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ABSTRACT. We develop a new method for constructing approximate decompositions of dense
graphs into sparse graphs and apply it to longstanding decomposition problems. For instance,
our results imply the following. Let GG be a quasi-random n-vertex graph and suppose Hi, ..., Hs
are bounded degree n-vertex graphs with Y ;_, e(H;) < (1 — o(1))e(G). Then Hi,...,Hs can
be packed edge-disjointly into (G. The case when G is the complete graph K, implies an
approximate version of the tree packing conjecture of Gyéarfds and Lehel for bounded degree
trees, and of the Oberwolfach problem.

We provide a more general version of the above approximate decomposition result which
can be applied to super-regular graphs and thus can be combined with Szemerédi’s regularity
lemma. In particular our result can be viewed as an extension of the classical blow-up lemma
of Komlés, Sarkézy and Szemerédi to the setting of approximate decompositions.

1. INTRODUCTION

1.1. Packings and decompositions. Questions on packings and decompositions have a long
history, going back to the 19th century. For instance, the existence of Steiner triple systems
(proved by Kirkman in 1847) corresponds to a decomposition of the edge set of the complete
graph K, on n vertices into triangles (if » = 1 or 3 mod 6). A fundamental theorem of Wil-
son [39] generalizes this to decompositions of K, into arbitrary graphs H of fixed size: for any
graph H, if n is sufficiently large and satisfies trivially necessary divisibility conditions, then K,
has a decomposition into edge-disjoint copies of H. Similarly, Walecki’s theorem goes back to
1892 and gives a decomposition of K, into Hamilton cycles (if n is odd). Recently, there has
been some exciting progress in this area, often involving the use of probabilistic techniques.

Here, a decomposition of a graph G into graphs Hy,..., H is a set of pairwise edge-disjoint
copies of Hy, ..., Hs in G which together cover all edges of G. Conversely, we say that graphs
Hq, ..., H, pack into G if there are copies of Hy,...,Hg in G so that these copies are pairwise
edge-disjoint. We informally refer to an ‘approximate decomposition’ or a ‘near-optimal packing’
if there is a packing which leaves only a small proportion of the edges of G uncovered.

There are several beautiful conjectures which have driven a large amount of research in the
area. A prime example is the tree packing conjecture of Gyarfas and Lehel, which would guar-
antee a decomposition of a complete graph into a suitable given collection of trees.

Conjecture 1.1 (Gyérfas and Lehel [20]). Given trees Th,...,T,, where for each i € [n], the
tree T; has i vertices, the complete graph K, has a decomposition into copies of T1,...,T,.

A related conjecture, made by Ringel, concerns decompositions of complete graphs into copies
of a single tree: for every tree T on n vertices, Ks,+1 has a decomposition into copies of T.
There are a large number of partial results on Conjecture 1.1, some focusing on special classes of
trees and some on embedding a (small) proportion of the trees (see e.g. [4, 6, 15, 20, 22, 36, 40]).

Possibly the most striking results towards Conjecture 1.1 have been obtained for the case of
bounded degree trees. In particular, a recent result by Bottcher, Hladky, Piguet and Taraz [8]
allows for approximate decompositions of K, into bounded degree trees that are permitted to
be almost spanning. More precisely, their main result states that for all € > 0 and A € N there
exists ng € N such that whenever n > ng and 77, ..., Ty is any family of trees with |T;| < n,
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A(T;) < Aand Yo7, e(T;) < (3), then T1, ..., Ty pack into K(14.),. Note that this implies an
approximate version of Conjecture 1.1 for bounded degree trees (it is approximate both in the
sense that none of the trees is spanning and that they do not form a decomposition). The result
in [8] was strengthened by Messuti, Rodl and Schacht [33] to approximate decompositions of
complete graphs into almost spanning graphs of bounded degree which are ‘separable’ (roughly
speaking, a graph is separable if it can be split into bounded size components by removing a
small proportion of its vertices). Independently to us, Ferber, Lee and Mousset [18] generalized
this further by proving that one can obtain an approximate decomposition of K, into separable
graphs of bounded degree which are allowed to be spanning. In particular, this means that one
can always obtain an approximate decomposition of K, into spanning trees of bounded degree.

