete k-partite k-graph can be reformulated in terms of the question of which
strings satisfying certain adjacency conditions can be produced from a fixed character set;
the following lemma is the result we will need.

Lemma 4.1. Let £ and aq,. .., ax be integers such that 0 < a; < £/2 for alli, and £ = le a;.

Then for any s,t € [k| there exists a string of length ¢ on alphabet x1, ...,z such that the
following properties hold:

(1) no two consecutive characters are equal,
(2) the first character is not x5 and the final character is not xy,
(3) the number of occurrences of character x; is a;.

Proof. Note that the conditions on ¢ and the a; imply that ¢ > 3. We will construct the
required string by starting with an ‘empty string’ of £ blank positions, and for each 7 inserting
precisely a; copies of character x;. This ensures that condition (3) will be satisfied. We shall
fill the empty positions in the following order: first the first position, then the third, and
so on through the odd-numbered positions, until we reach either position ¢ or position ¢ — 1
(dependent on whether ¢ is odd or even). We then fill the second position, then the fourth,
and so on until all positions are filled. Note that if we proceed by inserting all copies of one
character, then all the copies of another character, and so forth, then condition (1) must be
satisfied. This is because to get two consecutive copies of x;, we must have inserted a copy
of x; at some odd position p, then p + 2, p + 4, and so on until reaching ¢ or £ — 1, and then
filled even positions 2,4,6,...,p— 1. However, this would imply that we had inserted at least
¢/2 copies of character x;, contradicting the fact that a; < £/2.

We therefore only need to determine an order to insert the different characters so as to
satisfy (2). We first consider the case s # t, say s = 1 and ¢ = 2. In this case we insert
xo first, x1 last, and the remaining character blocks in any order in between. Clearly this
prevents the first character from being z1 and the last from being z9, and so (2) is satisfied.
Now we may assume s = t, say s =t = 1. Then if £ is odd, we insert the characters in the
following order: xo,x3,..., 2k, z1. Then all the copies of z1 must be in even positions (since
a; < £/2), and so (2) is satisfied. Alternatively, if ¢ is even, we insert first x; for some 7 # 1
with a; > 0, then z1, and then the remaining blocks of characters in any order. (Note that
these include at least one character other than z; and z; since £ > 3 and a; < ¢/2 imply that
at least three j have a; > 1.) So neither the first nor last character can be z1, and so (2) is
again satisfied. O

The next lemma, is the result we were aiming for in this section, giving information about
which loose paths can be found in complete k-partite k-graphs. Note that the maximum
vertex degree of a loose path is two, and so this lemma will tell us when we can find a loose
path in a robustly universal k-complex.

Lemma 4.2. Let G be a complete k-partite k-graph on the wvertexr set Vi U---U V. Let
b1,...,bx be integers with 0 < b; < |V;| for each i. Suppose that

o n:= ﬁ((Zle b;) — 1) is an integer, and

o 5 +1<0b;<n foralli.
Then for any s,t € [k], there exists a loose path in G with an initial vertex in Vs, a final
vertezx in Vi, and containing b; vertices from V; for each i € [k].

Proof. Note first that n is the number of edges such a path must contain. Let a; = n — b;
for each i, so that 0 < a; < (n —1)/2. By Lemma 4.1 we can find a string S of length n — 1
on the alphabet Vi, Vs, ..., Vi such that V; appears a; times, no two consecutive characters
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are identical, the first character is not Vy and the final character is not V;. Let S; be the ith
character of S. To construct a loose path P in G, first choose any vertex from V; to be the
initial vertex of P, and any vertex from V; to be the final vertex of P. We also use S to choose
the link vertices of P: choose the ith link vertex (i.e. the vertex lying in the intersection of
the ¢th and (i + 1)th edges of P) to be any member of S; not yet chosen. We have now
assigned two vertices to each edge of P. Finally, we complete P by assigning to each edge
one as yet unchosen vertex from each of the £ — 2 classes not yet represented in that edge.
This is possible since precisely a; link vertices are from the class V; and so the total number
of vertices used from V; is n — a; = b;. Since G is complete we know that each edge of P is
an edge of G, and so P is a loose path satisfying all the conditions of the lemma. U

4.2. Walks and connectedness in k-graphs. A walk W in a hypergraph H consists of
a sequence of edges ej,...,e; of H and a sequence x,...,z; of (not necessarily distinct)
vertices of H, satisfying x; 1 # x; for all i € [¢], and also xg € e1, xy € ey and x; € €; N e;j41
for all i € [¢ — 1]. The length of W is the number of its edges. We say that ¢ is the initial
vertexr of W, xy is the final vertex of W, and that x1,...,xy_1 are the link vertices of W. By
a walk from x to y we mean a walk with initial vertex = and final vertex y.

