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Abstract. In a recent breakthrough, Keevash proved the Existence conjecture for combin-
atorial designs, which has its roots in the 19th century. We give a new proof, based on the

method of iterative absorption. Our main result concerns K
(r)
q -decompositions of hypergraphs

whose clique distribution fulfils certain uniformity criteria. These criteria offer considerable
flexibility. This enables us to strengthen the results of Keevash as well as to derive a number
of new results, for example a resilience version and minimum degree version.

1. Introduction

The term ‘Combinatorial design’ usually refers to a system of finite sets which satisfy some
specified balance or symmetry condition. Some well known examples include balanced in-
complete block designs, projective planes, Latin squares and Hadamard matrices. These have
applications in many areas such as finite geometry, statistics, experiment design and crypto-
graphy.

1.1. Block designs and Steiner systems. In this paper, an (n, q, r, λ)-design is a set X of q-
subsets (often called ‘blocks’) of some n-set V , such that every r-subset of V belongs to exactly
λ elements of X. (Note that this makes only sense if q > r, which we assume throughout
the paper.) In the case when r = 2, this coincides with the notion of balanced incomplete
block designs. An (n, q, r, 1)-design is also called an (n, q, r)-Steiner system. There are some
obviously necessary ‘divisibility conditions’ for the existence of a design: consider some subset
S of V of size i < r and assume that X is an (n, q, r, λ)-design. Then the number of elements

of X which contain S is λ
(
n−i
r−i
)
/
(
q−i
r−i
)
. We say that the necessary divisibility conditions are

satisfied if
(
q−i
r−i
)

divides λ
(
n−i
r−i
)

for all 0 ≤ i < r.
The ‘Existence conjecture’ states that for given q, r, λ, the necessary divisibility conditions

are also sufficient for the existence of an (n, q, r, λ)-design, except for a finite number of excep-
tional n. Its roots can be traced back to work of e.g. Plücker, Kirkman and Steiner in the 19th
century. Over a century later, a breakthrough result of Wilson [42, 43, 44] resolved the graph
case r = 2.

For r ≥ 3, much less was known until relatively recently. In 1963, Erdős and Hanani [12]
proposed an approximate version of the Existence conjecture for the case of Steiner systems.
More precisely, they asked whether one can find blocks which cover every r-set at most once
and cover all but o(nr) of the r-sets, as n tends to infinity. This was proved in 1985 by
Rödl [34] via his celebrated ‘nibble’ method, and the bounds were subsequently improved by
increasingly sophisticated randomised techniques (see e.g. [1, 41]). Ferber, Hod, Krivelevich
and Sudakov [13] recently observed that this method can be used to obtain an ‘almost’ Steiner
system in the sense that every r-set is covered by either one or two q-sets.

Teirlinck [40] was the first to prove the existence of designs for arbitrary r ≥ 6, via an
ingenious recursive construction based on the symmetric group (this however requires q = r+1
and λ large compared to q). Kuperberg, Lovett and Peled [27] proved a ‘localized central limit
theorem’ for rigid combinatorial structures, which implies the existence of designs for arbitrary
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q and r, but again for large λ. There are many constructions resulting in sporadic and infinite
families of designs (see e.g. the handbook [9]). However, the set of parameters they cover is
very restricted. In particular, even the existence of infinitely many Steiner systems with r ≥ 4
was open until recently.

In a recent breakthrough, Keevash [20] proved the Existence conjecture in general, based
on the method of ‘Randomised algebraic constructions’. This method is inspired by Wilson’s
algebraic approach to the graph case as well as results on integral designs by Graver and
Jurkat [15].

In the current paper, we provide a new proof of the Existence conjecture based on the method
of iterative absorption. In fact, our main theorem (Theorem 3.7) is considerably more general
than this (as well as the results in [20]): it implies a number of new results about designs in
the ‘incomplete setting’, that is, when only a given subset E of all the possible r-sets of V are
allowed in the blocks.

The method of iterative absorption was initially introduced in [23, 26] to find Hamilton
decompositions of graphs. In the meantime it has been successfully applied to verify the
Gyárfás-Lehel tree packing conjecture for bounded degree trees [19], as well as to find decom-
positions of dense graphs into a given graph F [5, 6, 14]. We believe that the present paper
will pave the way for further applications beyond the graph setting.

1.2. Designs in hypergraphs. We will study designs in a hypergraph setting. Here a hyper-
graph H is a pair (V,E), where V is the vertex set and the edge set E is a set of subsets of V .
We identify H with E. In particular, we let |H| := |E|. We say that H is an r-graph if every

edge has size r. We let K
(r)
n denote the complete r-graph on n vertices.

Let H be some r-graph. A K
(r)
q -decomposition of H is a collection K of copies of K

(r)
q in

H such that every edge of H is contained in exactly one of these copies. More generally, a

(q, r, λ)-design of H is a collection K of distinct copies of K
(r)
q in H such that every edge of H

is contained in exactly λ of these copies. Note that a (q, r, λ)-design of K
(r)
n is equivalent to an

(n, q, r, λ)-design.
For a set S ⊆ V with 0 ≤ |S| ≤ r, the (r−|S|)-graph H(S) has vertex set V \S and contains

all (r−|S|)-subsets of V \S that together with S form an edge in H. (H(S) is often called the
link graph of S.) We say that H is (q, r, λ)-divisible if for every S ⊆ V with 0 ≤ |S| ≤ r−1, we

have that
(q−|S|
r−|S|

)
divides λ|H(S)|. Similarly to Section 1.1, this is a necessary condition for the

existence of a (q, r, λ)-design of H. We say that H is K
(r)
q -divisible if H is (q, r, 1)-divisible.

We let δ(H) and ∆(H) denote the minimum and maximum (r − 1)-degree of an r-graph
H, respectively, that is, the minimum/maximum value of |H(S)| over all S ⊆ V (H) of size

r − 1. The following result guarantees designs not just for K
(r)
n , but also for r-graphs which

are allowed to be far from complete in the sense that they only have large minimum degree.

Theorem 1.1 (Minimum degree version). For all q > r ≥ 2 and λ ∈ N, there exists an n0 ∈ N
such that the following holds for all n ≥ n0. Let

c�q,r :=
r!

3 · 14rq2r
.

Suppose that G is an r-graph on n vertices with δ(G) ≥ (1−c�q,r)n. Then G has a (q, r, λ)-design
if it is (q, r, λ)-divisible.

The main result of [20] implies a weaker version where c�q,r is replaced by some non-explicit
ε� 1/q.

Note that Theorem 1.1 implies that whenever X is a partial (n, q, r)-Steiner system (i.e. a set

of edge-disjoint K
(r)
q on n vertices) and n∗ ≥ max{n0, n/c

�
q,r} satisfies the necessary divisibility

conditions, then X can be extended to an (n∗, q, r)-Steiner system. For the case of Steiner triple
systems (i.e. q = 3 and r = 2), Bryant and Horsley [8] showed that one can take n∗ = 2n+ 1,
which proved a conjecture of Lindner.
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Theorem 1.1 motivates the following very challenging problem regarding the decomposition

threshold cq,r of K
(r)
q .

Problem 1.2. Determine the supremum cq,r of all c ∈ [0, 1] with the following property: There

exists n0 ∈ N such that for all n ≥ n0, every K
(r)
q -divisible r-graph on n vertices with δ(G) ≥

(1− c)n has a K
(r)
q -decomposition.

Theorem 1.1 implies that cq,r ≥ c�q,r. It is not clear what the correct value should be. We note

that for all r, q, n0 ∈ N, there exists an r-graph Gn on n ≥ n0 vertices with δ(Gn) ≥ (1−br log q
qr−1 )n

such that Gn does not contain a single copy of K
(r)
q , where br > 0 only depends on r. This

can be seen by adapting a construction from [24] as follows. Without loss of generality, we
may assume that 1/q � 1/r. By a result of [37], for every r ≥ 2, there exists a constant br
such that for any large enough q, there exists a partial (N, r, r − 1)-Steiner system SN with
independence number α(SN ) < q/(r− 1) and 1/N ≤ br log q/qr−1. This partial Steiner system
can be ‘blown up’ (cf. [24]) to obtain arbitrarily large r-graphs Hn on n vertices with α(Hn) < q

and ∆(Hn) ≤ n/N ≤ brn log q/qr−1. Then the complement Gn of Hn is K
(r)
q -free and satisfies

δ(Gn) ≥ (1− br log q
qr−1 )n.

We now consider the graph case r = 2. A famous conjecture by Nash-Williams [31] on the
decomposition threshold of a triangle would imply that c3,2 = 3/4. Until recently, the best
bound for the problem was by Gustavsson [16], who claimed that cq,2 ≥ 10−37q−94. Iterated
absorption methods have led to significant progress in this area. For instance, the results in [14]
imply that cq,2 = c∗q,2, where c∗q,r denotes the fractional version of the decomposition threshold

(the triangle case q = 3 was already obtained in [5]). This in turn has resulted in significantly
improved explicit bounds on cq,2, via results on fractional decompositions obtained in [4, 11].
In particular, the results from [4, 14] imply that 1

104q3/2
≤ cq,2 ≤ 1

q+1 , where the upper bound

is conjectured to be the correct value. The results in [5, 14] make (implicit) use of Szemerédi’s
regularity lemma, whereas our proof avoids this, resulting in much more moderate requirements
on n.

1.3. Resilience and typicality. An important trend in probabilistic combinatorics has been
to study the resilience of r-graph properties with respect to local and global perturbations.
This was first systematically approached in an influential paper of Sudakov and Vu [39]. Recent
highlights include the transference results for random hypergraphs by Conlon and Gowers [10]
as well as Schacht [38].

Our main result implies the following local resilience version of the existence of designs,
which is new even in the graph case. Given two r-graphs H and L, define H 4 L to be the
r-graph on V (H)∪ V (L) whose edge set is (H \L)∪ (L \H). Let Hr(n, p) denote the random
binomial r-graph on [n] whose edges appear independently with probability p.

Theorem 1.3 (Resilience version). Let p ∈ (0, 1] and q, r, λ ∈ N with q > r and let

c(q, r, p) :=
r!p2r(q+r

r )

3 · 14rq2r
.

Then the following holds whp for H ∼ Hr(n, p). For every r-graph L on [n] with ∆(L) ≤
c(q, r, p)n, H 4 L has a (q, r, λ)-design whenever it is (q, r, λ)-divisible.

Note that the case p = 1 implies Theorem 1.1.
The main result of [20] is actually a decomposition result for ‘typical’ hypergraphs (and

complexes). Here an r-graph H on n vertices is called (c, h, p)-typical if for any set A of

(r− 1)-subsets of V (H) with |A| ≤ h we have |
⋂
S∈AH(S)| = (1± c)p|A|n. (So in the 2-graph

case for example, this requires that any set of up to h vertices have roughly as many common
neighbours as one would expect in a binomial random graph of density p.) The main result
in [20] requires (c, h, p)-typicality for c� 1/h� 1/q, 1/λ. We can relax this to more moderate
requirements on c and h.
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Theorem 1.4. For all q, r, λ ∈ N and c, p ∈ (0, 1] with q > r and

c ≤ p2r(q+r
r )/(qr8q),(1.1)

there exists n0 ∈ N such that the following holds for all n ≥ n0. Suppose that H is a
(c, 2r

(
q+r
r

)
, p)-typical r-graph on n vertices. Then H has a (q, r, λ)-design if it is (q, r, λ)-

divisible.

Note that whenever H is (c, h, p)-typical and ∆(L) ≤ γn with V (L) = V (H), then H4L is
(c+hp−hγ, h, p)-typical. Thus, the above theorem can also be applied to obtain a (q, r, λ)-design

of H 4 L, with c+ 2r
(
q+r
r

)
p−2r(q+r

r )γ playing the role of c in (1.1).

1.4. Matchings and further results. As another illustration, we now state a consequence of
our main result which concerns perfect matchings in hypergraphs that satisfy certain uniformity
conditions on their edge distribution. Note that the conditions are much weaker than any
standard pseudorandomness notion.

Theorem 1.5. For all q ≥ 2 and ξ > 0 there exists n0 ∈ N such that the following holds
whenever n ≥ n0 and q | n. Let G be a q-graph on n vertices which satisfies the following
properties:

• for some d ≥ ξ, |G(v)| = (d± 0.01ξ)nq−1 for all v ∈ V (G);

• every vertex is contained in at least ξnq copies of K
(q)
q+1;

• |G(v) ∩G(w)| ≥ ξnq−1 for all v, w ∈ V (G).

Then G has 0.01ξnq−1 edge-disjoint perfect matchings.

Note that for G = K
(q)
n , this is strengthened by Baranyai’s theorem [3], which states that

K
(q)
n has a decomposition into

(
n−1
q−1

)
edge-disjoint perfect matchings. More generally, the

interplay between designs and the existence of (almost) perfect matchings in hypergraphs has
resulted in major developments over the past decades, e.g. via the Rödl nibble. For more recent
progress on results concerning perfect matchings in hypergraphs and related topics, see e.g. the
surveys [35, 45, 46].

We discuss further applications of our main result in Section 3, e.g. to partite graphs (see
Example 3.10) and to (n, q, r, λ)-designs where we allow any λ ≤ nq−r/(11 · 7rq!), say (under
more restrictive divisibility conditions, see Corollary 3.13). We also note that, in a similar way
as discussed in [20, 21], the results of this paper can be combined with ‘counting versions’ of the
Rödl nibble (or corresponding random greedy processes) to obtain lower bounds on the number
of designs with given parameters. (Linial and Luria [29] showed that one can obtain good upper
bounds via entropy techniques.) These developments also make it possible to systematically
study random designs (see e.g. [28]). This can be done e.g. by analysing a random approximate
decomposition and showing that the leftover satisfies the conditions of Theorem 1.4.

1.5. Structure of the paper. In the following section, we will introduce our basic termin-
ology. In Section 3 we introduce supercomplexes and state our main theorem (Theorem 3.7).
We also give several applications. Section 4 is devoted to a brief outline of our proof method.
In Sections 5 and 6 we collect tools (which are mainly probabilistic) and observations for later
use. In particular, we prove the Boost lemma (Lemma 6.3), which allows us to ‘boost’ our
regularity parameters.

In Section 7 we introduce vortices (which form the framework for our iterated absorption)
and state the Cover down lemma (Lemma 7.4). The latter is the main engine behind the
iterative absorption process – it allows us to reduce the current decomposition problem to a
significantly smaller one in each iteration. We then construct absorbers (which deal with the
leftover from the iterative process) in Section 8. We combine all these results in Section 9
to prove our main theorem (Theorem 3.7) and also deduce Theorems 1.3, 1.4, 1.5 and 3.14.
Finally, in Section 10 we prove the Cover down lemma.



5

2. Notation

2.1. Basic terminology. We let [n] denote the set {1, . . . , n}, where [0] := ∅. Moreover,
[n]0 := [n] ∪ {0} and N0 := N ∪ {0}. As usual,

(
n
i

)
denotes the binomial coefficient, where we

set
(
n
i

)
:= 0 if i > n or i < 0. Moreover, given a set X and i ∈ N0, we write

(
X
i

)
for the

collection of all i-subsets of X. Hence,
(
X
i

)
= ∅ if i > |X|. If F is a collection of sets, we define⋃

F :=
⋃
f∈F f .

We write X ∼ B(n, p) if X has binomial distribution with parameters n, p, and we write
bin(n, p, i) :=

(
n
i

)
pi(1− p)n−i. So by the above convention, bin(n, p, i) = 0 if i > n or i < 0.

We say that an event holds with high probability (whp) if the probability that it holds tends
to 1 as n → ∞ (where n usually denotes the number of vertices). If we use a probabilistic
argument in a proof in order to show the existence of a certain object, and a bounded number
of properties of this random object hold whp then we can assume that for large enough n there
is such an object that has all the desired properties.

We write x � y to mean that for any y ∈ (0, 1] there exists an x0 ∈ (0, 1) such that for
all x ≤ x0 the subsequent statement holds. Hierarchies with more constants are defined in
a similar way and are to be read from the right to the left. We will always assume that the
constants in our hierarchies are reals in (0, 1]. Moreover, if 1/x appears in a hierarchy, this
implicitly means that x is a natural number. More precisely, 1/x � y means that for any
y ∈ (0, 1] there exists an x0 ∈ N such that for all x ∈ N with x ≥ x0 the subsequent statement
holds.

We write a = b± c if b− c ≤ a ≤ b+ c. Equations containing ± are always to be interpreted
from left to right, e.g. b1± c1 = b2± c2 means that b1− c1 ≥ b2− c2 and b1 + c1 ≤ b2 + c2. We
will often use the fact that for all 0 < x < 1 and n ∈ N we have (1± x)n = 1± 2nx.

2.2. Hypergraphs and complexes. Let H be an r-graph. Note that H(∅) = H. For a set
S ⊆ V (H) with |S| ≤ r and L ⊆ H(S), let S]L := {S∪ e : e ∈ L}. Clearly, there is a natural
bijection between L and S ] L.

For i ∈ [r − 1]0, we define δi(H) and ∆i(H) as the minimum and maximum value of |H(S)|
over all i-subsets S of V (H), respectively. As before, we let δ(H) := δr−1(H) and ∆(H) :=
∆r−1(H). Note that δ0(H) = ∆0(H) = |H(∅)| = |H|.

For two r-graphs H and H ′, we let H −H ′ denote the r-graph obtained from H by deleting
all edges of H ′.

Definition 2.1. A complex G is a hypergraph which is closed under inclusion, that is, whenever
e′ ⊆ e ∈ G we have e′ ∈ G. If G is a complex and i ∈ N0, we write G(i) for the i-graph on
V (G) consisting of all e ∈ G with |e| = i. We say that a complex is empty if ∅ /∈ G(0), that is,
if G does not contain any edges.

Suppose G is a complex and e ⊆ V (G). Define G(e) as the complex on vertex set V (G) \ e
containing all sets f ⊆ V (G) \ e such that e ∪ f ∈ G. Clearly, if e /∈ G, then G(e) is empty.

Observe that if |e| = i and r ≥ i, then G(r)(e) = G(e)(r−i). We say that G′ is a subcomplex of
G if G′ is a complex and a subhypergraph of G.

For a set U , define G[U ] as the complex on U ∩ V (G) containing all e ∈ G with e ⊆ U .
Moreover, for an r-graph H, let G[H] be the complex on V (G) with edge set

G[H] := {e ∈ G :

(
e

r

)
⊆ H},

and define G−H := G[G(r) −H]. So for i ∈ [r − 1], G[H](i) = G(i). For i > r, we might have

G[H](i) $ G(i). Moreover, if H ⊆ G(r), then G[H](r) = H. Note that for an r1-graph H1 and
an r2-graph H2, we have (G[H1])[H2] = (G[H2])[H1]. Also, (G−H1)−H2 = (G−H2)−H1,
so we may write this as G−H1 −H2.

If G1 and G2 are complexes, we define G1 ∩G2 as the complex on vertex set V (G1)∩V (G2)

containing all sets e with e ∈ G1 and e ∈ G2. We say that G1 and G2 are i-disjoint if G
(i)
1 ∩G

(i)
2

is empty.
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For any hypergraph H, let H≤ be the complex on V (H) generated by H, that is,

H≤ := {e ⊆ V (H) : ∃f ∈ H such that e ⊆ f}.
For an r-graph H, we let H↔ denote the complex on V (H) that is induced by H, that is,

H↔ := {e ⊆ V (H) :

(
e

r

)
⊆ H}.

Note that H↔(r) = H and for each i ∈ [r − 1]0, H↔(i) is the complete i-graph on V (H). We
let Kn denote the the complete complex on n vertices.

3. Supercomplexes and the main theorem

3.1. Supercomplexes. Our main theorem is a statement about ‘supercomplexes’, which we
now define. The definition involves three properties: regularity, density, extendability. We
require regularity primarily to apply the Rödl nibble (via Theorem 6.1). Moreover, we need
the density notion for our ‘Boost lemma’ (Lemma 6.3). Finally, extendability is needed to find

a special r-graph in G(r) that we need to build absorbers.

Definition 3.1. Let G be a complex on n vertices, q ∈ N and r ∈ [q − 1]0, 0 ≤ ε, d, ξ ≤ 1. We
say that G is

(i) (ε, d, q, r)-regular, if for all e ∈ G(r) we have

|G(q)(e)| = (d± ε)nq−r;
(ii) (ξ, q, r)-dense, if for all e ∈ G(r), we have

|G(q)(e)| ≥ ξnq−r;
(iii) (ξ, q, r)-extendable, if G(r) is empty or there exists a subset X ⊆ V (G) with |X| ≥ ξn

such that for all e ∈
(
X
r

)
, there are at least ξnq−r (q − r)-sets Q ⊆ V (G) \ e such that(

Q∪e
r

)
\ {e} ⊆ G(r).

We say that G is a full (ε, ξ, q, r)-complex if G is

• (ε, d, q, r)-regular for some d ≥ ξ,
• (ξ, q + r, r)-dense,
• (ξ, q, r)-extendable.

We say that G is an (ε, ξ, q, r)-complex if there exists a q-graph Y on V (G) such that G[Y ] is

a full (ε, ξ, q, r)-complex. Note that G[Y ](r) = G(r).

The additional flexibility offered by considering (ε, ξ, q, r)-complexes rather than full (ε, ξ, q, r)-
complexes is key to proving our minimum degree and resilience results (via the ‘boosting’ step
discussed below). We also note that for the scope of this paper, it would be sufficient to define
extendability more restrictively, by letting X := V (G). However, for future applications, it
might turn out to be useful that we do not require X = V (G).

Fact 3.2. Note that G is an (ε, ξ, q, 0)-complex if and only if G is empty or |G(q)| ≥ ξnq. In
particular, every (ε, ξ, q, 0)-complex is a (0, ξ, q, 0)-complex.

Definition 3.3. Let G be a complex. We say that G is an (ε, ξ, q, r)-supercomplex if for

every i ∈ [r]0 and every set F ⊆ G(i) with 1 ≤ |F | ≤ 2i, we have that
⋂
f∈F G(f) is an

(ε, ξ, q − i, r − i)-complex.

In particular, taking i = 0 and F = {∅} implies that every (ε, ξ, q, r)-supercomplex is also
an (ε, ξ, q, r)-complex. Moreover, the above definition ensures that if G is a supercomplex

and S, S′ ∈ G(i), then G(S) ∩ G(S′) is also a supercomplex (cf. Proposition 5.1). This is
crucial for the construction of our absorbers in Section 8 and is the reason why we consider
(ε, ξ, q, r)-supercomplexes rather than (ε, ξ, q, r)-complexes.

In the next subsection, we will give some examples of supercomplexes. Note also that
the parameters ε and ξ are monotone in that whenever ε′ ≥ ε and ξ′ ≤ ξ, every (ε, ξ, q, r)-
supercomplex is also an (ε′, ξ′, q, r)-supercomplex. The next lemma shows that we can in fact
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significantly improve on ε (make it smaller) if ξ is allowed to decrease as well. We call this

‘boosting’ (see Section 6.2 for the proof). We achieve this by restricting each
⋂
f∈F G(f)(q−i)

to a suitable (q − i)-graph YF (independently of each other), as permitted in the definition of
an (ε, ξ, q, r)-complex.

Lemma 3.4. Let 1/n� ε, ξ, 1/q and r ∈ [q − 1] with 2(2
√

e)rε ≤ ξ. Let ξ′ := 0.9(1/4)(
q+r
q )ξ.

If G is an (ε, ξ, q, r)-complex on n vertices, then G is an (n−1/3, ξ′, q, r)-complex. In particular,

if G is an (ε, ξ, q, r)-supercomplex, then it is a (2n−1/3, ξ′, q, r)-supercomplex.

3.2. The main theorem. Before we can state the main result of this paper (Theorem 3.7),

we first need to define the notions of K
(r)
q -decomposition and K

(r)
q -divisibility for complexes.

Definition 3.5. Let G be a complex. A K
(r)
q -packing in G is a subcomplex K ⊆ G for which

the following hold:

• K is generated by some Y ⊆ G(q), that is K = Y ≤;
• for all K,K ′ ∈ K(q) = Y , we have |K ∩K ′| < r.

A K
(r)
q -decomposition of G is a K

(r)
q -packing K in G with K(r) = G(r).

Note that a K
(r)
q -packing K in G can be viewed as a K

(r)
q -packing in G(r) (i.e. a collection of

edge-disjoint copies of K
(r)
q in G(r)) with the additional property that the vertex set of every

copy of K
(r)
q in the packing belongs to G(q). Moreover, K(r) is the r-subgraph of G(r) containing

all covered edges (in the usual sense).

Definition 3.6. A complex G is called K
(r)
q -divisible if G(r) is K

(r)
q -divisible.

The following theorem is our main theorem, which we will prove by induction on r in
Section 9.

Theorem 3.7 (Main theorem). For all r ∈ N, the following is true.

(∗)r Let 1/n � ε � ξ, 1/q, where q > r. Let G be a K
(r)
q -divisible (ε, ξ, q, r)-supercomplex

on n vertices. Then G has a K
(r)
q -decomposition.

Note that in light of Lemma 3.4, (∗)r already holds if ε ≤ ξ
2(2
√

e)r
.

3.3. Applications. As the definition of a supercomplex covers a broad range of settings, we
give some applications here. We will use Examples 3.8, 3.9 and 3.11 in Section 9 to prove
Theorem 1.3 (and thus Theorem 1.1) as well as Theorems 1.4 and 1.5. We will also see that
random subcomplexes of a supercomplex are again supercomplexes with appropriately adjusted
parameters (see Corollary 5.16).

Example 3.8. Let 1/n� 1/q and r ∈ [q−1]. It is straightforward to check that the complete
complex Kn is a (0, 0.99/q!, q, r)-supercomplex.

Recall that (c, h, p)-typicality was defined in Section 1.3.

Example 3.9 (Typicality). Suppose that 1/n � c, p, 1/q, that r ∈ [q − 1] and that G is a
(c, 2r

(
q+r
r

)
, p)-typical r-graph on n vertices. Then G↔ is an (ε, ξ, q, r)-supercomplex, where

ε := 2q−r+1c/(q − r)! and ξ := (1− 2q+1c)p2r(q+r
r )/q!.

Proof. Let i ∈ [r]0 and F ⊆ G↔(i) with 1 ≤ |F | ≤ 2i. Let GF :=
⋂
f∈F G

↔(f) and

nF := |V (G) \
⋃
F |. Let e ∈ G

(r−i)
F . To estimate |G(q−i)

F (e)|, we let Qe be the set of
ordered (q − r)-tuples (v1, . . . , vq−r) consisting of distinct vertices in V (G) \ (e ∪

⋃
F ) such

that for all f ∈ F ,
(
f∪e∪{v1,...,vq−r}

r

)
⊆ G. Note that |G(q−i)

F (e)| = |Qe|/(q − r)!. We estim-
ate |Qe| by picking v1, . . . , vq−r sequentially. So let j ∈ [q − r] and suppose that we have

already chosen v1, . . . , vj−1 /∈ e ∪
⋃
F such that

(
f∪e∪{v1,...,vj−1}

r

)
⊆ G for all f ∈ F . Let

Dj =
⋃
f∈F

(f∪e∪{v1,...,vj−1}
r−1

)
. Thus the possible candidates for vj are precisely the vertices in
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⋂
S∈Dj

G(S). Note that dj := |Dj | ≤ |F |
(
r+j−1
r−1

)
, and that dj only depends on the intersection

pattern of the f ∈ F , but not on our previous choice of e and v1, . . . , vj−1. Since G is typical,

we have (1± c)pdjn choices for vj . We conclude that

|Qe| = (1± c)q−rp
∑q−r

j=1 djnq−r = (1± 2q−r+1c)dF (q − r)!nq−rF ,

where dF := p
∑q−r

j=1 dj/(q − r)!. Thus, GF is (2q−r+1cdF , dF , q − i, r − i)-regular. Since∑q−r
j=1

(
r+j−1
r−1

)
=
(
q
r

)
− 1 we have 1/(q − r)! ≥ dF ≥ p|F |((

q
r)−1)/(q − r)! ≥ p2r(qr)/(q − r)!.

Similarly, we deduce that GF is ((1− 2q−r+1c)dF , q − i, r − i)-extendable. Moreover, we have

|G(q+r−2i)
F (e)| ≥ (1− 2q−i+1c)p2r(q+r−i

r )

(q − i)!
nq−iF ≥ ξnq−iF .

Thus, GF is (ξ, q + r − 2i, r − i)-dense. We conclude that GF is an (ε, ξ, q − i, r − i)-complex.
�

Example 3.10 (Partite graphs). Let 1/N � 1/k and 2 = r < q ≤ k − 6. Let V1, . . . , Vk
be vertex sets of size N each. Let G be the complete k-partite 2-graph on V1, . . . , Vk. It is
straightforward to check that G↔ is a (0, k−q, q, 2)-supercomplex. Thus, using Theorem 3.7,

we can deduce that G has a K
(2)
q -decomposition if it is K

(2)
q -divisible. To obtain a resilience

version (and thus also a minimum degree version) along the lines of Theorems 1.3 and 1.1, one
can argue similarly as in the proof of Theorem 1.3 (cf. Section 9).

Results on (fractional) decompositions of dense q-partite 2-graphs into q-cliques are proved
in [6, 7, 30]. These have applications to the completion of partial (mutually orthogonal) Latin
squares.

Example 3.11 (The matching case). Consider 1 = r < q. Let G be a q-graph on n vertices
such that the following conditions hold for some 0 < ε ≤ ξ ≤ 1:

• for some d ≥ ξ − ε, |G(v)| = (d± ε)nq−1 for all v ∈ V (G);

• every vertex is contained in at least ξnq copies of K
(q)
q+1;

• |G(v) ∩G(w)| ≥ ξnq−1 for all v, w ∈ V (G).

Then G↔ is an (ε, ξ − ε, q, 1)-supercomplex.

3.4. Designs. Recall that a K
(r)
q -decomposition of an r-graph is a (q, r, 1)-design. We now

discuss consequences of our main theorem for general (q, r, λ)-designs. We can deduce from

Theorem 3.7 that there are many q-disjoint K
(r)
q -decompositions (which we will also require

during our induction proof). Clearly, any complexG on n vertices can have at most nq−r/(q−r)!
q-disjoint K

(r)
q -decompositions.

Proposition 3.12. Let 1/n � ε, ξ, 1/q and r ∈ [q − 1]. Suppose that G is an (ε, ξ, q, r)-

supercomplex on n vertices and G ⊆ G̃. Suppose that K1, . . . ,Kt are K
(r)
q -packings in G̃, where

t ≤ εnq−r. Then G−
⋃
j∈[t]K

(q)
j is a (2r+2ε, ξ − 22r+1ε, q, r)-supercomplex.

Proof. Let Yused :=
⋃
j∈[t]K

(q)
j . Fix i ∈ [r]0 and F ⊆ G(i) with 1 ≤ |F | ≤ 2i. Let nF :=

n − |
⋃
F |, G′ :=

⋂
f∈F G(f) and G′′ :=

⋂
f∈F (G − Yused)(f). By assumption, there exists

Y ⊆ G′(q−i) such that G′[Y ] is a full (ε, ξ, q − i, r − i)-complex. We claim that G′′[Y ] is a full
(2r+2ε, ξ − 22r+1ε, q − i, r − i)-complex.

First, there is some d ≥ ξ such that G′[Y ] is (ε, d, q − i, r − i)-regular. Let e ∈ G′(r−i).

We clearly have |G′′[Y ](q−i)(e)| ≤ |G′[Y ](q−i)(e)| ≤ (d + ε)nq−rF . Moreover, for each j ∈ [t]

and f ∈ F , there is at most one q-set in K(q)
j that contains e ∪ f . Thus, |G′′[Y ](q−i)(e)| ≥

(d− ε)nq−rF − |F |t ≥ (d− ε− 1.1 · 2iε)nq−rF . Thus, G′′[Y ] is (2r+2ε, d, q − i, r − i)-regular.

Next, by assumption we have that G′[Y ] is (ξ, q + r − 2i, r − i)-dense. Let e ∈ G′(r−i). Fix
j ∈ [t] and f ∈ F . We claim that the number N of (q + r − i)-sets in V (G) that contain e ∪ f
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and also contain some q-set from K(q)
j is at most 2rnr−i. Indeed, for any k ∈ [r]0 and any

K ∈ K(q)
j with |(e ∪ f) ∩ K| = k, there are at most nk−i (q + r − i)-sets that contain e ∪ f

and K. Moreover, there are at most
(
r
k

)
nr−k q-sets K ∈ K(q)

j with |(e ∪ f) ∩K| = k since K(q)
j

covers every r-set at most once. So N ≤
∑r

k=0 n
k−i(r

k

)
nr−k = 2rnr−i. We then deduce that

|G′′[Y ](q+r−2i)(e)| ≥ ξnq−iF − t|F |2rnr−i ≥ ξnq−iF − ε2r+inq−i ≥ (ξ − 22r+1ε)nq−iF .

Finally, since G′′[Y ](r−i) = G′[Y ](r−i), G′′[Y ] is (ξ, q − i, r − i)-extendable. Thus, G− Yused
is a (2r+2ε, ξ − 22r+1ε, q, r)-supercomplex. �

Note that if a complex G has λ q-disjoint K
(r)
q -decompositions, then G(r) has a (q, r, λ)-

design.

Corollary 3.13. Let 1/n � ε, ξ, 1/q and r ∈ [q − 1] with 10 · 7rε ≤ ξ and assume that

(∗)r is true. Suppose that G is a K
(r)
q -divisible (ε, ξ, q, r)-supercomplex on n vertices. Then

G has εnq−r q-disjoint K
(r)
q -decompositions. In particular, G(r) has a (q, r, λ)-design for all

1 ≤ λ ≤ εnq−r.

Proof. Suppose that K1, . . . ,Kt are q-disjoint K
(r)
q -decompositions of G, where t ≤ εnq−r. By

Proposition 3.12, G−
⋃
j∈[t]K

(q)
j is a (2r+2ε, ξ−22r+1ε, q, r)-supercomplex. Since 2(2

√
e)r2r+2ε ≤

ξ − 22r+1ε, G−
⋃
j∈[t]K

(q)
j has a K

(r)
q -decomposition Kt+1 by (the remark after) (∗)r, which is

q-disjoint from K1, . . . ,Kt. �

Note that Corollary 3.13 together with Example 3.8 implies that whenever 1/n � 1/q and

K
(r)
n is K

(r)
q -divisible, then K

(r)
n has a (q, r, λ)-design for all 1 ≤ λ ≤ 1

11·7rq!n
q−r, which improves

the bound λ/nq−r � 1 in [20].