Our first result is in fact more general and guarantees an approximate decomposition of a
dense quasi-random graph G into arbitrary bounded degree graphs. More precisely, we say that
a graph G on n vertices is (&, p)-quasi-random if all vertices v of G have degree dg(v) = (1+e)pn
and all pairs of distinct vertices u,v have (1 4 €)p?n common neighbours. (In fact, the latter
condition is only required for almost all pairs, see Section 8.)

Theorem 1.2. For all A € N and 0 < pg,a < 1 there exist € > 0 and ng € N such that
the following holds for all n > ng and p > pg. Suppose Hi,..., Hs are n-vertex graphs with
A(Hy) < A for all £ € [s] and Y ;_ e(Hy) < (1 — a)(5)p. Suppose that G is an (e, p)-quasi-
random graph on n vertices. Then Hy, ..., Hs pack into G.

Moreover, if in addition Y ;_, e(Hy) > (1 — 2a)(5)p, then writing ¢(Hy) for the copy of
Hy in this packing of Hy,...,Hs in G and writing J := G — (¢(Hy) U --- U ¢(Hy)), we have
A(J) < dapn.

This immediately implies the corresponding result (asymptotically almost surely) for the
binomial random graph G, ;, where p is constant and for the complete graph K,,. Note that the
case of G = K,, in Theorem 1.2 extends the previous results in [8, 18, 33] mentioned above.

The case G = K,, also yields an approximate version of the longstanding ‘Oberwolfach prob-
lem’ (proposed by Ringel in 1967). Given an arbitrary union F' of vertex-disjoint cycles altogether
spanning n vertices where n is odd, the Oberwolfach problem asks for a decomposition of K,
into copies of F. Bryant and Scharaschkin [11] have recently provided an affirmative answer for
infinitely many n.

The famous Bollobas-Eldridge-Catlin conjecture states that if G; and Gy are graphs on n
vertices and (A(G1)+1)(A(G2)+1) < n+1, then Gy and G2 can be packed into K,,. Bollobés,
Kostochka and Nakprasit [7] investigated versions of this conjecture for packing many graphs
of bounded degeneracy. The case G = K,, of Theorem 1.2 can be viewed as an asymptotically
optimal version of the conjecture for packing many graphs of bounded degree.

1.2. The blow-up lemma. Combined with Szemerédi’s regularity lemma [38], the blow-up
lemma of Komlds, Sarkézy and Szemerédi [25] has had a major impact on extremal graph theory.
Roughly speaking, Szemerédi’s regularity lemma guarantees a partition of any dense graph into a
bounded number of random-like bipartite subgraphs, while the blow-up lemma allows to embed
bounded degree graphs H into such random-like host graphs G. (Here H is allowed to have the
same number of vertices as G, i.e. the blow-up lemma can be used to find spanning subgraphs.)
These two tools can be combined to find spanning structures in dense graphs, and within the last
20 years, they have lead to a series of very strong results. Early striking results concern spanning
trees [27] and powers of Hamilton cycles [26], more recent results include H-factors [28, 29] and
embeddings of bounded degree graphs of small bandwidth [9]. For further results, see e.g. the
survey [30].

Here we develop a ‘blow-up lemma for approximate decompositions’. This version of the
blow-up lemma will not only guarantee a single copy of H inside the host graph G, but will
guarantee a collection of pairwise edge-disjoint copies of H in G such that together all these
copies of H cover almost all edges of G. In fact, our result is even more general — we show that,
essentially, any not too large collection of graphs Hj,..., Hs of uniformly bounded maximum
degree pack into G.
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As with the classical blow-up lemma, for this it is natural to consider a partite setting and to
assume that both the graphs H, and the host graph G ‘share’ a common equipartition. We need
the following standard definitions. A bipartite graph G with vertex classes A and B is called
(e,d)-regular if for all A’ C A, B’ C B with |A’| > ¢|A| and |B’| > ¢|B| we have

e(G[4', B)

|A"|[B']
We say that G is (g, d)-super-regular if it is (g, d)-regular and dg(v) = (d £ ¢)|A| for all v € B
and dg(v) = (d £¢)|B| for all v € A. It is well known and easy to see that super-regularity

is a weaker requirement than (a bipartite version of) quasi-randomness. We can now state our
second result.

=d+e.

