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Abstract. We show that a quasirandom k-uniform hypergraph G has a tight Euler
tour subject to the necessary condition that k divides all vertex degrees. The case when
G is complete con�rms a conjecture of Chung, Diaconis and Graham from 1989 on the
existence of universal cycles for the k-subsets of an n-set.

1. Introduction

Finding an Euler tour in a graph is a problem as old as graph theory itself: Euler's
negative resolution of the Seven Bridges of Königsberg problem in 1736 is widely considered
the �rst theorem in graph theory. Euler observed that if a (multi-)graph contains a closed
walk which traverses every edge exactly once, then all the vertex degrees are even. He
also stated that every connected graph with only even vertex degrees contains such a walk,
which was later proved by Hierholzer and Wiener.

There are several ways of generalising the concept of paths/cycles, and similarly Euler
trails/tours, to hypergraphs. Not least due to its connection to universal cycles, we focus
in this paper on the so-called `tight' regime. We will discuss related notions in Section 1.3.

1.1. Universal cycles. Let [n] denote the set {1, . . . , n} and
([n]
k

)
the set of all k-subsets

of [n]. A universal cycle for [n] is a cyclic sequence with
(
n
k

)
elements, each of which is

from [n], such that every k consecutive elements are distinct and every element of
([n]
k

)
appears exactly once consecutively (but in an arbitrary order). For example, 1234524135

is a universal cycle for
(
[5]
2

)
. The study of these objects was initiated by Chung, Diaconis

and Graham [6] in a paper where they de�ne universal cycles for various combinatorial
structures (see Section 1.3).

Observe that the number of k-subsets in [n] that contain a particular element is
(
n−1
k−1
)

and every element in a cyclic sequence (of length at least k + 1) appears in exactly k sets

of k consecutive elements. Hence if a universal cycle for
([n]
k

)
exists, then k divides

(
n−1
k−1
)
,

or equivalently, n divides
(
n
k

)
. In 1989, Chung, Diaconis and Graham conjectured that

the converse should also be true, at least if n is su�ciently large, and o�ered $100 for the
resolution of this problem.

Conjecture 1 (Chung, Diaconis, Graham [5, 6]). For every k ∈ N, there exists n0 ∈ N
such that for all n ≥ n0, there exists a universal cycle for

([n]
k

)
whenever k divides

(
n−1
k−1
)
.

It is easy to see that Conjecture 1 is true for k = 2. Numerous partial results have
been obtained. In particular, Jackson proved the conjecture for k = 3 [15] and for k ∈
{4, 5} (unpublished), and Hurlbert [14] con�rmed the cases k ∈ {3, 4, 6} if n and k are
coprime (see also [21]). Various approximate versions of Conjecture 1 have been obtained
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in [4, 7, 8, 21]. We prove Conjecture 1 in a strong form by showing the existence of tight
Euler tours in `typical' k-graphs.

1.2. Tight Euler tours in typical hypergraphs. Given a k-graph G (i.e. a k-uniform
hypergraph G), a sequence of vertices W = x1x2 . . . x` is a (tight self-avoiding) walk in G
if {xi, xi+1, . . . , xi+k−1} ∈ E(G) for all i ∈ [`−k+ 1], and no edge of G appears more than
once in this way. Similarly, we say thatW is a closed walk if {xi, xi+1, . . . , xi+k−1} ∈ E(G)
for all i ∈ [`], with indices modulo `, and no edge of G appears more than once in this way.
We let E(W) denote the set of edges appearing in W. An Euler tour of G is a closed walk
W in G with E(W) = E(G), and an Euler trail of G is a walkW in G with E(W) = E(G).

Clearly, a universal cycle for
([n]
k

)
is equivalent to an Euler tour of the complete n-vertex

k-graph Kk
n.

The problem of deciding whether a given 3-graph has an Euler tour has been shown to
be NP-complete [20]. Thus, when k > 2, there is probably no simple characterisation of
k-graphs having an Euler tour. However, we show that for `typical' k-graphs, the existence
of an Euler tour hinges only on a simple divisibility condition.

A k-graph G on n vertices is called (c, h, p)-typical if for any set A of (k − 1)-subsets

of V (G) with |A| ≤ h, we have ||
⋂
S∈ANG(S)| − p|A|n| ≤ cp|A|n, where NG(S) denotes

the neighbourhood of S, i.e. the set of all vertices which together with S form an edge.
Note that this is what one would expect in a random n-vertex k-graph in which every edge
appears independently with probability p. It is easy to see that the complete k-graph Kk

n

is (hk/n, h, 1)-typical. Thus, the following more general result implies Conjecture 1.