Note that the vertices of a hypergraph H can be partitioned using the equivalence relation
~, where x ~ y if and only if either x = y or there exists a walk from z to y. We call the
equivalence classes of this relation components of H. We say that H is connected if it has
precisely one component. Observe that all vertices of an edge of H must lie in the same
component. Finally, note that if H is a connected hypergraph of order n, then for any two
vertices x,y of H we can find in a walk from x to y of length at most n in H.

4.3. Random splitting. In this section we shall obtain, with high probability, a lower bound
on the density of a subgraph of a k-partite k-graph chosen uniformly at random. We will use
Azuma’s inequality on the deviation of a martingale from its mean.

Lemma 4.3 (Azuma [1]). Suppose Zy,...,Zy, is a martingale, i.e. a sequence of random
variables satisfying B(Ziy1 | Zo, ..., Zi) = Z;, and that |Z; — Z;_1| < ¢; for some constants c;
and all i € [m]. Then for any t > 0,

t2
P(|Zm — Zo| 2 1) < 2exp <m> :

Lemma 4.4. Suppose 1/n < ¢,3,1/k,1/b < 1, and that H is a k-partite k-graph on the
verter set X = X3 U---U Xy, where n < |X;| < bn for each i € [k]. Suppose also that
H has density d(H) > ¢ and that for each i we have B|X;| < t; < |X;|. If we choose
a subset W; C X; with |W;| = t; uniformly at random and independently for each i, and
let W = Wy U---UWyg, then the probability that H[W] has density d(H[W]) > ¢/2 is at
least 1 — 1/n?. Moreover, the same holds if we choose W; by including each vertex of X;
independently with probability t;/|X;|.

Proof. Let m = |X|. To prove the first assertion, we obtain our subsets W; C X; through
the following two-stage random process, independently for each 7. First we assign the vertices
of each X; into sets X} and X? independently at random, with each vertex being assigned
to X} with probability ¢;/|X;|, and assigned to X? otherwise. Then, in the (highly probable)
event that we have | X}| # t; we shall select uniformly at random a set of vertices to transfer
between X} and X? to obtain from X} the set W; with |W;| = t;. For each i, no subset
W; C X; of size t; is more likely to result from this process than any other, so we have chosen
each W; uniformly at random. It remains to show that H[WW] is likely to have high density.
We do this by noting that H[X1] is likely to have high density (where X! = X{ U--- U X})
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U1 U2 U3

Uo

FIGURE 2. The 3-graph A3 (only edges involving U; are shown)

and that with high probability we will only need to transfer a small number of vertices to
form W =W, U---UWy, which can have only a limited effect on the density.

More precisely, let z1,...,z,, be an ordering of the vertices of X, and for each i € [m] let
the random variable Y; take the value 1 if z; € X!, and 0 otherwise. Recall that we write |H |
to denote the number of edges of a k-graph H. For all ¢ = 0,...,m we now define random
variables Z; by Z; = E(|JH[X']| | Y1,...,Y:). Then the sequence Z, ..., Z, is a martingale,
Zm = |H[X"]], and as we formed each X} by assigning vertices of X; independently at random
into X} and X?, we have Z, = E(|H[X]|) > chzl t;. Also, for any vertex z;, let f(i) be
such that z; € Xy (i.e. f(i) is the index of ;). Then |Z; — Zi_1| < [[; .5 [ Xi] < (bn)k—1
for all i € [m]. Thus we can apply Lemma 4.3 to obtain

k 2 1Tk 2
Yt -t 1
]P’(|ZmZo|ZCH%1) §2exp< it > <.

32mb2k72n2k72 n

Therefore the event that d(H[X!]) > 3c¢/4 has probability at least 1 — 1/n3. Also, by a
standard Chernoff bound, for each i € [k] the event that |X}| = t; | X;|?/3 has probability at
least 1 — 1/n. Thus with probability at least 1 — 1/n? all of these events will happen. Now,
if | X}| > t;, we choose a set of | X}| — ¢; vertices of X} uniformly at random and move these
vertices from X} to X?. Similarly, if | X}| < t;, then we choose a set of ¢; — | X}| vertices of
Xi2 uniformly at random and move these vertices to Xil. In either case, for any 7 this action
can decrease d(H[X1!]) by at most || X}| —t;|/|X}| < c. Thus if we let W be the set obtained
from X in this way, we have d(H[W]) > ¢/2, proving the first part of the lemma.

