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ABSTRACT. Our main result is that every graph G on n > 10*r® vertices with minimum
degree §(G) > (1—1/10*3/?)n has a fractional K,-decomposition. Combining this result
with recent work of Barber, Kithn, Lo and Osthus leads to the best known minimum de-
gree thresholds for exact (non-fractional) F-decompositions for a wide class of graphs F
(including large cliques). For general k-uniform hypergraphs, we give a short argument
which shows that there exists a constant ¢, > 0 such that every k-uniform hypergraph
G on n vertices with minimum codegree at least (1 — ¢, /r**7!)n has a fractional K-
decomposition, where K™ is the complete k-uniform hypergraph on r vertices. (Related
fractional decomposition results for triangles have been obtained by Dross and for hy-
pergraph cliques by Dukes as well as Yuster.) All the above new results involve purely
combinatorial arguments. In particular, this yields a combinatorial proof of Wilson’s
theorem that every large F-divisible complete graph has an F-decomposition.

1. INTRODUCTION AND RESULTS

1.1. (Fractional) decompositions of graphs. We say that a k-uniform hypergraph G
has an F'-decomposition if its edge set F(G) can be partitioned into copies of F'. A natural
relaxation is that of a fractional decomposition. To define this, let F(G) be the set of
copies of F'in G. A fractional F-decomposition is a function w : F(G) — [0, 1] such that,
for each e € E(G),

3 w(F) =1. (1.1)

FEF(G): ecE(F)

Note that every F-decomposition is a fractional F-decomposition where w(F') € {0,1}. As
a partial converse, Haxell and Ro6dl [§] used Szemerédi’s regularity lemma to show that
the existence of a fractional F-decomposition of a graph G implies the existence of an
approximate F-decomposition of G, i.e. a set of edge-disjoint copies of F' in G which cover
almost all edges of G (their main result is more general than this). Rodl, Schacht, Siggers
and Tokushige [12] later generalised this result to k-uniform hypergraphs.

The study of F-decompositions of cliques is central to design theory and has a long and
rich history. In 1847, Kirkman [10] showed that K, has a K3-decomposition if and only if
n =1,3 mod 6. More generally, we say that a graph G is F-divisible if e(F') divides e(G)
and the greatest common divisor of the degrees of F' divides the degree of every vertex of
G. If G has an F-decomposition then it is certainly F-divisible. Wilson [13], [14], [15] [16]
proved that if G is a large complete graph, then this necessary condition is also sufficient.
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For a given graph F', it is probably not possible to find a satisfactory characterization
of all graphs G which have an F-decomposition. This is supported by the fact that Dor
and Tarsi [2] proved that determining whether a graph G has an F-decomposition is NP-
complete if F' has a connected component with at least 3 edges. However, it is natural to
ask whether one can extend Kirkman’s result and Wilson’s theorem to all dense graphs.
In particular, Nash-Williams made the following conjecture on triangle decompositions.

Conjecture 1.1 (Nash-Williams [I1]). There exists N € N so that for alln > N, if G is
a K3-divisible graph on n vertices and 6(G) > 3n/4, then G has a Kz-decomposition.

There has been considerable recent progress towards this conjecture. The first result
towards the conjecture was obtained by Gustavsson [7] who showed that, for every fixed
graph F'| there exists e = ¢(F) > 0 and ng = no(F') such that every F-divisible graph G
on n > ng vertices with minimum degree §(G) > (1 — €)n has an F-decomposition. The
bound on £(F) claimed by Gustavsson is around 10737 F|~%4.

Recently, Barber, Kiithn, Lo and Osthus [I] significantly improved the bound on &(F)
by establishing a connection to fractional decompositions. For a graph F' and n € N, let
0%(n) be the infimum over all § such that every graph G on n vertices with 6(G) > on
has a fractional F-decomposition. We call 0} := limsup,_, 65(n) the fractional F-
decomposition threshold. The main results in [I] imply the following.

Theorem 1.2 (Barber, Kiithn, Lo and Osthus [1]). Let F' be a graph, let € > 0 and let n
be sufficiently large. Let G be an F-divisible graph on n vertices and suppose that at least
one of the following holds.
(i) 6(G) > (6 + €)n, where § := max{&}‘{x(F), 1—1/6e(F)}.
(ii) F is d-regular and §(G) > (§ + €)n, where 6 := max{é}xw), 1—1/3d}.
(iii) F = Cyp, where £ > 3 is odd, and §(G) > (65, + )n.
Then G has an F-decomposition.

Furthermore, asymptotically optimal results for even cycles have been obtained in [I] and
for all bipartite graphs with a leaf by Yuster [17]. Note that by Theorem [1.2] - (iii) it suffices
to show that 7., <3 /4 in order to prove Conjecture asymptotically. Determlmng 0%
is therefore an important problem, as well as being 1nterest1ng in its own right. The best
current result towards the triangle case is due to Dross [3], who gave a very short and
elegant argument showing that oy, < 0.913. This improves previous bounds of Yuster [18]
Dukes [4, 5] and Garaschuk [6]. For r > 4, Yuster [I8] proved that 85 <1 —1/9r; this
was subsequently improved by Dukes [4, 5] who showed that &% < 1—2/97(r —1)2. On
the other hand, a construction showing 63, >1—1/(r+1) is descrlbed in [18]. Our main
result gets substantially closer to this lower bound for large r.

Theorem 1.3. The following holds for any integers r >3 and n > 10*3. If G is a graph
on n vertices and §(G) > (1 — 1/10%%/?)n, then G has a fractional K,-decomposition.

In order to clarify the presentation, we have made no attempt to optimise the constant
10* appearing in Theorem Along the way, we also obtain a comparatively short and
simple proof that §(G) > (1 — 1/10°72)n guarantees a fractional K,.-decomposition (see
Theorem [6.1]).

Together with Theorem we immediately obtain the following corollary. Note that
(iii) is a special case of (ii).

Corollary 1.4. Let F be a graph, let € > 0 and let n be sufficiently large. Let G be an
F-divisible graph on n vertices such that at least one of the following holds.
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(i) 0(G) > (1 — 1/104|F|*)n.
(ii) F is d-regular and §(G) > (1 —1/10*(d + 1)*/% 4 ¢)n.
(iii) F = K, and 6(G) > (1 — 1/10%3/2 + &)n.

Then G has an F-decomposition.

An obvious open problem is to improve the bounds in Theorem [1.3| (and thus in Corol-
lary [L.4)). Furthermore, in view e.g. of Theorem [1.2(iii) it would also be very interesting
to obtain better bounds on the fractional decomposition threshold for odd cycles.

1.2. (Fractional) decompositions of hypergraphs. Our methods also extend to k-
uniform hypergraphs with & > 3. For a k-uniform hypergraph G, the minimum codegree
0k—1(G) of G is the minimum over all (k — 1)-subsets S of V(G) of the number of edges
containing all the vertices in S. For a k-uniform hypergraph F' and n € N, let 65.(n)
be the infimum over all § such that every k-uniform hypergraph G on n vertices with
dk—1(G) > én has a fractional F-decomposition. We again call 6} := limsup,,_,., 67.(n)

the fractional F-decomposition threshold. For r > k > 2, let Kr(k) denote the complete k-
uniform hypergraph on r vertices. For r > k > 2, Yuster [19] proved that 5;{(;@ <1-1/6%".

Dukes [4, 5] improved this to 52(@ <1-1/(2-3% (;)2) We give a short combinatorial

proof for a similar bound (which is slightly better when r is large).

Theorem 1.5. Given r,k € N with r > k > 2, let § := W and let n > 1/6.
Then any k-uniform hypergraph G on n vertices with dx_1(G) > (1 — §)n has a fractional
Kr(k) -decomposition.

Note that for graphs, Theorem gives weaker bounds than those discussed in the
previous subsection.

In a recent breakthrough, Keevash [9] proved that every sufficiently large K,(lk) satisfying

the necessary divisibility conditions has a Kﬁk)—decomposition. This settled a question
regarding the existence of designs going back to the 19th century. Moreover, his results
also extend to hypergraphs with minimum codegree at least (1 — ¢)n, for an unspecified
€ > 0. Theorem may help to obtain explicit bounds on e.

1.3. Proof idea and organization of the paper. The proof by Dukes [4] [5] that Of, <
1 —Q(1/r%) is based on tools from linear algebra. To prove Theorem m we build on the
combinatorial approach of Dross [3]. The latter argument begins with a uniform weighting
of the triangles in a graph G with high minimum degree (this idea is actually already
implicit in [4]). This uniform weighting can be shown to be ‘close’ to a fractional triangle
decomposition of G. Then the idea is to use the max-flow min-cut theorem to make
the necessary adjustments to this weighting to obtain a fractional triangle decomposition.
Our methods begin with a similar initial weighting, but avoid using the max-flow min-cut
theorem. Theorem is obtained by generalising (simplified versions of) these methods to
hypergraphs; we give a more detailed sketch in Section [2, We then prove Theorem in
Section [3] before proving Theorem [1.3]in Sections [4] [5] and In Section [6] we combine
the results of Sections [4] and [f] to give a short proof of Theorem [6.1] a weaker form of
Theorem [1.3| with 72 in place of r3/2

Our argument here and that in [I] is purely combinatorial. So the proofs of Theorem
and Theorem together yield a combinatorial proof of Wilson’s theorem [13| [14], [15] [16]
that every large F-divisible clique has an F-decomposition. (The original proof as well as
that by Keevash [9] made use of algebraic tools.)
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1.4. Notation. Given k > 2, a k-uniform hypergraph is an ordered pair G = (V(G), E(G)),
where V(G) is a finite set (the vertex set) and E(G) is a set of k-element subsets of V(G)
(the edge set). Given a k-uniform hypergraph G and S C V(G) with |S| < k — 1, we
let N(S) :={T C V(G)\S : TUS € E(G)} and write d(S) := |N(S)|. We let
Ne(S) ={T CV(Q) : |T| = k—|S|,TUS ¢ E(G)}. For1l < j <k —1, we write
3;(G) :==min{d(S) : S C V(Q),|S| = j} for the minimum j-degree (6;—1(G) is also known
as the minimum codegree).

