
Every graph of sufficiently large average degree

contains a C4-free subgraph of large average degree
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Abstract

We prove that for every k there exists d = d(k) such that every graph of
average degree at least d contains a subgraph of average degree at least
k and girth at least six. This settles a special case of a conjecture of
Thomassen.

1 Introduction

Thomassen [6] conjectured that for all integers k, g there exists an integer f(k, g)
such that every graph G of average degree at least f(k, g) contains a subgraph
of average degree at least k and girth at least g (where the average degree
of a graph G is d(G) := 2e(G)/|G| and the girth of G is the length of the
shortest cycle in G). Erdős and Hajnal [2] made a conjecture analogous to that
of Thomassen with both occurrences of average degree replaced by chromatic
number. The case g = 4 of the conjecture of Erdős and Hajnal was proved by
Rödl [5], while the general case is still open.

The existence of graphs of both arbitrarily high average degree and high girth
follows for example from the result of Erdős that there exist graphs of high girth
and high chromatic number. The case g = 4 of Thomassen’s conjecture (which
corresponds to forbidding triangles) is trivial since every graph can be made
bipartite by deleting at most half of its edges. Thus f(k, 4) ≤ 2k. The purpose
of this paper is to prove the case g = 6 of the conjecture.

Theorem 1. For every k there exists d = d(k) such that every graph of average
degree at least d contains a subgraph of average degree at least k whose girth is
at least six.

A straightforward probabilistic argument shows that Thomassen’s conjecture
is true for graphs G which are almost regular in the sense that their maximum
degree is not much larger than their average degree (see Lemma 4 for the C4-
case). Indeed, such graphs G do not contain too many short cycles. Thus if we
consider the graph Gp obtained by selecting each edge of G with probability p
(for a suitable p), it is easy to show that with nonzero probability Gp contains
far fewer short cycles than edges. Deleting one edge on every short cycle then
yields a subgraph of G with the desired properties.
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Thus the conjecture would hold in general if every graph of sufficiently large
average degree would contain an almost regular subgraph of large average de-
gree. However, this is not the case: Pyber, Rödl and Szemerédi [4] showed
that there are graphs with cn log log n edges which do not contain a k-regular
subgraph (for all k ≥ 3). These graphs cannot even contain an almost regular
subgraph of large average degree, since e.g. another result in [4] states that
every graph with at least ckn log(∆(G)) edges contains a k-regular subgraph.
On the other hand, the latter result implies that every graph G with at least
ckn log n edges contains a k-regular subgraph (which was already proved by
Pyber [3]), and thus, if k is sufficiently large, G contains also a subgraph of
both high average degree and high girth.

2 Proof of the theorem

We say that a graph is C4-free if it does not contain a C4 as a subgraph. We
prove the following quantitative version of Theorem 1. (It implies Theorem 1
since every graph can be made bipartite by deleting at most half of its edges.)
We remark that we have made no attempt to optimize the bounds given in the
theorem.

Theorem 2. Let k ≥ 216 be an integer. Then every graph of average degree at
least 64k3+2·1164k3

contains a C4-free subgraph of average degree at least k.

We now give a sketch of the proof of Theorem 2. As a preliminary step we
find a bipartite subgraph (A,B) of the given graph G which has large average
degree and where the vertices inA all have the same degree. We then inductively
construct a C4-free subgraph of (A,B) in the following way. Let a1, a2, . . . be
an enumeration of the vertices in A. At stage i we will have found a C4-free
subgraph Gi of (A,B) whose vertex classes are contained in {a1, . . . , ai} and
B, and such that the vertices in V (Gi) ∩ A all have the same degree in Gi.
We then ask whether the subgraph of (A,B) consisting of Gi together with all
the edges of G incident with ai+1 (and their endvertices) contains many C4’s.
If this is the case, the vertex ai+1 is ‘useless’ for our purposes. We then let
Gi+1 := Gi and consider the next vertex ai+2. But if ai+1 is not ‘useless’, we
add ai+1 together with suitable edges to Gi to obtain a new C4-free graph Gi+1.
We then show that either the C4-free graph G∗ consisting of the union of all
the Gi has large average degree or else that there is a vertex x ∈ B and a
subgraph (A′, B′) of (A,B)−x which has similar properties as (A,B) and such
that A′ ⊆ N(x) (Lemma 6). In the latter case, we apply the above procedure
to this new graph (A′, B′). If this again does not yield a C4-free subgraph with
large average degree, there will be a vertex x′ ∈ B′ and a subgraph (A′′, B′′)
of (A′, B′) − x′ as before. So both x and x′ are joined in G to all vertices in
A′′. Continuing this process, we will either find a C4-free subgraph with large
average degree or else a large Ks,s. But Ks,s is regular and so, as was already
mentioned in Section 1, it contains a C4-free subgraph as required (Lemma 4).