The proof of the ‘moreover part’ is the same except that we can omit the ‘transfer’ step at
the end of the proof. O

4.4. Decomposition of GG into copies of Ag. Let A; denote the k-graph whose vertex
set V(Ag) is the union of 2k — 2 disjoint sets Uy, U1, Us, ..., Us,_3 of size k — 1 and whose
edges consist of all k-tuples of the form U; U {z}, with ¢ > 0 and = € Uy (see Figure 2). So
|V (A)| = 2(k —1)%. An Ag-packing in a k-graph G is a collection of pairwise vertex-disjoint
copies of Ay in G.

Lemma 4.5. Suppose 1/m < 0 < ¢ < 1/k, and that G is a k-graph on [m] such that
|INg(S)| > (2(k—1—1) + 0)m for all but at most OmF=1 sets S € (ILT]I) Then G has an Ay-
packing which covers more than (1 — ¥)m vertices of G.

Proof. Let A, ..., A; be an Ag-packing of G of maximum size, so t < m/(2(k — 1)?). Let
X be the set of uncovered vertices, and suppose that |X| > ¥m. Let b = 6| X]|. Our first
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aim is to choose disjoint sets Si,..., S, in (k)_(l) so that [Ng(S;)| > (1/(2(k — 1)) + 6)m and
|ING(S;) N X| < Om/2 for all i € [b]. Note that § < ¢ implies that ('X‘fk?f(lkfl)) > OmF~L So
we can greedily choose disjoint Si,..., S € (,~,) such that |[Ng(S;)| > (1/(2(k — 1)) + 6)m

for all i € [2b]. Let T'= {i € [20] : |Ng( ;)N X| > 0m/2}. We claim that |T'| < b. Otherwise,
consider the bipartite graph B with vertex classes T and X, where we join i € T to x € X if
S; U{z} is an edge of G. Note that B cannot contain a complete bipartite graph with 2k — 3
vertices in T" and k — 1 vertices in X, as this would correspond to a copy of Ay contained
in X, which is impossible as A, ..., A; is a maximum size Aj-packing. However, by definition
of T we have dp(i) > 6m/2 for every i € T, and double-counting pairs (i, P) Wlth i €T and

Pe( k_(l)) gives
(") < . < en-n (),

a contradiction. This proves the claim, and by relabelling the S; we can assume that
|ING(Si)| > (1/(2(k — 1)) + 6)m and |Ng(S;) N X| < 6m/2 for all i € [b].
Now we show how to enlarge the Aj-packing A;,..., A;. For i € [b] let

F,={j €[t]: |[Na(Si) NV (A;)| > k}.
Since |V (4;)| = 2(k — 1)? for each i € [b] we have

(5o +3) m < V(s \ X| = Z|NG A)
(k—1)m
25 17

and so |F;| > Om/(4(k — 1)?). We now double-count pairs (i, Q) with i € [b] and Q € (k}iil)'
The number of such pairs is

2 () e () -l )

i=1

<|E|-2(k =12+ (¢ = |E]) - (k= 1) < 2(k = 1*|F| +

So we can find some @ € (k[ﬂl) and R C [b] with |R| > y/m such that Q € (kl?l) for every
r € R. For each 7 € R and each ¢ € @ fix some k-set K7 C Ng(S,) N V(4,) (which is
possible by definition of F,). Then we can choose R’ C R with |R'| = k(2k — 3) so that
K™ = K™ for all r,7' € R’ and every ¢ € Q. For each ¢ € Q we write K7 for K7 with
reR.

We will now use the K? to find k£ new copies of A that only intersect k& — 1 of the copies
in our packing. We arbitrarily divide R’ into k sets Rj,..., R} of size 2k — 3 and label
V(K?) = {vg1,...,vq%} for all ¢ € Q. The new copies A],..., A} of Ay are obtained for
each i € [k] by identifying Uy, ..., Uy_3 with {S, : r € R}} and Uy with {v,;},cq. Replacing
the copies {4, : ¢ € Q} by Al,..., A} we obtain a larger Aj-packing. This contradiction
completes the proof. O

Corollary 4.6. Lemma 4.5 still holds if we insist that the sub-k-graph of G induced by the
vertices covered by the Ag-packing must be connected.

Proof. Apply Lemma 4.5 to obtain an Ay-packing Ay, ..., Ay in G with mq := | Ule V(A;)| >
(1 —4/2)m, and let A be the sub-k-graph of G induced by Ule V(A;). By hypothesis at

most OmF~! sets S € (,£ }1) have fewer than m/(2(k — 1)) neighbours in G and so at most

OmF—1 sets T € (‘2(_’41)) have no neighbours in V(A4). By the definition of a component, no
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edges of A contain vertices from different components of A. Therefore the largest compo-
nent C' of A must contain at least (1 — 1)m vertices. Indeed, if not then there are at least

(;70,) (¥m/2)/(k —1) > Om*F ' sets T € (‘g_?) which meet at least two components of A and
thus have no neighbours in A, a contradiction (we can obtain such a set T' by choosing k — 2
vertices arbitrarily in V' (A) and then choosing the final vertex in a different component of A
than the first vertex). Thus we may take the Ay-packing consisting of all those copies A; of

A, with V(A4;) CV(C). ]

5. PROOF OF THEOREM 1.1

In our proof we will use constants that satisfy the hierarchy

1 1 1 1

E<<€<<d*<<da<<a<<1/,; LIKdKL ek pgIKEnK P
Furthermore, for any of these constants a, we use @ < o/ < o < ... and assume that the
above hierarchy also extends to the additional constants, e.g. d’ < ¢ < ¢’ < ¢.