Given r > k > 2, we write ICT(,k)(G) for the set of copies of Kﬁk) in G. If G is clear from
the context, we just write ng); if k = 2, then we just write . We write k, = k,(G) :=
]ICgk)(G)\ for the number of r-cliques in G. (For r < 0, we let k, := 0.) For each S C V(G)

and r € N, let Iig) =K €K, : S CV(K)}|. For an edge e, we often write k) for mgze).
For r, k € N, we write () :=r(r —1)---(r — k+ 1) for the kth falling factorial of r.

For a graph G and =z € V(G), we write N(x) := {y € V(G) : a2y € E(G)} for the
neighbourhood of x and d(x) := |N(x)| for the degree of z. We let N¢(z) = {y € V(G) :
zy ¢ E(G)} (note that this includes z itself). For S C V(G), we write G[S] for the
subgraph of G induced by S, and abbreviate K, (G[S]) by K,[S]. Given any event A, we
let

{1 if A occurs,
14:=

0 otherwise.

By a weighting of the r-cliques in G we mean a function w : /C,(ﬂk) — R. The weight of a
clique K is w(K). For e € E(G), the weight over € is } e (Gyecp (i) W (K)-

2. SKETCH OF PROOF

Here we present a sketch proof of Theorem [1.5] which will also form the backbone of
the proof of Theorem [1.3] For simplicity, we describe the argument for graphs (which
generalises straightforwardly to the hypergraph case).

As §(G) is large, for each e € E(G), G has many r-cliques containing e. In fact, all edges
e are contained in approximately the same number of r-cliques. More precisely, there is
some small @ > 0 such that (1 — a)k,_2 < k) < ky_y for any e € E(G) (see Propo-
sition . An appropriately scaled uniform weighting of the r-cliques of G is therefore
already close to a fractional decomposition of G, in the sense that the total weight over
each edge is close to 1. We seek to perturb the weight of each r-clique so that the total
weight over each edge becomes exactly 1.

For each e € E(G), we consider an ‘edge-gadget’ 1 that permits us to alter the weight
over e without altering the weight over any other edge. This edge-gadget adds weight
to some r-cliques and removes weight from other r-cliques so that the change in weight
cancels out over every edge except for e. Formally speaking, an edge-gadget for the edge e
is a weighting 1. : I, — R such that, for each f € E(G),

Z Ve(K) = Lie—py-

Kek,: fEE(K)

For ¢ € R, the function c¢-, corresponds to adding weight ¢ over e. Our aim is to use these
edge-gadgets 1. (for e € E(Q)) to correct the weights over the edges without reducing the
weight of any one clique so far that it becomes negative.

We construct a basic edge-gadget ¢, as follows. Let J be an (r + 2)-clique of G that
contains e (which exists since the minimum degree is large). There are three types of edges
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in J, determined by how many vertices they share with e. Accordingly, write E; := {f €
E(J) : [V(f)nV(e)] = j}. (Note that Eo = {e}.) Similarly, there are three types of
cliques in C,.(J), determined by how many vertices they share with e. Accordingly, write
S;={K ek.(J): |V(K)nV(e)| = j}. We first increase the weight of every r-clique in
Sy by 1/]S2| = 1/(3). This has the effect of increasing the weight over every edge of J,
and this increase only depends on whether the edge is in F», E; or Ey. The weight over e
is now 1 as desired, but the weight over the edges in F; and Ej is also positive. We now
correct the weight over every edge in Fy by reducing the weight of every clique in S; by
the same amount. The weight over each edge in Fo U E; is now as desired, so it remains
only to correct the weights of each edge in Fy. But the edges in Ey form a clique K*, and
the weight over every edge in Ejy is identical, so it can be made equal to zero by adjusting
the weight of K*. This completes the construction of ..

If we use the basic edge-gadget 1. as described above to adjust the weight over each
edge e, then we might have to make large adjustments to the weights of some cliques—Ilarge
enough that these weights would become negative and prevent us obtaining a fractional
decomposition. To avoid making too large an adjustment to the weight of any r-clique, we
will therefore, for each edge e, use many different edge-gadgets 1. to correct the weight
over e, making a small adjustment using each 1. and spreading the adjustments over as
many r-cliques as possible. To be precise, note that in the previous paragraph we have

actually defined an edge-gadget, ¥/ say, for each (r + 2)-clique .J containing e, and there

are /@(JH) such cliques .J. So we set 1. to be the average over of the edge-gadgets ¥/, that

. L (r+2
is, Ye 1= 3 jer, ypecn(r) Vo /e )

This simple argument can already be used to find fractional K,-decompositions of graphs
on n vertices with minimum degree at least (1 — c¢/r3)n for some absolute constant c. The
argument generalises straightforwardly to hypergraphs, and we use it to prove Theorem
in Section [3

In order to prove Theorem we introduce two additional ideas. Firstly we introduce
an additional preprocessing step which allows us to limit the adjustments we need to make
to the weight over most of the edges. This leaves us most concerned with the problem of
correcting the weight over a small fraction of ‘bad’ edges. The naive averaging argument
would then ask for a large adjustment to the weight of cliques that contain many bad
edges. But the proportion of such gadgets which use many bad edges is small. Hence we
can avoid using these gadgets and thus reduce the maximum adjustment that might be
required for each r-clique. This allows us to obtain fractional K,.-decompositions provided
that 6(G) > (1 — ¢/r?)n for some absolute constant c¢. We prove this in Sections

Secondly, we introduce a ‘vertex-gadget’ that allows us to increase the weight over every
edge at a vertex by the same amount simultaneously (see Section . In return for this
reduction in flexibility we are able to make these adjustments more efficiently, with smaller
changes to the weights of cliques. By further analysing the pattern of changes required
to the weights over the edges in Section [§] we use this vertex-gadget to make an initial
adjustment before using edge-gadgets to make the final adjustment. We put together these
ideas and results from Sections [ and [§ to prove Theorem in Section [9]

3. FRACTIONAL DECOMPOSITIONS OF HYPERGRAPHS

3.1. Basic tools. We first observe that if a k-uniform hypergraph has large minimum
codegree, then for all ¢ < k its minimum /-degree is also large.
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Proposition 3.1. Let k € N with k > 2, let 0 < § < 1 and let G be a k-uniform
hypergraph on n vertices. Suppose that d;_1(G) > (1 — d)n. Then for every £ < k — 1,

(@) > (1—8)(17)).

Proof. Choose S C V(G) with |S| = £ such that d(S) = §;(G). Let T :={(T,e): S CT C
V(e),e € E(G),|T| =k —1}. Then

(k ﬁx 1) H0k-1(G) < [T] = d(S) - (k = £),

hence
ey = as) = U000 ) 2 a-a (1)) 0

We shall use the following bounds on the number of r-cliques and the number of r-cliques
containing a fixed edge.

Proposition 3.2. Letn >r >k > 2, let 1/n < § < 1 and let G be a k-uniform hypergraph
on n vertices with 6x_1(G) > (1 — §)n. Then

(-0 0= ()= o

and, for any e € E(G),

2kon—k r
krfk - (k) 1

o ) <k < Ky (3.2)

Proof. We first prove (3.1). The upper bound is clear. To see the lower bound, consider
constructing a clique one vertex at a time. Since each new vertex must form an edge with
all (k — 1)-subsets of the previously chosen vertices, the number of r-cliques is at least

(Mg-1- 1 =0)n-1—kd)n- (1 - FDo)n---(1— (;21)0)n/r!

> (1= (2o m)e/rt = (1= (})d) (7).

s=k

We now verify (3.2). We have that k) = ey — g(e), where g(e) is the number of

K e qu(ﬂk_)k such that V(e) U V(K) does not induce an r-clique in G. This happens when
either V(e)NV (K) # ), or when there is a non-edge f of G contained in V(e)UV(K). The

number of K € /Cik_)k with V(e)NV(K) # 0 is at most k- k,__1. And for a fixed non-edge

f of G, the number of K € K™, such that V(e) N V(K) = 0 and V(f) C V(e) UV(K) is
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at most kr—k—|V(f)\V(e)| (WhiCh is0ifr<k+ ‘V(f) \ V(e)\) Thus

k—1
gle) <k kppr+> > INU()kr—r—j

J=18CV (e):|S|=k—j
min{k—1,r—k}

< kn k-1 n Z k 5ﬂ nrk=i
“(r—k-—1)! = k—3j gt (r—k—j)!
min{k—1,r—k} ( k ) nr—k k—1

k

o )

= k=) k)'J - J
_ 2kon’ ’“Zl k r—k\ 2k k[ r
_(r—k)!jzo k—1—j i) =k \k-1)
where the second inequality uses (3.1]) and Proposition O

Let G be a k-uniform hypergraph. An edge-weighting of G is a function w : E(G) — R.
For the rest of this section, it will be convenient to view the set of edge-weightings of G as
an e(G)-dimensional vector space Q(G). This space has a natural basis {1 : e € E(G)},

where
L(f) = {1 e=1,

0 otherwise.
We shall identify 1, with e itself, and sums of edges with the corresponding subgraphs of G;
thus we write H = 3 . p ) € for every subgraph H of G. Let Q,(G) := {}_ . K(k)w( VK :
w(K) € R} be the subspace of Q(G) spanned by the r-cliques of G and let QF(G) :=
{3 e w(K)K : w(K) > 0}. We claim that if G € Q. (@), then G has a fractional

Kﬁk)—decomposz’tion. Indeed, observe that, if G € Q,F (G), then there is an w : Kk - R>o
such that

Z e=G= Z w(K)K = Z w(K) Z e= Z ( Z w(K))e;
c€E(G) Kek® Kek® e€E(K)  e€B(G)  gek®.ecB(K)

that is, the weight over each edge is exactly 1. Moreover, since no weight is negative it
must be the case that w is a function from Kﬁk)(G) to [0,1].