Theorem 1.3. For all 0 < dy,a < 1 and A,r € N there exist € > 0 and ng € N such that
the following holds for all n > ng and d > dy. Suppose Hy,...,Hs are r-partite graphs such
that each Hy has vertex classes X1,...,X, of size n and A(Hy) < A. Suppose that G is an
r-partite graph with vertex classes Vi, ..., V, of size n, where G|V, V}] is (e, d)-super-regular for
all1<i#j<r. If>,_;e(Hy) < (1—a)e(G), then Hy,...,Hs pack into G.

An application of Szemerédi’s regularity lemma to an arbitrary dense graph G is naturally
associated with a ‘reduced graph’ R, whose vertices correspond to the clusters of the regularity
partition and whose edges correspond to those pairs of clusters which in GG induce an e-regular
graph of significant density. This reduced graph may not be complete and the number of clusters
may be relatively large. The following result is designed with such a situation in mind. (A
corresponding extension of the classical blow-up lemma to this setting was proved by Csaba [12]
in the context of the Bollobéds-Eldridge-Catlin conjecture, see Theorem 3.6.)

Theorem 1.4. For all 0 < a,n,dg <1 and A, Agr € N there exists € > 0 so that for all r € N
there ezists ng = ng(e,r) € N such that the following holds for all n > ny and d > dy. Let
s € N be such that s < n~'n. Suppose that R is a graph on [r] with A(R) < Agr. Suppose
that Hy,...,Hs are r-partite graphs such that each Hy has vertex classes Xi,..., X, of size
n and satisfies A(Hg) < A. Further, suppose that > j_, e(Hy[X;, X;]) < (1 — a)dn? for all
ij € E(R) and Hy[X;, X;] is empty if ij ¢ E(R). Suppose finally that G is an r-partite graph
with vertex classes Vi,...,V, of size n, where G[V;,Vj] is (e, d)-super-reqular for all ij € E(R).
Then Hq,...,Hg pack into G.

In Section 8, we will formulate even more general versions: we for instance allow arbitrary
densities for the pairs G[V;, V;] and do not require that the vertex classes have exactly equal size.
Such a setting allows us to derive an approximate version of the bipartite analogue of the tree
packing conjecture, formulated by Hobbs, Bourgeois and Kasiraj [22] in 1986 (see Conjecture 8.4
and Corollary 8.6).

Furthermore, in the main result of Section 6 (Theorem 6.1), we can also require that the
embeddings of the H, satisfy additional restrictions: for instance, for the vertices of Hy we can
specify certain ‘target sets’ in G into which these vertices will be embedded. In a forthcoming
paper, Joos, Kim, Kithn and Osthus use this to prove several ‘exact’ packing results, including
the tree packing conjecture (Conjecture 1.1) for all bounded degree trees.

1.3. Related results and further applications. Kirkman’s result on Steiner triple systems
was recently generalized by Keevash [24], who showed that every sufficiently large quasi-random
graph G of sufficient density has a decomposition into K, for fixed r, provided the obvious
necessary divisibility conditions hold (here the quasi-randomness assumption is stronger than
the one in Theorem 1.2). Similarly, it is natural to consider decompositions of graphs of large
minimum degree into fixed subgraphs (see e.g. [5]).

Kiihn and Osthus [31, 32] extended Walecki’s theorem on Hamilton decompositions of com-
plete graphs to the setting of a ‘robustly expanding’ regular host graph G. (The robust expansion
condition is considerably weaker than that of quasi-randomness or e-regularity and also applies
to all graphs of degree cn for ¢ > 1/2.) In [13], this result is used as a tool to prove several
decomposition and packing conjectures involving Hamilton cycles and perfect matchings. Also,
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in [19], it is used to derive optimal decomposition results for dense quasi-random graphs into
other structures, including linear forests. A different generalization of Walecki’s theorem is
given by the Alspach conjecture, which states that for odd n, the complete graph K, should
have a decomposition into cycles C1, ..., C%, provided that Y ;_; |C| = (g) This was recently
confirmed by Bryant, Horsley and Pettersson [10].

Of particular interest are decompositions into H-factors (also referred to as ‘resolvable de-
signs’). Here an H-factor in a graph G is a set of disjoint copies of H which together cover
all vertices of G. A classical result of Ray-Chaudhuri and Wilson [35] states that if H = K,
if n is a sufficiently large multiple of k and if n — 1 is a multiple of k£ — 1, then K,, admits a
decomposition into H-factors. Dukes and Ling [17] resolved the more general problem of de-
composing a complete graph K, into H-factors for arbitrary but fixed graphs H (subject to
divisibility conditions — note that, unlike in Wilson’s theorem [39], for some graphs H, such as
H = K 2141, those are never fulfilled). Related results (which avoid this divisibility issue) were
obtained by Alon and Yuster [3].