Theorem 2. For all k ∈ N and p ∈ (0, 1], there exist c > 0 and h, n0 ∈ N such that the
following holds: Let G be a (c, h, p)-typical k-graph on at least n0 vertices with all vertex
degrees divisible by k. Then G has a tight Euler tour.

Clearly, the condition that all vertex degrees are divisible by k is necessary for the
existence of a tight Euler tour. Instead of an Euler tour, we can also easily obtain a tight
Euler trail (see end of Section 2).

We brie�y sketch the strategy of our proof. Let us �rst consider graphs. We �rst �nd
a closed walk in G that contains all vertices. Afterwards we decompose the remainder of
G into small cycles and insert them into the closed walk to obtain an Euler tour. For
k-graphs, this can be done as follows. In the �rst step, we �nd a `spanning' walk W in G,
where spanning means that every ordered (k − 1)-set of vertices appears at least once
consecutively in the vertex sequence of W. For this, we show that a self-avoiding random
walk yields such a walk W (after an appropriate number of steps) with high probability.
This step will use only a small fraction of the edges of G. We then extend W to a closed
walk W ′. Subsequently, we remove E(W ′) from G and decompose the remaining k-graph
into tight cycles using recent results of Glock, Kühn, Lo and Osthus [11] (which imply the
existence if F -designs). Each such cycle can be incorporated into W ′, which �nally yields
a tight Euler tour.

1.3. Related research and open questions. The most prominent example of universal
cycles are de Bruijn cycles. A de Bruijn cycle of order k is a binary cyclic sequence in which
every binary sequence of length k appears as a subsequence (of consecutive terms) exactly
once. Chung, Diaconis and Graham [6] extended this notion to various other combinatorial
objects, for instance permutations (see [16]) and partitions of an n-set. The general idea is
that a universal cycle for a set S of combinatorial objects is a cyclic sequence which contains
a `representation' of every element of S exactly once as a subsequence of consecutive
terms. Due to their rich symmetry, such structures have found many applications, for
instance in cryptography, computer graphics, database theory, digital fault testing and
neural decoding. A common and natural approach to �nd universal cycles is via transition
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graphs. Suppose that every element of S has a unique representation as a sequence of
length k. One can then de�ne a directed graph GS with vertex set S where there is an
arc from (x1, . . . , xk) to (y1, . . . , yk) if and only if yi = xi+1 for all i ∈ [k − 1]. With
this terminology, a universal cycle for S corresponds to a directed Hamilton cycle in GS .

One obstacle to �nding universal cycles for
([n]
k

)
, which was noted in [6], is that it is not

even possible to de�ne such a transition graph (since each k-set is represented by several
sequences).

Rather than seeking an Euler tour in a k-graph G, an alternative way to cover all edges
of G is to ask for a Hamilton decomposition, i.e. to ask for a collection of edge-disjoint
Hamilton cycles in G such that every edge is contained in exactly one such Hamilton
cycle. In 1892, Walecki showed that the complete (2-)graph Kn has a Hamilton decom-
position whenever n is odd. As mentioned before, there are several natural de�nitions of
paths/cycles in hypergraphs. One of the earliest such concepts was introduced by Berge.
A Berge cycle consists of a cyclic alternating sequence v1e1v2e2 . . . v`e` of distinct vertices
and edges such that vi, vi+1 ∈ ei for all i ∈ [`]. (Here v`+1 := v1 and the edges ei are
also allowed to contain vertices outside {v1, . . . , v`}.) For n ≥ 100, it is shown in [18] that
Kk
n has a decomposition into Berge Hamilton cycles if and only if n |

(
n
k

)
. Bailey and

Stevens [1] conjectured that Kk
n has a decomposition into tight Hamilton cycles if and only

if n |
(
n
k

)
. This conjecture is generalised in [18] to include other notions of cycles such as

loose cycles. A related conjecture on wreath decompositions was independently brought
forward by Baranyai [3] and Katona in the 1970s. (If k and n are coprime, then a tight
Hamilton cycle coincides with the notion of a wreath.) Approximate results in the sense of
packing many edge-disjoint Hamilton cycles into Kk

n have been obtained in [2, 9, 10].
Some results on Euler tours in hypergraphs have been obtained using the Berge notion

(such Euler tours are de�ned analogously, except that vertices may be repeated). In [19],
it is shown that the problem of deciding whether a k-graph has a Berge Euler tour is
NP-complete for all k > 2. On the other hand, a characterization is obtained for so-called
`strongly connected' k-graphs: such a k-graph G has a Berge Euler tour if and only if the
number of odd degree vertices of G is at most (k− 2)|E(G)|. The existence of Berge Euler
tours has also been investigated with the host hypergraphs being designs [12, 13, 23].