3.2. Adding weight over an edge. We now describe the basic edge-gadget that allows
us to increase or decrease weight over a single edge by adjusting the weights of a suitable
set of r-cliques.

Proposition 3.3. Let v > k. There are ag,...,ar € R so that the following holds. Let
J be a copy of K,gl_?r and let e € E(J). Then the weighting w : IC,Ek)(J) — R defined by
w(K) == ajye)nv (k)| satisfies

(1) e =2 gexem (KK,

k—i :
(i) if |V(e) N V(K)| = i, then |w(K)| < %
As discussed in Section[2] the idea of the proof is that to increase the weight over the edge

e, we first increase the weight of every r-clique containing e. This puts too much weight
over the edges that share k — 1 vertices with e, so we remove this weight by decreasing the
weight on each r-clique that shares k — 1 vertices with e. Continuing in this fashion we
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eventually obtain a (signed) weighting of the r-cliques of J such that the net weight over
each edge f is non-zero if and only if e = f.

Proof of Proposition 3.5 Let
() i={ D wifwp =wp i V(e)NV(f)| =[V(e)NV(f2)]}
fek(J)

be the (k+ 1)-dimensional subspace of (/) in which the weight of each edge depends only
on the size of its intersection with e. For 0 <1 <k, let E; := ZfeE Divienv(f)=i /- The

E; are a natural basis for 2¢(J). For 0 < j <k, let Fj := ZKE]C(k)(J) V() (K) =i K. We
claim that the F} also form a basis for Q¢(J). To see this, we first calculate Fy,..., F} in
terms of Ky, ..., Ey. Write F; = Zf:o a;jE;. Then a;; is the number of ways to extend an

edge meeting e in i vertices to an r-clique meeting e in j vertices. Explicitly,

w= (OGN =CE)0T) e

In particular, a;; = 0 for i > j and a;; # 0 when ¢ = j, so the matrix (a;;) is upper trian-

gular with non-zero diagonal entries and hence is invertible. Thus there exist ag, ..., ax
such that
k
e=Ey=)Y o;F; (3.4)
j=0
k k k ko k
= Za] ZCLZ]EZ = Z Zawaj E;, = Z (Zaijaj)Ei. (3.5)
j=0 i=0 i=0 j=0 =0 j=t
Set w(K) = oy (e)nv (k). Then proves (i). To see (ii) first note that, by and

, ar = 1/ag, = 1/(2), and, for 0 < i < k,
k .
Z <k — z> <r —k —i—z) Za”aj _o (3.6)

—1
]7,‘7

We shall prove by induction on k — i that |a;| < 2k_z(k: - i)!/(r_f“'). This holds with
equality for ay, so assume that 0 <4 < k. Then by induction,

9 & () (5 (R b )
| < Z (]T)(kﬂ)| J|— Z (j r)—(k—i-z ) r(k+j J)
j=i+1 ( i ) j=i+1 ( i ) ( J )

2k=i(f — 4)! Z’“: 1 o 2k — i)
271(

- (r—iﬁi) —1 j 72')! - (rflingi) )

j=i+1
as required. [l

3.3. Proof of Theorem We are now ready to put everything together to prove
Theorem [L5l

Proof of Theorem[1.5 Let r := D ecEB(G) /{ér)/e(G) be the average value of KS"), and let
w :=1/k. By (3.2)) of Proposition [3.2]

2kon"—k T
— (T) L —
o= ke < (r—k)! (k - 1>‘ (3.7)
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Observe also that (in Q(G))

Yoo K=Y wlle. (3.8)

KEK:gk)(G) e€E(QG)
By Proposition for every K € Ks«k)(G) and every e € E(G), there exists wf- with
28I (k — j)! ,
wicl < (<,€+)) where j = |V(e) V(K| (39)
J
and such that for every J € K1(~+)k(G) with e € E(J),
e= Y uwiK. (3.10)
Kelcik)(J)
Thus
Z Rrwe = Z (M we + (k — I )we)
e€E(G) e€E(Q)
(r)

E9),E10) (k — %e )w o
BENY e ¥ > > ek
Kek® (@) e€E(G ‘ (JekM, (G):ecB() Kek™ (1)

e (r)
B Wi (K — ke w
= Z <w+ Z Z —K(r+k‘) )K,
Kek® (@) (Jex™®), (G):KCJ) c€E() €

W (nfn((f))w

Je/cﬁ’fgk(c):KgJEeeE(J) KR

Kﬁk)(G). (Indeed, then G € O (G) and so G has a fractional Kﬁk)—decomposition by our
remarks at the end of Section|3.1]) So fix K € IC,(,k)(G), let J € ICf,]_i)k(G) with K C J and
let e € E(J). By Proposition

KU > (1= (7)8)(n), /r! — 2007 (v k) > a7 (3.11)

Now by (8.7), (3.9) and (3.11)), if j = |V (e) N V(K| then
2877 (k—j)! | 2]957{%( r )
Welw—r{)| T R e

and it suffices to show that w + > > 0 for every K €

ok—j+2}.2,2k—j—15

I€£T+k) - 7’”/27"! — (?)nk )
hence
CL’K("ﬂ_f‘é(eﬂ) <nk‘ u k r\ 2k—i+2p2,2k—j-1g
Yy s () ()
(Jek®M, (@):KCJ) e€E(T) e =0 ;
ok+22,.2k—15, k 1
<w
o k! 2le =0
Jj=
as required. -

In some cases it is possible to sharpen the computations in the proof of Theorem to
(k

lower the minimum codegree that guarantees the existence of a fractional K, ) -decomposition.
Of particular interest is the case where r = k+ 1. In this case, equation (3.6 can be solved
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exactly to obtain a; = (—1)7/(k + 1)(?) Redoing the computation above with these
correct values for w$. shows that a minimum codegree of (1 — 1/k%(k + 1)22%+1)n already

guarantees a fractional K ,(g]j_)l—decomposition, a substantial improvement over substituting

r = k 4 1 into our general result.

4. BOUNDS ON THE NUMBER OF CLIQUES

We now turn to the special case of graphs. As for the more general case of hypergraphs,

we shall be interested in the number mé’") of r-cliques containing an edge e. In this section

we first prove the following proposition relating the number of cliques of different sizes in
a graph with high minimum degree, which is used repeatedly throughout the paper.

Proposition 4.1. Let r,n € N, § := 1/2r, and let G be a graph on n vertices with
0(G) > (1 — 6)n. Then, for each i € [r],
kr—i < (2r/n)'k,.

Proof. Let i € [r]. For each clique K € K,_;, using the minimum degree of G, the number
of cliques in K, containing K is at least

1 : L 1 /n\?
Z_!jl;[l(n—(r—z—i-j—l)én) > a (§> :
Each clique K € K, contains (’;) cliques in K,._;. Therefore,
i

3 (5) < (7)< Sk

and thus k,_; < (2r/n)'k,. O

Our next lemma gives a range of bounds on the number of cliques containing a fixed
smaller clique (and, in particular then, an edge).

Lemma 4.2. Let r,n € N and 6 < 1/2r, and let G be a graph with n vertices and
(G) > (1 = 6)n. Then, for each integer t < r and each subset Z C V(G), with |Z] =t
and G|Z] € K¢, we have

(i) |/~$(ZT) — k| < 2t9rky—y, and

() |65 = kot + [ Uoey NC(2)kr—s1| < 6(t67) 2k,

(iii) For each xy € E(G), we have

3

P ) = b 3 kU] < 11(6r) s

i=1 YCNe(z)UNe(y):|Y|=t

Proof. Given Z C V(G) with |Z| = t and G[Z] € K;, we can obtain an r-clique K
containing Z by extending Z by the vertex set of an (r —t)-clique which lies in [, , N ().
By the inclusion-exclusion principle,

“(Zr) =kt — [{K €Kiy : V(K) N U N¢(z) # 0}
2€Z

r—t

=kt + Y _(—1) 3 Ry,

i=1 YCU,cz Ne(2): [Y]=i
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So by the Bonferroni inequalities, for each £ <r —t+ 1,

-1
(7‘) ke — Z(_l)z Z ng—t)‘
i=1 YCU,cz Ne(2): |Y|=i
_ ton tén)t 2tor)!
< Z ’fgf g < < / )kr—t—f < ( E') k’r—t—E < ( /! ) k?"—t: (41)

YCU.ez N°(2): [Y|=£

where we have used Proposition in the final inequality. As ¢ increases, we obtain an
increasingly accurate estimate for x ZT ) (provided ¢ is not too large). In particular, setting
{=1 we gainand setting ¢ =4 in the case where |Z| = 2 we gain (iii).

Finally, for|(ii), using|(i)| with clique size r — ¢ and set {x} for each z € | .., N¢(z), we

z€Z
have
5 = he b | NG i | < |65 ket Y )
z€Z €U ez N(2)
t)
+ Y WY ke
€U,z N°(2)
< 2(t(5r)2kr_t + ‘ U Nc(z)‘%rkr_t_l
z2€Z
< 22627 ky_y + Otn - 4072 ki /1 < 626%02 Ky,
where we have used Proposition [4.1]in the penultimate inequality. O

As noted in Section [2| we shall want to construct edge-gadgets using only some of the
r-cliques in the graph G. We will in fact have a small subset X C V(G), and wish to avoid
using r-cliques which have a large intersection with X. Our final result of this section
demonstrates that there are not many such cliques.

Proposition 4.3. Let r > 3, n € N and § := 1/600r*/2. Let G be a graph on n vertices
with 6(G) > (1 —d)n, and let X C V(G) with | X| < drn. Let

A={K ecK,:|V(K)nX|>r/?}.
Then |A| < k,/r2.