5.1. Imposing structure on H.

5.1.1. Step 1. Applying the reqularity lemma. Let Hi be the sub-k-graph obtained from H
by removing up to alr vertices so that |V (H;)| is divisible by alr. Let T =Ty U---UT,
be an equitable r-partition of the vertices of Hy, and let Hs consist of all those edges of H;
that are r-partite sets in 1. Then Hs is an r-partite k-graph with order divisible by alr, and
so we may apply the regularity lemma (Theorem 3.1), which yields an a-bounded e-regular
vertex-equitable partition (k — 1)-complex P on T' and an r-partite k-graph G on T that is
v-close to Hy and perfectly e-regular with respect to P.

Let M = G\ Hy. So any edge of G\ M is also an edge of H. Let Vi,...,V,, be the clusters
of P. SoT =V, U---UV,, and G is m-partite with vertex classes V4, U--- U V,,. Note that
m < ar since P is a-bounded. Moreover, since P is vertex-equitable, each V; has the same
size. So let ny = |V;| = |T|/m.

As is usual in regularity arguments, we shall consider a reduced k-graph, whose vertices
correspond to the clusters V;, and whose edges indicate that within the cells of P corresponding
to the edge we can find a subcomplex to which we can apply Theorem 3.3. For this we would
like G to have high density in these cells, and M to have low density. Thus we define the
reduced k-graph R on [m] as follows: a k-tuple S of vertices of R corresponds to the k-partite
union S" = (J;c4 Vi of clusters. The edges of R are precisely those S € ([7;]) for which G[5']
has density at least ¢’ (i.e. |G[S]| > ¢"'|Kg(S’)|) and for which M[S’] has density at most
V2 (Le. |M[S"])]| < v'/?|Kg(S"))).

Now, the edges in the reduced graph are useful in the following way. Given an edge S € R,
let 8" = (J;cg Vi again. Using weak equivalence (defined in Section 3.2), the cells of P induce
a partition C51, ... C9™s of the edges of Kg(S’). Recall that mg < a*. Therefore at most
"|K5(S")|/3 edges of Kg(S') can lie in sets C'* with |C'%*| < ¢’|K5(S")|/(3a"*). Furthermore,
IM[S"]| < vY?|Ks(S")| (as S € R) and so at most v/4|Kg(S")| edges of Kg(S’) can lie in
sets CS% with |M N CS% > v1/4C%|. Together with the fact that |G[S"]| > ¢’|Ks(S")|
this now implies that more than ¢’|Kg(S")|/2 edges of G[S] lie in sets C%¢ with |[C%] >
d"|Ks(S")|/(3a%) and |M N CS*| < v/4C%|. Thus there must exist such a set C5' that
also satisfies |G N C%| > ¢’|C%% /2. Fix such a choice of C*" and denote it by C°. Let G
be the k-partite k-complex on the vertex set S’ consisting of G N C° and the cells of P that
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‘underlie’ C¥, i.e. for any edge Q € G N C* we have

(1) ¢ =(Gnc%u | Cq.
Q'CQ
(Recall that Cgr was defined in Section 3.2.) We also define the k-partite k-graph M 5 =
G® N M on the vertex set S’. Then the following properties hold:
(A1) G is e-regular.
(A2) G*® has k-th level relative density dig) (G%) > d.
(A3) GS has absolute density d(G°) > d.,.
(A4) M satisfies |MS| < 201/4((GS)=|/".
(A5) (G ){l}—V for any i € S.

Indeed, (A1) follows from (1) since G is perfectly e-regular with respect to P. To see (A2),
note that (Gf,)* = C% and so dj(G°) = |G ul/(G [k]) | = |G° nC%|/|C%| > /2 by our

(]
choice of C*°. Similarly, (A3) follows from our choice of C'*® since
S
acs) = Gl _jesncs eS| @
[Ks(5")] O3] [Ks(S)] "~ 6a® m
(A4) holds since |(G®)—| = |G N CS| > '|C®|/2 and |M3| < |M N CS| < vY/*C3|. Finally,

(A5) follows from (1) and the fact that Cy,, = V; for all v € V.