We shall frequently use the following basic fact [1, Prop. 1.2.2.].
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Proposition 3. Every graph of average degree d contains a subgraph of mini-
mum degree at least d/2. �

The following lemma implies that Theorem 2 holds for the class of all graphs
whose maximum degree is not much larger than their average degree. It can
easily be generalized to longer cycles.

Lemma 4. If G is a graph of average degree d and maximum degree αd, then
G contains a C4-free subgraph of average degree at least d1/3/(4α).

Proof. Let n := |G| and put k := d1/3/(4α). Let Gp denote the (random)
spanning subgraph of G obtained by including each edge of G in Gp with prob-
ability p := 2k/d. Let X4 denote the number of labelled C4’s in Gp and let Xe

denote the number of edges in Gp. Then E[Xe] = pdn/2. Since the number of
C4’s contained in G is at most dn

2 (αd)2 (indeed, every C4 is determined by first
choosing an edge xy ∈ G and then choosing a neighbour of x and a neighbour
of y so that these neighbours are joined by an edge in G), it follows that

E[X4] ≤ dn

2
(αd)2 p4 ≤ 8α2k3

d
· p · dn

2
≤ E[Xe]/2.

Let X := Xe−X4. Then by the above, E[X] ≥ E[Xe]/2 = pdn/4 = kn/2. Thus
P[X ≥ kn/2] > 0, and so G contains a subgraph H with the property that if
we delete an edge from each C4 in H, the remaining graph H ′ still has at least
kn/2 edges. Thus H ′ is as desired. 2

Proposition 5. Let D > 0, 0 ≤ c0 < 1 and c1 ≥ 1. Let G = (A,B) be a
bipartite graph with at least D|A| edges and such that d(a) ≤ c1D for every
vertex a ∈ A. Then there are at least (1− c0)/(c1 − c0)|A| vertices a ∈ A with
d(a) ≥ c0D.

Proof. Let t denote the number of vertices a ∈ A with d(a) ≥ c0D. Then
c1Dt+c0D(|A|− t) ≥ e(G) ≥ D|A|, which implies that t(c1D−c0D) ≥ |A|(D−
c0D). 2

Given c, d ≥ 0, we say that a bipartite graph (A,B) is a (d, c)-graph if A is
non-empty, |B| ≤ c|A| and d(a) = dde for every vertex a ∈ A. Given a graph
G and disjoint sets A,B ⊆ V (G), we write (A,B)G for the induced bipartite
subgraph of G with vertex classes A and B.

Lemma 6. Let c, d ∈ N be such that d is divisible by c, c ≥ 216 and d ≥ 4c3. Let
G = (A,B) be a (d/c, c)-graph. Then G contains either a C4-free subgraph of
average degree at least c or there exists a vertex x ∈ B and a (d/c11, c11)-graph
(A′, B′) ⊆ G such that A′ ⊆ N(x) and B′ ⊆ B \ {x}.

Proof. Given a bipartite graph (X,Y ) and a set Y ′ ⊆ Y , we say that a path
P of length two whose endvertices both lie in Y ′ is a hat of Y ′, and that the
endvertices of P span this hat.

Let a1, a2, . . . be an enumeration of the vertices in A. Let us define a sequence
A0 ⊆ A1 ⊆ . . . of subsets of A and a sequence G0 ⊆ G1 ⊆ . . . of subgraphs of
G such that the following holds for all i = 0, 1, . . . :
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Gi is C4-free and has vertex classes Ai ⊆ {a1, . . . , ai} and B, and
dGi(a) = 2c2 for every a ∈ Ai.