Proof. Let t := [r'/?]. Using Proposition we have that

" (érn " (6rn)? " (2072)! " (/2 /300)?
< kr—i < —k—; < —k, = 71{37“
T(r1/2/300)t

< 4 k, < r(t/300)!(e/t)k, < 7k, /100t < K, /72 O

5. ADDING WEIGHT OVER AN EDGE

Recall from Section [2]that, in order to turn our initial uniform weighting into a fractional
clique decomposition, our aim is to construct edge-gadgets which adjust the Weight over
an edge e by adjusting the weights of some r-cliques. In our proof of Theorem [1.5| (for
k = 2), we implicitly used an edge-gadget 1. that was the average of a basic edge- gadget
¢ over all cliques J € K,,2 containing e (defined more explicitly in Section . This
averaging ensured that the weight of any given clique was not altered so much that it
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became negative. Using some simple preprocessing (namely removing r-cliques one-by-one
until any further removal violates the minimum degree condition) we can reduce the total
adjustment we need to make to the initial weighting. In fact, for most of the edges we will
only need to make small adjustments, leaving us most concerned with certain ‘bad’ edges.
Moreover, for each edge e € E(G), the edge-gadget 1. requires larger adjustments to be
made to those cliques whose intersection with V' (e) is larger. Thus we are limited by the
adjustment we ask from cliques which contain many vertices in bad edges. By avoiding
basic edge-gadgets which require adjustment to the weight of such cliques, we can reduce
the minimum degree condition needed for these techniques to work.

In this section, we give sufficient conditions on a subset A C K, to ensure we can
construct good edge-gadgets that only change the weights of cliques in A.

Definition 5.1. Given a graph G we say that A C K, is well-distributed if, for each
e € E(Q), there are at least k./2 sets A C V(G) \ V(e) for which |A| = r and, for each
subset B C V(e) U A with |B| =r, G[B] € A.

Informally, A is well-distributed if the r-cliques it contains can be used to build many
different basic edge-gadgets 1. for each edge e.

Lemma 5.2. Let r > 3 and let G be a graph on n vertices. Suppose that k. > 0 and
that A C K, is well-distributed. Then for each edge e € E(G) there exists a function
e : A = R so that the following holds.

(i) For alle, f € E(G),
D ve(K) =1y

KeA: feE(K)
(ii) For all K € A and e € E(G), ifi = |V(K)NV(e)|, then |1e(K)| < 6n'/r'k,.

Proof. The proof idea is similar to that of Proosition For each edge e € E(G), let H,
be the set of sets A C V(G) \ V(e) for which |A| = r and, for each subset B C V(e) U A
with |B| =r, G[B] € A. As A is well-distributed, |#H.| > k,/2. For each clique K € A, let
ae ik be the number of sets A € H, for which K € K,[AUV(e)]. For each edge e € E(G)
and clique K € A, let

r(r271) if ’V(K) n V(6)| =2,
Pe(K) =~y HV(E)NV(e)| =1,
=2 if [V(K)NnV(e)| =0,

and let e (K) := e g ¢e(K)/|He|. We will now show that 1), satisfies the requirements of
the lemma.

Firstly, let e, f € E(G), and A € H, with V(f) C AUV (e). If f =e, then, as |A| =1,
there are (5) r-cliques K € K,[AUV (e)] with f =e € E(K). Thus

Z ¢6(K) =1

KeK,.[AUV (e)]: fEE(K)

If f and e share precisely one vertex, then for each i € {1,2} there are (771) r-cliques
K € K, JAUV(e)] with f € E(K) and |V (K)NV(e)| =i. Thus

r—1 2 r—2
e L = T =

Kek,[AUV (e)]: fFEE(K)
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If f and e share no vertices, then for each i € {0,1,2} there are (231) (T;Q) cliques K €
K.[AUV(e)] with f € E(K) and |V(K) NV (e)| =i. Thus

r—2 2 r—2 r—2
> qbe(K):( ) )M—Q(T—Q)T(r_l)—i- — =0

KeK,[AUV (e)]: fEB(K)

Therefore,
1
Z ¢6(K) = Z ﬁ Z ¢€(K)
KeA: fEE(K) KeA:feE(K) "¢ AeH.: Kek AUV (e)]

1 1
= 7| Z de(K) = | Z Lie—py = Lie—py,

AeHe KeK[AUV (e)]: fEE(K) AcH.

as required.

Secondly, fix an edge e € E(G) and a clique K € A, and let i := |[V(K) N V(e)|. There
are at most (?) sets A € H, for which K € KC,[AUV (e)], and thus a, x < n'. As mentioned
previously, we have |H¢| > k,/2, and we can observe that |¢.(K)| < 3/r%. Therefore,

e (K)| < (20" /kr)|pe(K)| < 61 /7' k. O

We will initially weight each clique with 1/k, where xk := k,_o — 2dnk,_3. As we will
see later (in Lemma , this gives an almost fractional K, -decomposition of G. Let
7 : E(G) — R record the amount of weight we wish to add over each edge to achieve a
fractional K,-decomposition. We wish to know whether we can make these adjustments
using edge-gadgets while keeping the weights on the r-cliques positive. The next lemma,
Lemma [5.4] says that we can make these adjustments while changing the weight of each
clique by no more than 1/2k, provided that the adjustments given by 7 are on average
quite small and 7 is sufficiently ‘smooth’. That is, |7| is not significantly above average
for any edge, and the average of |r| around each vertex is even more restricted. Before we
state Lemma [5.4] we formalise these properties by the following definition.

Definition 5.3. Given a graph G and r € N, a function 7 : E(G) — R is r-smooth if

(A1) for each edge xy € E(G), |n(xy)| < 1/10%,
(A2) for each vertex x € V(G), X en(y) IT(2y)| < n/10%, and

(A3> nyeE(G) ‘ﬂ'(l’y)’ < 712/1047"2.

Note that (A1) does not imply (A2), and (A2) does not imply (A3).

The intuition behind the definition of smoothness is as follows. To construct a basic
edge-gadget ¢., we increased only the weight over e by first increasing the weight of
some 7-cliques containing e, then making further adjustments to cancel out the change in
weight over every other edge of these cliques. These cancellations introduce an inherent
inefficiency and mean that we can only hope to correct errors of average size O(1/r2) (cf.
(A3)), although we can handle slightly larger localised errors (cf. (A1) and (A2)).

Lemma 5.4. Let r > 4, n € N and 0 < 0 < 1/24r. Let G be a graph with n vertices
and 6(G) > (1 —d)n. Let k := kp_2 — 20nk,_3, and let m : E(G) — R be r-smooth. Then
there exists a function w : K, — R so that |w(K)| < 1/2k for all K € K, and, for each
e € E(Q),

Kek,: ee E(K)
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Proof. Let v :=1/10%2, and let
A= {K eR, : Z Im(e/)| < 72r%y and Z Im(e)| < 48rn’y}.

e'eEB(K) e'€eE(GQ):|[V(K)NV(e)|>1 ( )
5.1

We will show that A is well-distributed, and then define w using the edge-gadgets 1.
obtained by applying Lemma [5.2] with A.
Note that, using Proposition

kr_o > Kk > ky_o — 46rk,_9 > 5ky_2/6 > 0. (5.2)
For each e € E(G), let
He ={ACV(G)\V(e):|Al =7 and G[AUV (e)] € Ky12}, (5.3)
and note that, using Lemma we have
[Hel = kY > ke — 40(r + )k > 3k, /4. (5.4)
Let
Hen := {A € He: Z Im(e)] < 727“27}.

e’ €E(G[AUV (e)])
Claim 5.5. For each e € E(G), [He \ Hen| < ki /8.

Proof of Claim[5.5. For each i € {0,1,2}, each edge €' € E(G) with |V(e/)NV(e)| =i is
in at most k,4;_2 of the graphs G[A UV (e)], with A € H.. We therefore have that, using

Proposition and |(A1)H(A3)]
2
[He \ He(720%7) < ) Yoo OIS Y keialm(@)]

A€M, ! cE(G[AUV (e)]) i=0 |V (e)nV (¢/)|=i
< nPyky_o + 2rnyke_1 + 2k < 9rqk,,
hence |He \ He| < by /8. O
Now let
Heo = {A € He: Z Im(e')| < 487’n7}.

e’€eE(GQ):|V(e/)N(AUV (e))|>1
Claim 5.6. For each e € E(G), [He \ He2| < ky/8.
Proof of Claim[5.6. Let € € E(G). If V(e) NV (e') = 0, then there are at most 2k,_; sets
A € H, for which [V (e)N(AUV (e))| > 1. If |V (e)NV (¢/)| > 1, then |V (e/)N(AUV (e))| > 1
for every A € H,, and |H| < k.. We therefore have that, using Proposition (A2)|and
(3]

[He \ He2l(48rn7) < D > ()]

A€M, ¢:|V (e")N(AUV ()| >1
< 3 2%k, |m(e')| + > kr|m ()]
e/ €E(G):|V (e)NV (e/)|=0 ' €B(G):|V (e)NV (e)[>1
< 2n2vke_1 + 2rnvk, < 6rnyk,,
hence |He \ Heo| <k /8. O
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For each e € E(G), let He := He1 N Hez, so that by (5.4) and Claims and we
have |H.| > 3k,/4 — k,/4 > k,/2. We can now check that the set A defined by (5.1)) i

well-distributed.

For each A € H, and every r-clique K € K,.[A UV (e)] we have from the definition of
He and He o that K € A. Since |He| > k,/2 for each edge e € V(G), this implies that
A is well-distributed. Thus by Lemma for each e € E(G), there exists a function
e : A — R so that the following holds.