5.1.2. Step 2. Choosing an Ag-packing of R. The next step in our proof is to use Corollary 4.6
to find an Ag-packing in the reduced k-graph R. For this we shall need an approximate
minimum degree condition for R. Let

={re (™) el < (g + o) m)-

We shall show that J is small, that is, that almost all (kK — 1)-tuples of vertices of R have
degree at least (1/(2(k — 1)) + ¢)m in R. Consider how many edges of H do not belong to
G[S'] for some edge S € R. (Recall that S" = J,c4 Vi.) There are three possible reasons why
an edge e € H does not belong to such a restriction:

(i) e is not an edge of G. This could be because e lies in H but not Hy, in H; but not
Hs. or in Hs but not G. There are at most alrn®~1 edges of the first type, at most
n¥ /r of the second type, and at most vn¥ of the third type.

(ii) e € G contains vertices from Vj, ..., V;, such that the restriction of M to S" = ;g Vi
satisfies | M[S']| > v1/?|Kg[S"]|, where S = {iy,...,i}. (Note that since G and thus
M is m-partite, i1,...,7; are all distinct.) Since G and Hy are v-close and thus
|M| < vnF there are at most v'/?n¥ edges of this type.

(iii) e € G contains vertices from V;,,...,V;, such that the restriction of G' to ;g Vi has
density less than ¢’. There are at most ¢’n* edges of this type.

Therefore there are fewer than 2¢’n* edges of H that do not belong to the restriction of G

to S’ for some S € R, and so we have

| J|nk—1. (ﬁ + n) n<> Y INg({zi:ieI})

IeJ z;€Viel

< 2"knk +Z|NR )nh < 2¢"kn” +|J|<
IeJ
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Since n — alr < mn; < n we deduce that |J|nf™ (n — ¢)n < 2¢"kn* < 3¢"k(mni)F n,
and so |J| < ¢mF~! (since ¢’ < ¢ < n). This allows us to apply Corollary 4.6 (with
G = R) to obtain an Ag-packing Ay,...,4; in R with |J!_, 4;] > (1 — §)m, such that
the sub-k-graph of R induced by |i_; V/(4;) is connected. For each i € [t], let the vertex
set of A; be Us U Uj U---UUy 3, with each U} of size k — 1, so that the edge set is

{Uu{z}:j €2k - 3],z € Uj}.

5.1.3. Step 3. Forming the exceptional path. Given a sub-k-graph R’ of R and a cluster V;,
we say that Vj belongs to R if i € V(R'). Let V{ contain the at most alr vertices of H we
removed at the start of the proof, and also the vertices in all those clusters not belonging to
some copy of Ay in our packing (there are at most dn of the latter). We will incorporate these
vertices into a path L. which will later form part of our loose Hamilton cycle. We also include
in V{ an arbitrary choice of dny vertices from each Vj, for which y € U ]’ for some j € [2k — 3]
and some i € [t] (we do not modify any of the V,, for which y € Ug). We add up to k — 3 more
vertices from Ui (say) to V] so that |Vj| =0 mod k — 2. We delete all these vertices from
the clusters they belonged to and still write V,, for the subcluster of a cluster V, obtained in
this way. This gives |V{| < 5on/2.

Now, we shall construct a path L. in H, which will contain all the vertices in Vj and
avoid all the clusters V,, with y € U¢. Let Vag = (J{V, : y € U;-',j € [2k —3],i € [t]}. So
we shall use only vertices from VJ and V5 in forming L. Recall that if |[V(H)| is not a
multiple of £ — 1, then a loose Hamilton cycle contains a single pair of edges which intersect
in more than one vertex: we shall make allowance for this here. Choose A, B C V5 satisfying
|Al=|B|=k—1,|AnB|=1—|V(H)| mod k—1and 1 <|AN B| <k — 1. Now choose
distinet zg,z1 € V5o \ (AU B) such that {zo} UA € H and {z;} UB € H (we shall see in
a moment that such zg,z; exist). These edges will be the first 2 edges of L.. To complete
Le, let Z1,...,Zs be any partition of the vertices of Vj into sets of size k — 2. We proceed
greedily in forming L.: for each i = 1,...,s choose any z;1+1 € V5¢ \ (A U B) such that
Z; U{x;,x;41} € H (where the x; are all chosen to be distinct).