It is also natural to seek the above structures within k-graphs of large minimum degree.
To formalize this, for a set S ⊆ V (G) with 0 ≤ |S| ≤ k, we let dG(S) denote the degree
of S in G, that is, the number of edges which contain S. We let δ(G) and ∆(G) denote
the minimum and maximum (k − 1)-degree of a k-graph G, respectively, that is, the
minimum/maximum value of dG(S) over all S ⊆ V (G) of size k − 1. Rödl, Ruci«ski and
Szemerédi [22] showed that a k-graph G on n vertices with δ(G) ≥ (1/2 + o(1))n contains
a tight Hamilton cycle. Many related results have been obtained, see e.g. [25] for a recent
survey. We pose the following question, which would show that the degree threshold for a
tight Euler tour and that for a tight Hamilton cycle coincide asymptotically.

Conjecture 3. For all k > 2 and ε > 0, there exists n0 ∈ N such that every k-graph G
on n ≥ n0 vertices with δ(G) ≥ (1/2 + ε)n has a tight Euler tour if all vertex degrees are
divisible by k.

It follows from our Theorem 2 that this holds with 1/2 + ε being replaced by 1 − ε
for some small ε. The following adaptation of a well-known construction shows that the
conjecture would be asymptotically best possible for in�nitely many n: Consider the k-
graph G with vertex set V (G) = A ·∪B, where |A| = |B| is divisible by k, and all possible
edges except those which intersect B in precisely one vertex. By removing up to k − 1
perfect matchings from G[A] and from G[B], we can ensure that all vertex degrees of the
resulting k-graph G′ are divisible by k. Moreover, G′ does not have a tight Euler tour.
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2. Proof

For a k-graph G, we let |G| and e(G) denote the number of vertices and edges of
G, respectively. Given a (closed) walk W in G, we will often view W as the subgraph
(V (G), E(W)) of G and accordingly use terminology such as e(W) and ∆(W).

2.1. Spanning walk. We call a walkW in a k-graph G spanning if every ordered (k−1)-
set of vertices appears consecutively in W at least once. One important ingredient of our
approach for the proof of Theorem 2 is to �nd a sparse spanning walk in a given k-graph G.
This spanning walk will form a `backbone' structure to which we will subsequently add
smaller closed walks until every edge of G is used exactly once.

We show that such a spanning walk can be obtained randomly, by following a self-
avoiding random walk for a suitable number of steps. More precisely, let G be a k-graph.
We de�ne a simple random process X = (Xt)t∈N as follows: Arbitrarily choose distinct
starting vertices x1, . . . , xk−1 ∈ V (G) and set Xt := xt for all t ∈ [k − 1]. Moreover, let
Gk−1 := G. For all t ≥ k, proceed as follows. Among all edges in Gt−1 that contain the
(k − 1)-set {Xt−k+1, . . . , Xt−1} choose one edge e uniformly at random and let Xt be the
vertex in e \ {Xt−k+1, . . . , Xt−1} and set Gt := Gt−1− e. If no such edge is available, then
terminate the process and set Xt′ := ∅ and Gt′ := Gt−1 for all t′ ≥ t.

Clearly, this yields a walk in G as long as the process does not terminate. We write
Wt for the walk X1X2 . . . Xt′ in G, where t

′ ≤ t is maximal such that Xt′ 6= ∅. Note that
E(Wt) = E(G) \ E(Gt).

We will only perform a very crude analysis of this process here, which is su�cient for
our purposes. Clearly, for every ordered (k − 1)-set of the vertices of G to appear in the
walk, we need a walk of length Ω(|G|k−1). We show that if we follow the random walk for
a slightly larger number of steps, then with high probability, every ordered (k − 1)-set of
vertices will indeed appear at least once, and the walk will still be sparse in the sense that
no (k − 1)-set is contained in too many edges of the walk.

For the analysis of the process, we will use the following Cherno� bound. It follows dir-
ectly from the usual Cherno� bound by observing that the moderately dependent Bernoulli
variables in our �rst case are stochastically dominated by a Binomial random variable with
parameters n and p+ (and similarly for the second case).