(a) If 6/ S E(G), then EKE.A: GIEE(K) we(K) — 1{6/16}'
(b) For each K € A, if i = |V (K) NV (e)|, then |[¢p(K)| < 6n'/rik,.

Now, for each K € A, let
> e(K)m(e), (5.5)
e€E(Q)

and for each K € K, \ A, let w(K) := 0. Then, for each e € E(G),

> =YY B Y Y 1gr(e) = wle),

KEIC’I‘:@EE(K) e'cE(G) KeA:ee E(K) e’eE(G)

as required. Moreover, [(b)] (5.5), (5-1), [(A3)] (5.2) and Proposition together imply

that, for each K € A,

WE) < Y 6lm(e)n®/rPky + > 6lm(e)ln/rk, + Y 6lm(e)l/ks

e€E(K) e€E(GQ):|[V(K)NV (e)|=1 e€E(G)
< 6(72r%y)n? 12k, + 6(48rny)n/rk, + 6(ny) /k,
< 1000n%y/k, = n?/10r%k, < 2/5k,_o < 1/2k. O

6. FRACTIONAL K,-DECOMPOSITIONS WHEN §(G) > (1 —1/105r%)n.

The aim of this section is to prove Theorem under the stronger assumption that
5(G) > (1 — 6)n with 6 := 1/10°r2 (see Theorem below). We include a proof of this
intermediate bound as it follows easily from Lemma and shows how we will make use
of that lemma.

As noted in Section [5| after initially weighting the r-cliques uniformly with value 1/x
(where  := k,_5 — 26nk,_3), Lemma [5.4] permits us to move a Q(1/r2) proportion of the
weight over the edges around (subject to certain constraints) without making any of the
r-clique weights negative. We will see, using Lemma that we only need to adjust a
O(0r) proportion of the weight over each edge to turn our initial uniform weighting into a
fractional K,-decomposition. Thus in the case when § = O(1/r3) is suitably small we can
apply Lemma to make this adjustment. This corresponds to the argument presented
in Section [3

However, if we carry out some initial preprocessing (removing r-cliques until the mini-
mum degree condition would be violated by any further removal) we can reduce the overall
proportion of weight over the edges that we might need to move to O(§%r?). This allows
us to use Lemma [5.4| even in the case when 6 = O(1/r?) is sufficiently small.

Theorem 6.1. Let r > 4 and let G be a graph with n > 10%7* wvertices and (G) >
(1 —1/1057%)n. Then G has a fractional K,.-decomposition.

Proof. Let 6 := 1/10°r2. We may assume that we cannot remove any r-cliques from G while
maintaining minimum degree at least (1 —9)n. Indeed, by removing a sequence of r-cliques
from G we can find a subgraph H for which §(H) > (1 — §)n but for which removing any
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r-clique violates this minimum degree condition; if H has a fractional K,.-decomposition,
then clearly G does also. Therefore, writing X := {z € V(G) : d(z) > (1-0)n+r—1}, we
may assume that G[X] is K,-free. As G[X]| has minimum degree at least (1 —dn/|X|)|X],
by Turdn’s theorem, |X| < d(r — 1)n.
For each edge e € E(G), we have, by Lemma [£.(ii)| that
|8 — kg + IN®(2) U N“(y) | kr—s| < 24(67) k2. (6.1)
Let x := k,_o — 20nk,_3, so that, by Proposition k> (1 —4r)k,_9 > 9k,_2/10. For
each e € E(G), let 7(e) := K - K, so that, by (6.1)), we have
Im(e)| < (20n — |N(z) U N(y))er_3 + 24(57)*kr_2. (6.2)
In particular, together with Proposition this implies that
|m(e)| < 20mk,_3 + 24(67)%ky_o < (407 4 24(67)2)ky_o < 9ky_5/10%r < 5/1047«.
For each z € V(G), then, 3 oy, |m(zy)/k| < n/10%. Furthermore, using , Propo-
sition and our assumption that n > 10674,
2 S o= XY i)
e€E(G) z€V(G) yeN(x)
< > ) (20n—|N“(2) UN(y))kr—s + 240> (67)°kr 2
xEV( ) yeN(z)
<2 Z Z 26mk,_3 + Z Z (26n — [N(x) U N(y)|)kr—s + 246*r*n%k,_2
z€X yeN(z) ¢ X yeN(z)\X
<48%rnke_s+ Y > (2r + |[N%(x) N NO(Y)|)kr—s + 246220k,
2¢X yeN(z)\X
<80k g + 20k 3+ > > IN(2) ks + 2481’k
x¢X zeN°(x)
< 3202102k, o + 4r°nkp—_o + 6203k, _s
< anT_2/105r2 + 712]<:r_2/1057’2 +26%rn%k,_o < 9n2kr_2/105r2 < nzﬁz/104r2.
Therefore, the function 7/k : E(G) — R is r-smooth. Thus Lemma [5.4] implies that there
is a function w’ : K — R so that, for each e € E(G), X ke, .cepr) W (K) = m(e)/k, and,
for each K € KC;, |W'(K)| < 1/2k.
Define w : K, — R by setting w(K) := 1/k — w'(K) for each K € K,. Then, for each
e € E(G),

(r)
> =Ty
KeK,:e€E(K)
and, for each K € K,, w(K) > 1/k —1/2k > 0. Therefore, w is a fractional K,-
decomposition of G. U

7. ADDING WEIGHT AROUND A VERTEX

After our initial preprocessing of the graph GG and the initial weighting of the r-cliques
with 1/k, where k := k._o — 26nk,_3, we may need to add/subtract on average a Q(5%r?)
proportion of the weight over each edge. Our edge-gadgets can only add/subtract weight
over each edge if it is on average O(1/r%). Thus the techniques in Section |§| require

§=0(1/r?).
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In order to increase the size of §, in this section we introduce ‘vertex-gadgets’, defined
explicitly below, which in this set-up are capable of adding/subtracting Q(1/r) of the
weight over each edge. However, while this is more efficient than using edge-gadgets, the
vertex-gadgets can only change the weight of every edge around some vertex simultaneously
by the same amount.

For a vertex x € V(G), a vertez-gadget is a function &, : K, — R such that for each
edge e € E(Q),

5 EI(K):{l if 2 € V(e),

KeK,: eeE(K) 0 ifz §é V<e)

In the next lemma, we show that, for each vertex x € V(G), there exists a function
¢z : K — R such that
(i) for each e € E(K) with = ¢ V(e), X rex, : cep(x) $=(K) =0, and
(i) for each y € N(2), X ek, : ayer (i) P=(K) is close to 1.
Thus ¢, is almost a vertex-gadget. We will then use edge-gadgets to make the requisite
corrections to ¢, to obtain an actual vertex-gadget—see Lemma (Thus we actually

define ¢, on a certain subset A C K, instead of ;- so that we can make these adjustments
efficiently.)

Lemma 7.1. Letr>4,0<§ < 1/6007”3/2 and n > 32r3. Let G be a graph on n vertices
with 6(G) > (1 = d)n. Let X :={x € V(G) : dg(z) > (1 —d)n + r — 1} and suppose that
IX| < 0(r—Dn. Let A:={K € K, : |[V(K)NX| < r'/2+2). Then, for each vertex
z € V(QG), there exists a function ¢, : A — R for which the following holds, where, for
each y € N(x), we let Toy =1 =3 e u. syep(x) 2(K).

(Bl) If z € V(G) and e € E(G) with z ¢ V(e), then 3 xc 4. cep(x) 9=(K) = 0.

(B2) For all x € V(G) and y € N (), |7zy| < 1/r2.

(B3) For each x € V(G), > en(w) [Tyl < n/r.

(B4) For all K € A and x € V(G), if i = |V(K) N {z}|, then |¢.(K)| < 2n't!/ritlk,.

Proof. For each vertex x € V(G), let H, be the set of sets A C V(G) \ {z} for which
Al =7, G[AU{z}] € K,41 and |[AN X| < /2 + 1. For each z € V(G) and K € K, let
oz i be the number of sets A € H,, for which K € IC,[A U {z}], and let

L ifz e V(K),
=2 if z ¢ V(K).

<

U (K) =

For each z € V(G), let wy := ky—1 — (n — d(x) 4+ 6n)k,_2. Note that, by Proposition

Wy Z kr—l — 25nkr_2 Z kr—l - 4(5Tkr_1 2 7k‘r_1/8. (71)

For each K € A, let ¢,(K) = oy k9o (K)/w;. We will now show that ¢, satisfies the
requirements of the lemma.

First, let z € V(G) and let e € E(G) with x ¢ V(e). If A € H, and V(e) C AU{z},

then, for i € {0,1}, there are (";?) cliques K € K, with K € K,[AU{z}], e € E(K) and
|[V(K)N{x}| =i. Thus,

0.

3 GalK) = (r—2)—— — T2

r—1 r—1
Kek,[AU{z)]: ecE(K)
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Therefore if x € V(G) and e € E(G) with « ¢ V(e), we have

Yo duK)= wi 3 o (K)

KeA: eccE(K) KeA: ecE(K) © AcH.: KeK,[AU{z}]
— Z Z %(K) = 0.
T AeH, Kek, [AU{z}]: eeE(K)

(In the second equality we use that each K € K,[AU {z}] lies in A by the definition of
H.) Therefore holds.

Now let € V(G) and y € N(x). If A € H, and y € A, then there are r — 1 cliques
K € K, with K € K, [AU {z}] and zy € E(K). Thus,

Z Y (K) =1
KeK,[Au{z}]: zyeE(K)
Let wg, be the number of sets A C V(G) for which A € H, and y € A. Then
1 Wy,
Y. GE)=— > va(K) = —24 (72)
KeA: zycE(K) T AcH, Kek, [AU{z}]: zycE(K) r

In the last equality we use that each K € IC,[AU {z}] (with zy € E(K)) lies in A by the
definition of H,.