On the other hand, note that G(r) being (q, r, λ)-divisible does not imply that G(r) is (q, r, 1)-
divisible. Thus, we cannot directly apply our main theorem to a (q, r, λ)-divisible graph to
obtain a (q, r, λ)-design. Nevertheless, by applying our main theorem to a number of suitable
subgraphs, we can deduce the following theorem (see Section 9 for the proof).

Theorem 3.14. Let 1/n� ε, ξ, 1/q, 1/λ and r ∈ [q − 1] such that 2(2
√

e)rε ≤ ξ. Let G be an

(ε, ξ, q, r)-supercomplex on n vertices. If G(r) is (q, r, λ)-divisible then G(r) has a (q, r, λ)-design.

4. Outline of the methods

Rather than an algebraic approach as in [20], we pursue a combinatorial approach based on
‘iterative absorption’. In particular, we do not make use of any nontrivial algebraic techniques
and results, but rely only on probabilistic tools.

4.1. Iterative absorption. Suppose that we aim to find a K
(r)
q -decomposition of a suitable

complex G. The Rödl nibble (see e.g. [1, 32, 34, 41]) allows us to obtain an approximate K
(r)
q -

decomposition of G, i.e. a set of r-disjoint q-sets covering almost all r-edges of G. However,
one has little control over the resulting uncovered leftover set. The basic aim of an absorbing
approach is to overcome this issue by removing an absorbing structure A right at the beginning
and then applying the Rödl nibble to G − A, to obtain an approximate decomposition with
a very small uncovered remainder R. Ideally, A was chosen in such a way that A ∪ R has a

K
(r)
q -decomposition.
Such an approach was introduced systematically by Rödl, Ruciński and Szemerédi [36] in

order to find spanning structures in graphs and hypergraphs (but actually goes back further
than this, see e.g. Krivelevich [25]). In the context of decompositions, the first results based on
an absorbing approach were obtained in [23, 26]. In contrast to the construction of spanning
subgraphs, the decomposition setting gives rise to the additional challenge that the number of
and possible shape of uncovered remainder graphs R is comparatively large. So in general it is
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much less clear how to construct a structure A which can deal with all such possibilities for R
(to appreciate this issue, note that V (R) = V (G) in this scenario).

The method developed in [23, 26] consisted of an iterative approach: each iteration consists
of an approximate decomposition of the previous leftover, together with a partial absorption
(or ‘cleaning’) step, which further restricts the structure of the current leftover. In our context,
we carry out this iteration by considering a ‘vortex’. Such a vortex is a nested sequence
V (G) = U0 ⊇ U1 ⊇ · · · ⊇ U`, where |Ui|/|Ui+1| and |U`| are large but bounded. Crucially, after
the ith iteration, all r-edges belonging to the current leftover Ri will be induced by Ui. In the
(i+ 1)th iteration, we make use of a suitable r-graph Hi on Ui which we set aside at the start.
We first apply the Rödl nibble to Ri to obtain a sparse remainder R′i. We then apply what we

refer to as the ‘Cover down lemma’ to find a K
(r)
q -packing Ki of Hi ∪R′i so that the remainder

Ri+1 consists entirely of r-edges induced by Ui+1 (see Lemma 7.4). Ultimately, we arrive at a
leftover R` induced by U`.

Since |U`| is bounded, this means there are only a bounded number of possibilities S1, . . . , Sb
for R`. This gives a natural approach to the construction of an absorber A for R`: it suffices to
construct an ‘exclusive’ absorber Ai for each Si (in the sense that Ai can absorb Si but nothing
else). More precisely, we aim to construct edge-disjoint r-graphs A1, . . . , Ab so that both Ai

and Ai ∪ Si have a K
(r)
q -decomposition, and then let A := A1 ∪ · · · ∪ Ab. Then A ∪ R` must

also have K
(r)
q -decomposition.

Iterative absorption based on vortices was introduced in [14], building on a related (but more
complicated approach) in [5]. Developing the above approach in the setting of hypergraph
decompositions gives rise to two main challenges: constructing the ‘exclusive’ absorbers and
proving the Cover down lemma, which we discuss in the next two subsections, respectively.

One difficulty with the iteration process is that after finishing one iteration, the error terms
are too large to carry out the next one. Fortunately, we are able to ‘boost’ our regularity
parameters before each iteration by excluding suitable q-sets from future consideration (see
Lemma 6.3). For this, we adopt gadgets introduced in [4]. This ‘boosting step’ is the reason for
introducing the ‘density’ requirement in the definition of a supercomplex. Moreover, the ‘Boost
lemma’ enables us to obtain explicit bounds e.g. in the minimum degree version (Theorem 1.1).

4.2. The Cover down lemma. For simplicity, write U ′ for Ui and U for Ui+1. As indicated
above, the goal here is as follows: Given a complex G and a vertex set U ′ in G, we need to

construct H∗ in G[U ′](r) so that for any sparse leftover R on U ′, we can find a K
(r)
q -packing

in G[H∗ ∪ R] where any leftover edges lie in U . (In addition, we need to ensure that the
distribution of the leftover edges within U is sufficiently well-behaved so that we can continue
with the next iteration, but we do not discuss this aspect here.)

We achieve this goal in several stages: given an edge e ∈ H∗ ∪ R, we refer to the size of
its intersection with U as its type. We first cover all edges of type 0. This can be done using
an appropriate greedy approach, i.e. for each edge e of type 0 in turn, we extend e to a copy

of K
(r)
q using edges of H∗ (this works if H∗ is a suitable random subgraph of G consisting of

edges of nonzero type).
Suppose now that for some i ∈ [r − 1], we have covered all edges of type at most r − i− 1.

To cover the edges of type r − i, we consider each i-tuple e of vertices outside U in turn. We

now need to find a K
(r−i)
q−i -decomposition Ke of He := G[H∗ ∪ R](e). (Note that He lies in U

as we have already covered all edges of type at most r − i − 1.) Then Ke corresponds to a

K
(r)
q -packing which covers all leftover edges (of type r − i) containing e, see Fact 10.1. (For

example, consider the triangle case q = 3 and r = 2, and suppose i = 1. Then e can be viewed
as a vertex and Ke corresponds to a perfect matching on the neighbours of e in U . This yields
a triangle packing which covers all edges incident to e.) Inductively, one can use (∗)r−i to
show that such a decomposition Ke does exist if we choose H∗ appropriately. However, the
problem is that we cannot just select these decompositions greedily for successive i-tuples e.
Since different He overlap, the choice of each Ke restricts the choices of subsequent Ke′ in He′

to such an extent that we cannot apply induction to the (leftover of) subsequent He′ anymore.
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Our solution is to split this step of covering the r-edges of type r−i at e into several substeps.
We cover a suitable subset of the r-edges of type r− i directly using a probabilistic choice of a

suitable K
(r−i)
q−i -decomposition (whose vertex set is some small subset Ue ⊆ U). We cover the

remaining r-edges of type r − i using an inductive approach (where the induction is on r − i).
The resulting proof of the Cover down lemma is given in Section 10 (which also includes a more
detailed sketch of this part of the argument).

4.3. Transformers and absorbers. Recall that our remaining goal is to construct an exclus-
ive absorber AS for a given ‘leftover’ r-graph S of bounded size. In other words, both AS ∪ S
as well as AS need to have a K

(r)
q -decomposition. Clearly, we must (and can) assume that S

is K
(r)
q -divisible.

Based on an idea introduced in [5], we will construct AS as a concatenation of ‘transformers’:
given S, a transformer TS can be viewed as transforming S into a new leftover L (which has
the same number of edges and is still divisible). Formally, we require that S ∪ TS and TS ∪ L
both have a K

(r)
q -decomposition (and will set aside TS and L at the beginning of the proof).

Since transformers act transitively, the idea is to concatenate them in order to transform S into

a vertex-disjoint union of K
(r)
q , i.e. we gradually transform the given leftover S into a graph

which is trivially decomposable.
Roughly speaking, we approach this by choosing L to be a suitable ‘canonical’ graph (i.e. L

only depends on |S|). Let S′ denote the vertex-disjoint union of copies of K
(r)
q such that

|S| = |S′|, and let TS′ be the corresponding transformer from S′ into L. Then it is easy to see
that we could let AS := TS ∪ L ∪ TS′ ∪ S′. The construction of both the canonical graph L
as well as that of the transformer TS is based on an inductive approach, i.e. we assume that
(∗)1–(∗)r−1 hold in Theorem 3.7. Moreover, the construction of the canonical graph L is the
point where we need the extendability property in the definition of a supercomplex. The above
construction is given in Section 8.

5. Tools

5.1. Basic tools. We first state two basic properties of supercomplexes that we will use in
Section 8 to construct absorbers.

Proposition 5.1. Let G be an (ε, ξ, q, r)-supercomplex and let F ⊆ G(i) with 1 ≤ |F | ≤ 2i for
some i ∈ [r]0. Then

⋂
f∈F G(f) is an (ε, ξ, q − i, r − i)-supercomplex.

Proof. Let i′ ∈ [r− i]0 and F ′ ⊆ (
⋂
f∈F G(f))(i′) with 1 ≤ |F ′| ≤ 2i

′
. Let F ∗ := {f ∪ f ′ : f ∈

F, f ′ ∈ F ′}. Note that F ∗ ⊆ G(i+i′) and |F ∗| ≤ 2i+i
′
. Thus,⋂

f ′∈F ′
(
⋂
f∈F

G(f))(f ′) =
⋂

f∗∈F ∗
G(f∗)

is an (ε, ξ, q − i− i′, r − i− i′)-complex by Definition 3.3, as required. �

Fact 5.2. If G is an (ε, ξ, q, r)-supercomplex, then for all distinct e, e′ ∈ G(r), we have |G(q)(e)∩
G(q)(e′)| ≥ (ξ − ε)(n− 2r)q−r.

In what follows, we gather tools that show that supercomplexes are robust with respect to
small perturbations. We first bound the number of q-sets that can affect a given edge e. We
provide two bounds, one that we use when optimising our bounds (e.g. in the derivation of
Theorem 1.1) and a more convenient one that we use when the precise value of the parameters
is irrelevant (e.g. in the proof of Proposition 5.6).

Fact 5.3. Let L be an r-graph on n vertices with ∆(L) ≤ γn. Then for each i ∈ [r − 1]0, we

have ∆i(L) ≤ γnr−i/(r − i)!, and for each S ∈
(
V (L)
i

)
, we have ∆(L(S)) ≤ γn.
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Proposition 5.4. Let q, r′ ∈ N and r ∈ N0 with q > r. Let L be an r′-graph on n vertices with

∆(L) ≤ γn. Then every e ∈
(
V (L)
r

)
that does not contain any edge of L is contained in at most

min{2r, ( q
r′)

(q−r)!}γn
q−r q-sets of V (L) that contain an edge of L.

Proof. Consider any e ∈
(
V (L)
r

)
that does not contain any edge of L. For a fixed edge e′ ∈ L

with |e ∪ e′| ≤ q and |e ∩ e′| = i, there are at most
(n−|e∪e′|
q−|e∪e′|

)
≤ nq−r−r

′+i/(q − r − r′ + i)!

q-sets of V (L) that contain both e and e′. Moreover, since e′ 6⊆ e, we have i < r′. Hence, by

Fact 5.3, there are at most
(
r
i

)
∆i(L) ≤

(
r
i

)
γnr

′−i/(r′ − i)! edges e′ ∈ L with |e ∩ e′| = i. Let
s := max{r + r′ − q, 0}. Thus, the number of q-sets in V (L) that contain e and an edge of L
is at most

r′−1∑
i=s

γ

(
r

i

)
nr
′−i

(r′ − i)!
nq−r−r

′+i

(q − r − r′ + i)!
= γnq−r

r′−1∑
i=s

(
r

i

) (
q−r
r′−i
)

(q − r)!
.

Clearly,
(q−r
r′−i)

(q−r)! ≤ 1, and we can bound
∑r′−1

i=s

(
r
i

)
≤ 2r. Also, using Vandermonde’s convolution,

we have
∑r′−1

i=s

(
r
i

) (q−r
r′−i)

(q−r)! ≤
( q
r′)

(q−r)! . �

Fact 5.5. Let 0 ≤ i ≤ r. For a complex G, an r-graph H and F ⊆ G(i), we have⋂
f∈F

(G−H)(f) =
⋂
f∈F

G(f)−H −
⋃

S∈
⋃
F

H(S)−
⋃

S∈
⋃

f∈F (f2)

H(S)− · · · −
⋃
f∈F

H(f).

If F 6⊆ (G−H)(i), then both sides are empty.

Proposition 5.6. Let q, r′ ∈ N and r ∈ N0 with q > r and r′ ≥ r. Let G be a complex on
n ≥ r2r+1 vertices and let H be an r′-graph on V (G) with ∆(H) ≤ γn. Then the following
hold:

(i) If G is (ε, d, q, r)-regular, then G−H is (ε+ 2rγ, d, q, r)-regular.
(ii) If G is (ξ, q, r)-dense, then G−H is (ξ − 2rγ, q, r)-dense.

(iii) If G is (ξ, q, r)-extendable, then G−H is (ξ − 2rγ, q, r)-extendable.
(iv) If G is an (ε, ξ, q, r)-complex, then G−H is an (ε+ 2rγ, ξ − 2rγ, q, r)-complex.
(v) If G is an (ε, ξ, q, r)-supercomplex, then G − H is an (ε + 22r+1γ, ξ − 22r+1γ, q, r)-

supercomplex.

Proof. (i)–(iii) follow directly from Proposition 5.4. (iv) follows from (i)–(iii). To see (v),

suppose that i ∈ [r]0 and F ⊆ (G−H)(i) with 1 ≤ |F | ≤ 2i. By assumption,
⋂
f∈F G(f) is an

(ε, ξ, q − i, r − i)-complex. By Fact 5.5, we can obtain
⋂
f∈F (G − H)(f) from

⋂
f∈F G(f) by

repeatedly deleting an (r′ − |S|)-graph H(S), where S ⊆ f ∈ F . There are at most |F |2i ≤ 22i

such graphs. Unless |S| = r′, we have ∆(H(S)) ≤ γn ≤ 2γ(n− |
⋃
F |) by Fact 5.3. Note that

if |S| = r′, then S ∈ F and hence H(S) is empty, in which case we can ignore its removal.
Thus, a repeated application of (iv) (with r′ − |S|, r − i playing the roles of r′, r) shows that⋂
f∈F (G−H)(f) is an (ε+ 2r+i+1γ, ξ − 2r+i+1γ, q − i, r − i)-complex. �

5.2. Probabilistic tools. The following Chernoff-type bounds form the basis of our concen-
tration results that we use for probabilistic arguments.

Lemma 5.7 (see [18, Corollary 2.3, Corollary 2.4, Remark 2.5 and Theorem 2.8]). Let X be
the sum of n independent Bernoulli random variables. Then the following hold.

(i) For all t ≥ 0, P(|X − EX| ≥ t) ≤ 2e−2t2/n.

(ii) For all 0 ≤ ε ≤ 3/2, P(|X − EX| ≥ εEX) ≤ 2e−ε
2EX/3.

(iii) If t ≥ 7EX, then P(X ≥ t) ≤ e−t.

We will also use the following simple result.
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Proposition 5.8 (Jain, see [33, Lemma 8]). Let X1, . . . , Xn be Bernoulli random variables
such that, for any i ∈ [n] and any x1, . . . , xi−1 ∈ {0, 1},

P(Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1) ≤ p.

Let B ∼ B(n, p) and X := X1 + · · ·+Xn. Then P(X ≥ a) ≤ P(B ≥ a) for any a ≥ 0.

Lemma 5.9. Let 1/n� p, α, 1/a, 1/B. Let I be a set of size αna and let (Xi)i∈I be a family
of Bernoulli random variables with P(Xi = 1) ≥ p. Suppose that I can be partitioned into at
most Bna−1 sets I1, . . . , Ik such that for each j ∈ [k], the variables (Xi)i∈Ij are independent.
Let X :=

∑
i∈I Xi. Then we have

P(|X − EX| ≥ n−1/5EX) ≤ e−n
1/6
.

Proof. Let J1 := {j ∈ [k] : |Ij | ≥ n3/5} and J2 := [k] \ J1. Let Yj :=
∑

i∈Ij Xi and

ε := n−1/5. Suppose that |Yj − EYj | ≤ 0.9εEYj for all j ∈ J1. Then

|X − EX| ≤
∑
j∈[k]

|Yj − EYj | ≤ n3/5 ·Bna−1 +
∑
j∈J1

0.9εEYj ≤ Bna−2/5 + 0.9εEX ≤ εEX.

Thus,

P(|X − EX| ≥ εEX) ≤
∑
j∈J1

P(|Yj − EYj | ≥ 0.9εEYj)
Lemma 5.7(ii)

≤
∑
j∈J1

2e−0.81ε2EYj/3

≤ 2Bna−1e−0.27n−2/5pn3/5 ≤ e−n
1/6
.

�

Similarly as in [17], Lemma 5.9 can be conveniently applied in the following situation: We
are given an r-graph H on n vertices and H ′ is a random subgraph of H, where every edge of
H survives with some probability ≥ p. The following folklore observation allows us to apply
Lemma 5.9 in order to obtain a concentration result for |H ′|.

Fact 5.10. Every r-graph on n vertices can be decomposed into rnr−1 matchings.

Corollary 5.11. Let 1/n � p, 1/r, α. Let H be an r-graph on n vertices with |H| ≥ αnr.
Let H ′ be a random subgraph of H, where each edge of H survives with some probability ≥ p.
Moreover, suppose that for every matching M in H, the edges of M survive independently.
Then we have

P(||H ′| − E|H ′|| ≥ n−1/5E|H ′|) ≤ e−n
1/6
.

Whenever we apply Corollary 5.11, it will be clear that for every matching M in H, the
edges of M survive independently, and we will not discuss this explicitly.

Lemma 5.12. Let 1/n � p, 1/r. Let H be an r-graph on n vertices. Let H ′ be a random
subgraph of H, where each edge of H survives with some probability ≤ p. Suppose that for
every matching M in H, the edges of M survive independently. Then we have

P(|H ′| ≥ 7pnr) ≤ rnr−1e−7pn/r.

Proof. PartitionH into at most rnr−1 matchingsM1, . . . ,Mk. For each i ∈ [k], by Lemma 5.7(iii)

we have P(|H ′ ∩Mi| ≥ 7pn/r) ≤ e−7pn/r since E|H ′ ∩Mi| ≤ pn/r. �
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5.3. Random subsets and subgraphs. In this subsection, we apply the above tools to obtain
basic results about random subcomplexes. The first one deals with taking a random subset of
the vertex set, and the second one considers the complex obtained by randomly sparsifying G(r).

Proposition 5.13. Let 1/n � ε, ξ, 1/q and 1/n � γ � µ, 1/q and r ∈ [q − 1]0. Let G be
an (ε, ξ, q, r)-complex on n vertices. Suppose that U is a random subset of V (G) obtained by
including every vertex from V (G) independently with probability µ. Then with probability at

least 1 − e−n
1/7

, the following holds: for any W ⊆ V (G) with |W | ≤ γn, G[U 4 W ] is an

(ε+ 2n−1/5 + γ̃2/3, ξ − n−1/5 − γ̃2/3, q, r)-complex, where γ̃ := max{|W |/n, n−1/3}.

Proof. If G(r) is empty, there is nothing to prove, so assume the contrary.
By assumption, there exists Y ⊆ G(q) such that G[Y ] is (ε, d, q, r)-regular for some d ≥ ξ,

(ξ, q + r, r)-dense and (ξ, q, r)-extendable. The latter implies that there exists X ⊆ V (G) with

|X| ≥ ξn such that for all e ∈
(
X
r

)
, we have |Exte| ≥ ξnq−r, where Exte is the set of all

(q − r)-sets Q ⊆ V (G) \ e such that
(
Q∪e
r

)
\ {e} ⊆ G(r).

First, by Lemma 5.7(i), with probability at least 1− 2e−2n1/3
, we have |U | = µn± n2/3, and

with probability at least 1− 2e−2n1/4
, |X ∩ U | ≥ µ|X| − |X|2/3.

Claim 1: For all e ∈ G(r), with probability at least 1 − e−n
1/6

, |G[Y ](q)(e)[U ]| = (d ± (ε +

2n−1/5))(µn)q−r.

Proof of claim: Fix e ∈ G(r). Note that E|G[Y ](q)(e)[U ]| = µq−r|G[Y ](q)(e)| = (d± ε)(µn)q−r.

Viewing G[Y ](q)(e) as a (q−r)-graph and G[Y ](q)(e)[U ] as a random subgraph, we deduce with
Corollary 5.11 that

P(|G[Y ](q)(e)[U ]| 6= (1± n−1/5)(d± ε)(µn)q−r) ≤ e−n
1/6
.

−

Claim 2: For all e ∈ G(r), with probability at least 1 − e−n
1/6

, |G[Y ](q+r)(e)[U ]| ≥ (ξ −
n−1/5)(µn)q.

Proof of claim: Note that E|G(q+r)(e)[U ]| = µq|G(q+r)(e)| ≥ ξ(µn)q. Viewing G(q+r)(e) as a

q-graph and G(q+r)(e)[U ] as a random subgraph, we deduce with Corollary 5.11 that

P(|G(q+r)(e)[U ]| ≤ (1− n−1/5)ξ(µn)q) ≤ e−n
1/6
.

−
For e ∈

(
X
r

)
, let Ext′e be the random subgraph of Exte containing all Q ∈ Exte with Q ⊆ U .

Claim 3: For all e ∈
(
X
r

)
, with probability at least 1− e−n

1/6
, |Ext′e| ≥ (ξ − n−1/5)(µn)q−r.

Proof of claim: Let e ∈
(
X
r

)
. Note that E|Ext′e| = µq−r|Exte| ≥ ξ(µn)q−r. Again, Corol-

lary 5.11 implies that

P(|Ext′e| ≤ (1− n−1/5)ξ(µn)q−r) ≤ e−n
1/6
.

−
Hence, a union bound yields that with probability at least 1−e−n

1/7
, we have |U | = µn±n2/3,

|X ∩ U | ≥ µ|X| − |X|2/3 and the above claims hold for all relevant e simultaneously. Assume
that this holds for some outcome U . We now deduce the desired result deterministically.
Let W ⊆ V (G) with |W | ≤ γn. Define G′ := G[U 4 W ] and n′ := |U 4 W |. Note that

µn = (1± 4µ−1γ̃)n′. For all e ∈ G′(r), we have

|G′[Y ](q)(e)| = |G[Y ](q)(e)[U ]| ± |W |nq−r−1 = (d± (ε+ 2n−1/5 +
|W |
µq−rn

))(µn)q−r

= (d± (ε+ 2n−1/5 + µ−(q−r)γ̃))(1± 2q−r4µ−1γ̃)n′q−r

= (d± (ε+ 2n−1/5 + γ̃2/3))n′q−r
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and

|G′[Y ](q+r)(e)| ≥ |G[Y ](q+r)(e)[U ]| − |W |nq−1 ≥ (ξ − n−1/5 − |W |
µqn

)(µn)q

≥ (ξ − n−1/5 − µ−qγ̃)(1− 2q4µ−1γ̃)n′q−r ≥ (ξ − n−1/5 − γ̃2/3)n′q−r,

so G′[Y ] is (ε+ 2n−1/5 + γ̃2/3, d, q, r)-regular and (ξ − n−1/5 − γ̃2/3, q + r, r)-dense.

Finally, let X ′ := (X ∩ U) \ W . Clearly, X ′ ⊆ V (G′) and |X ′| ≥ (ξ − n−1/5 − γ̃2/3)n′.

Moreover, for every e ∈
(
X′

r

)
, there are at least

|Ext′e| − |W |nq−r−1 ≥ (ξ − n−1/5 − γ̃2/3)n′q−r

(q − r)-sets Q ⊆ V (G′) \ e such that
(
Q∪e
r

)
\ {e} ⊆ G′(r). Thus, G′ (and therefore G′[Y ]) is

(ξ − n−1/5 − γ̃2/3, q, r)-extendable. �

The next result is a straightforward consequence of Proposition 5.13 and the definition of a
supercomplex.

Corollary 5.14. Let 1/n � γ � µ � ε � ξ, 1/q and r ∈ [q − 1]. Let G be an (ε, ξ, q, r)-
supercomplex on n vertices. Suppose that U is a random subset of V (G) obtained by including
every vertex from V (G) independently with probability µ. Then whp for any W ⊆ V (G) with
|W | ≤ γn, G[U 4W ] is an (2ε, ξ − ε, q, r)-supercomplex.

Next, we investigate the effect on G of inducing to a random subgraph H of G(r). For our
applications, we need to be able to choose edges with different probabilities. It turns out that
under suitable restrictions on these probabilities, the relevant properties of G are inherited
by G[H].

Proposition 5.15. Let 1/n� ε, γ, p, ξ, 1/q and r ∈ [q − 1], i ∈ [r]0. Let

ξ′ := 0.95ξp2r(q+r
r ) ≥ 0.95ξp(8q) and γ′ := 1.1 · 2i

(
q+r
r

)
(q − r)!

γ.

Let G be a complex on n vertices and F ⊆ G(i) with 1 ≤ |F | ≤ 2i. Suppose that

GF :=
⋂
f∈F

G(f) is an (ε, ξ, q − i, r − i)-complex.

Assume that P is a partition of G(r) satisfying the following containment conditions:

(I) For every f ∈ F , there exists a class Ef ∈ P such that f ∪ e ∈ Ef for all e ∈ G(r−i)
F .

(II) For every E ∈ P there exists DE ∈ N0 such that for all Q ∈ G
(q−i)
F , we have that

|{e ∈ E : ∃f ∈ F : e ⊆ f ∪Q}| = DE .

Let β : P → [p, 1] assign a probability to every class of P. Now, suppose that H is a random

subgraph of G(r) obtained by independently including every edge of X ∈ P with probability β(X)

(for all X ∈ P). Then with probability at least 1− e−n
1/8

, the following holds: for all L ⊆ G(r)

with ∆(L) ≤ γn, ⋂
f∈F

G[H 4 L](f) is a (3ε+ γ′, ξ′ − γ′, q − i, r − i)-complex.

Note that (I) and (II) certainly hold if P = {G(r)}.

Proof. If G
(r−i)
F is empty, then the statement is vacuously true. So let us assume that G

(r−i)
F

is not empty. Let nF := |V (G) \
⋃
F | = |V (GF )|. By assumption, there exists Y ⊆ G

(q−i)
F

such that GF [Y ] is (ε, dF , q − i, r − i)-regular for some dF ≥ ξ, (ξ, q + r − 2i, r − i)-dense and
(ξ, q − i, r − i)-extendable. Define

pF :=

∏
f∈F

β(Ef )

−1 ∏
E∈P

(β(E))DE .
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Note that pF ≥ p|F |(
q
r) ≥ p2r(q+r

r ) and thus pFdF ≥ ξ′. For every e ∈ G(r−i)
F , let

Qe := GF [Y ](q−i)(e) and Q̃e := GF [Y ](q+r−2i)(e).

By assumption, we have |Qe| = (dF ± ε)nq−rF and |Q̃e| ≥ ξnq−iF for all e ∈ G(r−i)
F . Moreover,

since GF [Y ] is (ξ, q − i, r − i)-extendable, there exists X ⊆ V (GF ) with |X| ≥ ξnF such that

for all e ∈
(
X
r−i
)
, we have |Exte| ≥ ξnq−rF , where Exte is the set of all (q−r)-sets Q ⊆ V (GF )\e

such that
(
Q∪e
r−i
)
\ {e} ⊆ G(r−i)

F = GF [Y ](r−i).

We consider the following (random) subsets. For every e ∈ G(r−i)
F , let Q′e contain all Q ∈ Qe

such that for all f ∈ F ,
(
f∪Q∪e

r

)
\ {f ∪ e} ⊆ H and define Q̃′e analogously with Q̃e playing the

role of Qe. For every e ∈
(
X
r−i
)
, let Ext′e contain all Q ∈ Exte such that for all f ∈ F and

e′ ∈
(
Q∪e
r−i
)
\ {e}, f ∪ e′ ∈ H.

Claim 1: For each e ∈ G(r−i)
F , with probability at least 1− e−n

1/6
F , |Q′e| = (pFdF ± 3ε)nq−rF .

Proof of claim: We view Qe as a (q − r)-graph and Q′e as a random subgraph. Note that

P(∀f ∈ F : f ∪ e ∈ H) =
∏
f∈F

P(f ∪ e ∈ H)
(I)
=
∏
f∈F

β(Ef ).

Hence, we have for every Q ∈ Qe that

P(Q ∈ Q′e) =
P(∀f ∈ F :

(
f∪Q∪e

r

)
⊆ H)

P(∀f ∈ F : f ∪ e ∈ H)

=

∏
f∈F

β(Ef )

−1 ∏
e′∈G(r) : ∃f∈F : e′⊆f∪Q∪e

P(e′ ∈ H)

=

∏
f∈F

β(Ef )

−1 ∏
E∈P

(β(E))|{e
′∈E : ∃f∈F : e′⊆f∪Q∪e}|

(II)
=

∏
f∈F

β(Ef )

−1 ∏
E∈P

(β(E))DE = pF .

Thus, E|Q′e| = pF |Qe|. Hence, we deduce with Corollary 5.11 that with probability at least

1− e−n
1/6
F we have |Q′e| = (1± ε)E|Q′e| = (pFdF ± 3ε)nq−rF . −

Claim 2: For each e ∈ G(r−i)
F , with probability at least 1− e−n

1/6
F , |Q̃′e| ≥ ξ′n

q−i
F .

Proof of claim: We view Q̃e as a (q − i)-graph and Q̃′e as a random subgraph. Observe that

for every Q ∈ Q̃e, we have

P(Q ∈ Q̃′e) ≥ p|F |((
q+r−i

r )−1) ≥ p2r(q+r
r )

and thus E|Q̃′e| ≥ p2r(q+r
r )|Q̃e| ≥ ξp2r(q+r

r )nq−iF . Thus, we deduce with Corollary 5.11 that with

probability at least 1− e−n
1/6
F we have |Q̃′e| ≥ ξ′n

q−i
F . −

Claim 3: For every e ∈
(
X
r−i
)
, with probability at least 1− e−n

1/6
F , |Ext′e| ≥ ξ′n

q−r
F .

Proof of claim: We view Exte as a (q − r)-graph and Ext′e as a random subgraph. Observe
that for every Q ∈ Exte, we have

P(Q ∈ Ext′e) ≥ p
|F |((q−i

r−i)−1) ≥ p2r(q+r
r )

and thus E|Ext′e| ≥ p2r(q+r
r )|Exte| ≥ ξp2r(q+r

r )nq−rF . Thus, we deduce with Corollary 5.11 that

with probability at least 1− e−n
1/6
F we have |Ext′e| ≥ ξ′n

q−r
F . −
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Applying a union bound, we can see that with probability at least 1 − e−n
1/8

, H satisfies
Claims 1–3 simultaneously for all relevant e.

Assume that this applies. We now deduce the desired result deterministically. Let L ⊆ G(r)

be any graph with ∆(L) ≤ γn. Let G′ :=
⋂
f∈F G[H 4 L](f). First, we claim that G′[Y ] is

(3ε + γ′, pFdF , q − i, r − i)-regular. Consider e ∈ G′[Y ](r−i). We have that |Q′e| = (pFdF ±
3ε)nq−rF .

Claim 4: If Q ∈ G′[Y ](q−i)(e)4Q′e, then there is some f ∈ F such that f ∪ Q ∪ e contains
some edge from L− {f ∪ e}.
Proof of claim: Clearly, Q ∈ GF [Y ](q−i)(e). First, suppose that Q ∈ G′[Y ](q−i)(e)−Q′e. Since

Q /∈ Q′e, there exists f ∈ F such that
(
f∪Q∪e

r

)
\{f∪e} 6⊆ H, that is, there is e′ ∈

(
f∪Q∪e

r

)
\{f∪e}

with e′ /∈ H. But since Q ∈ G′[Y ](q−i)(e), we have e′ ∈ H 4 L. Thus, e′ ∈ L. Next,

suppose that Q ∈ Q′e − G′[Y ](q−i)(e). Since Q /∈ G′[Y ](q−i)(e), there exists f ∈ F such that

f ∪Q ∪ e /∈ G[H 4 L], that is, there is e′ ∈
(
f∪Q∪e

r

)
with e′ /∈ H 4 L. Since e ∈ G′[Y ](r−i), we

have that f ∪ e ∈ H 4 L, so e′ 6= f ∪ e. Thus, since Q ∈ Q′e, we have that e′ ∈ H. Therefore,
e′ ∈ L. −

For fixed f ∈ F , Proposition 5.4 implies that there are at most
(qr)

(q−r)!γn
q−r q-sets that contain

f∪e and some edge from L−{f∪e}. Thus, we conclude with Claim 4 that |G′[Y ](q−i)(e)4Q′e| ≤
|F | (qr)

(q−r)!γn
q−r. Hence,

|G′[Y ](q−i)(e)| = |Q′e| ± γ′n
q−r
F = (pFdF ± (3ε+ γ′))nq−rF ,

meaning that G′[Y ] is indeed (3ε+ γ′, pFdF , q − i, r − i)-regular.

Next, we claim that G′[Y ] is (ξ′−γ′, q+r−2i, r−i)-dense. Consider e ∈ G′[Y ](r−i). We have

that |Q̃′e| ≥ ξ′nq−iF . Similarly to Claim 4, for every Q ∈ Q̃′e − G′[Y ](q+r−2i)(e) there is some
f ∈ F such that f ∪Q ∪ e contains some edge from L− {f ∪ e}. Thus, using Proposition 5.4
again (with q + r − i playing the role of q), we deduce that

|Q̃′e −G′[Y ](q+r−2i)(e)| ≤ |F |
(
q+r−i
r

)
(q − i)!

γnq−i ≤ 2i
(
q+r
r

)
(q − r)!

γnq−i

and thus |G′[Y ](q+r−2i)(e)| ≥ (ξ′ − γ′)nq−iF .

Finally, we claim that G′[Y ] is (ξ′ − γ′, q − i, r− i)-extendable. Let e ∈
(
X
r−i
)
. We have that

|Ext′e| ≥ ξ′n
q−r
F . Let Exte,G′ contain all Q ∈ Exte such that

(
Q∪e
r−i
)
\ {e} ⊆ G′[Y ](r−i). Suppose

that Q ∈ Ext′e \ Exte,G′ . Then there is e′ ∈
(
Q∪e
r−i
)
\ {e} and f ∈ F such that f ∪ e′ /∈ H 4 L.