Lemma 4. Suppose X1, . . . , Xn are Bernoulli random variables, and let X :=
∑n

i=1Xi.
Suppose 0 ≤ ε ≤ 3/2. If for all i ∈ [n], we have P [Xi = 1 | X1, . . . , Xi−1] ≤ p+, then

P
[
X ≥ (1 + ε)np+

]
≤ e−ε

2np+/3.

Similarly, if for all i ∈ [n], we have P [Xi = 1 | X1, . . . , Xi−1] ≥ p−, then

P
[
X ≤ (1− ε)np−

]
≤ e−ε

2np−/3.

The following de�nition turns out to be a suitable assumption on G which enables
a convenient analysis of the process. We call a k-graph G α-connected if for all dis-
tinct v1, . . . , vk−1, vk+1, . . . , v2k−1 ∈ V (G), there exist at least α|G| vertices vk such that
vivi+1 . . . vi+k−1 ∈ E(G) for all i ∈ [k]. This property is present in natural classes of k-
graphs. For instance, if G is (c, k, p)-typical, then G is (1 − c)pk-connected. Similarly, if
δ(G) ≥ (1− 1

k + α)|G|, then G is kα-connected.

Lemma 5. Let k ≥ 2 and α > 0. Suppose n is su�ciently large in terms of k and α.
Suppose that G is an α-connected k-graph on n vertices and X = (Xt)t∈N is the process
de�ned above. Let T :=

⌊
nk−1 log2 n

⌋
. Then with probability at least 1 − 1/n, WT is a

spanning walk in G and ∆(WT ) ≤ log3 n.

Proof. We denote by Et the event that ∆(Wt) ≤
√
n. We say that distinct v1, . . . , vk−1 ∈

V (G) (or simply an ordered (k − 1)-set) are met by X at step t ≥ k − 1 if Xt−k+1+i = vi
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for all i ∈ [k − 1]. A (k − 1)-set S is covered by X at step t if S ⊆ {Xt−k+1, . . . , Xt} and
Xt 6= ∅.

In the following, �x distinct v1, . . . , vk−1 ∈ V (G). The key idea is to show that for
any given time t, the probability that X meets or covers v1, . . . , vk−1 at step t + 2k is
Θα(n−k+1).

For t ≥ k − 1, let It be the indicator random variable of the event that X meets
v1, . . . , vk−1 at step t, and let Ct be the indicator random variable of the event that X
covers {v1, . . . , vk−1} at step t. Note that dWt({v1, . . . , vk−1}) =

∑t
t′=k Ct′ .

Consider t ≥ k−1 and suppose we know the outcome of the process up to and including
step t. Clearly, in every step of the process, there are at most n choices for the next vertex.
Moreover, if Et holds, then Gt−1+i will be 2α/3-connected and δ(Gt−1+i) ≥ 2αn/3 for all
i ∈ [2k]. In particular, in each of the following 2k steps, the process has at least αn/2
choices for the next vertex Xt+i (even if we require that Xt+i /∈ {v1, . . . , vk−1}). Thus, the
process will not terminate within the next 2k steps.

We claim that

P[It+2k = 1 | (Xt′)t′∈[t], Et] ≥
(αn/2)k+1

n2k
=

αk+1

2k+1nk−1
=: p−.(1)

Clearly, there are at most n2k choices for the vertices Xt+1, . . . , Xt+2k. Moreover, for
at least (αn/2)k+1 choices of Xt+1, . . . , Xt+2k, the vertices v1, . . . , vk−1 are met at step
t + 2k. This is because for Xt+1, . . . , Xt+k there are at least (αn/2)k choices that avoid
v1, . . . , vk−1, and then there are at least αn/2 choices for Xt+k+1 such that Xt+k+1+i = vi
for all i ∈ [k − 1] is a valid choice for the process. (Here, the step of choosing Xt+k+1 is
the part where the de�nition of α-connectedness is crucial.)

We also claim that

P[Ct+2k = 1 | (Xt′)t′∈[t], Et] ≤
k!nk+1

(αn/2)2k
=

22kk!

α2knk−1
=: p+.(2)

To prove this claim, we make three observations. Firstly, recall that in each of the next
2k steps, the process has at least αn/2 choices for the next vertex. Secondly, note that
if Ct+2k = 1, then {Xt+k+1, . . . , Xt+2k} ⊇ {v1, . . . , vk−1}. There are at most k! ways of
assigning v1, . . . , vk−1 to Xt+k+1, . . . , Xt+2k. Thirdly, there are at most nk+1 choices for
the remaining k + 1 vertices.