Claim 7.2. For each x € V(G) and y € N(x),
[wey — wa + (n = d(y) — dn)ky—a| < |N°(z) N N(y)[kr—2 + (240°(r + 1)* + 2/r?)ky 1

Proof of Claim[7.3 By Proposition there are at most k,_1/(r—1)% < 2k,_; /r? cliques
K € K, for which | X N V(K)| > r!/2. Note that if xy € E(G), K’ is an (r + 1)-clique
containing zy, and |(V(K')\ {z,y}) N X| < rY/2 then V(K')\ {z} € H,. Thus

|wgy — ﬁé@“” < 2k, /72 (7.3)
Then, by Lemma and , we have that
Wy — kr—1 + |N%(z) UN(y)|kr—a| < 24(8(r + 1))%k—1 + 2ky_1 /1.
Thus,
(wey — we + (n — d(y) — 6n)ky—o| = |way — kr—1 + (2n — d(x) — d(y))kr—2|
< [ty — it + IN*(2) U NY() ko] + [|N(2) U N(3)| — (20 — d(z) — d())[Fr>
< (2462 (r 4+ 1)2 + 2/ kr_1 + |N(x) N N(y) |ky_o.
By Claim for each z € V(G) and y € N(x), using Proposition we have
Wy y — Wg| < Inkp_g + 0nk,—o + (24(52(r + 1)2 + 2/r2)k,~_1
< (467 + 2482 (r + 1) + 2/ kp_1 < ky_y 22, (7.4)
For each x € V(G) and y € N(x), recall that
ry=1— 3 6u(K) " (w, —wyy) fws. (7.5)
KeA: zyeE(K)

Therefore and 1-| together imply that for each x € V(G) and y € N(x),
7,1 2

|Toy| <1/ and thus )| holds.

g
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By Claim we have, for each z € V(G), that

> we —wayl < > (In—d(y) — on| + [N“(2) N N(y)|) kr—a + (246°(r + 1)* + 2/r)nky 1
yEN () yeV(G)
< <\X\5n RS ]Nc(z)okr_g + (2402 (r +1)% + 2/ ik,
zeN°(x)
< (8%(r — D)n® +rn+ 0°n ko + (2462 (r + 1) + 2/r*)nk, 4

HAT]
< (20%r% + 2r% /n + 2r6% + 246° (r + 1)® + 2/r*)nk,_1 < Tnk,_1/8r,

where the final inequality is due to the fact that 6 < 1/ 600r3/2 and n > 32r3. Together
with (7.1)) and (7.5)) this implies that, for each @ € V(G), 3 e n () [Tayl = 2 yen (o) [Way —
Wy |/w,; < n/r, which proves |(B3)l

Finally, for each vertex = € V(G) and clique K € K;, setting i := [V (K) N {x}|, there
are at most (%) sets A € H, for which K € K,[AU {z}], and thus a, x < n’. Moreover,

ky < nk,_1/r and |, (K)| < 4/3r'. Together with (7.1]), this implies that
(62 () < 80 losa (K| /Thy—1 < 207 1. O
Consider the function ¢, given by Lemma Note that for each y € N(x)

> Go(K) =1 —Tpy.

KeK,: zycE(K)

To modify ¢, into a vertex-gadget, we will add weight 7., to each edge xy using our
edge-gadgets. This is achieved by the next lemma.

Lemma 7.3. Letr>4,0< 6 < 1/6007’3/2 and n > 32r3. Let G be a graph on n vertices
with 6(G) > (1 —d)n. Let X :={z € V(G) : dg(z) > (1 = 6)n +r — 1} and suppose
1X| < 8(r—1)n. Let A:={K € K, : |[V(K)NX| < r'/2+2}. Then for each vertex
x € V(G), there exists a function £, : A — R so that the following holds.

(i) If x € V(G) and e € E(G), then

Z {m(K)—{l if x € V(e),
)

KeA: eecE(K 0 ifagVie)
(ii) For all K € A and x € V(G), if i = |V(K) N {z}|, then |&.(K)| < 80n't1/ritik,.

The efficiency of a vertex-gadget &, from Lemma [7.3] can be compared to the efficiency
of an edge-gadget 1, from Lemma as follows. If a clique K is disjoint from {z,y},
then (ii) in Lemma says that |¢g,(K)| < 6/k,., while (ii) in Lemma says that
€. (K)| < 80n/rk,; so & may change the weight of the clique by an extra factor of n/r.
However, 1), changes the weight of only one edge by 1, while &, changes the weight of
IN(x)] > (1 — 6)n edges by 1. As the edge-gadgets can move a Q(1/r?) proportion of the
weight, this indicates that the vertex-gadgets can move a €2(1/r) proportion of the weight.

Proof. For each vertex x € V(G), let ¢, be the function from Lemma [7.1| for which |(B1)]
(B4)| hold with the set A. The function ¢, is an approximation to the function &, we
require. For each z € V(G) and y € N(z), we let

Teyi=1— Y ¢u(K). (7.6)

KeA: zyeE(K)
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As discussed above, this records the adjustments we will need to make to ¢, in order to
obtain &,. We will make these adjustments using Lemma |5.2
For each e € E(G), let
He = {ACV(G)\V(e): GIAUV(e)] € K40 and |AN X| < r!/2}.

By Proposition there are at most k,/r% sets A C V(G) with G[A] € K, and [ANX| >
r/2. For each edge xy € E(G), using Lemma we have

Hayl > 602 — ke /7% > kp — 40(r + 2)ky — by /r? > 3Ky /4. (7.7)
For each e € E(G) and = € V(G), let
He o = {A € He: Z [T,y < 12}. (7.8)
yE(AUV (€))NN ()

Claim 7.4. For alle € E(G) and x € V(G), |Hez| > kr/2.

Proof of Claim[7.4. For each i € {0,1} and each e € E(G), each y € V(G) with |[{y} N
V(e)| =i is in at most k,4;—1 of the sets AUV (e) with A € H.. We therefore have for all
e € E(G) and z € V(G), that

12[He \ ’He,xl Z Z |Tey| < Z | Ty lFer + Z |Tey|kr—1
A€H\He 2 y€(AUV (€))NN (2) yEN(2)NV (e) yeN(2)\V(e)
T/rl/Q + nky_1/r PBSE?)kT.
Therefore, |He \ Heo| < kr/4. Thus, by , [Hew| > 3ky /4 —kyp /4 >k, /2. O
For each = € V(G), let
Ay = {K eAd: Y Imyl< 12}. (7.9)

yeV (K)NN(z)

Foralle € E(G), z € V(G), A € He» and cliques K € K, [AUV (e)], we have by (7.8)) and
the definition of A, A;, H. and H, 5, that K € A;. Together with Claim this implies
that A, is well-distributed. Thus, for each € V(G) and each e € E(G), by Lemma
there exists a function ¢ : A, — R so that the following hold.

(a) Ife,e’ € E(G), then e a, . wepx) Ve (K) = Lier=e}- o

(b) For all K € A, and e € E(G), if i = |[V(K)NV(e)|, then [¢F(K)| < 6n'/r'k,.
For all z € V(G) and e € E(G), extend ¢F by setting 97 (K) := 0 for each K € A\ A,.
For all K € A and z € V(G), let

E(K) = ¢u(K)+ D V5L (K)Ta s (7.10)
z€N(x)

We will now show that the functions &, have the required properties. Consider any

z € V(G). Firstly, for each y € N(z), by (7.10), [(a)] and (7.6),
Z gﬂ?(K) = Z ¢$(K) + Z 1{xz:xy}7—m,z

KeA: zycE(K) KeA: zycE(K) z€N(z)

— Z Gu(K) + 7oy =1,

KeA: zycE(K)
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and for each edge e € E(G) with x ¢ V(e), by and [(a)]
Z f;p(K) = Z ¢$(K) + Z 1{xz:e}Tx,z =0+0=0.

KeA: eeE(K) KeA: eecE(K) z€N(z)
Therefore, is satisfied.

It remains to prove for all x € V(G) and K € A, which we do separately for
Ke A\ A, and K € A,.

If K € A\ A,, then ¢Z(K) = 0 for each e € E(G). Therefore, by (7.10), & (K) =
¢z(K). Together with this in turn implies that, if i = |[V(K) N {x}|, then |&,(K)| <
2t fpit g,

If K € Ay, then let ¢ := |V(K) N {z}|. Note that if z € N(z) then |{z,z} NV (K)| =
i+ [{z} NV(K)|. Together with (7.10), and [(b)] this implies that

e (F)| < 2™ et et > (6T e )+ Y (60 k)
EN(@)V(K) EN(@)\V(K)
@9, [B3) . . 4 4 . , .
<2n H/T’Hkr + 12(671”1/7'”11@) + 6nz+1/r’+1kr = 80n’+1/r’+1kr. O
8. NUMBER OF CLIQUES CONTAINING A SPECIFIED EDGE

Recall that, after some initial preprocessing of the graph GG, we give each r-clique weight
1/k, where k := ky_o — 20nk,_3. This is not far from a fractional K,-decomposition, and
we aim to transform it into a fractional K,-decomposition by correcting the weight over
each edge using edge- and vertex-gadgets. For Theorem we will have § = ©(1/ 3/ 3,
and as before we may need to move a Q(6%r%) = Q(1/r) proportion of the weight around
to correct the weight over each edge. Our best technique is to use vertex-gadgets which
are indeed capable of moving a Q(1/r) proportion of the weights over the edges, but only
certain adjustments can be made using such gadgets.

The adjustment to be made to the weight over each edge xy is (ng)//i) — 1. In this
section, we will break this adjustment down into o*(z) +0*(y) +7*(zy) so that on average
o*(z) = O(1/r) and 7*(zy) = O(1/r?). Hence we will be able to adjust the weight over
each edge xy by o*(z) + 0*(y) using vertex-gadgets and by 7*(xy) using edge-gadgets.