The Hamilton-Waterloo problem (which in general is wide open and generalizes the Oberwol-
fach problem) asks for a decomposition of K, into Cj-factors and Cp-factors, where ¢ and ¢
as well as the number of cycle factors of a given type are given (and n is odd). Several special
cases have received considerable attention, such as triangle factors versus Hamilton cycles (see
e.g. [14]). Theorem 1.2 immediately implies an approximate solution to this problem. Moreover,
we can combine Theorem 1.2 with the results in [31, 32] to obtain a general decomposition re-
sult into factors, which solves the Hamilton-Waterloo problem if a significant proportion of the
factors are Hamilton cycles.

Corollary 1.5. For all A € N and 0 < po,8 < 1 there exist € > 0 and ng € N such that
the following holds for all n > ng and p > py. Suppose r¢ < A for all £ € [s] and Y ;_ 10 =
pn. Suppose Hy,...,Hs are n-vertex graphs so that Hy is rg-regular for all { € [s] and that
Hy,...,Hg, are Hamilton cycles. Suppose further that G is an (e, p)-quasi-random graph on n
vertices which is pn-reqular. Then G has a decomposition into Hy, ..., Hg.

1.4. Organization of the paper. In the next section, we give a sketch of the main ideas of
the proof. In Section 3 we then collect the tools that we need later. In Section 4 we establish
some properties of a typical matching in a super-regular bipartite graph. These will be used in
Section 5 in order to prove a ‘uniform blow-up lemma’ (Lemma 5.1). This lemma forms the core
of the paper and embeds a ‘near-regular’ graph H into G in a sufficiently ‘random-like’ fashion.
In Section 6 we use Lemma 5.1 in order to construct the desired packing when each H; is near-
regular (Theorem 6.1). In Section 7 we will reduce the problem of finding a packing of bounded
degree graphs Hi,..., H; to the case when each H; is near-regular. In Section 8 we combine
Theorem 6.1 with the results from Section 7. In particular, we will deduce Theorems 1.2-1.4 as
well as Corollary 1.5.

2. SKETCH OF THE METHOD

In this section, we highlight some of the main ideas of the argument towards Theorem 1.3.
Suppose we are given a balanced r-partite graph G with vertex classes V1, ..., V, of size n such
that the bipartite graph G[V;,V;] is (e, d)-super-regular for all 1 < i # j < r. For simplicity,
suppose H is a balanced r-partite graph with vertex classes X1, ..., X, of size n, such that the
bipartite graph H[X;, X;| is k-regular for all 1 < i # j < r (where k is a large constant). Our
aim is to find an approximate H-decomposition of G, i.e. a set of (1 — o(1))dn/k edge-disjoint
copies of H in G so that X; is mapped to V; for all i € [r].

The classical blow-up lemma guarantees one such copy of H in G. In fact, one can repeatedly
apply the blow-up lemma to obtain £2n (say) edge-disjoint copies of H in G, but after this, we
can no longer guarantee that the remaining subgraph of G is &’-regular for small enough &’.

We overcome this as follows: we will prove a ‘uniform blow-up lemma’ which returns a random
copy ¢(H) of H in G so that ¢(H) behaves like a uniformly distributed random subgraph of G
(see Lemma 5.1). Then the hope would be that with high probability, the graph G — ¢(H) is
still e-regular. One desirable property towards this goal would be that for almost all edges e of
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G, the probability that e lies in ¢(H) is close to p := e(H)/e(G) ~ k/(dn). (Clearly, one cannot
achieve this for every edge of G, as for example G may have an edge which does not lie in a
triangle.)

Towards this, we will use the characterization of (g, d)-super-regular graphs in terms of co-
degrees: for all j # i and all vertices u € V;, we have that [Ng(u) N V;| = (d £ ¢e)n . Also,
for almost all pairs u,v € V;, the common neighbourhood N¢(u,v) N'V; has size (d? £ 3¢)n.
Assume for simplicity that we have equality everywhere, i.e. for all pairs u,v € V;, we have
|N:(u,v) NVj| = d?n for all j # i. Assume also that for every edge of G the probability that
e lies in ¢(H) is exactly p = k/(dn), independently of all other edges. Note that for any copy
¢(H) in G, the bipartite pairs of G — E(¢(H)) have density d; := d— k/n. Our uniform blow-up
lemma would then find a copy ¢(H) of H in G where we expect that

ING—E(g(m)) (4, v)| = d’n(1 —p)? = din. (2.1)

This is of course exactly what one would expect if H were a completely random subgraph of
G (of the same density). It turns out that property (B1) of our uniform blow-up lemma can
be used to prove a surprisingly accurate approximation to the idealized formula in (2.1) (see
Claim 6.9).