Let us now check that there will always be such a vertex available. Indeed, every set in
(2(_}?) has at least (1/(2(k — 1)) + n)n neighbours and we can choose any such neighbour
which lies in V5 and has not already been used. But |V(H)\ Vso| <n/(2(k — 1)) +|Vy| and
at most |Vj| + 2k < 30n vertices have been used before. Thus (since 6 < 7) for each choice
of an x; we have at least nn/2 vertices of V5 to choose from. Moreover, these vertices must
be contained in at least nn/(2n;) different V,, such that y € U;/ (7 > 0). Thus we can avoid
choosing a vertex from any single V,, more than 66n;/n < §'n;/2 times. The path L. thus
formed has edges {zo} U A, BU{z1} and {x;,z;41} U Z; for all i € [s]. So all the vertices of
Vjy are included in L.. For each cluster V,, we still denote the subset of V,, lying in V(H — L)
by Vj,. Then each V, with y € U} for some i still satisfies |V,| = ny, and each V, with y € U JZ
for some j > 0 satisfies

!

(2) (15’)n1§<1(5%)n1(k3)§|Vy|§(15)n1.
In addition
(3) [VH)\V(Le)| = |V(H)| — |[AUBU{zg,21}| = -1 mod k — 1.

Note that L. need not be a loose path, but that even if it is not it may still form part of a
loose Hamilton cycle. Also observe that |V(L.)| < 6on.
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FIGURE 3. Splitting up A; in the case k = 3.

5.1.4. Step 4. Splitting our copies of Ai. The next step of the proof will be to split the
copies Ay, ..., Ay of Ay (more precisely the clusters belonging to the A;) into sub-k-complexes
of G that we shall later use to embed spanning loose paths. Consider any A;. For convenient

notation we identify each UJ’: in A; with [k — 1] (but recall that they are disjoint sets). For
each y € U} = [k — 1] we have |V,| = ny, and so we can partition V,, uniformly at random
into 2}:: — 3 pairwise disjoint subsets Sj |, ... ,S;’%_g, each of size 515. Similarly, given
z € Uj = [k—1] with j € [2k—3], (2) and the fact that ¢’ < 7 imply that we can partition V,
uniformly at random into &k — 1 pairwise disjoint subsets T]’Z and {U ]Z"’Z,w}we[k—l]\{z} so that

sids < |Tj .| < % and |U;_ | = % for all w € [k — 1] \ {z}. Figure 3 shows how

we do this in the case k = 3.

We arrange these pieces into (k —1)(2k — 3) collections of k sets as follows: for each y € U]
and each j € [2k — 3] we have a collection consisting of S;’j, TJ’y and {U;,z,y}z;ﬁy- (3 of these
collections are illustrated in Figure 3.) For convenient notation we relabel these collections

as {X;1,.... X} with 1 <i¢ <t = (k — 1)(2k — 3)t, where for all 7 € [t’| we have

32, W

ni ni (1 — 77)27"&1 (1 - 77)27"&1 .
4) X =——, —— <|Xjo|<——and |X; | =—""— for3<j<k,
() Xinl = =3 g3 = Xl = 55— and [ Xyl = == for 3 <
and
k
(5) (1=8)n <Y Xyl < (1= 0)m
j=2

((5) follows from (2) using the fact that all the U;:7Z7w have equal size.) Let X; = U, Xiy
so each X; is a k-partite set, on which we shall now find a sub-k-complex G; of G that is
suitable for applying Theorem 3.3.

Consider any copy Ay in our Ag-packing. Note that for each of the (k — 1)(2k — 3)
collections {Xj1,...,X; 1} obtained by splitting up the clusters belonging to A; there is an
edge S(i) € Ay such that each X;; lies in a cluster belonging to S(7) (and these clusters
are distinct for each of X;1,..., X; ;). Recall that S'(i) denotes the union [Jyeg(; Ve of all

the clusters belonging to S(i). Let G; denote the restriction of the k-partite k-complex GS()
(which was defined in Section 5.1.1) to X;, i.e. G; = GSW[X;]. Let M; = MNG; = MSD[X;].
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We claim that we may choose the above collections {X;1,...,X;;} such that
/!

(6) d(H[X,]) > CZ for all i € [¢/].

Indeed, since S(i) € R, G[S'(7)] has absolute density at least ¢’ and M[S’(i)] has density at
most v'/2. Since G\ M C H and v < ¢ this shows that H|[S’(i)] has density at least ¢’ /2.
Lemma 4.4 now implies that each H|[X;] has density at least ¢’/4 with probability 1 — 1/n7,
and so with non-zero probability this is true for all i € [t'].