Note that the probability estimates (1) and (2) rely on the assumption that Et holds.
To account for the complementary case, we de�ne auxiliary 0/1 random variables Y −t and
Y +
t for t ≥ 4k + 1 as follows. Let Y −t := It and Y

+
t := Ct if Et−2k holds and otherwise let

Y −t := 1 with probability p− and Y +
t := 1 with probability p+ independently of all other

random choices.
Since the bounds (1) and (2) only hold if we condition on the process until 2k steps

earlier, we consider 2k disjoint subsequences and analyse each subsequence individually.

De�ne T ′ := bT/2kc and for all i ∈ [2k], de�ne Z±i :=
∑T ′

t′=1 Y
±
i+2k(t′+1). Observe that for

each i ∈ [2k] and all t′ ∈ N, we have

P[Y −i+2k(t′+1) = 1 | Y −i+4k, Y
−
i+6k, . . . , Y

−
i+2kt′ ] ≥ p

−,

P[Y +
i+2k(t′+1) = 1 | Y +

i+4k, Y
+
i+6k, . . . , Y

+
i+2kt′ ] ≤ p

+.

This follows from (1) and (2) if Ei+2kt′ holds and from the de�nition of Y ±i+2k(t′+1) otherwise.

Note that T ′ ·p− ≥ log3/2 n and log2 n ≤ T ′ ·p+ ≤ log5/2 n. Hence, by Lemma 4 we conclude
that

P[Z−i ≤ (log3/2 n)/2] ≤ e−(log
3/2 n)/12 and P[Z+

i ≥ 2 log5/2 n] ≤ e−(log
2 n)/3.
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Therefore, with probability at least 1 − 1/n say, we have Z−i ≥ (log3/2 n)/2 and Z+
i ≤

2 log5/2 n for all i ∈ [2k] and all choices of v1, . . . , vk−1 simultaneously.
Finally, suppose that the above hold. We claim that ET holds. Suppose not. Let t0 ≤ T

be minimal such that dWt0
(S) >

√
n for some (k − 1)-set S. Then Y +

t = Ct for all t ≤ t0,
and hence dWt0

(S) ≤ 5k+
∑2k

i=1 Z
+
i (the �rst term accounts for the roughly 4k steps that

are not taken into account by the Z+
i variables), a contradiction. This implies that Y −t = It

and Y +
t = Ct for all t ≤ T . Consequently, all ordered (k − 1)-sets are met at least once

until step T and ∆(WT ) ≤ log3 n. �

2.2. F -decompositions. In 1976, Wilson [24] proved the fundamental result that given
any graph F , for su�ciently large n, the complete graph Kn has an F -decomposition
whenever it satis�es some necessary divisibility conditions (see below). This was general-
ised to hypergraphs in [11]. In order to formally state the required result, we de�ne the
following. Let G and F be k-graphs, where F is non-empty. An F -decomposition of G is
a collection of copies of F in G such that every edge of G is contained in exactly one of
these copies. It is easy to see that the existence of an F -decomposition necessitates certain
divisibility conditions. For instance, we surely need e(F ) | e(G). More generally, de�ne

dF (i) := gcd{dF (S) : S ∈
(
V (F )
i

)
} for all 0 ≤ i ≤ k − 1. Note that dF (0) = e(F ). Now,

G is called F -divisible if dF (i) | dG(S) for all 0 ≤ i ≤ k − 1 and all S ∈
(
V (G)
i

)
. It is easy

to see that G must be F -divisible in order to admit an F -decomposition. The converse
implication is in general not true. However, if G is a large typical k-graph, then divisib-
ility guarantees the existence of a decomposition. For G = Kk

n, this generalises Wilson's
theorem to hypergraphs.

Theorem 6 ([11]). For all k ∈ N, p ∈ [0, 1] and any k-graph F , there exist c > 0 and
h, n0 ∈ N such that the following holds. Suppose that G is a (c, h, p)-typical k-graph on at
least n0 vertices. Then G has an F -decomposition whenever it is F -divisible.

We remark that explicit bounds for c and h were obtained in [11]. Using these one
can also obtain such explicit bounds in Theorem 2. For a subsequent alternative proof of
Theorem 6 see [17].

Let Ck` denote the tight k-uniform cycle of length `, that is, the vertices of Ck` are
v1, . . . , v`, and the edges are all the k-tuples of the form {vi, vi+1, . . . , vi+k−1}, with indices
modulo `.