To do this, we begin with A0 := ∅ and the graph G0 consisting of all vertices
in B (and no edges). For every i ≥ 1 in turn, we call the vertex ai useless if
NG(ai) spans at least d2/(8c4) hats contained in Gi−1. If ai is useless, we put
Ai := Ai−1 and Gi := Gi−1. If ai is not useless, let us consider the auxiliary
graph H on NG(ai) in which two vertices x, y ∈ NG(ai) are joined if they span
a hat contained in Gi−1. Since ai is not useless, we have that

e(H) =
(
dG(ai)

2

)
− e(H) ≥

(
d/c− 1
d/c

− 1
4c2

)
dG(ai)2

2

≥
(

1− 1
2c2

)
dG(ai)2

2
,

where the last inequality holds since d ≥ 4c3. Turán’s theorem (see e.g. [1,
Thm. 7.1.1.]) applied to H now shows that H contains an independent set of
size at least 2c2. Hence there are 2c2 edges of G incident with ai such that the
graph consisting of Gi−1 together with ai and these edges does not contain a
C4. We then let Gi be this graph and put Ai := Ai−1 ∪ {ai}.

Let A∗ :=
⋃
iAi and G∗ :=

⋃
iGi. Thus the accepted graph G∗ is C4-

free. Let A1 := A \ A∗, and let G1 := (A1, B)G. We show that either G∗ has
average degree at least c (which correponds to Case 1 below) or else that there
are x ∈ B and (A′, B′) as in the statement of the lemma (Case 2). We will
distinguish these two cases according to the properties of the neighbourhoods
and the second neighbourhoods of the vertices in B. For this, we need some
definitions.

For every a ∈ A1 consider the auxiliary graph Ha on NG1(a) = NG(a) in
which two vertices are joined by an edge if they span a hat contained in the
accepted graph G∗. Since a is useless, this graph has at least d2/(8c4) edges (and
d/c vertices), and so it has average degree at least d/(4c3). By Proposition 3, Ha

contains a subgraph H ′a with minimum degree at least d/(8c3), and so with at
least 1 + d/(8c3) vertices. Let B2 :=

⋃
a∈A1 V (H ′a), and let G2 be the subgraph

of G1 whose vertex set is A1 ∪B2 and in which every a ∈ A1 is joined to all of
V (H ′a). Thus the following holds.

For every a ∈ A1 we have that dG2(a) ≥ 1+d/(8c3), and every vertex in
NG2(a) spans a hat contained in G∗ with at least d/(8c3) other vertices
in NG2(a).

(∗)

Given any vertex x ∈ B2, let G2
x denote the subgraph of G2 induced by the

vertices in A2
x := NG2(x) and B2

x := NG2(NG2(x)) \ {x}. Let

u :=
d

28c7
,

and say that a vertex b ∈ B2
x is x-rich if dG2

x
(b) ≥ u.
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Case 1. For every vertex x ∈ B2 we have that∑
b∈B2

x, b is x-rich

dG2
x
(b) ≤ e(G2

x)
16c2

. (1)

We will show that in this case, every vertex x ∈ B2 is incident with at least
8c2dG2(x) edges of the accepted graph G∗ and thus that e(G∗) ≥ 8c2e(G2).
Before doing this, let us first show that the latter implies that the average
degree of G∗ is at least c. Indeed, since e(G1) = d|A1|/c, we have

e(G2)
(∗)
≥ d

8c3
|A1| = 1

8c2
e(G1).

Thus e(G∗) ≥ e(G1). Also dG∗(a) = 2c2 for every a ∈ A∗ while dG1(a) = d/c ≥
2c2 for every a ∈ A1, and so

d(G∗ ∪G1) ≥ 2 · 2c2|A|
|A|+ |B|

≥ 4c2|A|
(1 + c)|A|

≥ 2c.

Recalling that e(G∗) ≥ e(G1), this now shows that d(G∗) ≥ d((G∗ ∪ G1) −
E(G1)) ≥ d(G∗ ∪G1)/2 ≥ c.

Thus it suffices to show that dG∗(x) ≥ 8c2dG2(x) for every vertex x ∈ B2. So
let x ∈ B2, and put t := dG2(x) = |A2

x|. Let B3
x be the subset of B2

x obtained
by deleting all x-rich vertices, and let G3

x := (A2
x, B

3
x)G2

x
. Let y1, . . . , yt be an

enumeration of the vertices in A2
x. For all i = 1, . . . , t, let Ni denote the set of

all vertices in NG2
x
(yi) = NG2(yi)\{x} spanning a hat with x which is contained

in G∗. Hence by (∗)

|Ni| ≥
d

8c3
. (2)

We now use the existence of these hats to show that x is incident with at least
8c2t edges of G∗ (namely edges contained in these hats). Let N ′i := Ni ∩ B3

x

and ni := |Ni \N ′i |. Thus ni ≤ dG2
x
(yi)− dG3

x
(yi), and so

t∑
i=1

ni ≤ e(G2
x)− e(G3

x)
(1)

≤ e(G2
x)

16c2
≤ dt

16c3
.