Lemma 3.2 and properties (A1)—(A3) and (A5) imply that G; is an €-regular k-partite k-
complex on the vertex set X;, with absolute density d(G;) > d(GS®)/2 > d,, relative density
di)(Gi) > d, and (G;)g; = X j for each j. Moreover, using v < 6 < ¢, property (A4) and
the fact that d(G;) > d(G5?))/2 we see that

_ 2V1/4|(GS(1‘)):|

C”

|M;] < M50 < 0[(Gi)=|-

So by Theorem 3.3 we can delete at most 0'|.X; ;| vertices from each X;; so that if we let
X, C Xi; consist of the undeleted vertices, and let X := U§:1 X!, G} = Gi[X]] and
M! := M;[X!], then G\ M is (c,€")-robustly 2¥-universal, d(G}) > d* and |G’(v)=| >
d*|(G})=|/1X; ;| for every v € X],. In particular, the latter two conditions together imply
that d(G%(v)=) > (d*)? for every v € X/. Let X" denote the set of vertices deleted from any
X j, so | X"| < 0'n. By deleting up to k — 3 more vertices if necessary, we may assume that
|X"| is divisible by k — 2. The latter will help us to extend L. into a path which contains all
the vertices in X"

5.1.5. Step 5. Eaxtending the exceptional path L.. When extending L. in order to incorpo-
rate X", we shall have to remove some more vertices from some of the X/ ;, and we wish to
do this so that the remainder satisfies (i) in the definition of robust universality. For this

reason, we partition each X ; into two parts AX] ; and BX] ; as follows (where we write BX]
for Uy BXi ;)

(B1) For all 4, j and every v € X] ; we have |(G}(v)[BX;])=| > 2¢|G}(v)=|.

(B2) Every set of k — 1 vertices of H has at least n/(4k) neighbours in J; ; AX] ..
(Recall that for a (k — 1)-complex F, F_ denotes the ‘(k — 1)th level’ of F.) To see that
such a partition exists, consider a partition obtained by assigning each vertex to a part
with probability 1/2 independently of all other vertices. (B2) is then satisfied with high
probability by a standard Chernoff bound. Now consider (Bl). The ‘moreover’ part of
Lemma 4.4 implies that with high probability we have for all ¢,j and for all v € Xl(,j that
d((GL(v)[BX]])=) > d(G%(v)=)/2. Also, a standard Chernoff bound implies that with high
probability [BX] .| > [X] ;/|/3 for all j” € [k]. Thus

/ X .
(GUIBXI)-| - d(Co)Bx])-) ] 1B, > XD 7 Erl s o),
J'#] J'#J

Now, we shall extend our path L. to include the vertices in X”, using only vertices from
Ui AX; ;. We proceed similarly to when constructing Le. So we split X" into sets Z1, ..., Zy
of size k — 2 (so s’ < 6'n). Letting z¢ be a final vertex of L., for i € [s'], we successively
choose z; to be a neighbour of the (k —1)-tuple Z; U {z;—1} contained in some AX}, , and
not already included in L., and extend L. by the edge Z; U {x;_1,z;}, continuing to denote
the extended path by L.. Recall that L. originally contained at most 6dn vertices. Since
| X"| < @'n, after each extension of L. we shall have |V (L¢)| < nn. So (B2) implies that for
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each choice of z; we have at least n/(5k) suitable vertices and hence at least t'/(5k) of the
sets AX], contain such a suitable vertex. This shows that we can choose the z; in such a way
that at most 6”n; vertices are chosen from any single AX/,.

For each i € [t/] let X' = X{ U---U X}. be the vertices remaining after the removal from
X! of the at most 0"n; vertices used in extending L, let G' = G/[X?], and let M’ = M![X"].
By (6) there are at least cn vertices v € V(H) such that v lies in some X* for which at least
|H[X]|/(2]X"]) edges of H[X"] contain v. So we may add two further edges of H to L. (one
at each end) so that the new path L. has an initial vertex x, and a final vertex y. which each
lie in at least |H[X?]|/(2|X?|) edges of their respective H[X?]. (We also delete the vertices
of these additional two edges from their X*, G* and M?). Note that z. may be contained in
some BX], (and the same is true of y.), but by (B2) we may choose these two additional
edges so that all other vertices used lie in some AX/ _.

We claim that the above steps give us the follox;ving useful structure: a path L. which
is ready to form part of a loose Hamilton cycle, and disjoint k-partite vertex sets X! =
Xiu---U X,i supporting k-complexes G* and k-graphs M for each i € [t'] which satisfy the
following properties.

(C1) Every vertex of H lies in either the path L. or precisely one of the k-partite sets X,

(C2) For each i, G* is a k-partite sub-k-complex of G on the vertex set X°. M? is the
k-partite k-graph M N G, and G'\ M* C H. Clearly these statements remain true
after the deletion of up to en; vertices of X*.

(C3) Even after the deletion of up to en; vertices of X*, the following statement holds. Let
L be a k-partite k-complex on the vertex set U = Uy U --- U Uy, where |U;| = |ij|
for each j, and let L have maximum vertex degree at most 2¥. Let ¢ < 2(¢')? and
suppose we have uq,...,up, € U and sets Zs C X;(us> with [Zg| > c|X]’:(uS)| for each
s € [f] (where j(us) is such that ug € Uj(,,)). Then G*\ M" contains a copy of L,
in which for each j the vertices of U; correspond to the vertices of X;, and each wug
corresponds to a vertex in Z,.