Removing E(¢(H)) from G now leaves a graph whose regularity parameters are much better
than if we had removed this copy greedily. So ideally one would keep applying this uniform
blow-up lemma, maintaining (after the removal of i copies) an (g;, d;)-super-regular graph G;
with d; = d — ik/n and &; ~ ¢ < d;. However, due to the fact that we need to allow i to be
linear in n, this seems to be extremely challenging, if not infeasible.

So instead, we pursue a ‘nibble-based’” approach: we remove our copies of H in a large (but
constant) number T of ‘rounds’. For each t € [T], at the beginning of Round ¢, let G* be the
graph of currently available edges (i.e. those which do not lie in a copy of H selected in a previous
round) and suppose that G! is (g, d;)-super-regular for &; < d;. Let v ~ d/(kT) (then v will be
a small constant). Within each round, we remove yn copies ¢1(H), ..., ¢pyn(H) of H from G',
each chosen randomly in G* (and independently of the other copies) according to the uniform
blow-up lemma. So the edge sets of ¢;(H) will usually have a small but significant overlap for
different 4. On the other hand, if after Round ¢ we let G**! be the graph obtained by removing
the edges of all the ¢;(H), then one can show that G'*! is still (g441,ds11)-super-regular for
€t41 < dgy1. This means we can continue with a new embedding round for G'*!. Tt turns out
that we can in fact carry on with this approach until we have the required number of copies
¢;(H). Note that these copies of H will be edge-disjoint if they are constructed in different
rounds.

However, we still need to resolve overlaps between the edge sets of the ¢;(H) which are
constructed within the same round. In other words, we need to modify ¢;(H) into an embedding
¢}(H) such that all the ¢}(H) are pairwise edge-disjoint. For this, call any edge of ¢;(H) which
also belongs to some other ¢;(H) a conflict edge. Let W; C V(G) be the vertices which have
distance at most one to an endvertex of a conflict edge in ¢;(H). For technical reasons, we
also enlarge W; by adding a small random set of vertices. Then we still have |W;|/n < 1.
Remove any edges from ¢;(H) which are incident to W;. We now patch up the resulting partial
embeddings by using edges from a sparse ‘patching graph’ P C G which we set aside at the
beginning of the proof. For this patching process to work, we need each ¢;(H) to be ‘compatible’
with P. For instance, this means that if w € W;, if vy, v9,v3 ¢ W; and if vyw € E(¢;(H)) for
each ¢ € [3], then in the graph P, vy, va, v3 need to have many common neighbours in W; (these
are then potential candidates for the new image of w in ¢}(H)). This compatibility will already
be ensured during the construction of ¢;(H) — in the proof of the uniform blow-up lemma, we
will disregard any embeddings ¢;(H) which are not compatible with P. Lemma 5.13 formalizes
the above description (we will deduce it from the uniform blow-up lemma).

The core of the current paper is the uniform blow-up lemma (Lemma 5.1) described above.
To prove this lemma, we develop an approach by Rodl and Ruciriski [37] (who designed it to
give an alternative proof of the classical blow-up lemma). We will find a copy of H as the union
of a bounded number of matchings. For this, we first apply the Hajnal-Szemerédi theorem to
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the square H? of H in order to obtain a refined partition of V(H) into classes Y;, where the
bipartite subgraph H[Y;, Y;] is a (possibly empty) matching for each pair Y;,Y; of classes. We
also find a corresponding partition of each V; into subclasses U;. We will embed each class Y
into U; in a single round. For this, at each round, we have a ‘candidacy graph’ A7 with vertex
classes Y; and Uj, where a vertex x € Y} is adjacent to v € U; if after Round 4, v is still a
good candidate for ¢(x). Initially, we may take A} to be the complete bipartite graph, and as
the embedding progresses, the candidacy graphs grow sparser, as additional constraints come
from the partial embedding. For instance, if we embed a neighbour y of x in Round ¢, then
the number of candidates for ¢(z) is expected to shrink by a factor of d. In particular, we
always have A7 11 C Al. As indicated in the previous paragraph, we also make sure that only
embeddings which are compatible with the patching graph P are permitted by the candidacy
graph A’ 41+ Crucially, we will be able to show that each Al is super-regular — in particular, this
means that A] contains a perfect matching. When embedding ¥; in Round i, we will choose
such a perfect matching o in A! | uniformly at random and embed z € Y; to v = o(x). The
key difficulty in proving Lemma 5.1 is in proving property (B1), which allows us to derive an
approximation to (2.1).