We find such functions in the following lemma (where (o + «)/k and 7/k correspond
to o* and 7*), before showing that the error term depending on the edges is r-smooth in
Lemma so that it can be corrected using the edge-gadgets (via Lemma .

In this section, we additionally require the notation that, for sets A, B C V(G),

€(A,B) = {(z,y):x € A,y € B,zy ¢ E(G)}|.
Lemma 8.1. Letr > 5 and § := 1/1047‘3/2. Suppose that G is a graph on n vertices with
0(G)>(1—=0d)n. Let X :={x € V(G) : dg(z) > (1 = d)n+r — 1} and suppose that | X| <
d(r — )n. For each v € V(G), let y(z) := (on — |[N(z)|)kr—3. Let k := ky_g — 26nk,_3.
Let my,m : E(G) — R be functions defined by

mi(zy) =on Y IN“(z)|kr—s5+6n Y |[N“(z2)lkrs

z1ENC(z) z2€N¢(y)
— > D IN(z) UNC(2) ks + (00 — [N“(2)[)(6n — [N“(y) ks (8.1)
z1ENC(x) z22€N(y)

and
ma(ey) = (e(N* (@) (IN(y)] = 8n) + e(N () (IN*(2)| = 0n) V5. (8:2)
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Then there exist functions o : V(G) — R and 7 : E(G) — R so that the following hold.
(i) For each xy € E(G),
n:(,;? =k+y(x)+v(y) +o(x) +o(y) + m(zy).

(ii) For each x € V(Q), |o(z)| < kr—2/10%.
(iii) For each xy € E(G),

[m(zy)| < [mi(zy)| + [m2(zy)| + 2IN(z) N N(y)|kr—s
+203(07r) kr—2 + 3(N°(x), N°(y))ky—a.

Proof. By Lemma [4.2(iii), we have for each zy € E(G) that

3
R0 — ko = S (<1 > RG] < 11060 .

i=1 ZCNe(z)UN<(y) : |Z|=i

Together with Proposition this implies that, for each zy € F(G),

3 7
)~ ko= > (-1)TY > > R (8.3)
=1 J=0 Z1CN¢<(z):|Z1|=j Z2CNe(y)\Z1:|Z2|=i—j
2
< 11(0r) hp_o + Z (271 — 1) Z Z “S{ZEB)Z’
=0 2ENC(@)NNe(y) Z/C(Ne(2)UN*(y))\{z}:|2'|=j
4 . . 20n
< 1L@) g + IN“() O N ()] (ys + 3+ 200k, g +7 ) ks )
3

< 11(0r) kp_o + |NC(x) N N(y)|(1 + 1267 4 56(5r))k,—
< 11(0r)kp_o + 2|N¢(2) N NC(y)|ky_3,

where in the first inequality we are bounding the extra contribution to the sum from those
Z1 U Zy that meet N¢(x) N N¢(y). Thus for each zy € E(G), we have

k) — kg — Si(x) — S1(y) — Sz — Sa| < 11(67)*ky—2 + 2|N(2) N N°(y)|kr—s,  (8.4)

where

Sy = Sa(zy) Z Z KF{ZZ} (8.5)

zleNC(I) z2€N(y)\{z1}

S3 = S3(xy) Z Z Z “g1u2z)2 (8.6)

J=1 Z1CN®(x):|Z1|=j Z2CN¢(y)\Z1:|Z2|=3—j

and, for each z € V(G),

Si(2) =Y (1) kY2,

i=1 ZCNe(2):|Z|=i

Here S;(x) and S;(y) count the contributions to the sum in (8.3)) from those Z; U Zy with

one of Z1 or Zs empty, and Sy, .S3 count the contributions from those Z1 U Zs with Z, Z5
(r )

both non-empty and |Z; U Z3| = 2 or 3 respectively. In order to estimate rgy we will now

estimate Si(x), S1(y), S2, and Ss.
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We will first estimate Si(x), for each x € V(G), for which we let

o1(x) := Si(z) — y(z) + onk,_3 (8.7)
3
= (= X AP HIN@ks) >0 Y KT 88)
zeN¢(x) =2 ZCN¢(z):|Z]|=t

Claim 8.2. For each x € V(G), |o1(z)| < 8(67)%k,_2.

Proof of Claim[8.9 By Lemma 4.2(i), for each z € V(G), ]/Q({;Z) — ky—3] < 20rk,_s.

Together with Proposition 4.1] this implies that

‘ SR N (@) ke 3‘<5n 261ky_5 < A(67)2ks_o. (8.9)
zeN€(x)

Moreover, using Proposition [£.]

]izg;(—l)i S kg ‘ < <5n> kr—1+ <5;> kr—5 < A(67)%ky 2. (8.10)

ZCNe(x):| Z|=i
The claim follows from (8.8)), and (8.10)). O
For each x € V(G), let
o3(x) := on(IN°(2)] — 6n/2)ke—a—6n > |N(21)|kr_s. (8.11)
z1EN(z)

Note that, by Proposition we have that

oo ()] < (6n)%kyr—a/2 4+ (00)3kr_s < 46272k, _s. (8.12)
We will now estimate \5’2 —oa(x) — o2(y)|. If 2129 € E(G), then, by Lemma
} {Z1 22} —kr_q4 + ’NC(Zl) U NC(22>‘]€7-_5‘ < 24((5?”)2]{7_4. (8.13)

If 2120 ¢ E(G), then /-;Y 2)} = 0. Therefore, by (8.13) and Proposition for each
zy € E(G) we have
r—2 c c
EDDEEED SR DS Do (ks INYe) UN()lhys)|
21EN¢(z) z26 N¢(y)\ {21} 21ENS(z) 22€N(y):z122€E(G)
< 246%%0%k,_y < 96(67) ko,

so that, using (8.5)),
S = NN s+ 30 D0 IN(e1) U N ()l s
z1EN¢(x) z2€N°(y)
< 96(0r) kp_o + E(NC(x), N°(y))kr_a, (8.14)
where we have used the fact that ky.—4 > |[N°(21) U N¢(22)|k,—5 by Proposition Note
that, by (8.1) and (8.11]), for each zy € E(G),

mi(zy) + o2(z) + o2(y) = [N“@)IN“(W)|kra — D> D |[N%(21) UN(22)|br—s.
z1ENC(x) z2€N°(y)

Together with (8.14)), this implies that for each zy € E(G) we have
|S2 — 02(2) — 02(y)| < |mi(zy)] + 96(6r) k2 + e(N°(z), N(y))kr—a. (8.15)
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Now, for each x € V(G), let

o3(z) == —e(N(x))onk,_s. (8.16)
Note that for each z € V(G), by Proposition
los(x)] < (6n)2kr_5/2 < 46313k, _o. (8.17)
We will now estimate |S3 — o3(x) — o3(y)|. If G[{z1, 22, 23}] € K3, then, by Lemma
we have |/€{Zl 2,%} — k5| < 66rk,_5. Therefore,
> S R e W)IN @) s

z1ENC(z) {22,23}CN(y)\ {21}

- X (X - bos)

z1ENC(z) {22,23}CN(y)\{=1} {#2,23}CN°(y):2223€ E(G)
< &(N¢(x), N(y))(6n) - kp—s + (6n)> - 60rk,_5
< e(N°(x), N°(y))kr—_a + 48(67) ko, (8.18)

where the last inequality is due to Proposition and the fact that or < 1/2. Similarly,
r—2 c c
DS S R0 e N @) N ) s
z1E€N(y) {22,238} CN(z)\{z1}
< &(N°(z), N°(y))kr—q + 48(67) k. (8.19)
Note that, by (8.2) and (8.16|), for each zy € E(G),
mo(zy) — o3(x) — 03(y) = e(N°(x))|N(y)|kr—5 + e(N°(y))|[N(x) |kr—5.
Together with (8.6), (8.18) and (8.19), this implies that
S5 — o3(x)—03(y)| < Ima(y)| + 26(N°(x), N°(y))kr—a + 96(67) 'y . (8.20)
For each x € V(G), let

o(x) == o1(x) + o2(x) + 03(x), (8.21)
and for each edge zy € E(G), let
m(zy) = ) — = (@) = 1(y) — o) —o(y). (8.22)

Then |(i)| holds. Note that, for each x € V(G), by Claim (8.12), (8.17)) and (8.21))
o(2)| < 86%r%kp_o + 46212 ky_o + 48°r3kp_o < 130212 ky_g < kp_o/10%r,
and thus |(i1)| holds.

Note that m(xy) = n;(,;) —kyp_o — 5’1( ) — Si(y) Z? o(oi(x) + oi(y)) by (8 ,
and . Together with (8.4)), (8.15) and (8.20) this shows that for each zy € E(G)

have

w(oy)] < |55 = ks = S1(@) = S1(y) = 2 = So| + [ S — r2(w) = 02(y)| + | — 73(a) - as<y>]
< ma(@y)] + [ma(ay)] + 2AN(@) 1 N(y) ks + 203(07) hy—a + 3E(N“(), N°(y)) s

and thus holds. O

Given a function 7 : E(G) — R with the properties in Lemma we wish to use
Lemma [5.4] to add the weight 7(e)/k to each edge e. We must therefore check that 7/x is
r-smooth.
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Lemma 8.3. Let r > 25, § := 1/1047“3/2 and n > 10%r3. Suppose that G is a graph on n
vertices with 6(G) > (1—0)n. Let X :={x € V(GQ) : dg(x) > (1=9)n+r—1} and suppose
that | X| < 6(r — 1)n. Let k := ky_g9 — 2dnk,_3 and let m,m2 : E(G) — R be the functions
defined in the statement of Lemma . Suppose that 7 : E(G) — R satisfies
[m(zy)| < [mi(zy)| + [m2(zy)| + 2IN“(z) N N(y)|kr—3
+203(67) ky—o + 3&(N(z), N(y))kr_a. (8.23)

Then the function /K is r-smooth.