On the other hand, we have f ∪ e′ ∈ H. Thus, f ∪ e′ ∈ L. Thus, for all Q ∈ Ext′e \ Exte,G′ ,
there is some f ∈ F such that f ∪Q ∪ e contains some edge from L− {f ∪ e}. Proposition 5.4

implies that there are at most |F | (qr)
(q−r)!γn

q−r such Q. Thus,

|Exte,G′ | ≥ |Ext′e| − 2i
(
q
r

)
(q − r)!

γnq−r ≥ (ξ′ − γ′)nq−rF .

We conclude that G′ is a (3ε+ γ′, ξ′ − γ′, q − i, r − i, i′)-complex, as required. �

In particular, the above proposition implies the following.

Corollary 5.16. Let 1/n� ε, γ, ξ, p, 1/q and r ∈ [q − 1]. Let

ξ′ := 0.95ξp2r(q+r
r ) ≥ 0.95ξp(8q) and γ′ := 1.1 · 2r

(
q+r
r

)
(q − r)!

γ.

Suppose that G is an (ε, ξ, q, r)-supercomplex on n vertices and that H ⊆ G(r) is a random

subgraph obtained by including every edge of G(r) independently with probability p. Then whp
the following holds: for all L ⊆ G(r) with ∆(L) ≤ γn, G[H 4 L] is a (3ε + γ′, ξ′ − γ′, q, r)-
supercomplex.
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6. Nibbles, boosting and greedy covers

6.1. The nibble. There are numerous results based on the Rödl nibble which guarantee the
existence of an almost perfect matching in a near regular hypergraph with small codegrees.
Our application of this is as follows: Let G be a complex. Define the auxiliary

(
q
r

)
-graph

H with V (H) = E(G(r)) and E(H) = {
(
Q
r

)
: Q ∈ G(q)}. Note that for every e ∈ V (H),

|H(e)| = |G(q)(e)|. Thus, if G is (ε, d, q, r)-regular, then every vertex of H has degree (d ±
ε)nq−r. Moreover, for two vertices e, e′ ∈ V (H), we have |H({e, e′})| ≤ nq−r−1, thus ∆2(H) ≤
nq−r−1. Standard nibble theorems would in this setting imply the existence of an almost

perfect matching in H, which translates into a K
(r)
q -packing in G that covers all but o(nr)

r-edges. We need a stronger result in the sense that we want the leftover r-edges to induce
an r-graph with small maximum degree. Alon and Yuster [2] observed that one can use a
result of Pippenger and Spencer [32] (on the chromatic index of uniform hypergraphs) to show
that a near regular hypergraph with small codegrees has an almost perfect matching which is
‘well-behaved’. The following is an immediate consequence of Theorem 1.2 in [2] (applied to
the auxiliary hypergraph H above).

Theorem 6.1 ([2]). Let 1/n� ε� γ, d, 1/q and r ∈ [q − 1]. Suppose that G is an (ε, d, q, r)-

regular complex on n vertices. Then G contains a K
(r)
q -packing K such that ∆(G(r)−K(r)) ≤ γn.

6.2. The Boost lemma. We will now state and prove the ‘Boost lemma’, which ‘boosts’ the
regularity of a complex by restricting to a suitable set Y of q-sets. It will help us to keep the
error terms under control during the iteration process and also helps us to obtain meaningful
resilience and minimum degree bounds.

The proof is based on the following ‘edge-gadgets’, which were used in [4] to obtain fractional

K
(r)
q -decompositions of r-graphs with high minimum degree. These edge-gadgets allow us to

locally adjust a given weighting of q-sets so that this changes the total weight at only one r-set.

Proposition 6.2 (see [4, Proposition 3.3]). Let q > r ≥ 1 and let e and J be disjoint sets
with |e| = r and |J | = q. Let G be the complete complex on e ∪ J . There exists a function

ψ : G(q) → R such that

(i) for all e′ ∈ G(r),
∑

Q∈G(q)(e′) ψ(Q ∪ e′) =

{
1, e′ = e,

0, e′ 6= e;

(ii) for all Q ∈ G(q), |ψ(Q)| ≤ 2r−j(r−j)!
(q−r+j

j )
, where j := |e ∩Q|.

We use these gadgets as follows. We start off with a complex that is (ε, d, q, r)-regular for
some reasonable ε and consider a uniform weighting of all q-sets. We then use the edge-gadgets

to shift weights until we have a ‘fractional K
(r)
q -equicovering’ in the sense that the weight of

each edge is exactly d′nq−r for some suitable d′. We then use this fractional equicovering as an
input for a probabilistic argument.

Lemma 6.3 (Boost lemma). Let 1/n � ε, ξ, 1/q and r ∈ [q − 1] such that 2(2
√

e)rε ≤ ξ.

Let ξ′ := 0.9(1/4)(
q+r
q )ξ. Suppose that G is a complex on n vertices and that G is (ε, d, q, r)-

regular for some d ≥ ξ and (ξ, q + r, r)-dense. Then there exists Y ⊆ G(q) such that G[Y ] is

(n−(q−r)/2.01, d/2, q, r)-regular and (ξ′, q + r, r)-dense.

Proof. Let d′ := d/2. Assume that ψ : G(q) → [0, 1] is a function such that for every e ∈ G(r),∑
Q′∈G(q)(e)

ψ(Q′ ∪ e) = d′nq−r,

and 1/4 ≤ ψ(Q) ≤ 1 for all Q ∈ G(q). We can then choose Y ⊆ G(q) by including every Q ∈ G(q)

with probability ψ(Q) independently. We then have for every e ∈ G(r), E|G[Y ](q)(e)| = d′nq−r.
By Lemma 5.7(ii), we conclude that

P(|G[Y ](q)(e)| 6= (1± n−(q−r)/2.01)d′nq−r) ≤ 2e−
n−2(q−r)/2.01d′nq−r

3 ≤ e−n
0.004

.
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Thus, whp G[Y ] is (n−(q−r)/2.01, d′, q, r)-regular. Moreover, for any e ∈ G(r) and Q ∈ G(q+r)(e),
we have that

P(Q ∈ G[Y ](q+r)(e)) =
∏

Q′∈(Q∪eq )

ψ(Q′) ≥ (1/4)(
q+r
q ).

Therefore, E|G[Y ](q+r)(e)| ≥ (1/4)(
q+r
q )ξnq, and using Corollary 5.11 we deduce that

P(|G[Y ](q+r)(e)| ≤ 0.9(1/4)(
q+r
q )ξnq) ≤ e−n

1/6
.

Thus, whp G[Y ] is (0.9(1/4)(
q+r
q )ξ, q + r, r)-dense.

It remains to show that ψ exists. For every e ∈ G(r), define

ce :=
d′nq−r − 0.5|G(q)(e)|

|G(q+r)(e)|
.

Observe that |ce| ≤ εnq−r

2ξnq = ε
2ξn
−r for all e ∈ G(r).

By Proposition 6.2, for every e ∈ G(r) and J ∈ G(q+r)(e), there exists a function ψe,J : G(q) →
R such that

(i) ψe,J(Q) = 0 for all Q 6⊆ e ∪ J ;

(ii) for all e′ ∈ G(r),
∑

Q′∈G(q)(e′) ψe,J(Q′ ∪ e′) =

{
1, e′ = e,

0, e′ 6= e;

(iii) for all Q ∈ G(q), |ψe,J(Q)| ≤ 2r−j(r−j)!
(q−r+j

j )
, where j := |e ∩Q|.

We now define ψ : G(q) → [0, 1] as

ψ := 1/2 +
∑
e∈G(r)

ce
∑

J∈G(q+r)(e)

ψe,J .

For every e ∈ G(r), we have∑
Q′∈G(q)(e)

ψ(Q′ ∪ e) = 0.5|G(q)(e)|+
∑

e′∈G(r)

ce′
∑

J∈G(q+r)(e′)

∑
Q′∈G(q)(e)

ψe′,J(Q′ ∪ e)

(ii)
= 0.5|G(q)(e)|+ ce|G(q+r)(e)| = d′nq−r,

as desired. Moreover, for every Q ∈ G(q) and j ∈ [r]0, there are at most
(
n
r

)(
q
j

)(
r
r−j
)

pairs (e, J)

for which e ∈ G(r), J ∈ G(q+r)(e), Q ⊆ e ∪ J and |Q ∩ e| = j. Hence,

|ψ(Q)− 1/2| =

∣∣∣∣∣∣
∑
e∈G(r)

ce
∑

J∈G(q+r)(e)

ψe,J(Q)

∣∣∣∣∣∣
(i)

≤
∑

e∈G(r),J∈G(q+r)(e) : Q⊆e∪J

|ce||ψe,J(Q)|

(iii)

≤
r∑
j=0

(
n

r

)(
q

j

)(
r

r − j

)
· ε

2ξ
n−r · 2r−j(r − j)!(

q−r+j
j

)
≤ 2r−1ε

ξ

r∑
j=0

2−j

j!

(
q

q − r + 1

)j
≤ 2r−1ε

ξ

r∑
j=0

(r/2)j

j!
≤ 1/4,

implying that 1/4 ≤ ψ(Q) ≤ 3/4 for all Q ∈ G(q), as needed. �

Proof of Lemma 3.4. Let G be an (ε, ξ, q, r)-complex on n vertices. By definition, there

exists Y ⊆ G(q) such that G[Y ] is (ε, d, q, r)-regular for some d ≥ ξ, (ξ, q + r, r)-dense and
(ξ, q, r)-extendable. We can thus apply the Boost lemma (Lemma 6.3) (with G[Y ] playing the

role of G). This yields Y ′ ⊆ Y such that G[Y ′] is (n−1/3, d/2, q, r)-regular and (ξ′, q + r, r)-

dense. Since G[Y ′](r) = G[Y ](r), G[Y ′] is also (ξ, q, r)-extendable. Thus, G is an (n−1/3, ξ′, q, r)-
complex.
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Suppose now that G is an (ε, ξ, q, r)-supercomplex. Let i ∈ [r]0 and F ⊆ G(i) with 1 ≤ |F | ≤
2i. We have that GF :=

⋂
f∈F G(f) is an (ε, ξ, q− i, r− i)-complex. If i < r, we deduce by the

above that GF is an (n
−1/3
F , ξ′, q− i, r− i)-complex. If i = r, this also holds by Fact 3.2. �

Lemma 6.3 together with Theorem 6.1 immediately implies the following ‘Boosted nibble
lemma’. Whenever we need an approximate decomposition in the proof of Theorem 3.7, we
will obtain it via Lemma 6.4.

Lemma 6.4 (Boosted nibble lemma). Let 1/n � γ, ε � ξ, 1/q and r ∈ [q − 1]. Let G be a
complex on n vertices such that G is (ε, d, q, r)-regular and (ξ, q + r, r)-dense for some d ≥ ξ.

Then G contains a K
(r)
q -packing K such that ∆(G(r) −K(r)) ≤ γn.

6.3. Greedy coverings and divisibility. The following lemma allows us to extend a given
collection of r-sets into suitable r-disjoint q-cliques (see Corollary 6.7). The full strength of
Lemma 6.5 will only be needed in Section 8. The proof consists of a sequential random greedy
algorithm. A probabilistic approach can probably be avoided here, but seems much simpler to
analyse.

Lemma 6.5. Let 1/n� γ � α, 1/s, 1/q and r ∈ [q−1]. Let G be a complex on n vertices and

let L ⊆ G(r) satisfy ∆(L) ≤ γn. Suppose that L decomposes into L1, . . . , Lm with 1 ≤ |Lj | ≤ s.
Suppose that for every j ∈ [m], we are given some candidate set Qj ⊆

⋂
e∈Lj

G(q)(e) with

|Qj | ≥ αnq−r. Then there exists Qj ∈ Qj for each j ∈ [m] such that, writing Kj := (Qj ]Lj)≤,

we have that Kj and Kj′ are r-disjoint for all distinct j, j′ ∈ [m], and ∆(
⋃
j∈[m]K

(r)
j ) ≤ √γn.

Proof. Let t := 0.5αnq−r and consider Algorithm 6.6. We claim that with positive probability,

Algorithm 6.6

for j from 1 to m do

define the r-graph Tj :=
⋃j−1
j′=1K

(r)
j′ and let Q′j contain all Q ∈ Qj such that (Q ] Lj)≤

does not contain any edge from Tj or L− Lj .
if |Q′j | ≥ t then

pick Q ∈ Q′j uniformly at random and let Kj := (Q ] Lj)≤
else

return ‘unsuccessful’
end if

end for

Algorithm 6.6 outputs K1, . . . ,Km as desired.
It is enough to ensure that with positive probability, ∆(Tj) ≤ sqrγ2/3n for all j ∈ [m].

Indeed, note that we have Lj ∩ Tj = ∅ by construction. Hence, if ∆(Tj) ≤ sqrγ2/3n, then

Proposition 5.4 implies that every e ∈ Lj is contained in at most (γ + sqrγ2/3)2rnq−r q-sets of

V (G) that also contain an edge of Tj∪(L−Lj). Thus, there are at most s(γ+sqrγ2/3)2rnq−r ≤
0.5αnq−r candidates Q ∈ Qj such that (Q]Lj)≤ contains some edge from Tj∪(L−Lj). Hence,
|Q′j | ≥ |Qj | − 0.5αnq−r ≥ t, so the algorithm succeeds in round j.

For every (r − 1)-set S ⊆ V (G) and j ∈ [m], let Y S
j be the indicator variable of the event

that S is covered by Kj .
For every (r− 1)-set S ⊆ V (G) and k ∈ [r− 1]0, define JS,k := {j ∈ [m] : maxe∈Lj |S ∩ e| =

k}. Observe that if Y S
j = 1, then Kj covers at most sq r-edges that contain S. Therefore, we

have

|Tj(S)| ≤ sq
j−1∑
j′=1

Y S
j′ = sq

r−1∑
k=0

∑
j′∈JS,k∩[j−1]

Y S
j′ .

The following claim thus implies the lemma.
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Claim 1: With positive probability, we have
∑

j′∈JS,k∩[j−1] Y
S
j′ ≤ γ2/3n for all (r − 1)-sets S,

k ∈ [r − 1]0 and j ∈ [m].

Fix an (r − 1)-set S, k ∈ [r − 1]0 and j ∈ [m]. For j′ ∈ JS,k, there are at most∑
e∈Lj′

nq−|S∪e| ≤ snmaxe∈Lj′
(q−|S∪e|)

= snq−2r+1+k

q-sets that contain S and some edge of Lj′ .
In order to apply Proposition 5.8, let j1, . . . , jb be an enumeration of JS,k ∩ [j− 1]. We then

have for all a ∈ [b] and all y1, . . . , ya−1 ∈ {0, 1} that

P(Y S
ja = 1 | Y S

j1 = y1, . . . , Y
S
ja−1

= ya−1) ≤ snq−2r+1+k

t
= 2sα−1n−r+k+1.

Let p := min{2sα−1n−r+k+1, 1} and let B ∼ Bin(|JS,k ∩ [j − 1]|, p).
Note that |JS,k| ≤

(|S|
k

)
∆k(L) ≤

(
r−1
k

)
γnr−k by Fact 5.3. Thus,

7EB = 7|JS,k ∩ [j − 1]| · p ≤ 7 ·
(
r − 1

k

)
γnr−k · 2sα−1n−r+k+1 ≤ γ2/3n.

Therefore,

P(
∑

j′∈JS,k∩[j−1]

Y S
j′ ≥ γ2/3n)

Proposition 5.8

≤ P(B ≥ γ2/3n)
Lemma 5.7(iii)

≤ e−γ
2/3n.

A union bound now easily proves the claim. �

Corollary 6.7. Let 1/n� γ � α, 1/q and r ∈ [q−1]. Let G be a complex on n vertices and let

H ⊆ G(r) with ∆(H) ≤ γn and |G(q)(e)| ≥ αnq−r for all e ∈ H. Then there is a K
(r)
q -packing

K in G that covers all edges of H and such that ∆(K(r)) ≤ √γn.

Proof. Let e1, . . . , em be an enumeration of H. For j ∈ [m], define Lj := {ej} and Qj :=

G(q)(e). Apply Lemma 6.5 and let K :=
⋃
j∈[m]Kj . �

Note that Corollary 6.7 and Theorem 6.1 immediately imply the main result of [13], namely
the existence of an ‘almost’ (n, q, r)-Steiner system in the sense that every r-set is covered
either once or twice.

We can combine Lemma 6.4 and Corollary 6.7 to deduce the following result. It allows us
to make an r-graph divisible by deleting a small fraction of edges (even if we are forbidden to
delete a certain set of edges H).

Corollary 6.8. Let 1/n � γ, ε � ξ, 1/q and r ∈ [q − 1]. Suppose that G is a complex on

n vertices which is (ε, d, q, r)-regular for some d ≥ ξ and (ξ, q + r, r)-dense. Let H ⊆ G(r)

satisfy ∆(H) ≤ εn. Then there exists L ⊆ G(r) − H such that ∆(L) ≤ γn and G(r) − L is

K
(r)
q -divisible.

Proof. We clearly have |G(q)(e)| ≥ 0.5ξnq−r for all e ∈ H. Thus, by Corollary 6.7, there

exists a K
(r)
q -packing K0 in G which covers all edges of H and satisfies ∆(K(r)

0 ) ≤
√
εn. By

Proposition 5.6(i) and (ii), G′ := G − K(r)
0 is still (2r+1√ε, d, q, r)-regular and (ξ/2, q + r, r)-

dense. Thus, by Lemma 6.4, there exists a K
(r)
q -packing Knibble in G′ such that ∆(L) ≤ γn,

where L := G′(r)−K(r)
nibble = G(r)−K(r)

0 −K
(r)
nibble ⊆ G

(r)−H. Clearly, G(r)−L is K
(r)
q -divisible

(in fact, K
(r)
q -decomposable). �
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7. Vortices

7.1. Statement of the Cover down lemma. In Section 10, we will prove the Cover down
lemma (Lemma 7.4). Roughly speaking, if G is a supercomplex and U a random subset of linear

size, we aim to find a K
(r)
q -packing in G that covers all r-edges that are not inside U by using

only few r-edges inside U . The majority of these r-edges will be covered using the Boosted
nibble lemma (Lemma 6.4), leaving a very sparse leftover L∗. The Cover down lemma shows
the existence of a suitable sparse r-graph H∗ which is capable of dealing with any such leftover

(i.e. G[H∗ ∪ L∗] has a K
(r)
q -packing covering all edges of H∗ ∪ L∗ which are not inside U).

Definition 7.1. Let G be a complex on n vertices. We say that U is (ε, µ, ξ, q, r)-random in
G if there exists a q-graph Y on V (G) such that the following hold:

(R1) U ⊆ V (G) with |U | = µn± n2/3;

(R2) there exists d ≥ ξ such that for all x ∈ [q − r]0 and all e ∈ G(r), we have that

|{Q ∈ G[Y ](q)(e) : |Q ∩ U | = x}| = (1± ε)bin(q − r, µ, x)dnq−r;

(R3) for all e ∈ G(r) we have |G[Y ](q+r)(e)[U ]| ≥ ξ(µn)q;

(R4) for all h ∈ [r]0 and all F ⊆ G(h) with 1 ≤ |F | ≤ 2h we have that
⋂
f∈F G(f)[U ] is an

(ε, ξ, q − h, r − h)-complex.

We record the following easy consequences for later use.

Fact 7.2. The following hold.

(i) If G is an (ε, ξ, q, r)-supercomplex, then V (G) is (ε/ξ, 1, ξ, q, r)-random in G.
(ii) If U is (ε, µ, ξ, q, r)-random in G, then G[U ] is an (ε, ξ, q, r)-supercomplex.

Here, (ii) follows immediately from (R4). Note that (R4) is stronger in the sense that F is
not restricted to U .

Definition 7.3. Let G be a complex on n vertices and H ⊆ G(r). We say that G is (ξ, q, r)-

dense with respect to H if for all e ∈ G(r), we have |G[H ∪ {e}](q)(e)| ≥ ξnq−r.

Recall that (∗)r is the statement of our main theorem (Theorem 3.7), which we intend to
prove by induction.

Lemma 7.4 (Cover down lemma). Let 1/n � γ � ε � ν � µ, ξ, 1/q and r ∈ [q − 1] with
µ ≤ 1/2. Assume that (∗)i is true for all i ∈ [r − 1]. Let G be a complex on n vertices and

suppose that U is (ε, µ, ξ, q, r)-random in G. Let G̃ be a complex on V (G) with G ⊆ G̃ such

that G̃ is (ε, q, r)-dense with respect to G(r) −G(r)[Ū ], where Ū := V (G) \ U .

Then there exists a subgraph H∗ ⊆ G(r) − G(r)[Ū ] with ∆(H∗) ≤ νn such that for any

L ⊆ G̃(r) with ∆(L) ≤ γn and H∗ ∪ L being K
(r)
q -divisible, there exists a K

(r)
q -packing in

G̃[H∗ ∪ L] which covers all edges of H∗ ∪ L except possibly some inside U .

7.2. Existence of vortices. A vortex consists of a suitable nested sequence of vertex sets. It
provides the framework in which we can iteratively apply the Boosted nibble lemma (Lemma 6.4)
and the Cover down lemma.

Definition 7.5 (Vortex). Let G be a complex. An (ε, µ, ξ, q, r,m)-vortex in G is a sequence
U0 ⊇ U1 ⊇ · · · ⊇ U` such that

(V1) U0 = V (G);
(V2) |Ui| = bµ|Ui−1|c for all i ∈ [`];
(V3) |U`| = m;
(V4) for all i ∈ [`], Ui is (ε, µ, ξ, q, r)-random in G[Ui−1];
(V5) for all i ∈ [`− 1], Ui \ Ui+1 is (ε, µ(1− µ), ξ, q, r)-random in G[Ui−1].

The goal of this subsection is to prove the following lemma, which guarantees the existence
of a vortex in a supercomplex.
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Lemma 7.6. Let 1/m′ � ε � µ, ξ, 1/q such that µ ≤ 1/2 and r ∈ [q − 1]. Let G be an
(ε, ξ, q, r)-supercomplex on n ≥ m′ vertices. Then there exists a (2

√
ε, µ, ξ − ε, q, r,m)-vortex

in G for some µm′ ≤ m ≤ m′.

Fact 7.7. For all p1, p2 ∈ [0, 1] and i, n ∈ N0, we have

n∑
j=i

bin(n, p1, j)bin(j, p2, i) = bin(n, p1p2, i).(7.1)

Proposition 7.8. Let 1/n � ε � µ1, µ2, 1 − µ2, ξ, 1/q and r ∈ [q − 1]. Let G be a complex
on n vertices and suppose that U is (ε, µ1, ξ, q, r)-random in G. Let U ′ be a random subset of
U obtained by including every vertex from U independently with probability µ2. Then whp for
all W ⊆ U of size |W | ≤ |U |3/5, U ′ 4W is (ε + 0.5|U |−1/6, µ1µ2, ξ − 0.5|U |−1/6, q, r)-random
in G.

Proof. Let Y ⊆ G(q) and d ≥ ξ be such that (R1)–(R4) hold for U . By Lemma 5.7(i) we

have that whp |U ′| = µ2|U | ± |U |3/5. So for any admissible W , we have that |U ′ 4 W | =

µ2|U | ± 2|U |3/5 = µ1µ2n± (µ2n
2/3 + 2n3/5) = µ1µ2n± n2/3, implying (R1).

We next check (R2). For all x ∈ [q − r]0 and e ∈ G(r), we have that |Qe,x| = (1± ε)bin(q −
r, µ1, x)dnq−r, where Qe,x := {Q ∈ G[Y ](q)(e) : |Q ∩ U | = x}. Consider e ∈ G(r) and
x, y ∈ [q − r]0. We view Qe,x as a (q − r)-graph and consider the random subgraph Qe,x,y
containing all Q ∈ Qe,x such that |Q ∩ U ′| = y.

By the random choice of U ′, for all e ∈ G(r) and x, y ∈ [q − r]0, we have

E|Qe,x,y| = bin(x, µ2, y)|Qe,x|.

Thus, by Corollary 5.11 whp we have for all e ∈ G(r) and x, y ∈ [q − r]0 that

|Qe,x,y| = (1± n−1/5)bin(x, µ2, y)|Qe,x|

= (1± n−1/5)bin(x, µ2, y)(1± ε)bin(q − r, µ1, x)dnq−r

= (1± (ε+ 2n−1/5))bin(q − r, µ1, x)bin(x, µ2, y)dnq−r.

Assuming that the above holds for U ′, we have for all y ∈ [q− r]0, e ∈ G(r) and W ⊆ U of size

|W | ≤ |U |3/5 that

|{Q ∈ G[Y ](q)(e) : |Q ∩ (U ′ 4W )| = y}| =
q−r∑
x=y

|Qe,x,y| ± |W |nq−r−1

=

q−r∑
x=y

(1± (ε+ 2n−1/5))bin(q − r, µ1, x)bin(x, µ2, y)dnq−r ± n−2/5nq−r

(7.1)
= (1± (ε+ 3n−1/5))bin(q − r, µ1µ2, y)dnq−r.

We now check (R3). Consider e ∈ G(r) and let Q̃e := G[Y ](q+r)(e)[U ]. We have |Q̃e| ≥
ξ(µ1n)q. Consider the random subgraph of Q̃′e consisting of all q-sets Q ∈ Q̃e satisfying

Q ⊆ U ′. For every Q ∈ Q̃e, we have P(Q ⊆ U ′) = µq2. Hence, E|Q̃′e| = µq2|Q̃e| ≥ ξ(µ1µ2n)q.

Thus, using Corollary 5.11 and a union bound, we deduce that whp for all e ∈ G(r), we
have |G[Y ](q+r)(e)[U ′]| ≥ (1 − |U |−1/5)ξ(µ1µ2n)q. Assuming that this holds for U ′, it is easy

to see that for all W ⊆ U of size |W | ≤ |U |3/5, we have |G[Y ](q+r)(e)[U ′ 4 W ]| ≥ (1 −
|U |−1/5)ξ(µ1µ2n)q − |W |nq−1 ≥ (ξ − 2|U |−1/5)(µ1µ2n)q.

Finally, we check (R4). Let h ∈ [r]0 and F ⊆ G(h) with 1 ≤ |F | ≤ 2h. Since U is
(ε, µ1, ξ, q, r)-random in G, we have that

⋂
f∈F G(f)[U ] is an (ε, ξ, q−h, r−h)-complex. Then,

by Proposition 5.13, with probability at least 1 − e−|U |/8,
⋂
f∈F G(f)[U ′ 4 W ] is an (ε +

4|U |−1/5, ξ − 3|U |−1/5, q− h, r− h)-complex for all W ⊆ U of size |W | ≤ |U |3/5. Thus, a union
bound yields the desired result. �
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Proposition 7.9. Let 1/n � ε � µ1, µ2, 1 − µ2, ξ, 1/q and r ∈ [q − 1]. Let G be a complex
on n vertices and let U ⊆ V (G) be of size bµ1nc and (ε, µ1, ξ, q, r)-random in G. Then there

exists Ũ ⊆ U of size bµ2|U |c such that

(i) Ũ is (ε+ |U |−1/6, µ2, ξ − |U |1/6, q, r)-random in G[U ] and

(ii) U \ Ũ is (ε+ |U |−1/6, µ1(1− µ2), ξ − |U |1/6, q, r)-random in G.

Proof. Pick U ′ ⊆ U randomly by including every vertex from U independently with prob-

ability µ2. Clearly, by Lemma 5.7(i), we have with probability at least 1 − 2e−2|U |1/7 that

|U ′| = µ2|U | ± |U |4/7.

It is easy to see that U is (ε+ 0.5|U |−1/6, 1, ξ − 0.5|U |−1/6, q, r)-random in G[U ]. Hence, by

Proposition 7.8, whp U ′4W is (ε+ |U |−1/6, µ2, ξ− |U |1/6, q, r)-random in G[U ] for all W ⊆ U
of size |W | ≤ |U |3/5. Moreover, since U ′′ := U \ U ′ is a random subset obtained by including
every vertex from U independently with probability 1 − µ2, Proposition 7.8 implies that whp
U ′′ 4W is (ε + 0.5|U |−1/6, µ1(1 − µ2), ξ − 0.5|U |1/6, q, r)-random in G for all W ⊆ U of size

|W | ≤ |U |3/5.

Let U ′ be a set that has the above properties. Let W ⊆ V (G) be a set with |W | ≤ |U |3/5
such that |U ′4W | = bµ2|U |c and let Ũ := U ′4W . By the above, Ũ satisfies (i) and (ii). �

We can now obtain a vortex by inductively applying Proposition 7.9.

Proof of Lemma 7.6. Recursively define n0 := n and ni := bµni−1c. Observe that

µin ≥ ni ≥ µin − 1/(1 − µ). Further, for i ∈ N, let ai := 2n−1/6
∑

j∈[i] µ
−(j−1)/6. Let

` := 1 + max{i ≥ 0 : ni ≥ m′} and let m := n`. Note that bµm′c ≤ m ≤ m′. Moreover, we
have that

a` = 2n−1/6 µ
−`/6 − 1

µ−1/6 − 1
≤ 2

(µ`−1n)−1/6

1− µ1/6
≤ 2

m′−1/6

1− µ1/6
≤ ε

since µ`−1n ≥ n`−1 ≥ m′.
By Fact 7.2, U0 := V (G) is (ε/ξ, 1, ξ, q, r)-random in G. Hence, by Proposition 7.9, there

exists a set U1 ⊆ U0 of size n1 such that U1 is (
√
ε + a1, µ, ξ − a1, q, r)-random in G[U0]. If

` = 1, this completes the proof, so assume that ` ≥ 2.
Now, suppose that for some i ∈ [`− 1], we have already found a (

√
ε+ ai, µ, ξ − ai, q, r, ni)-

vortex U0, . . . , Ui inG. Note that this is true for i = 1. In particular, Ui is (
√
ε+ai, µ, ξ−ai, q, r)-

random in G[Ui−1] by (V4). By Proposition 7.9, there exists a subset Ui+1 of Ui of size ni+1

such that Ui+1 is (
√
ε + ai + n

−1/6
i , µ, ξ − ai − n−1/6

i , q, r)-random in G[Ui] and Ui \ Ui+1 is

(
√
ε + ai + n

−1/6
i , µ(1 − µ), ξ − ai − n

−1/6
i , q, r)-random in G[Ui−1]. Thus, U0, . . . , Ui+1 is a

(
√
ε+ ai+1, µ, ξ − ai+1, q, r, ni+1)-vortex in G.
Finally, U0, . . . , U` is an (

√
ε+ a`, µ, ξ − a`, q, r,m)-vortex in G. �

Proposition 7.10. Let 1/n� ε� µ, ξ, 1/q such that µ ≤ 1/2 and r ∈ [q−1]. Suppose that G

is a complex on n vertices and U is (ε, µ, ξ, q, r)-random in G. Suppose that L ⊆ G(r) satisfies
∆(L) ≤ εn. Then U is still (

√
ε, µ, ξ −

√
ε, q, r)-random in G− L.

Proof. Clearly, (R1) still holds. Moreover, using Proposition 5.4 it is easy to see that (R2)

and (R3) are preserved. To see (R4), let h ∈ [r]0 and F ⊆ (G − L)(h) with 1 ≤ |F | ≤ 2h.
By assumption, we have that

⋂
f∈F G(f)[U ] is an (ε, ξ, q − h, r − h)-complex. By Fact 5.5,

we can obtain
⋂
f∈F (G − L)(f)[U ] from

⋂
f∈F G(f)[U ] by repeatedly deleting an (r − |S|)-

graph L(S), where S ⊆ f ∈ F . There are at most |F |2h ≤ 22h such graphs, and we have

∆(L(S)) ≤ εn ≤ ε2/3|U −
⋃
F | by Fact 5.3 if |S| < r. If |S| = r, we have S ∈ F and

thus L(S) is empty, in which case we can ignore its removal. Thus, a repeated application of
Proposition 5.6(iv) (with r−|S|, r−h playing the roles of r′, r) shows that

⋂
f∈F (G−L)(f)[U ]

is an (ε+ 22r+1ε2/3, ξ − 22r+1ε2/3, q − h, r − h)-complex. �
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7.3. Existence of cleaners. The aim of this subsection is to apply the Cover down lemma
to each ‘level’ i of the vortex to obtain a ‘cleaning graph’ Hi (playing the role of H∗) for each
i ∈ [`] (see Lemma 7.12). Let G be a complex and U0 ⊇ U1 ⊇ · · · ⊇ U` a vortex in G. We say
that H1, . . . ,H` is a (γ, ν, q, r)-cleaner if the following hold for all i ∈ [`]:

(C1) Hi ⊆ G(r)[Ui−1]−G(r)[Ui+1], where U`+1 := ∅;
(C2) ∆(Hi) ≤ ν|Ui−1|;
(C3) Hi and Hi+1 are edge-disjoint, where H`+1 := ∅;
(C4) whenever L ⊆ G(r)[Ui−1] is such that ∆(L) ≤ γ|Ui−1| and Hi∪L is K

(r)
q -divisible, there

exists a K
(r)
q -packing K in G[Hi ∪ L] which covers all edges of Hi ∪ L except possibly

some inside Ui.

Note that (C1) and (C3) together imply that H1, . . . ,H` are edge-disjoint. The following
proposition will be used to ensure (C3).

Proposition 7.11. Let 1/n � ε � µ, ξ, 1/q and r ∈ [q − 1]. Let ξ′ := ξ(1/2)(8q+1). Let G be
a complex on n vertices and let U ⊆ V (G) of size µn and (ε, µ, ξ, q, r)-random in G. Suppose

that H is a random subgraph of G(r) obtained by including every edge of G(r) independently

with probability 1/2. Then with probability at least 1− e−n
1/10

,

(i) U is (
√
ε, µ, ξ′, q, r)-random in G[H] and

(ii) G is (
√
ε, q, r)-dense with respect to H −G(r)[Ū ], where Ū := V (G) \ U .

Proof. Let Y ⊆ G(q) and d ≥ ξ be such that (R1)–(R4) hold for U and G. We first

consider (i). Clearly, (R1) holds. We next check (R2). For e ∈ G(r) and x ∈ [q − r]0, let

Qe,x := {Q ∈ G[Y ](q)(e) : |Q ∩ U | = x}. Thus, |Qe,x| = (1± ε)bin(q − r, µ, x)dnq−r.