(C4) For each i, H' = H[X’] has density at least ¢/, even after the deletion of up to en;
vertices of X°.

(C5) If we delete up to eny vertices from any X*, and let ¢; = |X]Z| for each j € [k] after

these deletions, and let n/ = %, then n)/2 +1 <t; <n/ for all j.
(C6) The initial vertex x, of L, lies in at least |H[X?]|/(2|X?|) edges of H[X"], where i is

such that z. € X¢. The analogue holds for the final vertex y. of L..

(When we talk of removing a vertex of X we implicitly mean that G?, M* and H* are all
restricted to the remaining vertices of X*.) These properties hold for the following reasons.
(C1) holds as every vertex deleted from an X; has been added to L., whilst (C2) is clear
as whenever we deleted vertices we simply restricted G and M to the remaining vertices.
For (C3), recall that G} \ M/ was (c,€”)-robustly 2¥-universal. Moreover, for all i € [t'] and
all j € [k] we have |X!| > [X];|/2 > ¢|X],], since we ensured that we only deleted 6"n,
vertices from any single AX/ (and at most two from BX/). Furthermore by (B1) we know
that |G*(v)=| > |(G(v)[BX]])=| > |G’ (v)=| for any v € X*. (Also, even if we had arbitrarily
deleted a further enj vertices from X! when obtaining X*, G* and M?, these bounds would
still hold.) So G*\ M? satisfies (i) in the definition of a robustly universal complex (where X]l:
plays the role of V;). The sets Z, satisfy (iii) in the definition and so we can find the required
copy of L (even after the deletion of up to eny more vertices of X*). (C4) follows from (6)
and the fact that X’ was formed by deleting at most (6 + 0")n; < /| X;| vertices from X;.
Similarly, for (C5) note that (even after up to en; more deletions) we have deleted at most
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20""ny vertices from each X; since we split the clusters to form the X;. So by (4), after these
deletions we must have

o ot 0"ny <X} < s
. 21? 5 —20"ny < |X5] < G525 and
o %— 20"n, <|Xﬂ<ﬁf0r3<]<k

and by (5) we must have
o (1—38)ny—2(k—1)0"ny <35, |Xi ;| < (1-6)m
Since 8" & & " , we deduce that
o nl ﬁ(nl (1—5’ m—2k9”)— ) %,and

2k—3
/ n1 1 (2= )m
ML = (1 0 2k—3) S 353

So property ( 5) follows. inally, () follows from the nal step in the construction of |
in which we added an e tra ed e to each end of  so that () would be satis ed.

5.2. . . ou hly spea in , our aim is to nd a spannin loose
path in each ° ! (and thus in *) such that all these paths to ether with form a
loose amilton cycle in . So we have to ensure that the complete k partite £ raph on

X' contains a spannin loose path (for this, we will need |X?| 1 mod k — 1) and we need
to oin up all the loose paths we nd in the . he purpose of this section is to nd the
connectin loose paths which oin up the X? in such a way that the divisibility problems are
dealt with as well. o do this, we rst de ne a supplementary hyper raph whose vertices

correspond to the X*. e will show that is connected and that alon ed esof  we can
nd our loose paths in ~ which oin up all the X*.
he verte set of the is /. subset " of si e at least 2
is an ed e of if there e ists an ed e such that for all j there are ; and
; k with X° j and i J . (e onesuched e forevery )
hen every ed e of has si e at most k. e say that X* toan ed e if
Similarly, X* some subhyper raph ' if (7.

ecall that we chose the copies of  in such a way that the sub & raph  of
induced by |J _;  is connected. Suppose that is not connected. et | bea component
of andlet |, — 4. et J Xt j for some (1) k . So
1 corresponds to the set of all those clusters which meet some X belon in to ;. e ne
o similarly. hen 1 9 () and thus contains some ed e intersectin both 1
and 9. ut then corresponds to an ed e of  intersectin both ( ;) and ( ,), a
contradiction.

he ne t lemma shows that within the X’ belon in to an ed e of , we can nd a
reasonably short loose path in and we may choose (modulo k£ — 1) how many vertices
this path uses from each X?. sin the connectedness of , this will allow us to nd
the connectin loose paths which oin up the X* whilst havin control over the divisibility
properties. e shall also insist that the path in emma 5.2 avoids a number of forbidden
vertices , to enable us to ensure that our connectin loose paths are dis oint, and that the
endvertices of these paths lie in many ed es of the relevant  *.

< ; <k-1 >; i 1 modk—1 r