Here, we will apply Theorem 6 with F = Ck2k. Clearly, we have dCk
2k

(0) = e(Ck2k) = 2k

and dCk
2k

(1) = k. Moreover, for every i ∈ {2, . . . , k−1}, we have dCk
2k

({v1, . . . , vi−1, vk}) =

1 and hence dCk
2k

(i) = 1. Conveniently, a k-graphG is thus Ck2k-divisible whenever 2k | e(G)

and k | dG(v) for all v ∈ V (G).

2.3. Proof of Theorem 2. We can now prove our main theorem.

Proof of Theorem 2. Given k and p, choose c > 0 su�ciently small and h, n0 su�ciently
large. In particular, we assume that h ≥ k and that we can apply Theorem 6 with k, p, 2c,
h, n0, C

k
2k playing the roles of k, p, c, h, n0, F . Suppose that G is a (c, h, p)-typical k-graph

on n ≥ n0 vertices with all vertex degrees divisible by k. Since G is (1 − c)pk-connected,
by Lemma 5, there exists a spanning walk W = v1v2 . . . v` in G such that ∆(W) ≤ log3 n.
Next, we extend W to a closed walk W ′. Choose k ≤ `′ ≤ 3k − 1 such that `′ ≡ e(G)− `
mod 2k. Now, �nd distinct vertices v`+1, . . . , v`+`′ ∈ V (G) \ {v1, . . . , vk−1, v`−k+2, . . . , v`}
such that vivi+1 . . . vi+k−1 ∈ E(G) \ E(W) for all i with ` − k + 1 < i ≤ ` + `′, with
indices modulo ` + `′. We can �nd such vertices one-by-one using the typicality of G.
Indeed, when �nding v`+j , we need to ensure that v`+j belongs to the neighbourhood of
(at most) k speci�c (k − 1)-subsets S ⊆ V (G), but does not form an edge of W with
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any of these. Since ∆(W) ≤ log3 n, there are at least (1 − c)pkn − k log3 n ≥ pkn/2 such
vertices, from which we can choose one whilst also avoiding previously chosen vertices and
{v1, . . . , vk−1, v`−k+2, . . . , v`}. LetW ′ := v1 . . . v`+`′ . Clearly,W ′ is a spanning closed walk
in G and ∆(W ′) ≤ 2 log3 n.

Now, let G′ := G − E(W ′). We have e(G′) = e(G) − (` + `′) ≡ 0 mod 2k. Moreover,
since W ′ is a closed walk, we have k | dW ′(v) for all v ∈ V (G). Combining this with the
initial divisibility condition of G, we have that k | dG′(v) for all v ∈ V (G′). Thus, G′ is
Ck2k-divisible. Moreover, since ∆(W ′) ≤ 2 log3 n, we have that G′ is (2c, h, p)-typical.

Invoking Theorem 6, we conclude that G′ has a Ck2k-decomposition C. We can now
simply incorporate each cycle of C one-by-one into the spanning closed walk W ′. For
this, suppose that W ′′ is the current spanning closed walk and let C ∈ C be a copy
of Ck2k with vertices v1, . . . , v2k appearing in this order on C. Since W ′′ is spanning,
v1, . . . , vk−1 appear consecutively inW ′′, sayW ′′ =W ′′1 v1 . . . vk−1W ′′2 . We can then simply
replaceW ′′ withW ′′1 v1 . . . v2kv1 . . . vk−1W ′′2 to obtain a new spanning closed walkW ′′′ with
E(W ′′′) = E(W ′′)∪E(C). Adding all cycles of C in this way yields the desired Euler tour.

�

As pointed out after Theorem 2, our proof can also be easily adapted to obtain a tight
Euler trail. If a (2-)graph has an Euler trail, then there are precisely two vertices of odd
degree. If an Euler trail in a k-graph G starts with the sequence v1 . . . vk−1 and ends with
the sequence wk−1 . . . w1, then (assuming that v1, . . . , vk−1, w1, . . . , wk−1 are distinct) we
must have dG(vi), dG(wi) ≡ i mod k for all i ∈ [k − 1], and all other vertex degrees are
divisible by k. On the other hand, if these conditions hold and G is typical, then G has an
Euler trail. For this, in the above proof of Theorem 2, instead of extending the spanning
walk W to a closed walk, one simply extends both ends to the designated start and end
(k − 1)-tuples.
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