Consider e ∈ G(r) and x ∈ [q−r]0. We view Qe,x as a (q−r)-graph and consider the random

subgraph Q′e,x containing all Q ∈ Qe,x such that
(
Q∪e
r

)
\ {e} ⊆ H. For each Q ∈ Qe,x, we have

P(Q ∈ Q′e,x) = (1/2)(
q
r)−1. Thus, using Corollary 5.11 we deduce that with probability at least

1− e−n
1/6

we have

|Q′e,x| = (1± ε)E|Q′e,x| = (1± ε)(1/2)(
q
r)−1(1± ε)bin(q − r, µ, x)dnq−r

= (1±
√
ε)d′bin(q − r, µ, x)dnq−r,

where d′ := d(1/2)(
q
r)−1 ≥ ξ′. Thus, a union bound yields that with probability at least

1− e−n
1/7

, (R2) holds.

Next, we check (R3). By assumption, we have |G[Y ](q+r)(e)[U ]| ≥ ξ(µn)q for all e ∈ G(r).

Let Qe := G[Y ](q+r)(e)[U ] and consider the random subgraph Q′e containing all Q ∈ Qe such

that
(
Q∪e
r

)
\ {e} ⊆ H. For each Q ∈ Qe, we have P(Q ∈ Q′e) = (1/2)(

q+r
r )−1. Thus, using

Corollary 5.11 we deduce that with probability at least 1− e−n
1/6

we have

|Q′e| = (1± ε)E|Q′e| ≥ (1− ε)(1/2)(
q+r
r )−1ξ(µn)q ≥ ξ′(µn)q,

and a union bound implies that this is true for all e ∈ G(r) with probability at least 1− e−n
1/7

.
Next, we check (R4). Let h ∈ [r]0 and F ⊆ G(h) with 1 ≤ |F | ≤ 2h. We know that⋂
f∈F G(f)[U ] is an (ε, ξ, q − h, r − h)-complex. By Proposition 5.15 (applied with G[U ∪⋃
F ], {G[U∪

⋃
F ](r)} playing the roles ofG,P), with probability at least 1−e−|U |

1/8
,
⋂
f∈F G[H](f)[U ]

is a (
√
ε, ξ′, q − h, r − h)-complex. Thus, a union bound over all h ∈ [r]0 and F ⊆ G(h) with

1 ≤ |F | ≤ 2h yields that with probability at least 1− e−n
1/9

, (R4) holds.

Finally, we check (ii). Consider e ∈ G(r) and let Qe := G[(G(r)−G(r)[Ū ])∪ e](q)(e). Note by

(R2), we have |G[Y ](q)(e)[U ]| = (1±ε)bin(q−r, µ, q−r)dnq−r, so |Qe| ≥ |G[Y ](q)(e)[U ]| ≥ (1−
ε)ξµq−rnq−r. We view Qe as a (q− r)-graph and consider the random subgraph Q′e containing

all Q ∈ Qe such that
(
Q∪e
r

)
\ {e} ⊆ H. For each Q ∈ Qe, we have P(Q ∈ Q′e) = (1/2)(

q
r)−1.
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Thus, using Corollary 5.11 we deduce that with probability at least 1− e−n
1/6

we have

|Q′e| ≥ 0.9E|Q′e| ≥ 0.9(1/2)(
q
r)−1(1− ε)ξµq−rnq−r ≥

√
εnq−r.

A union bound easily implies that with probability at least 1−e−n
1/7

, this holds for all e ∈ G(r).
�

Lemma 7.12. Let 1/m � γ � ε � ν � µ, ξ, 1/q be such that µ ≤ 1/2 and r ∈ [q − 1].
Assume that (∗)i is true for all i ∈ [r − 1]. Let G be a complex and U0 ⊇ U1 ⊇ · · · ⊇ U` an
(ε, µ, ξ, q, r,m)-vortex in G. Then there exists a (γ, ν, q, r)-cleaner.

Proof. For i ∈ [`], define U ′i := Ui \ Ui+1, where U`+1 := ∅. For i ∈ [`− 1], let µi := µ(1− µ),
and let µ` := µ. By (V4) and (V5), we have for all i ∈ [`] that U ′i is (ε, µi, ξ, q, r)-random in
G[Ui−1].

Split G(r) randomly into G0 and G1, that is, independently for every edge e ∈ G(r), put e
into G0 with probability 1/2 and into G1 otherwise. We claim that with positive probability,
the following hold for every i ∈ [`]:

(i) U ′i is (
√
ε, µi, ξ(1/2)(8q+1), q, r)-random in G[Gi mod 2][Ui−1];

(ii) G[Ui−1] is (
√
ε, q, r)-dense with respect to Gi mod 2[Ui−1]−G(r)[Ui−1 \ U ′i ].

By Proposition 7.11, the probability that (i) or (ii) do not hold for i ∈ [`] is at most e−|Ui−1|1/10 ≤
|Ui−1|−2. Since

∑`
i=1 |Ui−1|−2 < 1, we deduce that with positive probability, (i) and (ii) hold

for all i ∈ [`].
Therefore, there exist G0, G1 satisfying the above properties. For every i ∈ [`], we will find

Hi using the Cover down lemma (Lemma 7.4). Let i ∈ [`]. Apply Lemma 7.4 with the following
objects/parameters:

object/parameter G[Gi mod 2][Ui−1] U ′i G[Ui−1] |Ui−1| γ
√
ε ν µi ξ(1/2)(8q+1)

playing the role of G U G̃ n γ ε ν µ ξ

Hence, there exists

Hi ⊆ Gi mod 2[Ui−1]−Gi mod 2[Ui−1 \ U ′i ] ⊆ Gi mod 2[Ui−1]−G(r)[Ui+1]

with ∆(Hi) ≤ ν|Ui−1| such that whenever L ⊆ G(r)[Ui−1] is such that ∆(L) ≤ γ|Ui−1| and

Hi ∪ L is K
(r)
q -divisible, there exists a K

(r)
q -packing K in G[Hi ∪ L] which covers all edges of

Hi ∪ L except possibly some inside U ′i ⊆ Ui. Thus, (C1), (C2) and (C4) hold.
Since G0 and G1 are edge-disjoint, (C3) holds as well. Thus, H1, . . . ,H` is a (γ, ν, q, r)-

cleaner. �

7.4. Obtaining a near-optimal packing. We can now carry out the actual iteration to

obtain a near optimal packing, i.e. a K
(r)
q -packing which covers all but a bounded number of

edges.

Lemma 7.13. Let 1/m � ε � µ � ξ, 1/q and r ∈ [q − 1]. Assume that (∗)k is true for

all k ∈ [r − 1]. Let G be a K
(r)
q -divisible (ε, ξ, q, r)-supercomplex and U0 ⊇ U1 ⊇ · · · ⊇ U` an

(ε, µ, ξ, q, r,m)-vortex in G. Then there exists a K
(r)
q -packing K in G which covers all edges of

G(r) except possibly some inside U`.

Proof. Choose new constants γ, ν > 0 such that 1/m� γ � ε� ν � µ� ξ, 1/q.
Apply Lemma 7.12 to obtain a (γ, ν, q, r)-cleaner H1, . . . ,H`. Note that by (V4) and

Fact 7.2(ii), G[Ui] is an (ε, ξ, q, r)-supercomplex for all i ∈ [`], and the same holds for i = 0 by
assumption.

Suppose that for some i ∈ [`], we have found a K
(r)
q -packing K∗i−1 in G such that:

(i) K∗i−1 covers all edges of G(r) that are not inside Ui−1;

(ii) K∗i−1 does not cover any edges from Hi ∪G(r)[Ui];
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(iii) ∆(K∗(r)i−1 [Ui−1]) ≤ µ|Ui−1|.
Note that this is trivially true for i = 1 with K∗0 := ∅. Let H`+1 := ∅ and U`+1 := ∅.

We now intend to find a K
(r)
q -packing Ki in G−K∗(r)i−1 which covers all edges from G(r)[Ui−1]−

K∗(r)i−1 that are not inside Ui, does not cover any edges from Hi+1 ∪ G(r)[Ui+1], and satisfies

∆(K(r)
i [Ui]) ≤ µ|Ui|. We will obtain Ki as the union of two packings, one obtained from the

Boosted nibble lemma (Lemma 6.4) and one using (C4).

Let Gi,nibble := G(r)[Ui−1]−K∗(r)i−1 −Hi −G(r)[Ui]. Note

∆(K∗(r)i−1 [Ui−1] ∪Hi ∪G(r)[Ui]) ≤ µ|Ui−1|+ ν|Ui−1|+ µ|Ui−1| ≤ 3µ|Ui−1|.

So Proposition 5.6(i) and (ii) imply that G[Ui−1][Gi,nibble] is still (2r+2µ, d, q, r)-regular and
(ξ/2, q + r, r)-dense for some d ≥ ξ. Since µ � ξ, we can apply the boosted nibble lemma

(Lemma 6.4) to obtain a K
(r)
q -packing Ki,nibble in G[Ui−1][Gi,nibble] such that ∆(Li,nibble) ≤

1
2γ|Ui−1|, where Li,nibble := Gi,nibble −K

(r)
i,nibble.

Since

G(r) −K∗(r)i−1 −K
(r)
i,nibble = G(r)[Ui−1]−K∗(r)i−1 −K

(r)
i,nibble = Hi ∪G(r)[Ui] ∪ Li,nibble,

we know that Hi ∪ G(r)[Ui] ∪ Li,nibble is K
(r)
q -divisible. By (C1) and (C3), we know that

Hi+1 ∪G(r)[Ui+1] ⊆ G(r)[Ui]−Hi. We can thus apply Corollary 6.8 (with G[Ui]−Hi playing

the role of G) to find a K
(r)
q -divisible subgraph Ri of G(r)[Ui]−Hi containing Hi+1∪G(r)[Ui+1]

such that ∆(Li,res) ≤ 1
2γ|Ui|, where Li,res := G(r)[Ui]−Hi −Ri.

Let Li := Li,nibble ∪ Li,res. Clearly, Li ⊆ G(r)[Ui−1] and ∆(Li) ≤ γ|Ui−1|. Moreover, note
that

Hi ∪ Li = (Hi ·∪ (G(r)[Ui]−Hi) ·∪ Li,nibble)−Ri
is K

(r)
q -divisible. Thus, by (C4) there exists a K

(r)
q -packing Ki,clean in G[Hi ∪Li] which covers

all edges of Hi ∪ Li except possibly some inside Ui. We claim that Ki := Ki,nibble ∪ Ki,clean is
the desired packing.

Clearly, Ki covers all edges of G(r)[Ui−1]−K∗(r)i−1 that are not inside Ui. On the other hand,

the choice of Ri ensures that Ki does not cover any edges from Hi+1 ∪ G(r)[Ui+1]. Moreover,

∆(K(r)
i [Ui]) ≤ ∆(Hi ∪ Li) ≤ ν|Ui−1|+ γ|Ui−1| ≤ µ|Ui|.

Let K∗i := K∗i−1 ∪ Ki. Then (i)–(iii) hold with i being replaced by i+ 1. Finally, K∗` will be
the desired packing. �

8. Absorbers

In this section we show that for any (divisible) r-graph H in a supercomplex G, we can find
an ‘exclusive’ absorber r-graph A. The following definition makes this precise and the main
result of this section is Lemma 8.2.

Definition 8.1 (Absorber). Let G be a complex and H ⊆ G(r). A subgraph A ⊆ G(r) is a

K
(r)
q -absorber for H in G if A and H are edge-disjoint and both G[A] and G[A ∪ H] have a

K
(r)
q -decomposition.

Lemma 8.2 (Absorbing lemma). Let 1/n � γ, 1/h, ε � ξ, 1/q and r ∈ [q − 1]. Assume that
(∗)i is true for all i ∈ [r − 1]. Let G be an (ε, ξ, q, r)-supercomplex on n vertices and let H be

a K
(r)
q -divisible subgraph of G(r) with |H| ≤ h. Then there exists a K

(r)
q -absorber A for H in

G with ∆(A) ≤ γn.

Building on [5], we will construct absorbers as a concatenation of ‘transformers’ and special
‘canonical graphs’. The goal is to transform an arbitrary divisible r-graph H into a canonical
graph. In the following subsection, we will construct transformers. In Section 8.2, we will prove
the existence of suitable canonical graphs. We will prove Lemma 8.2 in Section 8.3.
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We now briefly discuss the case r = 1. Recall that a K
(1)
q -decomposition of a complex

G corresponds to a perfect matching of G(q) (ignoring isolated vertices). Assume first that

H = {e1, . . . , eq}. Choose any q-set Q0 ∈ G(q) with Q0 = {v1, . . . , vq}. Now, for every i ∈ [q],

choose a Qi ∈ G(q)(ei)∩G(q)({vi}) (cf. Fact 5.2). Choose these sets such that
⋃
H,Q0, . . . , Qq

are pairwise disjoint. Let A :=
⋃
i∈[q]0

(
Qi
1

)
. It is then easy to see that A is a K

(1)
q -absorber for

H in G. More generally, if H is any K
(1)
q -divisible 1-graph, then q | |H|, so we can partition

the edges of H into |H|/q subgraphs of equal size and then find an absorber for each of these
subgraphs (successively so that they are edge-disjoint.) Thus, for the remainder of this section,
we will assume that r ≥ 2.

8.1. Transformers. Roughly speaking, a transformer T can be viewed as transforming a
leftover graph H into a new leftover H ′ (where we set aside T and H ′ earlier).

Definition 8.3 (Transformer). Let G be a complex and assume that H,H ′ ⊆ G(r). A subgraph

T ⊆ G(r) is an (H,H ′;K
(r)
q )-transformer in G if T is edge-disjoint from both H and H ′, and

both G[T ∪H] and G[T ∪H ′] have a K
(r)
q -decomposition.

Definition 8.4. Let H,H ′ be r-graphs. A homomorphism from H to H ′ is a map φ : V (H)→
V (H ′) such that φ(e) ∈ H ′ for all e ∈ H. We let φ(H) denote the subgraph of H ′ with vertex set
φ(V (H)) and edge set {φ(e) : e ∈ H}. We say that φ is edge-bijective if |H| = |φ(H)| = |H ′|.
For two r-graphs H and H ′, we write H  H ′ if there exists an edge-bijective homomorphism
from H to H ′.

Note that if H  H ′ and H is K
(r)
q -divisible, then so is H ′. The main lemma of this

subsection guarantees a transformer from H to H ′ if H  H ′.

Lemma 8.5. Let 1/n � γ, 1/h, ε � ξ, 1/q and 2 ≤ r < q. Assume that (∗)i is true for all
i ∈ [r − 1]. Let G be an (ε, ξ, q, r)-supercomplex on n vertices and H,H ′ be vertex-disjoint

K
(r)
q -divisible subgraphs of G(r) of order at most h and such that H  H ′. Then there exists

an (H,H ′;K
(r)
q )-transformer T in G with ∆(T ) ≤ γn.

Suppose that H  H ′ are as in Lemma 8.5, and we aim to find an (H,H ′;K
(r)
q )-transformer

T . A first attempt would be to pair off each e ∈ H with e′ = φ(e) ∈ H ′ (and view e′ as
the ‘mirror image’ of e). Note that |e ∩ e′| = 0. For each e ∈ H we now pick a (q − r)-set

Q∗e ∈ G(q)(e) ∩ G(q)(e′) such that all the Q∗e are vertex-disjoint from each other. Thus Q∗e
extends e into a q-set e ∪Q∗e =: Qe and e′ into a q-set e′ ∪Q∗e =: Qe′ . (Note this is similar to
the above argument for r = 1 and also part of the transformer construction in [5]. It is also

our first step in the proof of Lemma 8.5.) Let T �0 :=
⋃
e∈H(Q≤e ∪Q

≤
e′)

(r) −H −H ′. Note that

there exists a K
(r)
q -packing K :=

⋃
e∈H Q

≤
e in G[T �0 ∪H] covering all edges of H and a K

(r)
q -

packing K′ :=
⋃
e′∈H′ Q

≤
e′ in G[T �0 ∪H ′] covering all edges of H ′. We next define ‘remainders’

R′1 := T �0 −K(r) and R1 := T �0 −K′
(r). Note that R′1 can be viewed as a ‘mirror image’ of R1

(in particular, R1  R′1). Also, the existence of a (R1, R
′
1;K

(r)
q )-transformer T1 would yield

the desired T by defining T := T �0 ∪ T1. The crucial difference to the task we faced originally
is that now the mirror image e′ of each e ∈ R1 satisfies |e ∩ e′| ≥ 1.

The idea is now to proceed inductively. We view the construction of T �0 as step 0. In the ith

step we would ideally seek a (Ri, R
′
i;K

(r)
q )-transformer Ti, where for each e ∈ Ri and its mirror

image e′ ∈ R′i, we have |e ∩ e′| ≥ i. (We refer to the latter property of Ri as being ‘(r − i)-
projectable’.) Instead of constructing Ti explicitly, we construct a ‘partial transformer’ T �i with

the property that T �i ∪Ri and T �i ∪R′i both have a K
(r)
q -packing such that the remainders Ri+1

and R′i+1 uncovered by these packings form mirror images of each other and such that Ri+1

is (r − i − 1)-projectable. Continuing in this way, we arrive at a pair Rr, R
′
r of remainders

which are mirror images of each other and such that Rr is 0-projectable, at which point we can
terminate the process.
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For i ∈ [r − 1], the ‘partial transformers’ T �i are constructed in Lemma 8.8. For this, we
consider the ‘ith level Li of the overlap’ between Ri and R′i (so Li can be viewed as an i-graph).

We then add an ‘absorber’ A to the overlap, i.e. both A and A∪Li have a K
(i)
q−r+i-decomposition

(which are (i+ 1)-disjoint). Since i ∈ [r − 1], we can simply apply the inductive assertion (∗)i
to find these decompositions. This has the effect of absorbing the part of Ri (and its mirror
image) that is not (r−i−1)-projectable, resulting in the desired partial transformer T �i . We can
finally concatenate these partial transformers T �0 , . . . , T

�
r−1 in Lemma 8.5 to form the desired

transformer T .
We now formalise the notion of being projectable.

Definition 8.6. Let V be a set and let V1, V2 be disjoint subsets of V , and let φ : V1 → V2

be a map. Let φ̄ be the extension of φ to V \ V2, where φ̄(x) := x for all x ∈ V \ (V1 ∪ V2).
Let r ∈ N and suppose that R is an r-graph with V (R) ⊆ V and i ∈ [r]0. We say that R is
(φ, V, V1, V2, i)-projectable if the following hold:

(Y1) for every e ∈ R, we have that e ∩ V2 = ∅ and |e ∩ V1| ∈ [i] (so if i = 0, then R must be
empty since [0] = ∅);

(Y2) for every e ∈ R, we have |φ̄(e)| = r;
(Y3) for every two distinct edges e, e′ ∈ R, we have φ̄(e) 6= φ̄(e′).

Note that if φ is injective and e ∩ V2 = ∅ for all e ∈ R, then (Y2) and (Y3) always hold. If
R is (φ, V, V1, V2, i)-projectable, then let φ(R) be the r-graph on φ̄(V (R) \ V2) with edge set
{φ̄(e) : e ∈ R}. For an r-graph P with V (P ) ⊆ V \ V2 that satisfies (Y2), let P φ the r-graph

on V (P ) ∪ V1 that consists of all e ∈
(
V \V2
r

)
such that φ̄(e) = φ̄(e′) for some e′ ∈ P .

The following properties are straightforward to check.

Proposition 8.7. Let V, V1, V2, φ,R, P, r, i be as above and assume that R is (φ, V, V1, V2, i)-
projectable. Then the following hold:

(i) R φ(R);
(ii) for all e′ ∈ φ(R), we have e′ ∩ V1 = ∅ and |e′ ∩ V2| ∈ [i];

(iii) assume that for all e ∈ R, we have |e∩V1| = i, and let S contain all S ∈
(
V1
i

)
such that

S is contained in some edge of R, then

R =
⋃̇
S∈S

(S ]R(S)) and φ(R) =
⋃̇
S∈S

(φ(S) ]R(S)).

Lemma 8.8. Let 1/n � γ′ � γ, ε � ξ, 1/q and 1 ≤ i < r < q. Assume that (∗)r−i is true.

Let G be an (ε, ξ, q, r)-supercomplex on n vertices and let S1, S2 ∈ G(i) with S1 ∩ S2 = ∅. Let
φ : S1 → S2 be a bijection and let φ̄ be as in Definition 8.6 with S1, S2 playing the roles of V1, V2,

respectively. Moreover, suppose that L is a K
(r−i)
q−i -divisible subgraph of G(S1)(r−i) ∩G(S2)(r−i)

with |V (L)| ≤ γ′n.

Then there exist T,R ⊆ G(r) such that the following hold:

(TR1) R is (φ, V (G), S1, S2, i− 1)-projectable;

(TR2) T is an ((S1 ] L) ∪ φ(R), (S2 ] L) ∪R;K
(r)
q )-transformer in G;

(TR3) |V (T ∪R)| ≤ γn.

Proof. We may assume that γ � ε. Choose µ > 0 with γ′ � µ � γ � ε. We split the
argument into two parts. First, we will establish the following claim, which is the essential part
and relies on (∗)r−i.

Claim 1: There exist T̂ , R1,A, R1,A∪L ⊆ G(r) such that the following hold:

(tr1) R1,A and R1,A∪L are (φ, V (G), S1, S2, i− 1)-projectable;

(tr2) T̂ , S1]L, S2]L, R1,A, φ(R1,A), R1,A∪L, φ(R1,A∪L) are pairwise edge-disjoint r-graphs;

(tr3) T̂ is an ((S1 ]L)∪R1,A∪L ∪φ(R1,A), (S2 ]L)∪R1,A ∪φ(R1,A∪L);K
(r)
q )-transformer in

G;
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(tr4) |V (T̂ ∪R1,A ∪R1,A∪L)| ≤ 2µn.

Proof of claim: By Corollary 5.14 and Lemma 5.7(i), there exists a subset U ⊆ V (G) with
0.9µn ≤ |U | ≤ 1.1µn such that G′ := G[U ∪ S1 ∪ S2 ∪ V (L)] is a (2ε, ξ − ε, q, r)-supercomplex.
By Proposition 5.1, G′′ := G′(S1)∩G′(S2) is a (2ε, ξ−ε, q−i, r−i)-supercomplex. Clearly, L ⊆
G′′(r−i) and ∆(L) ≤ γ′n ≤

√
γ′|U |. Thus, by Proposition 5.6(v), G′′−L is a (3ε, ξ−2ε, q−i, r−i)-

supercomplex. By Corollary 6.8, there exists H ⊆ G′′(r−i) −L such that A := G′′(r−i) −L−H
is K

(r−i)
q−i -divisible and ∆(H) ≤ γ′n. In particular, by Proposition 5.6(v) we have that

(i) G′′[A] is a K
(r−i)
q−i -divisible (3ε, ξ/2, q − i, r − i)-supercomplex;

(ii) G′′[A ∪ L] is a K
(r−i)
q−i -divisible (3ε, ξ/2, q − i, r − i)-supercomplex.

By (i) and (∗)r−i, there exists a K
(r−i)
q−i -decomposition KA of G′′[A]. Clearly, ∆(K(r−i+1)

A ) ≤ q.
Thus, by (ii), Proposition 5.6(v) and (∗)r−i, there also exists a K

(r−i)
q−i -decomposition KA∪L of

G′′[A ∪ L]−K(r−i+1)
A . For j ∈ [2], define

Kj,A := (Sj ] K(q−i)
A )≤,

Kj,A∪L := (Sj ] K(q−i)
A∪L )≤,

Rj,A := {e ∈ K(r)
j,A : |e ∩ Sj | ∈ [i− 1]},

Rj,A∪L := {e ∈ K(r)
j,A∪L : |e ∩ Sj | ∈ [i− 1]}.

Note that R1,A, R2,A, R1,A∪L, R2,A∪L are empty if i = 1. Crucially, since KA and KA∪L are
(r − i+ 1)-disjoint and since A and L are edge-disjoint, we have that

(†) S1 ] L, S2 ] L, S1 ] A, S2 ] A, K(r)
A , K(r)

A∪L, R1,A, R2,A, R1,A∪L, R2,A∪L are pairwise
edge-disjoint r-graphs.

Observe that for j ∈ [2], we have

K(r)
j,A = (Sj ]A) ·∪Rj,A ·∪ K(r)

A ,(8.1)

K(r)
j,A∪L = (Sj ] (A ∪ L)) ·∪Rj,A∪L ·∪ K(r)

A∪L.(8.2)

Define

T̂ := (S1 ]A) ∪ (S2 ]A) ∪ K(r)
A ∪ K

(r)
A∪L.

We now check that (tr1)–(tr4) hold. First observe that R1,A and R1,A∪L are (φ, V (G), S1, S2, i)-
projectable since φ is injective and for all e ∈ R1,A ∪ R1,A∪L, we have |e ∩ S1| ∈ [i − 1] and
e ∩ S2 = ∅, so (tr1) holds. Note that R2,A = φ(R1,A) and R2,A∪L = φ(R1,A∪L). Hence, (†)
implies (tr2). Moreover, by (8.1), (8.2) we have that

T̂ ∪ (S1 ] L) ∪R1,A∪L ∪ φ(R1,A) = K(r)
1,A∪L ·∪ K

(r)
2,A,

T̂ ∪ (S2 ] L) ∪R1,A ∪ φ(R1,A∪L) = K(r)
1,A
·∪ K(r)

2,A∪L,

so (tr3) holds. Finally, |V (T̂ ∪R1,A ∪R1,A∪L)| ≤ |V (G′)| ≤ 2µn, proving the claim. −

The transformer T̂ almost has the required properties, except that to satisfy (TR2) we would
have needed R1,A∪L and φ(R1,A∪L) to be on the ‘other side’ of the transformation. In order
to resolve this, we carry out an additional transformation step. (Since R1,A and R1,A∪L are
empty if i = 1, this additional step is vacuous in this case.)

Claim 2: There exist T ′, R′ ⊆ G(r) such that the following hold:

(tr1′) R′ is (φ, V (G), S1, S2, i− 1)-projectable;

(tr2′) T ′, R′, φ(R′), T̂ , S1 ] L, S2 ] L, R1,A, φ(R1,A), R1,A∪L, φ(R1,A∪L) are pairwise edge-
disjoint r-graphs;

(tr3′) T ′ is an (R1,A∪L ∪R′, φ(R1,A∪L) ∪ φ(R′);K
(r)
q )-transformer in G;

(tr4′) |V (T ′ ∪R′)| ≤ 0.7γn.
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Proof of claim: Let H ′ := T̂ ∪R1,A ∪ φ(R1,A) ∪ (S1 ] L) ∪ (S2 ] L). Clearly, ∆(H ′) ≤ 5µn.
Let W := V (R1,A∪L) ∪ V (φ(R1,A∪L)). By (tr4), we have that |W | ≤ 4µn. Similarly to the

above, by Corollary 5.14 and Lemma 5.7(i), there exists a subset U ′ ⊆ V (G) with 0.4γn ≤
|U ′| ≤ 0.6γn such that G′′′ := G[U ′ ∪W ] is a (2ε, ξ − ε, q, r)-supercomplex. Let ñ := |U ′ ∪W |.
Note that ∆(H ′) ≤ 5µn ≤ √µñ. Thus, by Proposition 5.6(v), G̃ := G′′′ − H ′ is still a
(3ε, ξ − 2ε, q, r)-supercomplex. For every e ∈ R1,A∪L, let

Qe := {Q ∈ G̃(q)(e) ∩ G̃(q)(φ̄(e)) : Q ∩ (S1 ∪ S2) = ∅}.

By Fact 5.2, for every e ∈ R1,A∪L ⊆ G̃(r), we have that |G̃(q)(e)∩ G̃(q)(φ̄(e))| ≥ 0.5ξñq−r. Thus,
we have that |Qe| ≥ 0.4ξñq−r. Since ∆(R1,A∪L ∪ φ̄(R1,A∪L)) ≤ 4µn ≤ √µñ, we can apply

Lemma 6.5 (with |R1,A∪L|, 2, {e, φ̄(e)},Qe playing the roles of m, s, Lj ,Qj) to find for every

e ∈ R1,A∪L some Qe ∈ Qe such that
(
e∪Qe

r

)
∪
(
φ̄(e)∪Qe

r

)
and

(
e′∪Qe′
r

)
∪
(
φ̄(e′)∪Qe′

r

)
are disjoint for

distinct e, e′ ∈ R1,A∪L. For each e ∈ R1,A∪L, let Q̃e := (e ∪ Qe)≤ and Q̃φ̄(e) := (φ̄(e) ∪ Qe)≤.
Let

T ′ :=
⋃

e∈R1,A∪L

(Q̃(r)
e ∩ Q̃

(r)

φ̄(e)
) =

⋃
e∈R1,A∪L

(
(e \ S1) ∪Qe

r

)
,(8.3)

R′ :=

 ⋃
e∈R1,A∪L

Q̃(r)
e

− T ′ −R1,A∪L.(8.4)

We clearly have T ′, R′ ⊆ G(r). We now check (tr1′)–(tr4′). Let e′ ∈ R′. Thus, there exists
e ∈ R1,A∪L with e′ ⊆ e ∪ Qe. If e′ ∩ S1 = ∅, then e′ ⊆ (e \ S1) ∪ Qe, thus e′ ∈ T ′, so this
cannot happen. Moreover, by (tr1) we have |e′ ∩ S1| ≤ |(e ∪ Qe) ∩ S1| = |e ∩ S1| ≤ i − 1 and
|e′ ∩ S2| ≤ |(e ∪ Qe) ∩ S2| = 0. Therefore, R′ is (φ, V (G), S1, S2, i − 1)-projectable, so (tr1′)
holds. Observe that

φ(R′) =

 ⋃
e∈R1,A∪L

Q̃
(r)

φ̄(e)

− T ′ − φ(R1,A∪L).(8.5)

In order to check (tr2′), note first that T ′, R′, φ(R′) ⊆ G̃(r) ⊆ G(r)−H ′. Thus, by (tr2), it is
enough to check that T ′, R′, φ(R′), R1,A∪L, φ(R1,A∪L) are pairwise edge-disjoint. Note that no
edge of T ′ intersects S1 ∪ S2. Thus, (tr1), (8.4), (8.5), (Y1) and Proposition 8.7(ii) imply that
T ′, R′, φ(R′), R1,A∪L, φ(R1,A∪L) are indeed pairwise edge-disjoint, proving (tr2′).

By (8.4) and (8.5), we have T ′ ∪R1,A∪L ∪R′ =
⋃
e∈R1,A∪L

Q̃
(r)
e and T ′ ∪φ(R1,A∪L)∪φ(R′) =⋃

e∈R1,A∪L
Q̃

(r)

φ̄(e)
. Hence, T ′ satisfies (tr3′).

Finally, we can easily check that |V (T ′ ∪R′)| ≤ ñ ≤ 0.7γn. −

Let T := T̂ ∪ R1,A∪L ∪ φ(R1,A∪L) ∪ T ′ and R := R1,A ∪ R′. Clearly, (tr1) and (tr1′) imply
that (TR1) holds. Moreover, (tr2′) implies that T is edge-disjoint from both (S1 ] L) ∪ φ(R)
and (S2 ] L) ∪R. Observe that

T ∪ (S1 ] L) ∪ φ(R) = T̂ ∪R1,A∪L ∪ φ(R1,A∪L) ∪ T ′ ∪ (S1 ] L) ∪ φ(R1,A) ∪ φ(R′)

= T̂ ∪ (S1 ] L) ∪R1,A∪L ∪ φ(R1,A) ∪ T ′ ∪ φ(R1,A∪L) ∪ φ(R′).

Using (tr3) and (tr3′) we can thus see that G[T ∪ (S1 ] L) ∪ φ(R)] has a K
(r)
q -decomposition.

Similarly, G[T ∪ (S2 ] L) ∪ R] has a K
(r)
q -decomposition, so (TR2) holds. Finally, we have

|V (T ∪R)| ≤ 4µn+ 0.7γn ≤ γn by (tr4) and (tr4′). �

Proof of Lemma 8.5. We can assume that γ � 1/h, ε. Choose new constants γ2, . . . , γr, γ
′
2 . . . , γ

′
r >

0 such that

1/n� γr � γ′r � γr−1 � γ′r−1 � · · · � γ2 � γ′2 � γ � 1/h, ε� ξ, 1/q.
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Let φ : V (H) → V (H ′) be an edge-bijective homomorphism from H to H ′. Let φ̄ be as in
Definition 8.6 with V (H), V (H ′) playing the roles of V1, V2. Since φ is edge-bijective, we have
that

φ�S is injective whenever S ⊆ e for some e ∈ H.(8.6)

For every e ∈ H, we have |G(q)(e)∩G(q)(φ̄(e))| ≥ 0.5ξnq−r by Fact 5.2. It is thus easy to find for

each e ∈ H some Qe ∈ G(q)(e)∩G(q)(φ̄(e)) with Qe∩(V (H)∪V (H ′)) = ∅ such that Qe∩Qe′ = ∅
for all distinct e, e′ ∈ H. For each e ∈ H, let Q̃e := (e∪Qe)≤ and Q̃φ̄(e) := (φ̄(e)∪Qe)≤. Define

T ∗r :=
⋃
e∈H

(
Qe
r

)
=
⋃
e∈H

(Q̃(r)
e ∩ Q̃

(r)

φ̄(e)
),(8.7)

R∗r :=
⋃
e∈H
{e′ ∈ Q̃(r)

e : |e′ ∩ V (H)| ∈ [r − 1]} =
⋃
e∈H

Q̃(r)
e − T ∗r −H.

Let γ1 := γ. Given i ∈ [r − 1] and T ∗i+1, R
∗
i+1 ⊆ G(r), we define the following conditions:

(TR1∗)i R
∗
i+1 is (φ, V (G), V (H), V (H ′), i)-projectable;

(TR2∗)i T
∗
i+1 is an (H ∪R∗i+1, H

′ ∪ φ(R∗i+1);K
(r)
q )-transformer in G;

(TR3∗)i |V (T ∗i+1 ∪R∗i+1)| ≤ γi+1n.

Note that (TR2∗)i implies that T ∗i+1 is edge-disjoint from both R∗i+1 and φ(R∗i+1), and that all

three are subgraphs of G(r). Note also that R∗i+1 and φ(R∗i+1) are edge-disjoint by (TR1∗)i and
Proposition 8.7(ii).

Claim 1: T ∗r and R∗r as defined in (8.7) satisfy (TR1∗)r−1–(TR3∗)r−1.