Hence
t∑
i=1

|N ′i | =
t∑
i=1

(|Ni| − ni)
(2)

≥ dt

8c3
− dt

16c3
=

dt

16c3
.

But every vertex of G3
x lies in at most u of the sets N ′1, . . . , N

′
t , since dG3

x
(b) ≤ u

for every b ∈ B3
x. Thus ∣∣∣∣∣

t⋃
i=1

N ′i

∣∣∣∣∣ ≥ 1
u

t∑
i=1

|N ′i | ≥ 16c4t.

That means that x spans hats contained in G∗ with at least 16c4t other vertices
in B3

x. But as every vertex in A∗ has degree 2c2 in G∗, this implies that x
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has at least 16c4t/(2c2) ≥ 8c2t neighbours in G∗. So we have shown that
dG∗(x) ≥ 8c2dG2(x) for every x ∈ B2, as desired.

Case 2. There exists a vertex x ∈ B2 not satisfying (1).

Let B4
x be the set of all x-rich vertices in B2

x, let G4
x := (A2

x, B
4
x)G2

x
and put

t := dG2(x) = |A2
x|. Then the choice of x implies that t > 0 and

e(G4
x) ≥ e(G2

x)
16c2

(∗)
≥ 1

16c2
· dt

8c3
=

dt

27c5
.

Hence the average degree in G4
x of the vertices in A2

x is at least D′ := d/(27c5).
Proposition 5, applied with D = D′, c0 = 1/2 and c1 = d/(cD′) = 27c4, now
implies that there are at least

1− c0

c1 − c0
· t =

t

2(c1 − 1
2)
≥ t

2c1
=

t

28c4

vertices a ∈ A2
x with dG4

x
(a) ≥ D′/2 ≥ d/c11. Let A4

x be the set of these
vertices. Thus |A4

x| ≥ t/(28c4). But then the subgraph of (A4
x, B

4
x)G4

x
obtained

by deleting edges so that every vertex in A4
x has degree dd/c11e is a (d/c11, c11)-

graph. Indeed, the only thing that remains to be checked is that |B4
x| ≤ c11|A4

x|.
But since

u|B4
x| =

d

28c7
|B4

x| ≤ e(G4
x) ≤ td

c
≤ 28c3d|A4

x|,

this follows by recalling that c ≥ 216. 2

We can now put everything together.

Proof of Theorem 2. We may assume (by deleting edges if necessary) that the

given graph G has average degree d := 64k3+2·1164k3

. Pick a bipartite subgraph
G′ of G which has average degree at least d/2. By Proposition 3, there is a
(bipartite) subgraph G′′ of G′ which has minimum degree at least d/4. Let A
and B be the vertex classes of G′′, where |A| ≥ |B|. Let G0 be the subgraph
of G′′ obtained by deleting sufficiently many edges to ensure that all vertices
in A have degree exactly d/k. Thus G0 is a (d/k, k)-graph. We now apply
Lemma 6 to G0. If this fails to produce a C4-free subgraph of average degree
at least k, we obtain a vertex x1 ∈ B0 and a (d/k11, k11)-graph G1 = (A1, B1)
with A1 ⊆ NG0(x1) and B1 ⊆ B0 \ {x1} to which we can apply Lemma 6 again.
Continuing in this way, after s := 64k3 applications of Lemma 6, we either
found a C4-free subgraph of average degree at least k, or sequences x1, . . . , xs
and G1 = (A1, B1), . . . , Gs = (As, Bs), where Gs is a (d/k11s , k11s)-graph. But
then each xi is joined in G to every vertex in As. Since As is non-empty, we
have |Bs| ≥ d/k11s and so in fact

|As| ≥ |Bs|/k11s ≥ d/k2·11s = s.

Thus G contains the complete bipartite graph Ks,s. The result now follows by
applying Lemma 4 to this Ks,s. 2
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