Proof. We will show that 7/k is r-smooth using a sequence of claims. Note first, using
Proposition [4.1} that & > k,_p — 46rk,—_2 > 9k,_2/10.

Claim 8.4. For each vy € E(Q), |r(zy)| < k/10%*. That is, 7/k satisfies in the
definition of w/k being r-smooth.

Proof of Claim[84 Note that |[N¢(z1) UN(z2)| = |N(z1)|+ |N¢(z1)| — |[N¢(21) N N¢(22)|
for each z1, 29 € V(G). Therefore, for each zy € E(G) we have by (8.1 that

mi(zy) = (0n = IN@))) D INGOlk—s + (n = IN“(@)]) Y IN“(22)lkr—s
z1EN°(x) z2€N°(y)

+ D > IN(z) N N(z2) ks + (90 — [N(2)])(5n — [N“(y)] ) Kr—a.
z1ENC(x) z2€N°(y)
(8.24)

So |mi(xy)| < 3(6n)3k,_5 + (6n)?k,—4. By (8.2)), we have |m2(zy)| < (6n)3k,._5. Therefore,
by 1' Proposition and the fact that /2 > 5, we have

|m(xy)| < 4(6n)3 K _5 4+ 203(67) er—2 4+ 4(0n)*ky—g + 2|N(x) N N(y)|kr—_3
< (32(07)3 4 203(0r)* + 16(67)*)kr_2 + 2|N(z) N N(y)|kr—_3

< 20(07)%kp_g + 2|N¢(2) N N(y)|kr_3 (8.25)
< kp_o/10° 4+ 467k,_g = (1/10° 4+ 4/10*" )k, o
< 9k,_/10° < /10" O

Claim 8.5. For each vertex x € V(G), X e IT(2y)| < kn/10%r. That is, /K satisfies
(A2)| in the definition of /K being r-smooth.
Proof of Claim[8.5. By (8.25) and Proposition we have, for each x € V(G), that
> Im(ay)| < 20670k 2 +2 > [N%(x) N N(y)|k_3
YEN () yeN(z)
< nk,_2/10°r + 2 Z INC(2)|kyp_3 < nkp_2/10°r + 26°n°k,_3
zeN€(x)
< nkr,2/105r +48%rnk,_o < anr,g/l()‘:’r < /<m/104r. O
Claim 8.6. We have 3 . oy () 2yen() IT1(zy)] < n2ky._o/10%72.
Proof of Claim[8.6. Note that, as 10%5%n > 1,

S (n—|N@))) < n+ > r<6%rn® +rn < 10767, (8.26)
z€V(G) zeX ¢ X
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Note also that

YD NI <o > IN(z)] < 870 (8.27)

yeV(G) z1€N°(y) z21€V(G)
Therefore, by (8.26]) and (8.27)),

> 2 (5n—INC o)) Y |NC(21)|>§10554TTL5. (8.28)

zeV(G) yeN(z) z1EN®(y)

Note also that

o> > Y ]chl JNN(z)| < (0n)* > Y |[N“(z21) N N(2)|

2€V(GQ) yeN(z) z1EN°(x) z22€N¢(y 21€V(G) 22€V (G)

<(©n)? D IN()P <65 (8.29)

zeV(G)
Furthermore, by ({8.26)),

S X Gn- N N < (X Gn - IN@)) < (107572

eV (Q) yeN(z) zeV(Q)
(8.30)
Therefore, by (8.24)), (8.28), (8.29), (8-30) and Proposition [4.1]
Z Z |1 (zy)| < 2-10°6% k5 + 6*nOk,_s + (10°6%rn2) 2k, _y
zeV(G) yeN(x)
< (16 - 10°(67)* + 837 + 4 - 10'°(67)* ) n?ky o
<10 (67) 0%k, = n2k,_o/10%12, O

Claim 8.7. We have }_ cv () 2yen () IT2(2y)] < n2ky_o/10%72.

Proof of Claim[87. Note that, from (8.2), for each z € V(G) and y € N(z),
|7T2(96y)! < (on — [N“(y))0°n*ky—5 + (6n — [N(2)])0*n’k; 5.

Together with ( and Proposition u, 4.1} this implies that

Z Z ]772 zy)| < 2n Z (6n — |N(2)|)0%n >k, _s5

z€V(G) yeN(x) zeV(G
< 2n - 10552rn 8% nPk,_s < 107(5r)4n2kr_2 < n2k7_2/105r2. O
Claim 8.8. We have 3, cy () 2yen(a) V(@) NN (y)|kr—3 < n2k._9/10°72.
Proof of Claim[8.8 We have that, using Proposition

YooY IN@NNke s < Y Z 2)kr—s < 6%k s

€V (G) yeN(x) z€V(G) zEN©(x)

< 28%rn?k,_o < anr_g/lOE’rQ. O
Claim 8.9. We have 3_, cv () 2oyen(x) €N (@), N(y))kr—a < n?k,_9/10%72.
Proof of Claim[8.9. Note that

S Y N (@), No() < [{( 21, 22,9) € V(G < w21, 2120, 20y & B(G)}] < n(6n)?,

z€V(G) yeN(x)
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so by Proposition 4.1

Z Z e(N(x), N“(y))kr—q < 3ntky_y < 463r*n2k,_o < n2kr_2/105r2. O
z€V(G) yeN(z)

Now (8.23) and Claims together imply that

2 > m(e)l= > D |w(ay)| < 203(6r) n kg + TPk _2/10°r% < 207k /102,
e€E(Q) z€V(G) yeN(z)

Thus 7/k satisfies [(A3)|in the definition of 7/ being r-smooth. This completes the proof
that 7/k is r-smooth. O

9. PROOF OF THEOREM [[.3]

We now combine our results and techniques to prove Theorem After some initial
preprocessing, we give each clique a uniform weighting before using Lemma to break
down the adjustments that need to be made to the weight over each edge. We carry out
the (potentially) larger adjustments using our vertex-gadgets from Lemma while the
finer adjustments are shown to be r-smooth by Lemma and can thus be made using
Lemma making these corrections gives a fractional K,.-decomposition of the graph.

Proof of Theorem [1.3. First note that, for r < 24, 1/10%3/2 < 1/64r3 (with room to

spare), so the result follows from Theorem with £ = 2. So we may assume that r > 25.
Let § := 1/10%3/2 and X := {z € V(G) : d(x) > (1 — 6)n +r — 1}. As in the proof of

Theorem [6.1} we may assume that G[X] is K,-free and that, similarly, | X| < §(r — 1)n.
Let k := ky_o — 2dnk,_3, and, for each vertex x € V(G), let

A() = (on — |N“(@) hy—s.

By Lemmas (8.1 and there are functions o : V(G) — R and 7 : E(G) — R, so that the
following hold.

(i) For each edge zy € E(G), mg;} =r+7y)+v(y) +o(z)+o(y) + n(zy).
(i) For each vertex z € V(G), |o(z)| < kr_2/10%r.
(iii) The function 7/k is r-smooth.

By Lemma there exists a weighting w’ : K, — R so that the following hold.

(iv) For each e € E(G), 3 kex, .ccpx) @ () = m(e)/k.
(v) For each K € K,, |w'(K)| < 1/2k.

Let A:={K € K, : |V(K)n X| <r'/? 4+ 2}. By Lemma for each z € V(G), there is
a function &, : A — R, so that

(vi) If z € V(G) and e € E(G), then Y 4. € B(K) §o(K) = 1zev(e))

(vii) For each K € A, and z € V(G), if i = |V (K)N{x}|, then |, (K)| < 80n**! /ritlk,.
Extend each &, by letting £, (K) := 0 for each K € K, \ A. Define a function w : £, — R
by

w(K) =~ (1 kW (B)~ Y ((a) +o(@))6(K)). 9.1)

K
zeV(G)

We now check that w gives a fractional K,.-decomposition of G.
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Firstly, for each edge xy € E(G), by (9.1), the definition of ngg, (iv)|and |(vi), and then
by we have
1 T
> wE) = (k) —may) — Y () + o)Ly ) = L
KeK,:zyeE(K) veV(G)
Secondly note that, for each z € V(G), |y(z)| < dnk,—_3, and thus, by and Proposi-
tion [4.1]
() + o ()] < dnke_3 + kp_o/10% < (8673 + 4r/10%) k. /n? < 9%k, /10*02.  (9.2)

Furthermore, if x € V(G) \ X, then |y(z)| < rk,_3, and thus by Proposition and
the fact that n > 1043

Iv(x) + o(z)| < rke_3 + kr_o/10% < (87 /n + 47 /10" k. /n? < 127k, /10*n2. (9.3)
Therefore, if K € A, then, by the definition of A, | @ and the fact that r > 25,
Y. h@+o@< Y h@+o@l+ >, ) +o()
z€V(K) zeV(K)NX zeV(K)\X
< (Y2 4 2) - 9k, )10%02 + v - 120k, /10%0% < 3r2k, /10%02. (9.4)
Furthermore, (9.2)), (9.3), and the fact that | X| < §(r — 1)n together imply that
Z |v(x) +o(z)] <o(r—1)n- 9r3/2k7«/104n2 +n- 127“l€r/1()4112 < 27‘kzr/103n. (9.5)
zeV(G)
So for each clique K € A, we have

Y. (@) +o(@)&(K ) Z (@) +o@)|80n*/rk )+ D (@) + o(x)|(80n/7k,)
zeV(Q) zeV(K) zeV(G)\V(K)
1-»

72k, /10302) (8002 /12k,) + (2rk, /10%n)(80n/rk,) < 1/2.
(9.6
If K € K\ A, then as (K) = 0 for each z € V(G), we have |} cy(q)(v(2)

o(x))¢.(K))| = 0. Therefore, by (9.1)), and (0.6), for each K € K,, w(K)
(1-1/2—-1/2)/k > 0, as required.

av + 2
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