Proof of claim: (TR3∗)r−1 clearly holds. To see (TR1∗)r−1, let e′ ∈ R∗r . There exists e ∈ H
such that e′ ⊆ e ∪ Qe and |e′ ∩ V (H)| ∈ [r − 1]. Clearly, e′ ∩ V (H ′) ⊆ (e ∪ Qe) ∩ V (H ′) = ∅,
so (Y1) holds. Moreover, e′ ∩V (H) ⊆ e, so φ�e′∩V (H) is injective by (8.6), and (Y2) holds. Let

e′, e′′ ∈ R∗r and suppose that φ̄(e′) = φ̄(e′′). We thus have e′ \ V (H) = e′′ \ V (H). Since the
Qe’s were chosen to be vertex-disjoint, we must have e′, e′′ ⊆ e ∪ Qe for some e ∈ H. Hence,
(e′∪e′′)∩V (H) ⊆ e and so φ�(e′∪e′′)∩V (H) is injective by (8.6). Since φ(e′∩V (H)) = φ(e′′∩V (H))
by assumption, we have e′ ∩ V (H) = e′′ ∩ V (H), and thus e′ = e′′. Altogether, (Y3) holds, so
(TR1∗)r−1 is satisfied.

T ∗r is clearly edge-disjoint from both H∪R∗r and H ′∪φ(R∗r). Moreover, note that
⋃
e∈H Q̃e is

a K
(r)
q -decomposition of T ∗r ∪H∪R∗r and

⋃
e∈H Q̃φ̄(e) is a K

(r)
q -decomposition of T ∗r ∪H ′∪φ(R∗r),

so T ∗r satisfies (TR2∗)r−1. −
Suppose that for some i ∈ [r − 1], we have already found T ∗i+1, R

∗
i+1 ⊆ G(r) such that

(TR1∗)i–(TR3∗)i hold. We will now find T ∗i and R∗i such that (TR1∗)i−1–(TR3∗)i−1 hold. To
this end, let

Ri := {e ∈ R∗i+1 : |e ∩ V (H)| = i}.
Let Si be the set of all S ∈

(
V (H)
i

)
such that S is contained in some edge of Ri. For each S ∈ Si,

let LS := Ri(S). By Proposition 8.7(iii), we have that

Ri =
⋃̇
S∈Si

(S ] LS) and φ(Ri) =
⋃̇
S∈Si

(φ(S) ] LS).(8.8)

We intend to apply Lemma 8.8 to each pair S, φ(S) with S ∈ Si individually. For each S ∈ Si,
define

VS := (V (G) \ (V (H) ∪ V (H ′))) ∪ S ∪ φ(S).

Claim 2: For every S ∈ Si, LS ⊆ G[VS ](S)(r−i)∩G[VS ](φ(S))(r−i) and |V (LS)| ≤ 1.1γi+1|VS |.
Proof of claim: The second assertion clearly holds by (TR3∗)i. To see the first one, let e′ ∈
LS = Ri(S). Since Ri ⊆ R∗i+1 ⊆ G(r), we have e′ ∈ G(S)(r−i). Moreover, φ(S) ∪ e′ ∈ φ(Ri) ⊆
φ(R∗i+1) ⊆ G(r) by (8.8). Since R∗i+1 is (φ, V (G), V (H), V (H ′), i)-projectable, we have that
e′ ∩ (V (H) ∪ V (H ′)) = ∅. Thus, S ∪ e′ ⊆ VS and φ(S) ∪ e′ ⊆ VS . −
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Claim 3: For every S ∈ Si, LS is K
(r−i)
q−i -divisible.

Proof of claim: Let f ⊆ V (LS) with |f | ≤ r − i− 1. We have to check that
(q−i−|f |
r−i−|f |

)
| |LS(f)|.

By (TR2∗)i, we have that T ∗i+1∪H∪R∗i+1 and T ∗i+1∪H ′∪φ(R∗i+1) are K
(r)
q -divisible. Clearly, H ′

does not contain an edge that contains S. Note that by (TR1∗)i and Proposition 8.7(ii), φ(R∗i+1)
does not contain an edge that contains S either, hence |T ∗i+1(S∪f)| = |(T ∗i+1∪H ′∪φ(R∗i+1))(S∪
f)| ≡ 0 mod

(q−|S∪f |
r−|S∪f |

)
. Moreover, since H is K

(r)
q -divisible, we have |(T ∗i+1 ∪ R∗i+1)(S ∪ f)| ≡

|(T ∗i+1∪H∪R∗i+1)(S∪f)| ≡ 0 mod
(q−|S∪f |
r−|S∪f |

)
. Thus, we have

(q−|S∪f |
r−|S∪f |

)
| |R∗i+1(S∪f)|. Moreover,

|R∗i+1(S ∪ f)| = |Ri(S ∪ f)| = |LS(f)|, proving the claim. −

We now intend to apply Lemma 8.8 for every S ∈ Si in order to define TS , RS ⊆ G(r) such
that the following hold:

(TR1′) RS is (φ, V (G), V (H), V (H ′), i− 1)-projectable;

(TR2′) TS is an ((S ] LS) ∪ φ(RS), (φ(S) ] LS) ∪RS ;K
(r)
q )-transformer in G;

(TR3′) |V (TS ∪RS)| ≤ γ′i+1n.

In order to ensure that these graphs are all edge-disjoint, we find them successively. Recall that
P φ (for a given r-graph P ) was defined in Definition 8.6. Let S ′ ⊆ Si be the set of all S′ ∈ Si
for which TS′ and RS′ have already been defined such that (TR1′)–(TR3′) hold. Suppose that
next we want to find TS and RS . Let

PS := R∗i+1 ∪
⋃
S′∈S′

RS′ ,

MS := T ∗i+1 ∪R∗i+1 ∪ φ(R∗i+1) ∪
⋃
S′∈S′

(TS′ ∪RS′ ∪ φ(RS′)),

GS := G[VS ]− ((MS ∪ P φS )− ((S ] LS) ∪ (φ(S) ] LS))).

Observe that (TR3∗)i and (TR3′) imply that

|V (MS ∪ PS)| ≤ |V (T ∗i+1 ∪R∗i+1 ∪ φ(R∗i+1))|+
∑
S′∈S′

|V (TS′ ∪RS′ ∪ φ(RS′))|

≤ 2γi+1n+ 2

(
h

i

)
γ′i+1n ≤ γin.

In particular, |V (P φS )| ≤ |V (PS) ∪ V (H)| ≤ γin+ h. Thus, by Proposition 5.6(v) GS is still a

(2ε, ξ/2, q, r)-supercomplex. Moreover, note that LS ⊆ GS(S)(r−i) ∩GS(φ(S))(r−i) by Claim 2

and LS is K
(r−i)
q−i -divisible by Claim 3.

Finally, by definition of Si, S is contained in some e ∈ Ri. Since Ri satisfies (Y2) by
(TR1∗)i, we know that φ�e is injective. Thus, φ�S : S → φ(S) is a bijection. We can thus apply
Lemma 8.8 with the following objects/parameters:

object/parameter GS i S φ(S) φ�S LS 1.1γi+1 γ′i+1 2ε |VS | ξ/2
playing the role of G i S1 S2 φ L γ′ γ ε n ξ

This yields TS and RS such that (TR2′) and (TR3′) hold and RS is (φ�S , V (GS), S, φ(S), i−
1)-projectable. Note that the latter implies that RS is (φ, V (G), V (H), V (H ′), i−1)-projectable
as V (H) ∩ V (GS) = S and V (H ′) ∩ V (GS) = φ(S), so (TR1′) holds as well. Moreover, by
construction we have that

(a) H,H ′, T ∗i+1, R
∗
i+1, φ(R∗i+1), (TS)S∈Si , (RS)S∈Si , (φ(RS))S∈Si are pairwise edge-disjoint;

(b) for all distinct S, S′ ∈ Si and all e ∈ RS , e′ ∈ RS′ , e′′ ∈ R∗i+1 − Ri we have that φ̄(e),

φ̄(e′) and φ̄(e′′) are pairwise distinct.
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Here, (a) holds by the choice of MS and (b) holds by the definition of P φS . Let

T ∗i := T ∗i+1 ∪Ri ∪ φ(Ri) ∪
⋃
S∈Si

TS ,

R∗i := (R∗i+1 −Ri) ∪
⋃
S∈Si

RS .

We check that (TR1∗)i−1–(TR3∗)i−1 hold. Using (TR3∗)i and (TR3′), we can confirm that

|V (T ∗i ∪R∗i )| ≤ |V (T ∗i+1 ∪R∗i+1 ∪ φ(R∗i+1))|+
∑
S∈Si

|V (TS ∪RS)|

≤ 2γi+1n+

(
h

i

)
γ′i+1n ≤ γin.

In order to check that R∗i is (φ, V (G), V (H), V (H ′), i − 1)-projectable, note that (Y1)
and (Y2) hold by (TR1∗)i, the definition of Ri and (TR1′). Moreover, (Y3) is implied
by (TR1∗)i, (TR1′) and (b).

Finally, we check (TR2∗)i−1. Observe that

T ∗i ∪H ∪R∗i = T ∗i+1 ∪Ri ∪ φ(Ri) ∪
⋃
S∈Si

TS ∪H ∪ (R∗i+1 −Ri) ∪
⋃
S∈Si

RS

(8.8)
= (T ∗i+1 ∪H ∪R∗i+1) ∪

⋃
S∈Si

(TS ∪ (φ(S) ] LS) ∪RS),

T ∗i ∪H ′ ∪ φ(R∗i ) = T ∗i+1 ∪Ri ∪ φ(Ri) ∪
⋃
S∈Si

TS ∪H ′ ∪ (φ(R∗i+1)− φ(Ri)) ∪
⋃
S∈Si

φ(RS)

(8.8)
= (T ∗i+1 ∪H ′ ∪ φ(R∗i+1)) ∪

⋃
S∈Si

(TS ∪ (S ] LS) ∪ φ(RS)).

Thus, by (TR2∗)i and (TR2′), both G[T ∗i ∪ H ∪ R∗i ] and G[T ∗i ∪ H ′ ∪ φ(R∗i )] have a K
(r)
q -

decomposition.

Finally, T ∗1 is an (H,H ′;K
(r)
q )-transformer in G with ∆(T ∗1 ) ≤ γ1n by (TR2∗)0 and (TR3∗)0

since R∗1 is empty by (TR1∗)0 and (Y1). �

8.2. Canonical colourings. Ideally, for each K
(r)
q -divisible H, we would like to find H ′ with

H  H ′ so that H ′ is (trivially) K
(r)
q -decomposable. Together with the corresponding trans-

former T guaranteed by Lemma 8.5, this would give us an absorber A := T ∪ H ′ for H.
But it is far from clear why such an H ′ should exist. A strategy to overcome this issue is
to search for a ‘canonical’ L, so that H  L for any H with |H| = |L|. In particular, to-

gether with Lemma 8.5 this would imply the existence of an (H,L;K
(r)
q )-transformer TH and

an (H0, L;K
(r)
q )-transformer T0, where H0 is the union of |H|/

(
q
r

)
disjoint K

(r)
q ’s. This in turn

immediately yields an absorber A := TH ∪L∪T0 ∪H0 for H. Unfortunately, this strategy still
has the problem that any natural construction of L seems to lead to the occurrence of multiple
as well as degenerate edges in L.

We are able to overcome this by considering the above strategy with the ‘clique complement’
∇H playing the role of H: here ∇H is obtained from H by first extending each edge of H into

a copy of K
(r)
q and then removing the original edges of H. We can then find the required L

which is canonical with respect to clique complements of arbitrary H. The actual construction
of L is quite simple to describe. Perhaps surprisingly, the proof that it is indeed canonical is
based on the inductive assertion (∗)r−1.

A multi-r-graph G consists of a set of vertices V (G) and a multiset of edges E(G), where
each e ∈ E(G) is a subset of V (G) of size r. We will often identify a multi-r-graph with its
edge set. For S ⊆ V (G), let |G(S)| denote the number of edges that contain S (counted with
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multiplicities). If |S| = r, then |G(S)| is called the multiplicity of S in G. We say that G is

K
(r)
q -divisible if

(q−|S|
r−|S|

)
divides |G(S)| for all S ⊆ V (G) with |S| ≤ r − 1.

Definition 8.9. We introduce the following operators ∇̃q,r,∇q,r. Given a (multi-)r-graph H,

let ∇̃q,rH be obtained from H by extending every edge of H into a copy of K
(r)
q . More precisely,

for every e ∈ H, let Ze := {ze,1, . . . , ze,q−r} be a vertex set of size q− r, such that Ze ∩Ze′ = ∅
for all distinct (but possibly parallel) e, e′ ∈ H and V (H) ∩ Ze = ∅ for all e ∈ H. Then ∇̃q,rH
is the (multi-)r-graph on V (H) ∪

⋃
e∈H Ze with edge set

⋃
e∈H

(
e∪Ze

r

)
, that is, (∇̃q,rH)[e ∪ Ze]

is a copy of K
(r)
q for every e ∈ H. Let ∇q,rH := ∇̃q,rH − H. If q and r are clear from the

context, we omit the subscripts. Note that if H is K
(r)
q -divisible, then so is ∇q,rH.

For r ∈ N, let Mr contain all pairs (k,m) ∈ N2
0 such that m

r−i
(
k−i
r−1−i

)
is an integer for all

i ∈ [r − 1]0.

Definition 8.10. Given q > r ≥ 2 and (k,m) ∈Mr, define the multi-r-graph Lq,rk,m as follows:

Let B be a set of size q − r such that [k] ∩B = ∅. Define Lq,rk,m on vertex set [k] ∪B such that

for every e ∈
(

[k]∪B
r

)
, the multiplicity of e is

|Lq,rk,m(e)| =

{
0 if e ⊆ [k];

m
r−|e∩[k]|

( k−|e∩[k]|
r−1−|e∩[k]|

)
otherwise.

Finally, for an r-graph H, we let H+t·K(r)
q denote the vertex-disjoint union of H and t copies

of K
(r)
q . We write H+t if q is clear from the context.

The main lemma of this subsection is the following, which guarantees the existence of the
desired canonical graph.

Lemma 8.11. Let q > r ≥ 2 and assume that (∗)r−1 holds. Then for all h ∈ N, there exists

(k,m) ∈ Mr such that for any K
(r)
q -divisible r-graph H on at most h vertices, there exists

t ∈ N such that ∇(∇(H+t)) ∇Lq,rk,m.

To prove Lemma 8.11 we introduce so called strong colourings. Let H be an r-graph and
C a set. A map c : V (H) → C is a strong C-colouring of H if for all distinct x, y ∈ V (H)
with |H({x, y})| > 0, we have c(x) 6= c(y), that is, no colour appears twice in one edge. For
α ∈ C, we let c−1(α) denote the set of all vertices coloured α. For a set C ′ ⊆ C, we let

c⊆(C ′) := {e ∈ H : C ′ ⊆ c(e)}. We say that c is m-regular if |c⊆(C ′)| = m for all C ′ ∈
(
C
r−1

)
.

Given an r-graph H and a strong C-colouring c of H, let id(H, c) denote the multi-r-graph
obtained from H by identifying c−1(α) to a new vertex for all α ∈ C, that is, id(H, c) has
vertex set C and its edge set is the multiset {c(e) : e ∈ H}.
Proposition 8.12. Let q > r ≥ 2. Let H be an r-graph and c a strong C-colouring of H.
Then ∇q,r(H) ∇q,r(id(H, c)).

Proof. Let V (H) ∪
⋃
e∈H Ze be the vertex set of ∇q,r(H) as in Definition 8.9. Similarly, for

every e ∈ H, let Z ′e = {z′e,1, . . . , z′e,q−r} be such that C ∪
⋃
e∈H Z

′
e can be taken as the vertex

set of ∇q,r(id(H, c)) as in Definition 8.9. Define φ : V (∇q,r(H))→ V (∇q,r(id(H, c))) as follows:
for all x ∈ V (H), let φ(x) := c(x), and for all e ∈ H and i ∈ [q − r], let φ(ze,i) := z′e,i. Then φ

is an edge-bijective homomorphism from ∇q,r(H) to ∇q,r(id(H, c)). �

Fact 8.13. Let H be an r-graph and let c be a strong m-regular [k]-colouring of H. Then

|c⊆(C ′)| = m
r−i
(
k−i
r−1−i

)
for all i ∈ [r − 1]0 and all C ′ ∈

(
[k]
i

)
.

Let H be an r-graph and assume that c is a strong C-colouring of H. There is a natural way
to derive a strong colouring ∇q,rc of ∇q,rH. Let V (H) ∪

⋃
e∈H Ze be the vertex set of ∇q,rH

as in Definition 8.9. Let B = {b1, . . . , bq−r} be a set of size q − r such that C ∩B = ∅. Define
∇q,rc as follows: for all x ∈ V (H), let ∇q,rc(x) := c(x), and for every e ∈ H and i ∈ [q− r], let
∇q,rc(ze,i) := bi. Clearly, ∇q,rc is a strong (C ∪B)-colouring of ∇q,rH.
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Proposition 8.14. Let q > r ≥ 2. Let H be an r-graph and suppose that c is a strong
m-regular [k]-colouring of H. Then (k,m) ∈Mr and id(∇q,rH,∇q,rc) ∼= Lq,rk,m.

Proof. By Fact 8.13, (k,m) ∈ Mr, so Lq,rk,m is defined. Let B be a set as above such that

[k] ∪ B is the colour set of ∇c. Thus, [k] ∪ B is the vertex set of id(∇H,∇c). We may also

assume that Lq,rk,m has vertex set [k] ∪B as well. For a set e ∈
(

[k]∪B
r

)
, define

S(e) := {e′ ∈ ∇H : ∇c(e′) = e}.

It remains to show that for all e ∈
(

[k]∪B
r

)
, we have |S(e)| = |Lq,rk,m(e)|. So let e ∈

(
[k]∪B
r

)
.

Clearly, if e ⊆ [k], then S(e) = ∅ since no edge of H is contained in ∇H, and |Lq,rk,m(e)| = 0,

so we can assume that e 6⊆ [k]. We claim that |S(e)| = |c⊆(e ∩ [k])|. Indeed, for every e′′ ∈ H
with e ∩ [k] ⊆ c(e′′), we have that e′ := (e′′ ∩ c−1(e ∩ [k])) ∪ {ze′′,i : bi ∈ e ∩B} is in ∇H and
∇c(e′) = e, and this assignment is bijective. Thus, since |e∩ [k]| ≤ r−1, Fact 8.13 implies that

|S(e)| = |c⊆(e ∩ [k])| = m

r − |e ∩ [k]|

(
k − |e ∩ [k]|

r − 1− |e ∩ [k]|

)
= |Lq,rk,m(e)|.

�

The following lemma guarantees the existence of a suitable strong colouring. Together, these
tools allow us to deduce Lemma 8.11.

Lemma 8.15. Let q > r ≥ 2 and assume that (∗)r−1 holds. Then for all h ∈ N, there exist

k,m ∈ N such that for any K
(r)
q -divisible r-graph H on at most h vertices, there exists t ∈ N

such that H+t has a strong m-regular [k]-colouring.

Proof of Lemma 8.11. Let h ∈ N and let k,m ∈ N be as in Lemma 8.15. Now, let H be any

K
(r)
q -divisible r-graph H on at most h vertices. By Lemma 8.15, there exists t ∈ N such that

H+t has a strong m-regular [k]-colouring c. In particular, ∇c is a strong colouring of ∇(H+t).
Thus, by Proposition 8.12, we have ∇(∇(H+t))  ∇(id(∇(H+t),∇c)). By Proposition 8.14,
we have (k,m) ∈Mr and id(∇(H+t),∇c) ∼= Lq,rk,m, completing the proof. �

It remains to prove Lemma 8.15. We need the following result about decompositions of
multi-r-graphs (which we will apply with r − 1 playing the role of r).

Corollary 8.16. Let r ∈ N and assume that (∗)r is true. Let 1/n � 1/h, 1/q with q > r be

such that K
(r)
n is K

(r)
q -divisible. Let m ∈ N. Suppose that H is a K

(r)
q -divisible multi-r-graph

on [h] with multiplicity at most m − 1 and let K be the complete multi-r-graph on [n] with

multiplicity m. Then K −H has a K
(r)
q -decomposition.

Proof. Choose ε > 0 such that 1/n � ε � 1/h, 1/q. We may assume that H̃ := ∇̃q,rH is

a multi-r-graph on [n]. We may also assume that Ĥ := ∇̃q,r(H̃ − H) is an r-graph on [n].
Observe that the following are true:

(a) H̃ can be decomposed into m−1 (possibly empty) K
(r)
q -decomposable (simple) r-graphs

H ′1, . . . ,H
′
m−1;

(b) Ĥ is a K
(r)
q -decomposable (simple) r-graph;

(c) H ∪ Ĥ = H̃ ∪∇(∇H).

By (c), we have that

K −H = (K −H − Ĥ) ∪ Ĥ = Ĥ ∪ (K − H̃ −∇(∇H)).

Let K ′ be the complete (simple) r-graph on [n]. For each i ∈ [m − 1], define Hi := K ′ −H ′i,
and let Hm := K ′ −∇(∇H). We thus have K − H̃ −∇(∇H) =

⋃
i∈[m]Hi by (a).
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Recall that K ′↔ is a (0, 0.99/q!, q, r)-supercomplex (cf. Example 3.8). We conclude with
Proposition 5.6(v) that H↔i is an (ε, 0.5/q!, q, r)-supercomplex for every i ∈ [m]. Thus, by (∗)r,
Hi is K

(r)
q -decomposable for every i ∈ [m]. Thus,

K −H = Ĥ ∪ (K − H̃ −∇(∇H)) = Ĥ ∪
⋃
i∈[m]

Hi

has a K
(r)
q -decomposition. �

Proof of Lemma 8.15. Choose k ∈ N such that 1/k � 1/h, 1/q and such that K
(r−1)
k

is K
(r−1)
q -divisible. (Note that for every a ∈ N, K

(r−1)
a(q!)+q is K

(r−1)
q -divisible.) Let G be the

complete multi-(r − 1)-graph on [k] with multiplicity m′ := h+ 1 and let m := (q − r + 1)m′.

Let H be any K
(r)
q -divisible r-graph on at most h vertices. We may assume that V (H) = [h].

We first define a multi-(r−1)-graph H ′ on [h] as follows: For each S ∈
(

[h]
r−1

)
, let the multiplicity

of S in H ′ be |H ′(S)| := |H(S)|. Clearly, H ′ has multiplicity at most h. Observe that for each
S ⊆ [h] with |S| ≤ r − 1, we have

|H ′(S)| = (r − |S|)|H(S)|.(8.9)

Note that since H is K
(r)
q -divisible, we have that

(
q−(r−1)

1

)
| |H(S)| for all S ∈

(
[h]
r−1

)
. Thus, the

multiplicity of each S ∈
(

[h]
r−1

)
in H ′ is divisible by q− r+ 1. Let H ′′ be the multi-(r− 1)-graph

on [h] obtained from H ′ by dividing the multiplicity of each S ∈
(

[h]
r−1

)
by q − r + 1. Hence,

by (8.9), for all S ⊆ [h] with |S| ≤ r − 2, we have

|H ′′(S)| = |H ′(S)|
q − r + 1

=
r − |S|
q − r + 1

|H(S)| = |H(S)|(q−|S|
r−|S|

)( q − |S|
r − 1− |S|

)
≡ 0 mod

(
q − |S|

r − 1− |S|

)

since H is K
(r)
q -divisible. Thus, H ′′ is K

(r−1)
q -divisible. Therefore, by Corollary 8.16 (with

k,m′, r − 1 playing the roles of n,m, r) and our choice of k, G−H ′′ has a decomposition into

t edge-disjoint copies K ′1, . . . ,K
′
t of K

(r−1)
q .

We will show that t is as required in Lemma 8.15. To do this, let K1, . . . ,Kt be vertex-

disjoint copies of K
(r)
q and vertex-disjoint from H. We will now define a strong m-regular

[k]-colouring c of H+t = H ∪
⋃
j∈[t]Kj . To this end, for every j ∈ [t], let xj,1, . . . , xj,q be an

enumeration of V (Kj) and let yj,1, . . . , yj,q be an enumeration of V (K ′j). For all x ∈ V (H), let

c(x) := x.(8.10)

For all j ∈ [t] and i ∈ [q], let

c(xj,i) := yj,i.(8.11)

Clearly, c is a strong [k]-colouring of H+t. It remains to check that it is m-regular. Let

C ∈
(

[k]
r−1

)
. We set |H(C)| = |H ′′(C)| := 0 if C 6⊆ [h]. By (8.10), we have that |H(C)|

edges e of H satisfy C ⊆ c(e). Let J(C) := {j ∈ [t] : C ⊆ {yj,1, . . . , yj,q}}. Clearly, if
j ∈ [t] \ J(C), then Kj does not contain any edges e with C ⊆ c(e) by (8.11). Moreover,
if j ∈ J(C), then Kj contains q − (r − 1) edges e with C ⊆ c(e), also by (8.11). Thus,
|c⊆(C)| = |H(C)|+ (q − r + 1)|J(C)|. Note that C has multiplicity m′ − |H ′′(C)| in G−H ′′,
and hence we have |J(C)| = m′ − |H ′′(C)|. Since |H ′′(C)| = |H(C)|/(q − r + 1), we conclude
that |c⊆(C)| = (q − r + 1)(|H ′′(C)|+ J(C)) = (q − r + 1)m′ = m. �
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8.3. Proof of the Absorbing lemma. We can now use Lemma 8.5 and Lemma 8.11 to
construct the desired absorber as a concatenation of transformers.

Proof of Lemma 8.2. If H is empty, then we can take A to be empty, so let us assume
that H is not empty. In particular, G(r) is not empty. Recall also that we assume r ≥ 2. By
Lemma 8.11, there exist k,m, t1, t2 ∈ N such that

∇(∇(H+t1)) ∇Lq,rk,m and ∇(∇(∅+t2)) ∇Lq,rk,m.(8.12)

We can assume that 1/n� 1/k, 1/m, 1/t1, 1/t2.

Clearly, there exist disjoint Q1, . . . , Qt1 , Q
′
1, . . . , Q

′
t2 ∈ G(q) which are also disjoint from

V (H). Let H1 := H ∪
⋃
j∈[t1]G

(r)[Qj ] and H2 :=
⋃
j∈[t2]G

(r)[Q′j ]. So H1 is a copy of H+t1 and

H2 is a copy of ∅+t2 . Moreover, both G[H1 −H] and G[H2] have a K
(r)
q -decomposition.

For each e ∈ H1 ∪ H2, choose Qe ∈ G(q−r)(e). We can assume that all Qe are pairwise

disjoint and disjoint from V (H1) ∪ V (H2). Let H ′1 :=
⋃
e∈H1

(G(r)(Qe ∪ e) − {e}) and H ′2 :=⋃
e∈H2

(G(r)(Qe ∪ e) − {e}). Thus, H ′1 is a copy of ∇(H+t1) and H ′2 is a copy of ∇(∅+t2).

Moreover, both G[H1 ∪H ′1] and G[H2 ∪H ′2] have a K
(r)
q -decomposition.

For each e ∈ H ′1 ∪ H ′2, choose Qe ∈ G(q−r)(e). We can assume that all Qe are pairwise

disjoint and disjoint from V (H ′1) ∪ V (H ′2). Let H ′′1 :=
⋃
e∈H′1

(G(r)(Qe ∪ e) − {e}) and H ′′2 :=⋃
e∈H′2

(G(r)(Qe∪e)−{e}). Thus, H ′′1 is a copy of ∇(∇(H+t1)) and H ′′2 is a copy of ∇(∇(∅+t2)).

Moreover, both G[H ′1 ∪H ′′1 ] and G[H ′2 ∪H ′′2 ] have a K
(r)
q -decomposition.

Since G is (ξ, q, r)-extendable, it is straightforward to find a copy L′ of∇Lq,rk,m in G(r) which is

vertex-disjoint from H ′′1 and H ′′2 . (This step is the reason why the definition of a supercomplex
includes the notion of extendability.)

By (8.12), we have H ′′1  L′ and H ′′2  L′. Clearly, both H ′′1 and H ′′2 are K
(r)
q -divisible, and

(again by (8.12)) so is L′. By Proposition 5.6(v) and Lemma 8.5, there exists an (H ′′1 , L
′;K

(r)
q )-

transformer T1 in G − (H1 ∪ H ′1 ∪ H2 ∪ H ′2 ∪ H ′′2 ) with ∆(T1) ≤ γn/3. Similarly (using

Proposition 5.6(v) and Lemma 8.5 again), we can find an (H ′′2 , L
′;K

(r)
q )-transformer T2 in

G− (H1 ∪H ′1 ∪H ′′1 ∪H2 ∪H ′2 ∪ T1) with ∆(T2) ≤ γn/3.
Let

A := (H1 −H) ∪ (H ′1 ∪H ′′1 ) ∪ (T1 ∪ L′) ∪ (T2 ∪H ′′2 ) ∪ (H ′2 ∪H2).

Clearly, A ⊆ G(r), and ∆(A) ≤ γn. Moreover, A and H are edge-disjoint. It remains to show

that both G[A] and G[A ∪H] have a K
(r)
q -decomposition.

By construction, G[H1−H], G[H ′1∪H ′′1 ], G[T1∪L′], G[T2∪H ′′2 ] and G[H ′2∪H2] are r-disjoint

and have a K
(r)
q -decomposition each. Thus, G[A] has a K

(r)
q -decomposition. Moreover, we have

A ∪H = (H1 ∪H ′1) ∪ (H ′′1 ∪ T1) ∪ (L′ ∪ T2) ∪ (H ′′2 ∪H ′2) ∪H2.

By construction, G[H1 ∪H ′1], G[H ′′1 ∪ T1], G[L′ ∪ T2], G[H ′′2 ∪H ′2] and G[H2] are r-disjoint and

have a K
(r)
q -decomposition each. Thus, G[A ∪H] has a K

(r)
q -decomposition. So A is indeed a

K
(r)
q -absorber for H in G. �

9. Proof of the main theorems

We can now deduce our main results (modulo the proof of the Cover down lemma).

Proof of Theorem 3.7. We proceed by induction on r. The case r = 1 forms the base case
of the induction and in this case we do not rely on any inductive assumption. Suppose that
r ∈ N and that (∗)i is true for all i ∈ [r − 1].

Choose new constants m′ ∈ N, γ, µ > 0 such that 1/n� γ � 1/m′ � ε� µ� ξ, 1/q.

Let G be a K
(r)
q -divisible (ε, ξ, q, r)-supercomplex on n vertices. By Lemma 7.6, there exists

a (2
√
ε, µ, ξ − ε, q, r,m)-vortex U0, U1, . . . , U` in G for some µm′ ≤ m ≤ m′. Let H1, . . . ,Hs be
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an enumeration of all spanning K
(r)
q -divisible subgraphs of G[U`]

(r). Clearly, s ≤ 2(mr ). We will

now find edge-disjoint subgraphs A1, . . . , As of G(r) such that for all i ∈ [s] we have that

(A1) Ai is a K
(r)
q -absorber for Hi in G;

(A2) ∆(Ai) ≤ γn;
(A3) Ai[U1] is empty.

Suppose that for some t ∈ [s], we have already found edge-disjoint A1, . . . , At−1 that satisfy

(A1)–(A3). Let Tt := (G(r)[U1] −Ht) ∪
⋃
i∈[t−1]Ai. Clearly, ∆(Tt) ≤ µn + sγn ≤ 2µn. Thus,

Gabs,t := G−Tt is still a (
√
µ, ξ/2, q, r)-supercomplex by Proposition 5.6(v). Using Lemma 8.2,

we can find a K
(r)
q -absorber At for Ht in Gabs,t with ∆(At) ≤ γn. Clearly, At is edge-disjoint

from A1, . . . , At−1. Moreover, (A3) holds since G
(r)
abs,t[U1] = Ht.

Let A∗ := A1 ∪ · · · ∪As. It is easy to see that (A1)–(A3) imply the following:

(A1′) for every K
(r)
q -divisible subgraph H∗ of G[U`]

(r), G[A∗∪H∗] has a K
(r)
q -decomposition;

(A2′) ∆(A∗) ≤ εn;
(A3′) A∗[U1] is empty.

Let Galmost := G − A∗. By (A2′) and Proposition 5.6(v), Galmost is an (
√
ε, ξ/2, q, r)-

supercomplex. Moreover, since A∗ must beK
(r)
q -divisible, we have thatGalmost isK

(r)
q -divisible.

By (A3′), U1, . . . , U` clearly is a (2
√
ε, µ, ξ − ε, q, r,m)-vortex in Galmost[U1]. Moreover, (A2′)

and Proposition 7.10 imply that U1 is (ε1/5, µ, ξ/2, q, r)-random in Galmost and U1 \ U2 is

(ε1/5, µ(1−µ), ξ/2, q, r)-random inGalmost. Hence, U0, U1, . . . , U` is still an (ε1/5, µ, ξ/2, q, r,m)-

vortex in Galmost. Thus, by Lemma 7.13, there exists a K
(r)
q -packing Kalmost in Galmost which

covers all edges of G
(r)
almost except possibly some inside U`. Let H∗ := (G(r) − K(r)

almost)[U`].

Since H∗ is K
(r)
q -divisible, G[A∗ ∪ H∗] has a K

(r)
q -decomposition Kabsorb by (A1′). Then,

Kalmost ∪ Kabsorb is the desired K
(r)
q -decomposition of G. �

Proof of Theorem 3.14. Choose new constants γ, ε′, ξ′ such that 1/n � γ � ε′ � ξ′ �
ξ, 1/q, 1/λ. By Lemma 3.4, G is an (ε′,

√
ξ′, q, r)-supercomplex. Split G(r) into two subgraphs

G1 and G2 such that for i ∈ [2] and all L ⊆ G(r) with ∆(L) ≤ ε′n,

G[Gi 4 L] is a (
√
ε′, ξ′, q, r)-supercomplex.(9.1)

That such a splitting exists can be seen by a probabilistic argument: For each edge e ∈
G(r) independently, put e into G1 with probability 1/2, and into G2 otherwise. Then by
Corollary 5.16, whp the desired property holds.

By Corollary 6.8, there exists a subgraph L∗ ⊆ G2 with ∆(L∗) ≤ γn such that G′2 := G2−L∗

is K
(r)
q -divisible. Let G′1 := G1 ∪ L∗ = G(r) − G′2. Clearly, G′1 is still (q, r, λ)-divisible, and

both G[G′1] and G[G′2] are (
√
ε′, ξ′, q, r)-supercomplexes by (9.1). By repeated applications of

Corollary 6.8, we can find edge-disjoint subgraphs L1, . . . , Lλ of G′1 such that Ri := G′1 − Li
is K

(r)
q -divisible and ∆(Li) ≤ γn for all i ∈ [λ]. Indeed, suppose that we have already found

L1, . . . , Li−1. Then ∆(L1 ∪ · · · ∪ Li−1) ≤ λγn ≤
√
ε′n. Thus, by Corollary 6.8, there exists a

subgraph Li ⊆ G′1 − (L1 ∪ · · · ∪ Li−1) with ∆(Li) ≤ γn such that G′1 − Li is K
(r)
q -divisible.

Let G′′2 := G′2 ∪ L1 ∪ · · · ∪ Lλ. We claim that G′′2 is K
(r)
q -divisible. Let S ⊆ V (G) with

|S| ≤ r − 1. We then have that

|G′′2(S)| = |G′2(S)|+
∑
i∈[λ]

|Li(S)| = |G′2(S)|+
∑
i∈[λ]

|(G′1 −Ri)(S)|

= |G′2(S)|+ λ|G′1(S)| −
∑
i∈[λ]

|Ri(S)| ≡ 0 mod

(
q − |S|
r − |S|

)
.

Thus, G′′2 is K
(r)
q -divisible. Clearly, ∆(L∗ ∪L1 ∪ · · · ∪Lλ) ≤ (λ+ 1)γn ≤ ε′n. By (9.1), we can

see that each of G[G′2], G[G′′2], G[R1], . . . , G[Rλ] is a (
√
ε′, ξ′, q, r)-supercomplex.
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Using Theorem 3.7, we can thus find K
(r)
q -decompositions K1, . . . ,Kλ−1 of G[G′2], a K

(r)
q -

decomposition K∗ of G[G′′2], and for each i ∈ [λ], a K
(r)
q -decomposition K′i of G[Ri]. Moreover,

we can assume that all these decompositions are pairwise q-disjoint. Indeed, this can be
achieved by choosing them successively, deleting the corresponding q-sets from the subsequent
complexes and then applying Proposition 3.12 (where t ≤ 2λ ≤

√
ε′nq−r) to verify that the

parameters of the subsequent supercomplexes are not affected significantly. We claim that

K := K∗ ∪
⋃
i∈[λ−1]Ki ∪

⋃
i∈[λ]K′i (viewed as a collection of copies of K

(r)
q ) is the desired

(q, r, λ)-design. Indeed, every edge of G′1− (L1∪· · ·∪Lλ) is covered by each of K′1, . . . ,K′λ. For
each i ∈ [λ], every edge of Li is covered by K∗ and each of K′1, . . . ,K′i−1,K′i+1, . . . ,K′λ. Finally,
every edge of G′2 is covered by each of K1, . . . ,Kλ−1 and K∗. �

We note that the same proof can be used to obtain (q, r, λ)-designs of a supercomplex G,
where λ is allowed to grow with n, if we utilize an approximate decomposition result which
achieves a sublinear maximum degree for the leftover. More precisely, an analogous statement
of Theorem 6.1, where we might assume that G is (n−(q−r)/2.01, d, q, r)-regular, say, and γn is
replaced by g(n) = o(n1−α), would imply that Theorem 3.14 holds for all λ ≤ nα.

Proof of Theorem 1.3. Choose ε > 0 such that 1/n� ε� p, 1/q, 1/λ and let

c′ :=
1.1 · 2r

(
q+r
r

)
(q − r)!

c(q, r, p), ξ := 0.99/q!, ξ′ := 0.95ξp2r(q+r
r ), ξ′′ := 0.9(1/4)(

q+r
q )(ξ′ − c′).

Recall that the complete complex Kn is an (ε, ξ, q, r)-supercomplex (cf. Example 3.8).

Let H ∼ Hr(n, p). We can view H as a random subgraph of K
(r)
n . By Corollary 5.16, the

following holds whp for all L ⊆ K(r)
n with ∆(L) ≤ c(q, r, p)n:

Kn[H 4 L] is a (3ε+ c′, ξ′ − c′, q, r)-supercomplex.

Note that c′ ≤ p
2r(q+r

r )
2.7(2

√
e)rq!

. Thus, 2(2
√
e)r ·(3ε+c′) ≤ ξ′−c′. Hence, if H4L is (q, r, λ)-divisible,

it has a (q, r, λ)-design by Theorem 3.14. �

Proof of Theorem 1.4. By Example 3.9, we have that H↔ is an (ε, ξ, q, r)-supercomplex,

where ε := 2q−r+1c/(q − r)! and ξ := (1− 2q+1c)p2r(q+r
r )/q!. It is easy to see that (1.1) implies

that 2(2
√

e)rε ≤ ξ. Hence, an application of Theorem 3.14 completes the proof. �

Proof of Theorem 1.5. By Example 3.11, we have that G↔ is an (0.01ξ, 0.99ξ, q, 1)-

supercomplex. Moreover, since q | n, G↔ is K
(1)
q -divisible. Thus, by Corollary 3.13, G↔ has

0.01ξnq−1 q-disjoint K
(1)
q -decompositions, i.e. G has 0.01ξnq−1 edge-disjoint perfect matchings.

�

10. Covering down

It remains to prove the Cover down lemma (Lemma 7.4), which we do in this section. Suppose
that G is a supercomplex, U is a random subset of V (G) and L∗ is a very sparse ‘leftover’ graph.

Recall that the lemma guarantees a K
(r)
q -packing that covers all edges that are not inside U by

using only few edges inside U . More precisely, the Cover down lemma shows the existence of a

suitable sparse graph H∗ so that G[H∗ ∪ L∗] has a K
(r)
q -packing covering all edges of H∗ ∪ L∗

except possibly some inside U .
We now briefly sketch how one can attempt to construct such a graph H∗. For the moment,

suppose that H∗ and L∗ are given. For an edge e of H∗ ∪L∗, we refer to |e∩U | as its type. A
natural way (for divisibility reasons) to try to cover all edges of H∗∪L∗ which are not inside U
is to first cover all type-0-edges, then all type-1-edges, etc. and finally all type-(r−1)-edges. It
is comparatively easy to cover all type-0-edges. The reason for this is that a type-0-edge can be
covered by a q-clique that contains no other type-0-edge. Thus, if H∗ is a random subgraph of
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G(r) −G(r)[V (G) \ U ], then every type-0-edge (from L∗) is contained in many q-cliques. Since
∆(L∗) is very small, this allows us to apply Corollary 6.7 in order to cover all type-0-edges
with edge-disjoint q-cliques. The situation is very different for edges of higher types. Here we
would like to apply the following observation to cover edges of type r − i.

Fact 10.1. Let G be a complex and S ∈
(
V (G)
i

)
with 1 ≤ i < r < q. Suppose that K is a

K
(r−i)
q−i -decomposition of G(S). Then (S ]K(q−i))≤ is a K

(r)
q -packing in G covering all r-edges

that contain S.

Proof. For each Q ∈ K(q−i), we have S ∪Q ∈ G(q) since Q ∈ G(S)(q−i). Moreover, for distinct

Q,Q′ ∈ K(q−i), we have |(S∪Q)∩ (S∪Q′)| = i+ |Q∩Q′| < i+ (r− i) = r. Thus, (S]K(q−i))≤

is a K
(r)
q -packing in G. Let e ∈ G(r) with S ⊆ e. Then e \ S ∈ G(S)(r−i), so there exists some

Q ∈ K(q−i) with e \ S ⊆ Q. Hence, e is covered by S ∪Q ∈ ((S ] K(q−i))≤)(q). �

A natural approach is then to reserve for every S ∈
(
V (G)\U

i

)
a random subgraph HS of

G(S)[U ](r−i) and to protect all the HS ’s when applying the Boosted nibble lemma. Let L be
the leftover resulting from this application and suppose for simplicity that there are no more
leftover edges of types 0, . . . , r − i− 1. Let LS := L(S). Thus LS ⊆ G(S)[U ](r−i). The hope is

that the HS ’s do not intersect too much, so that it is possible to find a K
(r−i)
q−i -decomposition

KS for each HS ∪LS such that the K
(r)
q -packings (S ]K(q−i)

S )≤ are r-disjoint. This would then

yield a K
(r)
q -packing covering all leftover edges of type r− i. There are two natural candidates

for selecting HS :

(A) Choose HS by including every edge of G(S)[U ](r−i) with probability ν.

(B) Choose a random subset US of U of size ρ|U | and let HS := G(S)(r−i)[US ].

The advantage of Strategy (A) is that HS ∪ LS is close to being quasirandom. This is not the
case for (B): even if the maximum degree of LS is sublinear, its edges might be spread out over
the whole of U . Unfortunately, when pursuing Strategy (A), the HS intersect too much, so it is
not clear how to find the desired decompositions due to the interference between different HS .
However, it turns out that under the additional assumption that V (LS) ⊆ US , Strategy (B)
does work. We call the corresponding result the ‘Localised cover down lemma’ (Lemma 10.7).

We will combine both strategies as follows: For each S, we will choose HS as in (A) and

US as in (B) and let JS := G(S)(r−i)[US ]. In a first step we use HS to find a K
(r−i)
q−i -packing

covering all edges of e ∈ HS ∪ LS with e 6⊆ US , and then afterwards we apply the Localised
cover down lemma to cover all remaining edges. Note that the first step resembles the original
problem: We are given a graph HS ∪ LS on U and want to cover all edges that are not inside
US ⊆ U . But the resulting types are now more restricted. This enables us to prove a more
general Cover down lemma, the ‘Cover down lemma for setups’ (Lemma 10.22), by induction
on r − |S|, which will allow us to perform the first step in the above combined strategy for all
S simultaneously.

10.1. Systems and focuses. In this subsection, we prove the Localised cover down lemma,
which shows that Strategy (B) works under the assumption that each LS is ‘localised’.

Definition 10.2. Given i ∈ N0, an i-system in a set V is a collection S of distinct subsets of
V of size i. A subset of V is called S-important if it contains some S ∈ S, otherwise we call it
S-unimportant. We say that U = (US)S∈S is a focus for S if for each S ∈ S, US is a subset of
V \ S.

Definition 10.3. Let G be a complex and S an i-system in V (G). We call G r-exclusive with
respect to S if every f ∈ G with |f | ≥ r contains at most one element of S. Let U be a focus for
S. If G is r-exclusive with respect to S, the following functions are well-defined: For r′ ≥ r, let
Er′ denote the set of S-important r′-sets in G. Define τr′ : Er′ → [r′ − i]0 as τr′(e) := |e ∩ US |,
where S is the unique S ∈ S contained in e. We call τr′ the type function of G(r′), S, U .
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Fact 10.4. Let r ∈ N and i ∈ [r−1]0. Let G be a complex and S an i-system in V (G) such that

G is r-exclusive with respect to S. Let f ∈ G with |f | ≥ r be S-important and let E ′ := Er∩
(
f
r

)
.

Then we have

(i) maxe∈E ′ τr(e) ≤ τ|f |(f) ≤ |f | − r + mine∈E ′ τr(e),
(ii) mine∈E ′ τr(e) = max{r + τ|f |(f)− |f |, 0}.

Proof. Let S ⊆ f with S ∈ S. Clearly, for every S-important r-subset e of f , S is the unique
element from S that e contains. For any such e, we have τ|f |(f) = |f ∩ US | ≥ |e ∩ US | = τr(e),
implying the first inequality of (i). Also, |f |− τ|f |(f) = |f \US | ≥ |e\US | = r− τr(e), implying
the second inequality of (i).

This also implies that mine∈E ′ τr(e) ≥ max{r + τ|f |(f) − |f |, 0}. To see the converse, note
that |f \ US | = |f | − τ|f |(f). Hence, we can choose an r-set e ⊆ f with S ⊆ e and |e \ US | =
min{|f | − τ|f |(f), r}. Note that e ∈ E ′ and τr(e) = r − |e \ US | = r − min{|f | − τ|f |(f), r} =
max{r + τ|f |(f)− |f |, 0}. This completes the proof of (ii). �

In order to make Strategy (B) work, it is essential that the US do not interfere too much
which each other. The following definition makes this more precise.

Let Zr,i be the set of all quadruples (z0, z1, z2, z3) ∈ N4
0 such that z0 + z1 < i, z0 + z3 < i

and z0 + z1 + z2 + z3 = r. Clearly, |Zr,i| ≤ (r + 1)3, and Zr,i = ∅ if i = 0.

Definition 10.5. Let V be a set of size n, let S be an i-system in V and let U be a focus
for S. We say that U is a µ-focus for S if each US ∈ U has size µn ± n2/3. For all S ∈ S,
z = (z0, z1, z2, z3) ∈ Zr,i and all (z1 + z2 − 1)-sets f ⊆ V \ S, define

J fS,z := {S′ ∈ S : |S ∩ S′| = z0, f ⊆ S′ ∪ US′ , |US′ ∩ S| ≥ z3},

J fS,z,1 := {S′ ∈ JS,z : |f ∩ S′| = z1},

J fS,z,2 := {S′ ∈ JS,z : |f ∩ S′| = z1 − 1, |US ∩ (S′ \ f)| ≥ 1}.

We say that U is a (ρsize, ρ, r)-focus for S if

(F1) each US has size ρsizeρn± n2/3;
(F2) |US ∩ US′ | ≤ 2ρ2n for distinct S, S′ ∈ S;
(F3) for all S ∈ S, z = (z0, z1, z2, z3) ∈ Zr,i and (z1 + z2 − 1)-sets f ⊆ V \ S, we have

|J fS,z,1| ≤ 26rρz2+z3−1ni−z0−z1 ,

|J fS,z,2| ≤ 29rρz2+z3+1ni−z0−z1+1.

The sets S′ in J fS,z,1 and J fS,z,2 are those which may give rise to interference when covering

the edges containing S. (F3) ensures that there are not too many of them. We now show that
a random choice of the US satisfies this.

Lemma 10.6. Let 1/n � ρ � ρsize, 1/r and i ∈ [r − 1]. Let V be a set of size n, let S be
an i-system in V and let U ′ = (U ′S)S∈S be a ρsize-focus for S. Let U = (US)S∈S be a random
focus obtained as follows: independently for all pairs S ∈ S and x ∈ U ′S, retain x in US with
probability ρ. Then whp U is a (ρsize, ρ, r)-focus for S.

Proof. Clearly, US ⊆ V \ S for all S ∈ S.

Step 1: Probability estimates for (F1) and (F2)

For S ∈ S, Lemma 5.7(i) implies that with probability at least 1 − 2e−0.5|U ′S |
1/3

, we have

|US | = E(|US |) ± 0.5|U ′S |2/3 = ρρsizen ± (ρn2/3 + 0.5|U ′S |2/3). Thus, with probability at least

1− e−n
1/4

, (F1) holds.
Let S, S′ ∈ S be distinct. If |U ′S∩U ′S′ | ≤ ρ2n, then we surely have |US∩US′ | ≤ ρ2n, so assume

that |U ′S ∩ U ′S′ | ≥ ρ2n. Lemma 5.7(i) implies that with probability at least 1− 2e−2ρ4|U ′S∩U
′
S′ |,
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we have |US ∩ US′ | ≤ E(|US ∩ US′ |) + ρ2|U ′S ∩ U ′S′ | ≤ 2ρ2n. Thus, with probability at least

1− e−n
1/2

, (F2) holds.

Step 2: Probability estimates for (F3)

Now, fix S ∈ S, z = (z0, z1, z2, z3) ∈ Zr,i and an (z1 + z2 − 1)-set f ⊆ V \ S. In order to

estimate |J fS,z,1| and |J fS,z,2|, define

J ′ := {S′ ∈ S : |S ∩ S′| = z0, |f ∩ S′| = z1},
J ′′ := {S′ ∈ S : |S ∩ S′| = z0, |f ∩ S′| = z1 − 1}.

Clearly, J fS,z,1 ⊆ J ′ and J fS,z,2 ⊆ J ′′. Moreover, since f ∩ S = ∅, we have that

|J ′| ≤
(
i

z0

)(
z1 + z2 − 1

z1

)
ni−z0−z1 ≤ 22rni−z0−z1 ,

|J ′′| ≤
(
i

z0

)(
z1 + z2 − 1

z1 − 1

)
ni−z0−z1+1 ≤ 22rni−z0−z1+1.

Consider S′ ∈ J ′. By the random choice of US′ and since f ∩ S = ∅, we have that

P(S′ ∈ J fS,z,1) = P(f \ S′ ⊆ US′ , |US′ ∩ S| ≥ z3) = P(f \ S′ ⊆ US′) · P(|US′ ∩ S| ≥ z3).

Note that P(f \ S′ ⊆ US′) ≤ ρz2−1 since |f \ S′| = z2 − 1. Moreover, P(|US′ ∩ S| ≥ z3) ≤(
i
z3

)
ρz3 ≤ 2iρz3 .

Hence, 7E|J fS,z,1| ≤ 232iρz2+z3−122rni−z0−z1 . Since i − z0 − z1 ≥ 1 and US′ and US′′ are

chosen independently for any two distinct S′, S′′ ∈ J ′, Lemma 5.7(iii) implies that

P(|J fS,z,1| ≥ 26rρz2+z3−1ni−z0−z1) ≤ e−26rρz2+z3−1ni−z0−z1 ≤ e−
√
n.(10.1)

Now, consider S′ ∈ J ′′. By the random choice of US and US′ , we have that

P(S′ ∈ J fS,z,2) = P(f \ S′ ⊆ US′ , |US′ ∩ S| ≥ z3, |US ∩ (S′ \ f)| ≥ 1)

= P(f \ S′ ⊆ US′) · P(|US′ ∩ S| ≥ z3) · P(|US ∩ (S′ \ f)| ≥ 1)

≤ ρz2 ·
(
i

z3

)
ρz3 · (i− z1 + 1)ρ ≤ r2rρz2+z3+1.

However, note that the events S′ ∈ J fS,z,2 and S′′ ∈ J fS,z,2 are not necessarily independent. To

deal with this, define the auxiliary (i− z0− z1 + 1)-graph A on V with edge set {S′ \ (S ∪ f) :

S′ ∈ J ′′} and let A′ be the (random) subgraph with edge set {S′ \ (S ∪ f) : S′ ∈ J fS,z,2}.
Note that for every edge e ∈ A, there are at most

(
i
z0

)(
z1+z2−1
z1−1

)
≤ 22r elements S′ ∈ J ′′ with

e = S′ \ (S ∪ f). Hence, |J fS,z,2| ≤ 22r|A′|. Moreover, every edge of A survives (i.e. lies in A′)

with probability at most 22r · r2rρz2+z3+1, and for every matching M in A, the edges of M
survive independently. Thus, by Lemma 5.12, we have that

P(|A′| ≥ 7r23rρz2+z3+1ni−z0−z1+1) ≤ (i− z0 − z1 + 1)ni−z0−z1e−7·23rρz2+z3+1n

and thus

P(|J fS,z,2| ≥ 7r25rρz2+z3+1ni−z0−z1+1) ≤ rnre−7·23rρz2+z3+1n ≤ e−
√
n.(10.2)

Since |S| ≤ ni, a union bound applied to (10.1) and (10.2) shows that with probability at least

1− e−n
1/3

, (F3) holds. �
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Lemma 10.7 (Localised cover down lemma). Let 1/n � ρ � ρsize, ξ, 1/q and 1 ≤ i < r < q.
Assume that (∗)r−i is true. Let G be a complex on n vertices and let S = {S1, . . . , Sp} be
an i-system in G such that G is r-exclusive with respect to S. Let U = {U1, . . . , Up} be a

(ρsize, ρ, r)-focus for S. Suppose further that whenever Sj ⊆ e ∈ G(r), we have e \ Sj ⊆ Uj.

Finally, assume that G(Sj)[Uj ] is a K
(r−i)
q−i -divisible (ρ, ξ, q−i, r−i)-supercomplex for all j ∈ [p].

Then there exists a K
(r)
q -packing K in G covering all S-important r-edges.

To prove Lemma 10.7, we will use the fact that by Corollary 3.13, there are many (q − i)-
disjoint candidates Kj for a K

(r−i)
q−i -decomposition of G(Sj)[Uj ]. We will proceed sequentially,

choosing one candidate Kj uniformly at random from a large set of (q − i)-disjoint ones such
that Kj does not interfere with any previous choices. Together this translates into the desired
packing K. A similar idea was introduced in [5], but the hypergraph analysis is far more
intricate.

Proof. Let t := ρ1/6(0.5ρρsizen)q−r. For all j ∈ [p], define Hj := G(Sj)[Uj ]. Consider

Algorithm 10.8 which, if successful, outputs a K
(r−i)
q−i -decomposition Kj of Hj for every j ∈ [p].

Algorithm 10.8

for j from 1 to p do

for all z = (z0, z1, z2, z3) ∈ Zr,i, define T jz as the (z1 + z2)-graph on Uj containing all
Z1 ·∪ Z2 ⊆ Uj with |Z1| = z1, |Z2| = z2 such that for some j′ ∈ [j − 1] with |Sj ∩ Sj′ | = z0

and some K ′ ∈ K(q−i)
j′ , we have Z1 ⊆ Sj′ , Z2 ⊆ K ′ and |K ′ ∩ Sj | = z3

if there exist t K
(r−i)
q−i -decompositions Kj,1, . . . ,Kj,t of Hj−

⋃
z∈Zr,i

T jz which are pairwise

(q − i)-disjoint then
pick s ∈ [t] uniformly at random and let Kj := Kj,s

else
return ‘unsuccessful’

end if
end for

Claim 1: If Algorithm 10.8 outputs K1, . . . ,Kp, then K :=
⋃
j∈[p] K̃j is a packing as desired,

where K̃j := (Sj ] K(q−i)
j )≤.

Proof of claim: Since z1 + z2 > r − i, we have H
(r−i)
j = (Hj −

⋃
z∈Zr,i

T jz )(r−i). Hence, Kj is

indeed a K
(r−i)
q−i -decomposition of Hj . Thus, by Fact 10.1, K̃j is a K

(r)
q -packing in G covering

all r-edges containing Sj . Therefore, K covers all S-important r-edges of G. Now, let j′ < j.

We have to show that K̃j′ and K̃j are r-disjoint. Suppose, for a contradiction, that there exist

K ∈ K(q−i)
j and K ′ ∈ K(q−i)

j′ such that |(Sj ∪ K) ∩ (Sj′ ∪ K ′)| ≥ r. Let z0 := |Sj ∩ Sj′ | and

z3 := |Sj ∩ K ′|. Hence, we have |K ∩ (Sj′ ∪ K ′)| ≥ r − z0 − z3. Choose X ⊆ K such that
|X ∩ (Sj′ ∪ K ′)| = r − z0 − z3 and let Z1 := X ∩ Sj′ and Z2 := X ∩ K ′. We claim that
z := (z0, |Z1|, |Z2|, z3) ∈ Zr,i. Clearly, we have z0 + |Z1|+ |Z2|+z3 = r. Furthermore, note that
z0 + z3 < i. Indeed, we clearly have z0 + z3 = |Sj ∩ (Sj′ ∪K ′)| ≤ |Sj | = i, and equality can only
hold if Sj ⊆ Sj′∪K ′, which is impossible since G is r-exclusive. Similarly, we have z0 + |Z1| < i.

Thus, z ∈ Zr,i. But this implies that Z1 ∪ Z2 ∈ T jz , in contradiction to Z1 ∪ Z2 ⊆ K. −

In order to prove the lemma, it is thus sufficient to prove that with positive probability,

∆(T jz ) ≤ 22rqρ1/2|Uj | for all j ∈ [p] and z ∈ Zr,i. Indeed, this would imply that ∆(
⋃
z∈Zr,i

T jz ) ≤
(r+1)322rqρ1/2|Uj |, and by Proposition 5.6(v), Hj−

⋃
z∈Zr,i

T jz would be a (ρ1/6, ξ/2, q−i, r−i)-
supercomplex. By Corollary 3.13 and since |Uj | ≥ 0.5ρρsizen, there are then t (q − i)-disjoint

K
(r−i)
q−i -decompositions in Hj −

⋃
z∈Zr,i

T jz , so the algorithm would succeed.
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In order to analyse ∆(T jz ), we define the following variables. Suppose that 1 ≤ j′ < j ≤ p,

that z = (z0, z1, z2, z3) ∈ Zr,i and f ⊆ Uj is a (z1 + z2 − 1)-set. Let Y f,j′

j,z denote the random
indicator variable of the event that each of the following holds:

(a) there exists some K ′ ∈ K(q−i)
j′ with |K ′ ∩ Sj | = z3;

(b) there exist Z1 ⊆ Sj′ , Z2 ⊆ K ′ with |Z1| = z1, |Z2| = z2 such that f ⊆ Z1 ∪ Z2 ⊆ Uj ;
(c) |Sj ∩ Sj′ | = z0.

We say that v ∈
(Uj\f

1

)
is a witness for j′ if (a)–(c) hold with Z1 ·∪ Z2 = f ·∪ v. For all j ∈ [p],

z = (z0, z1, z2, z3) ∈ Zr,i and (z1 + z2 − 1)-sets f ⊆ Uj , let Xf
j,z :=

∑j−1
j′=1 Y

f,j′

j,z .

Claim 2: For all j ∈ [p], z = (z0, z1, z2, z3) ∈ Zr,i and (z1 + z2 − 1)-sets f ⊆ Uj, we have

|T jz (f)| ≤ 22rqXf
j,z.

Proof of claim: Let j, z and f be fixed. Clearly, if v ∈ T jz (f), then by Algorithm 10.8, v is a
witness for some j′ ∈ [j − 1]. Conversely, we claim that for each j′ ∈ [j − 1], there are at most

22rq witnesses for j′. Clearly, this would imply that |T jz (f)| ≤ 22rq|{j′ ∈ [j−1] : Y f,j′

j,z = 1}| =
22rqXf

j,z.

Fix j′ ∈ [j − 1]. If v is a witness for j′, then there exists Kv ∈ K(q−i)
j′ such that (a)–(c) hold

with Z1 ·∪Z2 = f ·∪v and Kv playing the role of K ′. By (b) we must have v ⊆ Z1∪Z2 ⊆ Sj′∪Kv.
Since |Sj′ ∪Kv| = q, there are at most q witnesses v′ for j′ such that Kv can play the role of

Kv′ . It is thus sufficient to show that there are at most 22r K ′ ∈ K(q−i)
j′ such that (a)–(c) hold.

Note that for any possible choice of Z1, Z2,K
′, we must have |f ∩ Z2| ∈ {z2, z2 − 1} and

f ∩ Z2 ⊆ Z2 ⊆ K ′ by (b). For any Z ′2 ⊆ f with |Z ′2| ∈ {z2, z2 − 1} and Z3 ∈
(
Sj
z3

)
, there can

be at most one K ′ ∈ K(q−i)
j′ with Z ′2 ⊆ K ′ and K ′ ∩ Sj = Z3. This is because Kj′ is a K

(r−i)
q−i -

decomposition and |Z ′2 ∪ Z3| ≥ z2 − 1 + z3 ≥ r − i. Hence, there can be at most 2|f |
(
i
z3

)
≤ 22r

possible choices for K ′. −

The following claim thus implies the lemma.

Claim 3: With positive probability, we have Xf
j,z ≤ ρ1/2|Uj | for all j ∈ [p], z = (z0, z1, z2, z3) ∈

Zr,i and (z1 + z2 − 1)-sets f ⊆ Uj.

Proof of claim: Fix j, z, f as above. We split Xf
j,z into two sums. For this, let

J fj,z := {j′ ∈ [j − 1] : |Sj ∩ Sj′ | = z0, f \ Sj′ ⊆ Uj′ , |Uj′ ∩ Sj | ≥ z3},

J fj,z,1 := {j′ ∈ J fj,z : |f ∩ Sj′ | = z1},

J fj,z,2 := {j′ ∈ J fj,z : |f ∩ Sj′ | = z1 − 1, |Uj ∩ (Sj′ \ f)| ≥ 1}.

Since U is a (ρsize, ρ, r)-focus for S, (F3) implies that

|J fj,z,1| ≤ 26rρz2+z3−1ni−z0−z1 ,(10.3)

|J fj,z,2| ≤ 29rρz2+z3+1ni−z0−z1+1.(10.4)

Note that if Y f,j′

j,z = 1, then j′ ∈ J fj,z,1 ∪ J
f
j,z,2. Hence, we have Xf

j,z = Xf
j,z,1 +Xf

j,z,2, where

Xf
j,z,1 :=

∑
j′∈J f

j,z,1
Y f,j′

j,z and Xf
j,z,2 :=

∑
j′∈J f

j,z,2
Y f,j′

j,z . We bound Xf
j,z,1 and Xf

j,z,2 separately.

Step 1: Estimating Xf
j,z,1

Consider j′ ∈ J fj,z,1. Let

Kf,j
′

j,z := {K ′ ∈
(
Uj′

q − i

)
: f ⊆ Sj′ ∪K ′, |K ′ ∩ Uj | ≥ z2, |K ′ ∩ Sj | = z3}.(10.5)
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Note that if Y f,j′

j,z = 1, then there exists K ′ ∈ K(q−i)
j′ with K ′ ∈ Kf,j

′

j,z . We now bound |Kf,j
′

j,z |.
For all K ′ ∈ Kf,j

′

j,z , we have f \ Sj′ ⊆ K ′ and |f ∩K ′| = |f | − |f ∩ Sj′ | = z2 − 1, and the sets

f ∩K ′, K ′ ∩ Sj , (K ′ \ f) ∩ (Uj ∩ Uj′) are disjoint. Moreover, we have |(K ′ \ f) ∩ (Uj ∩ Uj′)| =
|(K ′ \ f) ∩ Uj | ≥ |K ′ ∩ Uj | − |f ∩K ′| ≥ 1. We can thus count

|Kf,j
′

j,z | ≤
(
|Sj |
z3

)
· |Uj ∩ Uj′ | · |Uj′ |q−i−z2−z3 ≤ 2i · 2ρ2n · (2ρρsizen)q−i−z2−z3 .

Recall that the candidates Kj′,1, . . . ,Kj′,t in Algorithm 10.8 from which Kj′ was chosen at

random are (q − i)-disjoint. Let ρ̃1 := ρz0+z1−i+5/3ρsizen
1+z0+z1−i ∈ [0, 1]. In order to apply

Proposition 5.8, let j1, . . . , jb be an enumeration of J fj,z,1. We then have for all k ∈ [b] and all

y1, . . . , yk−1 ∈ {0, 1} that

P(Y f,jk
j,z = 1 | Y f,j1

j,z = y1, . . . , Y
f,jk−1

j,z = yk−1) ≤
|Kf,jkj,z |
t
≤ 2i · 2ρ2n · (2ρρsizen)q−i−z2−z3

ρ1/6(0.5ρρsizen)q−r

= 22q−r+1−z2−z3ρ11/6(ρρsize)
z0+z1−in1+z0+z1−i

≤ ρ̃1.

Let B1 ∼ Bin(|J fj,z,1|, ρ̃1) and observe that

7EB1 = 7|J fj,z,1|ρ̃1

(10.3)

≤ 7 · 26rρz2+z3−1ni−z0−z1 · ρz0+z1−i+5/3ρsizen
1+z0+z1−i

= 7 · 26rρr−i+2/3ρsizen ≤ 0.5ρ1/2|Uj |.
Thus,

P(Xf
j,z,1 ≥ 0.5ρ1/2|Uj |)

Proposition 5.8

≤ P(B1 ≥ 0.5ρ1/2|Uj |)
Lemma 5.7(iii)

≤ e−0.5ρ1/2|Uj |.

Step 2: Estimating Xf
j,z,2

Consider j′ ∈ J fj,z,2. Define Kf,j
′

j,z as in (10.5). This time, since |f ∩ Sj′ | = z1 − 1, we have

|K ′ ∩ f | = |f \ Sj′ | = z2 for all K ′ ∈ Kf,j
′

j,z . Thus, we count

|Kf,j
′

j,z | ≤
(
|Sj |
z3

)
· |Uj′ |q−i−z2−z3 ≤ 2i · (2ρρsizen)q−i−z2−z3 .

Let ρ̃2 := ρz0+z1−i−1/5ρsizen
z0+z1−i ∈ [0, 1]. In order to apply Proposition 5.8, let j1, . . . , jb be

an enumeration of J fj,z,2. We then have for all k ∈ [b] and all y1, . . . , yk−1 ∈ {0, 1} that

P(Y f,jk
j,z = 1 | Y f,j1

j,z = y1, . . . , Y
f,jk−1

j,z = yk−1) ≤
|Kf,jkj,z |
t
≤ 2i · (2ρρsizen)q−i−z2−z3

ρ1/6(0.5ρρsizen)q−r

= 22q−r−z2−z3ρ−1/6(ρρsizen)z0+z1−i

≤ ρ̃2.

Let B2 ∼ Bin(|J fj,z,2|, ρ̃2) and observe that

7EB2 = 7|J fj,z,2|ρ̃2

(10.4)

≤ 7 · 29rρz2+z3+1ni−z0−z1+1 · ρz0+z1−i−1/5ρsizen
z0+z1−i

= 7 · 29rρr−i+4/5ρsizen ≤ 0.5ρ1/2|Uj |.
Thus,

P(Xf
j,z,2 ≥ 0.5ρ1/2|Uj |)

Proposition 5.8

≤ P(B2 ≥ 0.5ρ1/2|Uj |)
Lemma 5.7(iii)

≤ e−0.5ρ1/2|Uj |.

Hence,

P(Xf
j,z ≥ ρ

1/2|Uj |) ≤ P(Xf
j,z,1 ≥ 0.5ρ1/2|Uj |) + P(Xf

j,z,2 ≥ 0.5ρ1/2|Uj |) ≤ 2e−0.5ρ1/2|Uj |.

Since |S| ≤ ni, a union bound easily implies Claim 3. −
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This completes the proof of Lemma 10.7. �

10.2. Partition pairs. We now develop the appropriate framework to be able to state the
Cover down lemma for setups (Lemma 10.22). Recall that we will consider (and cover) r-sets
separately according to their type. The type of an r-set e naturally imposes constraints on the
type of a q-set which covers e. We will need to track and adjust the densities of r-sets with
respect to q-sets for each pair of types separately. This gives rise to the following concepts of
partition pairs and partition regularity (see Section 10.3).

Let X be a set. We say that P = (X1, . . . , Xa) is an ordered partition of X if the Xi are
disjoint subsets of X whose union is X. We let P(i) := Xi and P([i]) := (X1, . . . , Xi). If
P = (X1, . . . , Xa) is an ordered partition of X and X ′ ⊆ X, we let P[X ′] denote the ordered
partition (X1 ∩X ′, . . . , Xa ∩X ′) of X ′. If {X ′, X ′′} is a partition of X, P ′ = (X ′1, . . . , X

′
a) is

an ordered partition of X ′ and P ′′ = (X ′′1 , . . . , X
′′
b ) is an ordered partition of X ′′, we let

P ′ t P ′′ := (X ′1, . . . , X
′
a, X

′′
1 , . . . , X

′′
b ).

Definition 10.9. Let G be a complex and let q > r ≥ 1. An (r, q)-partition pair of G is a pair

(Pedge,Pclique), where Pedge is an ordered partition of G(r) and Pclique is an ordered partition

of G(q), such that for all E ∈ Pedge and Q ∈ Pclique, every Q ∈ Q contains the same number
B(E ,Q) of elements from E . We call B : Pedge × Pclique → [

(
q
r

)
]0 the containment function of

the partition pair. We say that (Pedge,Pclique) is upper-triangular if B(Pedge(`),Pclique(k)) = 0
whenever ` > k.

Clearly, for every Q ∈ Pclique,
∑
E∈Pedge

B(E ,Q) =
(
q
r

)
. If (Pedge,Pclique) is an (r, q)-partition

pair of G and H ⊆ G(r′), we define

(Pedge,Pclique)[H] := (Pedge[G[H](r)],Pclique[G[H](q)]).

Clearly, (Pedge,Pclique)[H] is an (r, q)-partition pair of G[H].

Example 10.10. Suppose that G is a complex and U ⊆ V (G). For ` ∈ [r]0, define E` :=

{e ∈ G(r) : |e ∩ U | = `}. For k ∈ [q]0, define Qk := {Q ∈ G(q) : |Q ∩ U | = k}. Let
Pedge := (E0, . . . , Er) and Pclique := (Q0, . . . ,Qq). Then clearly (Pedge,Pclique) is an (r, q)-

partition pair of G, where the containment function is given by B(E`,Qk) =
(
k
`

)(
q−k
r−`
)
. In

particular, B(E`,Qk) = 0 whenever ` > k or k > q − r + `. We say that (Pedge,Pclique) is the
(r, q)-partition pair of G, U .

The partition pairs we use are generalisations of the above example. More precisely, suppose
that G is a complex, S is an i-system in V (G) and U is a focus for S. Moreover, assume that

G is r-exclusive with respect to S. For r′ ≥ r, let τr′ denote the type function of G(r′), S, U .
As in the above example, if E` := τ−1

r (`) for all ` ∈ [r− i]0 and Qk := τ−1
q (k) for all k ∈ [q− i]0,

then every Q ∈ Qk contains exactly
(
k
`

)(
q−i−k
r−i−`

)
elements from E`. However, we also have to

consider S-unimportant edges and cliques. It turns out that it is useful to assume that the
unimportant edges and cliques are partitioned into i parts each, in an upper-triangular fashion.

More formally, for r′ ≥ r, let Dr′ denote the set of S-unimportant r′-sets of G and assume
that P∗edge is an ordered partition of Dr and P∗clique is an ordered partition of Dq. We say that

(P∗edge,P∗clique) is admissible with respect to G, S, U if the following hold:

(P1) |P∗edge| = |P∗clique| = i;

(P2) for all S ∈ S, h ∈ [r − i]0 and F ⊆ G(S)(h) with 1 ≤ |F | ≤ 2h and all ` ∈ [i], there

exists D(S, F, `) ∈ N0 such that for all Q ∈
⋂
f∈F G(S ∪ f)[US ](q−i−h), we have that

|{e ∈ P∗edge(`) : ∃f ∈ F : e ⊆ S ∪ f ∪Q}| = D(S, F, `);

(P3) (P∗edge t {G(r) \Dr},P∗clique t {G(q) \Dq}) is an upper-triangular (r, q)-partition pair of
G.
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P∗clique(1) . . . P∗clique(i) τ−1
q (0) τ−1

q (1) . . . . . . τ−1
q (q − r) . . . . . . τ−1

q (q − i)
P∗edge(1) ∗
. . . 0 ∗

P∗edge(i) 0 0 ∗
τ−1
r (0) 0 0 0 ∗ ∗ 0 0 0
. . . 0 0 0 0 ∗ ∗ 0 0
. . . 0 0 0 0 0 ∗ ∗ 0

τ−1
r (r − i) 0 0 0 0 0 0 ∗ ∗

Figure 1. The above table sketches the containment function of an (r, q)-partition pair in-
duced by (P∗edge,P∗clique) and U . The fields marked with ∗ and the shaded subtable will play
an important role later on.

Note that for i = 0, (∅, ∅) trivially satisfies these conditions. Also note that (P2) can be
viewed as an analogue of the containment function (from Definition 10.9) which is suitable for
dealing with supercomplexes.

Assume that (P∗edge,P∗clique) is admissible with respect to G, S, U . Define

Pedge := P∗edge t (τ−1
r (0), . . . , τ−1

r (r − i)),
Pclique := P∗clique t (τ−1

q (0), . . . , τ−1
q (q − i)).

It is not too hard to see that (Pedge,Pclique) is an (r, q)-partition pair of G. Indeed, Pedge
clearly is a partition of G(r) and Pclique is a partition of G(q). Suppose that B is the containment

function of (P∗edget{G(r)\Dr},P∗cliquet{G(q)\Dq}). ThenB′ as defined below is the containment

function of (Pedge,Pclique):
• For all E ∈ P∗edge and Q ∈ P∗clique, let B′(E ,Q) := B(E ,Q).

• For all ` ∈ [r − i]0 and Q ∈ P∗clique, let B′(τ−1
r (`),Q) := 0.

• For all E ∈ P∗edge and k ∈ [q − i]0, define B′(E , τ−1
q (k)) := B(E , {G(q) \ Dq}).

• For all ` ∈ [r − i]0, k ∈ [q − i]0, let

B′(τ−1
r (`), τ−1

q (k)) :=

(
k

`

)(
q − i− k
r − i− `

)
.(10.6)

We say that (Pedge,Pclique) as defined above is induced by (P∗edge,P∗clique) and U .

Finally, we say that (Pedge,Pclique) is an (r, q)-partition pair of G, S, U , if

• (Pedge([i]),Pclique([i])) is admissible with respect to G, S, U ;
• (Pedge,Pclique) is induced by (Pedge([i]),Pclique([i])) and U .

Proposition 10.11. Let 0 ≤ i < r < q and suppose that G is a complex, S is an i-system in
V (G) and U is a focus for S. Moreover, assume that G is r-exclusive with respect to S. Let
(Pedge,Pclique) be an (r, q)-partition pair of G, S, U with containment function B. Then the
following hold:

(P1′) |Pedge| = r + 1 and |Pclique| = q + 1;
(P2′) for i < ` ≤ r + 1, Pedge(`) = τ−1

r (` − i − 1), and for i < k ≤ q + 1, Pclique(k) =
τ−1
q (k − i− 1);

(P3′) (Pedge,Pclique) is upper-triangular;
(P4′) B(Pedge(`),Pclique(k)) = 0 whenever both ` > i and k > q − r + `;
(P5′) (P2) holds for all ` ∈ [r + 1], with Pedge playing the role of P∗edge.
(P6′) if i = 0, S = {∅} and U = {U} for some U ⊆ V (G), then the (unique) (r, q)-partition

pair of G, S, U is the (r, q)-partition pair of G, U (cf. Example 10.10);

(P7′) for all H ⊆ G(r), (Pedge,Pclique)[H] is an (r, q)-partition pair of G[H], S, U .

Proof. Clearly, (P1′), (P2′) and (P6′) hold, and it is also straightforward to check (P7′).
Moreover, (P3′) holds because of (P3) and (10.6). The latter also implies (P4′).
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Finally, consider (P5′). For ` ∈ [i], this holds since (Pedge([i]),Pclique([i])) is admissible, so

assume that ` > i. We have Pedge(`) = τ−1
r (`− i− 1). Let S ∈ S, h ∈ [r− i]0 and F ⊆ G(S)(h)

with 1 ≤ |F | ≤ 2h.

For Q ∈
⋂
f∈F G(S ∪ f)[US ](q−i−h), let

DQ := {e ∈ G(r) : S ⊆ e, |e ∩ US | = `− i− 1,∃f ∈ F : e \ S ⊆ f ∪Q},
and for e ∈ DQ, let σQ,e be some f ∈ F such that e \ S ⊆ f ∪Q.

It is easy to see that

{e ∈ Pedge(`) : ∃f ∈ F : e ⊆ S ∪ f ∪Q} = DQ.
Note that for every e ∈ DQ, we have e = S ∪ (

⋃
F ∩ e) ∪ (Q ∩ e).

It remains to show that for all Q,Q′ ∈
⋂
f∈F G(S ∪f)[US ](q−i−h), we have |DQ| = |DQ′ |. Let

π : Q → Q′ be any bijection. For each e ∈ DQ, define π′(e) := S ∪ (
⋃
F ∩ e) ∪ π(Q ∩ e). It is

straightforward to check that π′ : DQ → DQ′ is a bijection. �

10.3. Partition regularity.

Definition 10.12. Let G be a complex on n vertices and (Pedge,Pclique) an (r, q)-partition

pair of G with a := |Pedge| and b := |Pclique|. Let A = (a`,k) ∈ [0, 1]a×b. We say that G is
(ε,A, q, r)-regular with respect to (Pedge,Pclique) if for all ` ∈ [a], k ∈ [b] and e ∈ Pedge(`), we
have

|(Pclique(k))(e)| = (a`,k ± ε)nq−r,(10.7)

where we view Pclique(k) as a subgraph of G(q). If E = Pedge(`) and Q = Pclique(k), we may
often write A(E ,Q) instead of a`,k.

For A ∈ [0, 1]a×b with 1 ≤ t ≤ a ≤ b, we define

• min\(A) := min{aj,j : j ∈ [a]} as the minimum value on the diagonal,

• min\t(A) := min{aj,j+b−a : j ∈ {a− t+ 1, . . . , a}} and

• min\\t(A) := min{min\(A),min\t(A)}.
Note that min\\r−i+1(A) is the minimum value of the entries in A that correspond to the entries
marked with ∗ in Figure 1.

Example 10.13. Suppose that G is a complex and that U ⊆ V (G) is (ε, µ, ξ, q, r)-random in G
(see Definition 7.1). Let (Pedge,Pclique) be the (r, q)-partition pair of G, U (cf. Example 10.10).

Let Y ⊆ G(q) and d ≥ ξ be such that (R2) holds. Define the matrix A ∈ [0, 1](r+1)×(q+1) as
follows: for all ` ∈ [r + 1] and k ∈ [q + 1], let

a`,k := bin(q − r, µ, k − `)d.

For all ` ∈ [r + 1], k ∈ [q + 1] and e ∈ Pedge(`) = {e ∈ G(r) : |e ∩ U | = `− 1}, we have that

|(Pclique[Y ](k))(e)| = |{Q ∈ G[Y ](q)(e) : |(e ∪Q) ∩ U | = k − 1}|
= |{Q ∈ G[Y ](q)(e) : |Q ∩ U | = k − `}|

(R2)
= (1± ε)bin(q − r, µ, k − `)dnq−r = (a`,k ± ε)nq−r.

In other words, G[Y ] is (ε,A, q, r)-regular with respect to (Pedge,Pclique[Y ]). Note also that

min\\r+1(A) = min{bin(q − r, µ, 0), bin(q − r, µ, q − r)}d ≥ (min {µ, 1− µ})q−rξ.

In the proof of the Cover down lemma for setups, we face (amongst others) the following
two challenges: (i) given an (ε,A, q, r)-regular complex G for some suitable A, we need to find

an efficient K
(r)
q -packing in G; (ii) if A is not suitable for (i), we need to find a ‘representative’

subcomplex G′ of G which is (ε,A′, q, r)-regular for some A′ that is suitable for (i). The
strategy to implement (i) is similar to that of the Boost lemma (Lemma 6.3): We randomly

sparsify G(q) according to a suitably chosen (non-uniform) probability distribution in order to
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find Y ∗ ⊆ G(q) such that G[Y ∗] is (ε, d, q, r)-regular. We can then apply the Boosted nibble
lemma (Lemma 6.4). The desired probability distribution arises from a non-negative solution
to the equation Ax = 1. The following condition on A allows us to find such a solution (cf.
Proposition 10.15).

Definition 10.14. We say that A ∈ [0, 1]a×b is diagonal-dominant if a`,k ≤ ak,k/2(a − `) for
all 1 ≤ ` < k ≤ min{a, b}.

Definition 10.14 also allows us to achieve (ii). Given some A, we can find a ‘representative’
subcomplex G′ of G which is (ε,A′, q, r)-regular for some A′ that is diagonal-dominant (cf.
Lemma 10.19).

Proposition 10.15. Let A ∈ [0, 1]a×b be upper-triangular and diagonal-dominant with a ≤ b.

Then there exists x ∈ [0, 1]b such that x ≥ min\(A)/4b and Ax = min\(A)1.

Proof. If min\(A) = 0, we can take x = 0, so assume that min\(A) > 0. For k > a, let

yk := 1/4b. For k from a down to 1, let yk := a−1
k,k(1 −

∑b
j=k+1 ak,jyj). Since A is upper-

triangular, we have Ay = 1. We claim that 1/4b ≤ yk ≤ a−1
k,k for all k ∈ [b]. This clearly holds

for all k > a. Suppose that for some k ∈ [a], we have already checked that 1/4b ≤ yj ≤ a−1
j,j for

all j > k. We now check that

1 ≥ 1−
b∑

j=k+1

ak,jyj ≥ 1−
a∑

j=k+1

aj,j
2(a− k)

yj −
b− a

4b
≥ 3

4
− a− k

2(a− k)
=

1

4

and so 1/4b ≤ yk ≤ a−1
k,k. Thus we can take x := min\(A)y. �

Corollary 10.16. Let 1/n � ε � ξ, 1/q and r ∈ [q − 1]. Suppose that G is a complex on
n vertices and (Pedge,Pclique) is an upper-triangular (r, q)-partition pair of G with |Pedge| ≤
|Pclique| ≤ q + 1. Let A ∈ [0, 1]|Pedge|×|Pclique| be diagonal-dominant with d := min\(A) ≥ ξ.
Suppose that G is (ε,A, q, r)-regular with respect to (Pedge,Pclique) and (ξ, q+r, r)-dense. Then

there exists Y ∗ ⊆ G(q) such that G[Y ∗] is (2qε, d, q, r)-regular and (0.9ξ(ξ/4(q+1))(
q+r
q ), q+r, r)-

dense.

Proof. Since (Pedge,Pclique) is upper-triangular, we may assume that A is upper-triangular

too. By Proposition 10.15, there exists a vector x ∈ [0, 1]|Pclique| with x ≥ min\(A)/4(q + 1) ≥
ξ/4(q + 1) and Ax = d1.

Obtain Y ∗ ⊆ G(q) randomly by including every Q ∈ G(q) that belongs to Pclique(k) with
probability xk, all independently. Let e ∈ Pedge(`) for any ` ∈ [|Pedge|]. We have

E|G[Y ∗](q)(e)| =
|Pclique|∑
k=1

xk(a`,k ± ε)nq−r = (d± (q + 1)ε)nq−r.

Then, combining Lemma 5.7(ii) with a union bound, we conclude that whpG[Y ∗] is (2qε, d, q, r)-
regular.

Let e ∈ G(r). Since |G(q+r)(e)| ≥ ξnq and every Q ∈ G(q+r)(e) belongs to G[Y ∗](q+r)(e) with

probability at least (ξ/4(q+ 1))(
q+r
q ), we conclude with Corollary 5.11 that with probability at

least 1− e−n
1/6

, we have

|G[Y ∗](q+r)(e)| ≥ 0.9(ξ/4(q + 1))(
q+r
q )|G(q+r)(e)| ≥ 0.9ξ(ξ/4(q + 1))(

q+r
q )nq.

Applying a union bound shows that whp G[Y ∗] is (0.9ξ(ξ/4(q + 1))(
q+r
q ), q + r, r)-dense. �
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The following concept of a setup turns out to be the appropriate generalisation of Defini-
tion 7.1 to i-systems and partition pairs.

Definition 10.17 (Setup). Let G be a complex on n vertices and 0 ≤ i < r < q. We say that
S,U , (Pedge,Pclique) form an (ε, µ, ξ, q, r, i)-setup for G if there exists a q-graph Y on V (G) such
that the following hold:

(S1) S is an i-system in V (G) such that G is r-exclusive with respect to S; U is a µ-focus
for S and (Pedge,Pclique) is an (r, q)-partition pair of G, S, U ;

(S2) there exists a matrix A ∈ [0, 1](r+1)×(q+1) with min\\r−i+1(A) ≥ ξ such that G[Y ] is
(ε,A, q, r)-regular with respect to (Pedge,Pclique)[Y ] = (Pedge,Pclique[Y ]);

(S3) every S-unimportant e ∈ G(r) is contained in at least ξ(µn)q S-unimportant Q ∈
G[Y ](q+r), and for every S-important e ∈ G(r) with e ⊇ S ∈ S, we have |G[Y ](q+r)(e)[US ]| ≥
ξ(µn)q;

(S4) for all S ∈ S, h ∈ [r − i]0 and all F ⊆ G(S)(h) with 1 ≤ |F | ≤ 2h we have that⋂
f∈F G(S ∪ f)[US ] is an (ε, ξ, q − i− h, r − i− h)-complex.

Moreover, if (S1)–(S4) are true andA is diagonal-dominant, then we say that S,U , (Pedge,Pclique)
form a diagonal-dominant (ε, µ, ξ, q, r, i)-setup for G.

Note that (S4) implies that G(S)[US ] is an (ε, ξ, q − i, r − i)-supercomplex for every S ∈ S,
but is stronger in the sense that F is not restricted to US . We will now see that Definition 10.17
does indeed generalise Definition 7.1.

Proposition 10.18. Let G be a complex on n vertices and suppose that U ⊆ V (G) is (ε, µ, ξ, q, r)-
random in G. Let S := {∅}, U := {U} and let (Pedge,Pclique) be the (r, q)-partition pair of G,U .
Then S,U , (Pedge,Pclique) form an (ε, µ, µ̃ξ, q, r, 0)-setup for G, where µ̃ := (min {µ, 1− µ})q−r.

Proof. We first check (S1). Clearly, S is a 0-system in V (G). Moreover, G is trivially
r-exclusive with respect to S since |S| < 2. Moreover, by (R1), U is a µ-focus for S, and
(Pedge,Pclique) is an (r, q)-partition pair of G,S,U by (P6′) in Proposition 10.11. Note that

(S4) follows immediately from (R4). In order to check (S2) and (S3), assume that Y ⊆ G(q) and

d ≥ ξ are such that (R2) and (R3) hold. Clearly, all e ∈ G(r) are S-important, and by (R3),

we have for all e ∈ G(r) that |G[Y ](q+r)(e)[U ]| ≥ ξ(µn)q, so (S3) holds. Finally, we have seen in

Example 10.13 that there exists a matrix A ∈ [0, 1](r+1)×(q+1) with min\\r−i+1(A) ≥ µ̃ξ such
that G[Y ] is (ε,A, q, r)-regular with respect to (Pedge,Pclique[Y ]). �

The following lemma shows that we can (probabilistically) sparsify a given setup so that the
resulting setup is diagonal-dominant.

Lemma 10.19. Let 1/n� ε� ν � µ, ξ, 1/q and 0 ≤ i < r < q. Let ξ′ := ν8q ·q+1. Let G be a
complex on n vertices and suppose that

S,U , (Pedge,Pclique) form an (ε, µ, ξ, q, r, i)-setup for G.

Then there exists a subgraph H ⊆ G(r) with ∆(H) ≤ 1.1νn such that for all L ⊆ G(r) with
∆(L) ≤ εn,

S,U , (Pedge,Pclique)[H 4 L] form a diagonal-dominant (
√
ε, µ, ξ′, q, r, i)-setup for G[H 4 L].

Proof. Let Y ⊆ G(q) and A ∈ [0, 1](r+1)×(q+1) be such that (S1)–(S4) hold for G. Let
B : Pedge × Pclique → [

(
q
r

)
]0 be the containment function of (Pedge,Pclique). We will write

b`,k := B(Pedge(`),Pclique(k)) for all ` ∈ [r + 1] and k ∈ [q + 1]. We may assume that a`,k = 0

whenever b`,k = 0 (and min\\r−i+1(A) ≥ ξ still holds).

Define the matrix A′ ∈ [0, 1](r+1)×(q+1) by letting a′`,k := a`,kν
−`∏

`′∈[r+1] ν
`′b`′,k . Note that

we always have a′`,k ≤ a`,k.

Claim 1: A′ is diagonal-dominant and min\\r−i+1(A′) ≥ ξ′.
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Proof of claim: For 1 ≤ ` < k ≤ r + 1,

a′`,k
a′k,k

=
a`,kν

−`

ak,kν−k
≤ νk−`

ξ
≤ 1

2(r + 1− `)
.

Moreover, we have min\\r−i+1(A′) ≥ ξν(r+1)(qr)−1 ≥ ξ′. −

We choose H randomly by including independently each e ∈ Pedge(`) with probability ν`,

for all ` ∈ [r + 1]. Clearly, whp ∆(H) ≤ 1.1νn. Moreover, for any L ⊆ G(r), G[H 4 L] is
r-exclusive with respect to S and (Pedge,Pclique)[H4L] is an (r, q)-partition pair of G[H4L],
S, U by (P7′) in Proposition 10.11. Thus, (S1) holds.

We now consider (S2). Let ` ∈ [r + 1], k ∈ [q + 1] and e ∈ Pedge(`). Define

Qe,k := (Pclique[Y ](k))(e).

By (10.7) and (S2) for S,U , (Pedge,Pclique), we have that |Qe,k| = (a`,k± ε)nq−r. We view Qe,k
as a (q − r)-graph and consider the random subgraph Q′e,k that contains all Q ∈ Qe,k with(
Q∪e
r

)
\ {e} ⊆ H. For all Q ∈ Qe,k, we have

P(Q ∈ Q′e,k) = ν−`
∏

`′∈[r+1]

ν`
′b`′,k =

a′`,k
a`,k

.

Thus, E|Q′e,k| = (a′`,k ± ε)nq−r. Using Corollary 5.11 and a union bound, we thus conclude

that with probability at least 1− e−n
1/7

, we have |Q′e,k| = (a′`,k ± ε2/3)nq−r for all ` ∈ [r + 1],

k ∈ [q + 1] and e ∈ Pedge(`). (Technically, we can only apply Corollary 5.11 if |Qe,k| ≥ 2εnq−r,
say. Note that the result holds trivially if |Qe,k| ≤ 2εnq−r.) Assuming that this holds for

H, Proposition 5.4 implies that any L ⊆ G(r) with ∆(L) ≤ εn results in G[H 4 L][Y ] being
(
√
ε,A′, q, r)-regular with respect to (Pedge,Pclique)[H 4 L][Y ].

We now check (S3). Let e ∈ G(r). If e is S-unimportant then let Qe be the set of all

Q ∈ G[Y ](q+r)(e) such that Q ∪ e is S-unimportant, otherwise let Qe := G[Y ](q+r)(e)[US ].
By (S3) for S,U , (Pedge,Pclique), we have that |Qe| ≥ ξ(µn)q. We view Qe as a q-graph and

consider the random subgraph Q′e containing all Q ∈ Qe such that
(
Q∪e
r

)
\ {e} ⊆ H. For each

Q ∈ Qe, we have

P(Q ∈ Q′e) ≥ ν(r+1)(q+r
r )−1 ≥ νq(4q),

thus E|Q′e| ≥ νq(4
q)ξ(µn)q. Using Corollary 5.11 and a union bound, we conclude that whp

|Q′e| ≥ 2ξ′(µn)q for all e ∈ G(r). Assuming that this holds for H, Proposition 5.4 implies that
for any admissible choice of L, (S3) still holds.

Finally, we check (S4). Let S ∈ S, h ∈ [r − i]0 and F ⊆ G(S)(h) with 1 ≤ |F | ≤ 2h. By
assumption, GS,F :=

⋂
f∈F G(S ∪ f)[US ] is an (ε, ξ, q− i− h, r− i− h)-complex. We intend to

apply Proposition 5.15 with i+h, G[US ∪S∪
⋃
F ], Pedge[G(r)[US ∪S∪

⋃
F ]], {f ∪S : f ∈ F},

νr+1, 2ε/µ playing the roles of i, G,P, F, p, γ. Note that for every f ∈ F and all e ∈ G(r−i−h)
S,F ,

S ∪ f ∪ e is S-important and τr(S ∪ f ∪ e) = |(S ∪ f ∪ e) ∩ US | = |f ∩ US | + r − i − h.
Hence, S ∪ f ∪ e ∈ Pedge(|f ∩ US | + r − h + 1). Thus, condition (I) in Proposition 5.15 is
satisfied. Moreover, (II) is also satisfied because of (P5′) in Proposition 10.11. Therefore, by

Proposition 5.15, with probability at least 1 − e−|US |1/8 , for any L ⊆ G(r) with ∆(L) ≤ εn ≤
2ε|US |/µ,

⋂
f∈F G[H4L](S ∪ f)[US ] is an (

√
ε, ξ′, q− i−h, r− i−h)-complex. A union bound

now shows that with probability at least 1− e−n
1/10

, (S4) holds.
Thus, there exists H with the desired properties. �

We also need a similar (but simpler) result which ‘sparsifies’ the neighbourhood complexes
of an i-system.
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Lemma 10.20. Let 1/n� ε� µ, β, ξ, 1/q and 1 ≤ i < r < q. Let ξ′ := 0.9ξβ(8q). Let G be a
complex on n vertices and let S be an i-system in G such that G is r-exclusive with respect to
S. Let U be a µ-focus for S. Suppose that

G(S)[US ] is an (ε, ξ, q − i, r − i)-supercomplex for every S ∈ S.

Then there exists a subgraph H ⊆ G(r) with ∆(H) ≤ 1.1βn such that for all L ⊆ G(r) with
∆(L) ≤ εn, the following holds for G′ := G[H 4 L]:

G′(S)[US ] is a (
√
ε, ξ′, q − i, r − i)-supercomplex for every S ∈ S.

Proof. Choose H randomly by including each e ∈ G(r) independently with probability β.
Clearly, whp ∆(H) ≤ 1.1βn. Now, consider S ∈ S. Let h ∈ [r − i]0 and F ⊆ G(S)[US ](h)

with 1 ≤ |F | ≤ 2h. By assumption, GS,F :=
⋂
f∈F G(S)[US ](f) =

⋂
f∈F G(S ∪ f)[US ] is an

(ε, ξ, q−i−h, r−i−h)-complex. Proposition 5.15 (applied with G[US∪S∪
⋃
F ] =: G1, {f∪S :

f ∈ F}, i + h, {G(r)
1 }, β, 2ε/µ playing the roles of G,F, i,P, p, γ) implies that with probability

at least 1 − e−|US |1/8 , H has the property that for all L ⊆ G(r) with ∆(L) ≤ εn ≤ 2ε|US |/µ,⋂
f∈F G[H 4 L](S ∪ f)[US ] =

⋂
f∈F G

′(S)[US ](f) is a (
√
ε, ξ′, q − i− h, r − i− h)-complex.

Therefore, applying a union bound to all S ∈ S, h ∈ [r − i]0 and F ⊆ G(S)[US ](h) with

1 ≤ |F | ≤ 2h, we conclude that whp H has the property that for all L ⊆ G(r) with ∆(L) ≤ εn,
G′(S)[US ] is a (

√
ε, ξ′, q− i, r− i)-supercomplex for every S ∈ S. Thus, there exists an H with

the desired properties. �

10.4. Proof of the Cover down lemma. In this subsection, we state and prove the Cover
down lemma for setups and deduce the Cover down lemma.

Definition 10.21. Let G be an r-graph, let S be an i-system in V (G), and let U be a focus
for S. We say that G is (q, r)-divisible with respect to S,U , if for all S ∈ S and all f ⊆ V (G)\S
with |f | ≤ r − i− 1 and |f \ US | ≥ 1, we have

(q−i−|f |
r−i−|f |

)
| |G(S ∪ f)|.

Recall that a setup for G was defined in Definition 10.17 and density with respect to H in
Definition 7.3. We will prove the Cover down lemma for setups by induction on r− i. We will
deduce the Cover down lemma by applying this lemma with i = 0.

Lemma 10.22 (Cover down lemma for setups). Let 1/n � γ � ε � ν � µ, ξ, 1/q and
0 ≤ i < r < q. Assume that (∗)` is true for all ` ∈ [r− i− 1]. Let G be a complex on n vertices
and suppose that S,U , (Pedge,Pclique) form an (ε, µ, ξ, q, r, i)-setup for G. For r′ ≥ r, let τr′

denote the type function of G(r′), S, U . Then the following hold.

(i) Let G̃ be a complex on V (G) with G ⊆ G̃ such that G̃ is (ε, q, r)-dense with respect to

G(r)− τ−1
r (0). Then there exists a subgraph H∗ ⊆ G(r)− τ−1

r (0) with ∆(H∗) ≤ νn such

that for any L∗ ⊆ G̃(r) with ∆(L∗) ≤ γn and H∗ ∪ L∗ being (q, r)-divisible with respect

to S,U , there exists a K
(r)
q -packing in G̃[H∗ ∪L∗] which covers all edges of L∗, and all

S-important edges of H∗ except possibly some from τ−1
r (r − i).

(ii) If G(r) is (q, r)-divisible with respect to S,U and the setup is diagonal-dominant, then

there exists a K
(r)
q -packing in G which covers all S-important r-edges except possibly

some from τ−1
r (r − i).

Before proving Lemma 10.22, we show how it implies the Cover down lemma (Lemma 7.4).
Note that we only need part (i) of Lemma 10.22 to prove Lemma 7.4. (ii) is used in the
inductive proof of Lemma 10.22 itself.

Proof of Lemma 7.4. Let S := {∅}, U := {U} and let (Pedge,Pclique) be the (r, q)-partition
pair of G,U . By Proposition 10.18, S,U , (Pedge,Pclique) form a (ε, µ, µq−rξ, q, r, 0)-setup for G.
We can thus apply Lemma 10.22(i) with µq−rξ playing the role of ξ. Recall that all r-edges

of G are S-important. Moreover, let τr denote the type function of G(r), S, U . We then have
τ−1
r (0) = G(r)[Ū ] and τ−1

r (r) = G(r)[U ], where Ū := V (G) \ U . �
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Proof of Lemma 10.22. The proof is by induction on r − i. For i = r − 1, we will prove
the statement directly (and Steps 1 and 2 below will be vacuous in this case). For i < r − 1,
we assume that the statement is true for i′ ∈ {i+ 1, . . . , r − 1}.

If i < r − 1, choose new constants ν1, ρ1, β1, . . . , νr−i−1, ρr−i−1, βr−i−1 such that

1/n� γ � ε� ν1 � ρ1 � β1 � · · · � νr−i−1 � ρr−i−1 � βr−i−1 � ν � µ, ξ, 1/q.

Let Y ⊆ G(q) and A ∈ [0, 1](r+1)×(q+1) be such that (S1)–(S4) hold. Moreover, write S =
{S1, . . . , Sp} and Uj := USj for all j ∈ [p].

Convention: Throughout the proof, we will use the variables ` ∈ [r − i − 1] and i′ ∈
{i+ 1, . . . , r − 1} simultaneously, but always assume that i′ = r − `.

Step 1: Defining i′-systems and partition pairs

As part of our inductive argument, instead of considering S directly, we will work with a
suitable collection of i′-systems T (i′) for i′ ∈ {i + 1, . . . , r − 1}. To this end, fix i′ ∈ {i +

1, . . . , r − 1}. For every j ∈ [p], let Si′j be the set of all (i′ − i)-subsets S of V (G) \ (Uj ∪ Sj)
with the property that Sj ∪ S ⊆ e for some e ∈ G(r). Define the collection

T (i′) := {Sj ∪ S : j ∈ [p], S ∈ Si′j }.

Clearly, all elements of T (i′) have size i′. Moreover, note that since G is r-exclusive, all elements
are distinct, that is, for every T ∈ T (i′) there is a unique j ∈ [p] and a unique S ∈ Si′j such

that T = Sj ∪ S. Thus, T (i′) is an i′-system in G.
Let ` ∈ [r − i− 1] and define

G` := G− {e ∈ G(r) : e is S-important and τr(e) < `}.

So if e ∈ G(r) is S-important and τr(e) = `, then e ∈ G(r)
` and e is T (i′)-important. Roughly

speaking, H∗ will consist of suitable subgraphs of G1, . . . , Gr−i−1 and the edges of G` are
relevant when covering the edges of H∗ ∪ L∗ of type `.

Claim 1: G` is r-exclusive with respect to T (i′).

Proof of claim: Suppose, for a contradiction, that there is some f ∈ G` with |f | ≥ r and

distinct T, T ′ ∈ T (i′) such that f contains both T and T ′. By definition of T (i′), we have
unique j, S, j′, S′ such that T = Sj ∪ S and T ′ = Sj′ ∪ S′. But since G is r-exclusive with
respect to S, we must have j = j′ and hence S ∪ S′ ⊆ V (G) \ (Uj ∪ Sj). Let e be a set
obtained by including all vertices from Sj , choosing i′− i+ 1 vertices from S ∪S′ and choosing

r− i′− 1 other vertices from f . Hence, e ∈ G(r)
` . But since Sj ⊆ e, e is S-important. However,

τr(e) = |e ∩ Uj | ≤ r − (i′ + 1) < `, contradicting the definition of G`. −

Claim 2: Let f ∈ G with |f | ≥ r. Then we have

f /∈ G` ⇔ f is S-important and τ|f |(f) < |f | − i′.
Proof of claim: Indeed, let Ef be the set of S-important r-sets in f . By definition of G`, we
have f /∈ G` if and only if f is S-important, Ef 6= ∅ and mine∈Ef τr(e) < `. Then Fact 10.4(ii)
implies the claim. −

As a consequence, we have for each r′ ≥ r

G
(r′)
` = G(r′) \

r′−r+`−1⋃
k=0

τ−1
r′ (k).(10.8)

Claim 3: For r′ ≥ r, the T (i′)-important elements of G
(r′)
` are precisely the elements of τ−1

r′ (r′−
r + `).

Proof of claim: Suppose first that f ∈ G
(r′)
` is T (i′)-important. Clearly, we have τr′(f) ≤

r′ − i′ = r′ − r + `. Also, since f must also be S-important, but f ∈ G`, Claim 2 implies
that τr′(f) ≥ r′ − i′. Hence, f ∈ τ−1

r′ (r′ − r + `). Now, suppose that f ∈ τ−1
r′ (r′ − r + `).
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Pclique([i]) τ−1
q (q − i) . . . τ−1

q (q − r + `+ 1) τ−1
q (q − r + `)

∗
Pedge([i]) 0 ∗

0 0 ∗
τ−1
r (r − i) 0 ∗
. . . 0 0 ∗

τ−1
r (`+ 1) 0 0 0 ∗
τ−1
r (`) 0 0 0 0 ∗

Figure 2. The above table sketches the containment function of (P`∗
edge t {τ−1

r (`)},P`∗
clique t

{τ−1
q (q − r + `)}). Note that the shaded subtable corresponds to the shaded subtable in

Figure 1, but has been flipped to make it upper-triangular instead of lower-triangular.

Since τr′(f) = r′ − i′, Claim 2 implies that f ∈ G`. Let j ∈ [p] be such that Sj ⊆ f . Define

S := f \ (Uj ∪ Sj). We have |S| = r′ − τr′(f)− i = i′ − i and hence S ∈ Si′j . Thus, f contains

Sj ∪ S ∈ T (i′). −

In what follows, we aim to obtain an (r, q)-partition pair for G`. Recall that every element

of a class from Pedge([i]) and Pclique([i]) is S-unimportant, and thus T (i′)-unimportant as well.

By (10.8) and Claim 3, the T (i′)-unimportant r-sets of G` that are S-important are precisely

the elements of τ−1
r (` + 1), . . . , τ−1

r (r − i), and the T (i′)-unimportant q-sets of G` that are
S-important are precisely the elements of τ−1

q (q − r + `+ 1), . . . , τ−1
q (q − i). Thus, we aim to

attach these classes to Pedge([i]) and Pclique([i]), respectively, in order to obtain partitions of

the T (i′)-unimportant r-sets and q-sets of G`. When doing so, we reverse their order. This will
ensure that the new partition pair is again upper-triangular (cf. Figure 2).

Note that we can view U as a µ-focus for T (i′), by associating T ∈ T (i′) with Uj , where j is
the unique j ∈ [p] with Sj ⊆ T . Define

P`∗edge := Pedge([i]) t (τ−1
r (r − i), . . . , τ−1

r (`+ 1)),(10.9)

P`∗clique := Pclique([i]) t (τ−1
q (q − i), . . . , τ−1

q (q − r + `+ 1)).(10.10)

Claim 4: (P`∗edge,P`∗clique) is admissible with respect to G`, T (i′), U .

Proof of claim: By (10.8) and Claim 3, we have that P`∗edge is a partition of the T (i′)-unimportant

elements of G
(r)
` and P`∗clique is a partition of the T (i′)-unimportant elements of G

(q)
` . Moreover,

note that |P`∗edge| = i+ (r− i− `) = i′ and |P`∗clique| = i+ (q− i)− (q− r+ `) = i′, so (P1) holds.

We proceed with checking (P3). By Claim 3, τ−1
r (`) consists of all T (i′)-important edges

of G
(r)
` , and τ−1

q (q − r + `) consists of all T (i′)-important q-sets of G
(q)
` . Thus, (P`∗edge t

{τ−1
r (`)},P`∗cliquet{τ−1

q (q−r+`)}) clearly is an (r, q)-partition pair of G`. If 0 ≤ k′ < `′ ≤ i′−i,
then no Q ∈ τ−1

q (q − i − k′) contains any element from τ−1
r (r − i − `′) by Fact 10.4(ii), so

(P`∗edge t {τ−1
r (`)},P`∗clique t {τ−1

q (q − r + `)}) is upper-triangular (cf. Figure 2).

It remains to check (P2). Let T ∈ T (i′), h′ ∈ [r− i′]0 and F ′ ⊆ G`(T )(h′) with 1 ≤ |F ′| ≤ 2h
′
.

Thus T = Sj∪S for some unique j ∈ [p]. Let h := h′+i′−i ∈ [r−i]0 and F := {S∪f ′ : f ′ ∈ F ′}.
Clearly, F ⊆ G(Sj)

(h) with 1 ≤ |F | ≤ 2h. Thus, by (P5′) in Proposition 10.11, we have for all

E ∈ Pedge that there exists D(Sj , F, E) ∈ N0 such that for all Q ∈
⋂
f∈F G(Sj ∪ f)[Uj ]

(q−i−h),
we have that

|{e ∈ E : ∃f ∈ F : e ⊆ Sj ∪ f ∪Q}| = D(Sj , F, E).

For each E ∈ P`∗edge, define D′(T, F ′, E) := D(Sj , F, E). Thus, we have for all Q ∈
⋂
f ′∈F ′ G`(T ∪

f ′)[Uj ]
(q−i′−h′) that

|{e ∈ E : ∃f ′ ∈ F ′ : e ⊆ T ∪ f ′ ∪Q}| = D′(T, F ′, E).

−
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Step 2: Defining focuses

We will now define a focus Ui′ for T (i′) for every i′ ∈ {i + 1, . . . , r − 1} (as noted above, U
is also a focus for T (i′), but it is not suitable for our induction argument as the intersections
Uj∩Uj′ may be too large). Fix i′ ∈ {i+1, . . . , r−1}. For each T ∈ T (i′), we will have UT ⊆ Uj ,
where j is the unique j ∈ [p] with Sj ⊆ T . In what follows, we already refer to the resulting
type functions of Ui′ . The relevant claims do not depend on the specific choice of UT , we only
need to know that UT ⊆ Uj .

First, note that this means that (P`∗edge,P`∗clique) will be admissible with respect to G`, T (i′),

Ui′ . Recall that by Claim 1, G` is r-exclusive with respect to T (i′). For r′ ≥ r, let τ`,r′ denote

the type function of G
(r′)
` , T (i′), Ui′ . Let (P`edge,P`clique) be the (r, q)-partition pair of G` induced

by (P`∗edge,P`∗clique) and Ui′ .
Define the matrix A` ∈ [0, 1](r+1)×(q+1) such that the following hold:

• For all E ∈ P`∗edge and Q ∈ P`∗clique, let A`(E ,Q) := A(E ,Q).

• For all `′ ∈ [r − i′]0 and Q ∈ P`∗clique, let A`(τ
−1
`,r (`′),Q) := 0.

• For all E ∈ P`∗edge and k′ ∈ [q − i′]0, define

A`(E , τ−1
`,q (k′)) := bin(q − i′, ρ`, k′)A(E , τ−1

q (q − r + `)).

• For all `′ ∈ [r − i′]0, k′ ∈ [q − i′]0, let

A`(τ
−1
`,r (`′), τ−1

`,q (k′)) := bin(q − r, ρ`, k′ − `′)A(τ−1
r (`), τ−1

q (q − r + `)).

Note that min\\r−i
′+1(A`) ≥ ρq−r` ξ.

We will show that Ui′ can be chosen as a (µ, ρ`, r)-focus for T (i′) such that

T (i′),Ui′ , (P`edge,P`clique) form a (1.1ε, ρ`µ, ρ
q−r
` ξ, q, r, i′)-setup for G`,(10.11)

G`(T )[UT ] is a (1.1ε, 0.9ξ, q − i′, r − i′)-supercomplex for every T ∈ T (i′).(10.12)

For every T ∈ T (i′), choose a random subset UT of Uj by including every vertex from Uj
independently with probability ρ`, where j is the unique j ∈ [p] with Sj ⊆ T . We claim that

with positive probability, Ui′ := {UT : T ∈ T (i′)} is the desired focus.

By Lemma 10.6 whp Ui′ is a (µ, ρ`, r)-focus for T (i′). In particular, whp Ui′ is a ρ`µ-focus

for T (i′), implying that (S1) holds for G` with T (i′), Ui′ and (P`edge,P`clique). We now check

(S2)–(S4).

Claim 5: Whp G`[Y ] is (1.1ε,A`, q, r)-regular with respect to (P`edge,P`clique)[Y ].

Proof of claim: For E ∈ Pedge and Q ∈ Pclique, we write A(E ,Q∩ Y ) := A(E ,Q), and similarly

for A`. By definition of (P`∗edge,P`∗clique), we have for all E ∈ P`∗edge t {τ−1
r (`)} and Q ∈ (P`∗clique t

{τ−1
q (q − r + `)})[Y ] that E ∈ Pedge and Q ∈ Pclique[Y ]. Since G[Y ] is (ε,A, q, r)-regular with

respect to (Pedge,Pclique)[Y ], we have thus for all e ∈ E that

|Q(e)| = (A(E ,Q)± ε)nq−r.(10.13)

We have to show that for all E ∈ P`edge, Q ∈ P`clique[Y ] and e ∈ E , we have |Q(e)| =

(A`(E ,Q)± 1.1ε)nq−r. We distinguish four cases as in the definition of A`.
Firstly, for all E ∈ P`∗edge, Q ∈ P`∗clique[Y ] and e ∈ E , we have by (10.13) that |Q(e)| =

(A(E ,Q)± ε)nq−r = (A`(E ,Q)± ε)nq−r with probability 1.
Also, for all `′ ∈ [r−i′]0,Q ∈ P`∗clique[Y ] and e ∈ τ−1

`,r (`′), we have |Q(e)| = 0 = A`(τ
−1
`,r (`′),Q)nq−r

with probability 1.
Let E ∈ P`∗edge t {τ−1

r (`)} and consider e ∈ E . Let Qe := (Y ∩ τ−1
q (q− r+ `))(e). By (10.13),

we have that |Qe| = (A(E , τ−1
q (q − r + `))± ε)nq−r.

First, assume that e ∈ E ∈ P`∗edge. For each k′ ∈ [q − i′]0, we consider the random subgraph

Qk′e of Qe that contains all Q ∈ Qe with Q ∪ e ∈ τ−1
`,q (k′). Hence, Qk′e = (Y ∩ τ−1

`,q (k′))(e).
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For each Q ∈ Qe, there are unique TQ ∈ T (i′) and jQ ∈ [p] with SjQ ⊆ TQ ⊆ Q ∪ e and
(Q ∪ e) \ TQ ⊆ UjQ .

For each Q ∈ Qe, we then have

P(Q ∈ Qk′e ) = P(τ`,q(Q ∪ e) = k′) = P(|(Q ∪ e) ∩ UTQ | = k′) = bin(q − i′, ρ`, k′).

Thus, E|Qk′e | = bin(q − i′, ρ`, k′)|Qe|. For each T ∈ T (i′), let QT be the set of all those Q ∈ Qe
for which TQ = T . Since e is T (i′)-unimportant, we have |T \ e| > 0 and thus |QT | ≤ nq−r−1

for all T ∈ T (i′). Thus we can partition Qe into nq−r−1 subgraphs such that each of them
intersects each QT in at most one element. For all Q lying in the same subgraph, the events
Q ∈ Qk′e are now independent. Hence, by Lemma 5.9, we conclude that with probability at

least 1− e−n
1/6

we have that

|Qk′e | = (1± ε2)E|Qk′e | = (1± ε2)bin(q − i′, ρ`, k′)|Qe|
= (1± ε2)bin(q − i′, ρ`, k′)(A(E , τ−1

q (q − r + `))± ε)nq−r(10.14)

= (A`(E , τ−1
`,q (k′))± 1.1ε)nq−r.

(Technically, we can only apply Lemma 5.9 if |Qe| ≥ 0.1εnq−r, say. Note that (10.14) holds
trivially if |Qe| ≤ 0.1εnq−r.)

Finally, consider the case e ∈ E = τ−1
r (`). By Claim 3, e is T (i′)-important, so let T ∈ T (i′)

be such that T ⊆ e. Note that for every Q ∈ Qe, we have Q ⊆ Uj , where j is the unique j ∈ [p]
with Sj ⊆ T . For every x ∈ [q − r]0, let Qxe be the random subgraph of Qe that contains all
Q ∈ Qe with |Q ∩ UT | = x. By the random choice of UT , for each Q ∈ Q and x ∈ [q − r]0, we
have

P(Q ∈ Qxe ) = bin(q − r, ρ`, x).

Using Corollary 5.11 we conclude that for x ∈ [q − r]0, with probability at least 1− e−n
1/6

we
have that

|Qxe | = (1± ε2)E|Qxe | = (1± ε2)bin(q − r, ρ`, x)|Qe|
= (1± ε2)bin(q − r, ρ`, x)(A(τ−1

r (`), τ−1
q (q − r + `))± ε)nq−r

= (bin(q − r, ρ`, x)A(τ−1
r (`), τ−1

q (q − r + `))± 1.1ε)nq−r.

Thus for all `′ ∈ [r − i′]0, k′ ∈ [q − i′]0 and e ∈ τ−1
`,r (`′) with k′ ≥ `′, with probability at least

1− e−n
1/6

we have

|(Y ∩ τ−1
`,q (k′))(e)| = |Qk′−`′e | = (A`(τ

−1
`,r (`′), τ−1

`,q (k′))± 1.1ε)nq−r,

and if `′ > k′ then trivially |(Y ∩ τ−1
`,q (k′))(e)| = 0 = A`(τ

−1
`,r (`′), τ−1

`,q (k′))nq−r. Thus, a union

bound implies the claim. −

Claim 6: Whp every T (i′)-unimportant e ∈ G
(r)
` is contained in at least 0.9ξ(ρ`µn)q T (i′)-

unimportant Q ∈ G`[Y ](q+r), and for every T (i′)-important e ∈ G(r)
` with e ⊇ T ∈ T (i′), we

have |G`[Y ](q+r)(e)[UT ]| ≥ 0.9ξ(ρ`µn)q.

Proof of claim: Let e ∈ G
(r)
` be T (i′)-unimportant. By Claim 3, we thus have that e is

S-unimportant or τr(e) > `. In the first case, we have that e is contained in at least ξ(µn)q S-

unimportant Q ∈ G[Y ](q+r) by (S3) for U , G,S. But each such Q is clearly T (i′)-unimportant as
well and contained in G`[Y ]. If the second case applies, assume that e contains Sj ∈ S. By (S3)

for U , G,S, we have that |G[Y ](q+r)(e)[Uj ]| ≥ ξ(µn)q. For every Q ∈ G[Y ](q+r)(e)[Uj ], we have
that τq+r(Q∪ e) = |(Q∪ e)∩Uj | = q+ τr(e) > q+ `. Thus, Claim 2 implies that Q∪ e ∈ G`[Y ],

and by Claim 3 we have that Q ∪ e is T (i′)-unimportant. Altogether, every T (i′)-unimportant

edge e ∈ G(r)
` is contained in at least ξ(µn)q ≥ 0.9ξ(ρ`µn)q T (i′)-unimportant Q ∈ G`[Y ](q+r).

Let e ∈ G(r)
` be T (i′)-important. Assume that e contains T ∈ T (i′) and let j be the unique

j ∈ [p] with Sj ⊆ T . By (S3) for U , G,S, we have that |G[Y ](q+r)(e)[Uj ]| ≥ ξ(µn)q. As
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before, for every Q ∈ G[Y ](q+r)(e)[Uj ], we have Q ∪ e ∈ G`[Y ]. Moreover, P(Q ⊆ UT ) = ρq` .

Thus, by Corollary 5.11, with probability at least 1−e−n
1/6

we have that |G`[Y ](q+r)(e)[UT ]| ≥
0.9ξ(ρ`µn)q. A union bound hence implies the claim. −

Claim 7: Whp for all T ∈ T (i′), h′ ∈ [r − i′]0 and F ′ ⊆ G`(T )(h′) with 1 ≤ |F ′| ≤ 2h
′

we have
that

⋂
f ′∈F ′ G`(T ∪ f ′)[UT ] is an (1.1ε, 0.9ξ, q − i′ − h′, r − i′ − h′)-complex.

Proof of claim: Let T ∈ T (i′), h′ ∈ [r − i′]0 and F ′ ⊆ G`(T )(h′) with 1 ≤ |F ′| ≤ 2h
′
. Let j be

the unique j ∈ [p] with T = Sj ∪ S. We claim that⋂
f ′∈F ′

G`(T ∪ f ′)[Uj ] is an (ε, ξ, q − i′ − h′, r − i′ − h′)-complex.(10.15)

If
⋂
f ′∈F ′ G`(T ∪ f ′)[Uj ](r−i

′−h′) is empty, then there is nothing to prove, thus assume the

contrary. We claim that we must have f ′ ⊆ Uj for all f ′ ∈ F ′. Indeed, let f ′ ∈ F ′ and

g0 ∈ G`(T ∪ f ′)[Uj ](r−i
′−h′). Hence, g0 ∪ T ∪ f ′ ∈ G(r)

` . By Claim 2, we must have |(g0 ∪ T ∪
f ′) ∩ Uj | ≥ |g0 ∪ T ∪ f ′| − i′. But since T ∩ Uj = ∅, we must have f ′ ⊆ Uj .

Let h := h′ + i′ − i ∈ [r − i]0 and F := {S ∪ f ′ : f ′ ∈ F ′} ⊆ G(Sj)
(h). (S4) for U , G,S

implies that
⋂
f∈F G(Sj ∪ f)[Uj ] is an (ε, ξ, q − i − h, r − i − h)-complex. It thus suffices to

show that G(Sj ∪ S ∪ f ′)[Uj ](r
′) = G`(T ∪ f ′)[Uj ](r

′) for all r′ ≥ r − i − h and f ′ ∈ F ′. To

this end, let f ′ ∈ F ′, r′ ≥ r − i − h and suppose that g ∈ G(Sj ∪ S ∪ f ′)[Uj ](r
′). Observe

that |(g ∪ T ∪ f ′) ∩ Uj | = |g ∪ T ∪ f ′| − i′, so Claim 2 implies that g ∪ T ∪ f ′ ∈ G` and thus

g ∈ G`(T ∪ f ′)[Uj ](r
′). This proves (10.15).

By Proposition 5.13, with probability at least 1 − e−|Uj |/8,
⋂
f ′∈F ′ G`(T ∪ f ′)[UT ] is an

(1.1ε, 0.9ξ, q − i′ − h′, r − i′ − h′)-complex.

Applying a union bound to all T ∈ T (i′), h′ ∈ [r− i′]0 and F ′ ⊆ G`(T )(h′) with 1 ≤ |F ′| ≤ 2h
′

then establishes the claim. −
By the above claims, Ui′ satisfies (10.11) whp. Moreover, Claim 7 implies that whp (10.12)

holds. Thus, there exists a (µ, ρ`, r)-focus Ui′ for T (i′) such that (10.11) and (10.12) hold.

Step 3: Reserving subgraphs

In this step, we will find a number of subgraphs of G(r) − τ−1
r (0) whose union will be the

r-graph H∗ we seek in (i). Let G̃ be a complex as specified in (i). Let β0 := ε. Let H0 be a

subgraph of G(r) − τ−1
r (0) with ∆(H0) ≤ 1.1β0n such that for all e ∈ G̃(r), we have

|G̃[H0 ∪ {e}](q)(e)| ≥ 0.9β
(qr)
0 nq−r.(10.16)

(H0 will be used to greedily cover L∗.) That such a subgraph exists can be seen by a probabi-

listic argument: let H0 be obtained by including every edge of G(r) − τ−1
r (0) with probability

β0. Clearly, whp ∆(H0) ≤ 1.1β0n. Also, since G̃ is (ε, q, r)-dense with respect to G(r)− τ−1
r (0)

by assumption, we have for all e ∈ G̃(r) that

E|G̃[H0 ∪ {e}](q)(e)| = β
(qr)−1

0 |G̃[(G(r) − τ−1
r (0)) ∪ {e}](q)(e)| ≥ β(qr)−1

0 εnq−r.

Using Corollary 5.11 and a union bound, it is then easy to see that whp H0 satisfies (10.16)

for all e ∈ G̃(r).

Step 3.1: Defining ‘sparse’ induction graphs H`.

Consider ` ∈ [r−i−1]. Let ξ` := ν8q ·q+1
` . By (10.11) and Lemma 10.19 (with 3β`−1, ν`, ρ`µ, ρ

q−r
` ξ, i′

playing the roles of ε, ν, µ, ξ, i), there exists a subgraph H` ⊆ G
(r)
` with ∆(H`) ≤ 1.1ν`n such

that for all L ⊆ G(r)
` with ∆(L) ≤ 3β`−1n, we have that

T (i′),Ui′ , (P`edge,P`clique)[H` 4 L] form a diagonal-dominant(10.17)

(
√

3β`−1, ρ`µ, ξ`, q, r, i
′)-setup for G`[H` 4 L].
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Step 3.2: Defining ‘localised’ cleaning graphs J`.

Let

G∗` := G` −
`−1⋃
`′=0

τ−1
`,r (`′).(10.18)

By (10.12), for every T ∈ T (i′), G`(T )[UT ] is a (1.1ε, 0.9ξ, q − i′, r − i′)-supercomplex. Note
that G`(T )[UT ] = G∗` (T )[UT ]. Thus, by Lemma 10.20 (with G∗` , 3ν`, ρ`µ, β`, 0.9ξ playing the

roles of G, ε, µ, β, ξ), there exists a subgraph J` ⊆ G
∗(r)
` with ∆(J`) ≤ 1.1β`n such that for all

L ⊆ G∗(r)` with ∆(L) ≤ 3ν`n, the following holds for G∗ := G∗` [J` 4 L]:

G∗(T )[UT ] is a (
√

3ν`, 0.81ξβ
(8q)
` , q − i′, r − i′)-supercomplex for every T ∈ T (i′).(10.19)

We have defined subgraphs H0, H1, . . . ,Hr−i−1, J1, . . . , Jr−i−1 of G(r) − τ−1
r (0). Note that

they are not necessarily edge-disjoint. Let H∗0 := H0 and for ` ∈ [r − i− 1] define inductively

H ′` := H∗`−1 ∪H`,

H∗` := H∗`−1 ∪H` ∪ J` = H ′` ∪ J`,
H∗ := H∗r−i−1.

Clearly, ∆(H∗` ) ≤ 2β`n for all ` ∈ [r − i − 1]0 and ∆(H ′`) ≤ 2ν`n for all ` ∈ [r − i − 1]. In
particular, ∆(H∗) ≤ 2βr−i−1n ≤ νn, as desired.

Step 4: Covering down — Proof of (i)

Let L∗ be any subgraph of G̃(r) with ∆(L∗) ≤ γn such that H∗ ∪ L∗ is (q, r)-divisible with

respect to S,U . We need to find a K
(r)
q -packing K in G̃[H∗ ∪ L∗] which covers all edges of L∗,

and covers all S-important edges of H∗ except possibly some from τ−1
r (r − i).

Let H ′0 := H0 ∪ L∗. By (10.16), for all e ∈ L∗ we have that

|G̃[H ′0](q)(e)| ≥ |G̃[H0 ∪ e](q)(e)| ≥ 0.9β
(qr)
0 nq−r.

By Corollary 6.7, there is a K
(r)
q -packing K∗0 in G̃[H ′0] covering all edges of L∗. If i = r− 1, we

can take K∗0 and complete the proof of (i). So assume that i < r − 1 and that Lemma 10.22
holds for larger values of i.

We will now inductively show that the following holds for all ` ∈ [r − i].

(#)` There exists a K
(r)
q -packing K∗`−1 in G̃[H∗`−1 ∪ L∗] covering all edges of L∗, and all

S-important e ∈ H∗`−1 with τr(e) < `.

By the above, (#)1 is true. Clearly, (#)r−i establishes (i). Suppose that for some ` ∈
[r − i − 1], (#)` is true. We will now find a K

(r)
q -packing K` in G̃[H∗` ∪ L∗] − K

∗(r)
`−1 such that

K∗` := K∗`−1 ∪ K` covers all edges of L∗ and all S-important e ∈ H∗` with τr(e) ≤ `, implying
that (#)`+1 is true.

Let H ′′` := H ′` − K
∗(r)
`−1 . The packing K` must cover all edges of H∗` − K

∗(r)
`−1 that belong to

τ−1
r (`). By Claim 3, all those edges are T (i′)-important. We will obtain K` as the union of K◦`

and K†` , where

(a) K◦` covers all T (i′)-important edges of H ′′` except possibly some from τ−1
`,r (r − i′);

(b) K†` covers the remaining T (i′)-important edges of H∗` .

We will obtain K◦` by induction and K†` by an application of the Localised cover down lemma

(Lemma 10.7). Recall that (q, r)-divisibility with respect to T (i′),Ui′ was defined in Defini-
tion 10.21.

Claim 8: H ′′` is (q, r)-divisible with respect to T (i′),Ui′.
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Proof of claim: Let T ∈ T (i′) and f ′ ⊆ V (G) \ T with |f ′| ≤ r − i′ − 1 and |f ′ \ UT | ≥ 1.

We have to show that
(q−i′−|f ′|
r−i′−|f ′|

)
| |H ′′` (T ∪ f ′)|. Let j ∈ [p] and S ∈ Si′j with T = Sj ∪ S.

Define f := f ′ ∪ S. Clearly, f ⊆ V (G) \ Sj , |f | ≤ r − i − 1 and |f \ Uj | ≥ |S| ≥ 1. Hence,

since H∗ ∪ L∗ is (q, r)-divisible with respect to S,U , we have
(q−i−|f |
r−i−|f |

)
| |(H∗ ∪ L∗)(Sj ∪ f)|.

Clearly, we have H ′′` ⊆ H∗ − K∗(r)`−1 . Conversely, observe that every e ∈ H∗ ∪ L∗ that contains

T ∪ f ′ and is not covered by K∗`−1 must belong to H ′′` . Indeed, since e contains T , we have that
τr(e) ≤ r − i′ = `, so e ∈ H∗` . Moreover, by (#)` we must have τr(e) ≥ `. Hence, τr(e) = `.

But since |f ′ \ UT | ≥ 1, we have τ`,r(e) < `. By (10.18), e /∈ J`. Thus, e ∈ H ′` − K
∗(r)
`−1 = H ′′` .

Hence, H ′′` (T ∪ f ′) = ((H∗ ∪ L∗)−K∗(r)`−1)(Sj ∪ f). This implies the claim. −
Let L′` := H ′′` 4H`. So H ′′` = H` 4 L′`.

Claim 9: L′` ⊆ G
(r)
` and ∆(L′`) ≤ 3β`−1n.

Proof of claim: Suppose, for a contradiction, that there is e ∈ H ′′` 4H` with e /∈ G(r)
` . Since

H` ⊆ G
(r)
` , we must have e ∈ H ′′` . Thus e is not covered by K∗`−1, implying that τ(e) ≥ ` or e

is S-unimportant, contradicting e /∈ G(r)
` (cf. Claim 2).

In order to see the second part, observe that L′` = ((H∗`−1 ∪H`)−K
∗(r)
`−1)4H` ⊆ H∗`−1 ∪ L∗

since K∗(r)`−1 ⊆ L
∗ ∪H∗`−1. Thus, ∆(L′`) ≤ ∆(H∗`−1) + ∆(L∗) ≤ 3β`−1n. −

Hence, by (10.17), T (i′),Ui′ , (P`edge,P`clique)[H ′′` ] form a diagonal-dominant (
√

3β`−1, ρ`µ, ξ`, q, r, i
′)-

setup for G[H ′′` ] = G`[H
′′
` ].

We can thus apply Lemma 10.22(ii) inductively with the following objects/parameters.

object/parameter G[H ′′` ]
√

3β`−1 ρ`µ ξ` i′ T (i′) Ui′ (P`edge,P`clique)[H ′′` ]

playing the role of G ε µ ξ i S U (Pedge,Pclique)

Hence, there exists a K
(r)
q -packing K◦` in G[H ′′` ] covering all T (i′)-important e ∈ H ′′` except

possibly some from τ−1
`,r (r − i′) = τ−1

`,r (`). Thus K◦` is as required in (a).

We will now use J` to cover these remaining edges of H ′′` . Let J ′` := H∗` −K
∗(r)
`−1 −K

◦(r)
` .

Claim 10: J ′`(T )[UT ] is K
(r−i′)
q−i′ -divisible for every T ∈ T (i′).

Proof of claim: Let T ∈ T (i′) and j ∈ [p] and S ∈ Si′j be such that T = Sj ∪ S. Let

f ′ ⊆ UT with |f ′| ≤ r − i′ − 1. We have to show that
(q−i′−|f ′|
r−i′−|f ′|

)
| |J ′`(T )[UT ](f ′)|. Note

that for every e ∈ J ′` ⊆ G
∗(r)
` containing T , we have τ`,r(e) = r − i′. Thus, J ′`(T )[UT ] is

identical with J ′`(T ) except for the different vertex sets. It is thus sufficient to show that(q−i′−|f ′|
r−i′−|f ′|

)
| |J ′`(T ∪ f ′)|. Let f := f ′ ∪ S. Since H∗ ∪ L∗ is (q, r)-divisible with respect to S,U

and |f \ Uj | ≥ |S| ≥ 1, we have that
(q−i−|f |
r−i−|f |

)
| |(H∗ ∪ L∗)(Sj ∪ f)|. It is thus sufficient to

prove that J ′`(T ∪ f ′) = ((H∗ ∪ L∗)−K∗(r)`−1 −K
◦(r)
` )(Sj ∪ f). Clearly, J ′` ⊆ H∗ −K∗(r)`−1 −K

◦(r)
`

by definition. Conversely, observe that every e ∈ H∗ ∪ L∗ −K∗(r)`−1 −K
◦(r)
` that contains T ∪ f ′

must belong to J ′`. Indeed, since L∗ ⊆ K∗(r)`−1 , we have e ∈ H∗, and since e contains T , we have

τr(e) ≤ `. Hence, e ∈ H∗` and thus e ∈ J ′`. This implies the claim. −
Let L′′` := J ′` 4 J`. So J ′` = L′′` 4 J`.

Claim 11: L′′` ⊆ G
∗(r)
` and ∆(L′′` ) ≤ 3ν`n.

Proof of claim: Suppose, for a contradiction, that there is e ∈ J ′`4J` with e /∈ G∗(r)` . By Claim 2

and (10.18), the latter implies that e is S-important with τr(e) < ` or T (i′)-important with

τ`,r(e) < `. However, since J` ⊆ G
∗(r)
` , we must have e ∈ J ′` \ J` and thus e ∈ H ′` and

e /∈ K∗(r)`−1 ∪ K
◦(r)
` . In particular, e ∈ H ′′` . Now, if e was S-important with τr(e) < `, then
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e ∈ H ′` − H` ⊆ H∗`−1. But then e would be covered by K∗`−1, a contradiction. So e must

be T (i′)-important with τ`,r(e) < `. But since e ∈ H ′′` , e would be covered by K◦` unless
τ`,r(e) = r − i′ = `, a contradiction.

In order to see the second part, observe that

L′′` = ((H ′` ∪ J`)−K
∗(r)
`−1 −K

◦(r)
` )4 J` ⊆ H ′` ∪ L∗

since K∗(r)`−1 ∪ K
◦(r)
` ⊆ H ′` ∪ L∗. Thus, ∆(L′′` ) ≤ ∆(H ′`) + ∆(L∗) ≤ 3ν`n. −

Thus, by (10.19), G[J ′`](T )[UT ] = G∗` [J
′
`](T )[UT ] is a (ρ`, β

(8q)+1
` , q − i′, r − i′)-supercomplex

for every T ∈ T (i′). (Here we also use that J ′` ⊆ G
∗(r)
` by Claim 11 and the definition of J`.)

We can therefore apply the Localised cover down lemma (Lemma 10.7) with the following
objects/parameters.

object/parameter ρ` µ β
(8q)+1
` i′ G[J ′`] T (i′) Ui′

playing the role of ρ ρsize ξ i G S U

This yields a K
(r)
q -packing K†` in G[J ′`] covering all T (i′)-important r-edges. Thus K†` is as

required in (b). As observed before, this completes the proof of (#)`+1 and thus the proof
of (i).

Step 5: Covering down — Proof of (ii)

Now, suppose that G(r) is (q, r)-divisible with respect to S,U and A is diagonal-dominant.

Claim 12: G is (ξ − ε, q, r)-dense with respect to G(r) − τ−1
r (0).

Proof of claim: Let e ∈ G(r) and let `′ ∈ [r + 1] be such that e ∈ Pedge(`′). Suppose first
that `′ ≤ i. Then no q-set from Pclique(`′) contains any edge from τ−1

r (0) (as such a q-set is
S-unimportant). Recall from (S2) for S,U , (Pedge,Pclique) that G[Y ] is (ε,A, q, r)-regular with

respect to (Pedge,Pclique)[Y ] and min\\r−i+1(A) ≥ ξ. Thus,

|G[(G(r) − τ−1
r (0)) ∪ e](q)(e)| ≥ |(Y ∩ Pclique(`′))(e)| ≥ (a`′,`′ − ε)nq−r ≥ (ξ − ε)nq−r.

If `′ > i + 1, then by (P2′) in Proposition 10.11, no q-set from Pclique(q − r + `′) contains
any edge from τ−1

r (0). Thus, we have

|G[(G(r) − τ−1
r (0)) ∪ e](q)(e)| ≥ (a`′,q−r+`′ − ε)nq−r ≥ (ξ − ε)nq−r.

If `′ = i + 1, then Pedge(`′) = τ−1
r (0) by (P2′). However, every q-set from τ−1

q (q − r) =

Pclique(q − r + `′) that contains e contains no other edge from τ−1
r (0). Thus,

|G[(G(r) − τ−1
r (0)) ∪ e](q)(e)| ≥ (a`′,q−r+`′ − ε)nq−r ≥ (ξ − ε)nq−r.

−
By Claim 12, we can choose H∗ ⊆ G(r) − τ−1

r (0) such that (i) holds with G playing the role

of G̃. Let
Hnibble := G(r) −H∗.

Recall that by (S2), G[Y ] is (ε,A, q, r)-regular with respect to (Pedge,Pclique)[Y ], and (S3)
implies that G[Y ] is (µqξ, q + r, r)-dense. Let

Gnibble := (G[Y ])[Hnibble].

Using Proposition 5.4, it is easy to see that Gnibble is (2r+1ν,A, q, r)-regular with respect to
(Pedge,Pclique)[Y ][Hnibble]. Moreover, by Proposition 5.6(ii), Gnibble is (µqξ/2, q + r, r)-dense.

Thus, by Corollary 10.16, there exists Y ∗ ⊆ G(q)
nibble such that Gnibble[Y

∗] is (
√
ν, d, q, r)-regular

for some d ≥ ξ and (0.45µqξ(µqξ/8(q + 1))(
q+r
q ), q + r, r)-dense. Thus, by the Boosted nibble

lemma (Lemma 6.4) there is a K
(r)
q -packing Knibble in Gnibble[Y

∗] such that ∆(Lnibble) ≤ γn,

where Lnibble := Gnibble[Y
∗](r) − K(r)

nibble = Hnibble − K
(r)
nibble. Since G(r) is (q, r)-divisible with

respect to S,U , we clearly have that H∗ ∪ Lnibble is (q, r)-divisible with respect to S,U . Thus,
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by (i), there exists a K
(r)
q -packing K∗ in G[H∗ ∪ Lnibble] which covers all edges of Lnibble, and

all S-important edges of H∗ except possibly some from τ−1
r (r − i). But then, Knibble ∪ K∗ is a

K
(r)
q -packing in G which covers all S-important r-edges except possibly some from τ−1

r (r− i),
completing the proof. �
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