The above nibble process together with the patching is carried out in Section 6, to prove
our main decomposition theorem (Theorem 6.1). Theorem 6.1 however assumes that H has the
property that each graph H[X;, X;] is (extremely close to being) regular. Of course, in general
we do not want to assume that H has this approximate regularity property. So in Section 7 we
show that even if H does not satisfy this approximate regularity property, then we can pack
together a large but bounded number of copies of H (in a suitably random fashion) into a
new graph H’ to which we can apply Theorem 6.1. In Section 8 we use this to deduce (from
Theorem 6.1) several further results about packing arbitrary graphs H of bounded degree.

3. NOTATION AND TOOLS

3.1. Notation. For s € N let [s] := {1,...,s}. For a graph G and an edge set E, let G — E
denote the graph G’ with V(G') = V(G), E(G') = E(G) \ E. Given another graph H we let
G — H :=G — E(H). As usual, |G|, e(G) and A(G) will denote the number of vertices, edges
and the maximum degree in G, respectively. Given a set W C V = V(G), we let Ng(W) =
Nvew Na(v), where Ng(v) is the neighbourhood of v in G. We write G[W] for the induced
subgraph of G on W; when G is r-partite with partition classes Vi,...,V, and W; C V; for
all i € [r] we also write G[W1,...,W,] := G[W1 U ---UW,]. We say an rn-vertex graph G is
r-equipartite if G admits an r-partition into independent sets Vi,...,V, with |V;| = n.

Let R be a graph on [r]. We say that a graph G admits a vertex partition (R, Vi,...,V,) if
Vi,...,V, form a partition of V(G) into independent sets and G[V;, V;] is empty if ij ¢ F(R). If
V= {Vi,...,V,} then we also say that G’ admits the vertex partition (R, V). Given a symmetric
r x r matrix k with entries kij € Nand C € N, we say that G is (R, k, C)-near-equiregular with
respect to (Vi,...,V,) if

e (G admits the vertex partition (R, Vi,...,V,),

o Vil — [Vl < C for alli # j € |r],

e for each ij € E(R) all vertices in G[V;, V] have degree k;; except for at most Ck; ;
vertices having degree k; ; + 1.

If R is the complete graph on [r], k; j = k for all i # j € [r] and G is (R, k, C)-near-equiregular
then we also say that G is (r, k, C')-near-equiregular.

We write Ri for the K-fold blow-up of R. So if R is a graph on [r], then R is the graph
on [Kr] obtained by replacing each vertex ¢ of R by the set of vertices {(i — 1)K + 1,...,iK}
and replacing each edge of R by a copy of K . We record the following observation for future
reference, where (Rf)? denotes the square of Ry-.

Observation 3.1. Suppose r, K € N and R is a graph on [r] with 6(R) > 1. Let J; be the set
of vertices of Ry which corresponds to the verter i of R. Let I be an independent set of (Rx)>.
Then |J;NI| <1.
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For a,b,c € R we write a =b+cif b —c < a < b+ c. In order to simplify the presentation,
we omit floors and ceilings and treat large numbers as integers whenever this does not affect
the argument. The constants in the hierarchies used to state our results have to be chosen from
right to left. More precisely, if we claim that a result holds whenever 0 < 1/n K a < bk c <1
(where n is typically the order of a graph), then this means that there are non-decreasing
functions f* : (0,1] — (0,1], g* : (0,1] — (0,1] and A* : (0,1] — (0,1] such that the result
holds for all 0 < a,b,¢ <1 and all n € N with b < f*(¢), a < g*(b) and 1/n < h*(a). We will
not calculate these functions explicitly. Hierarchies with more constants are defined in a similar
way.

The following functions k', h, ', g, ¢«, f,q will be used in the course of the proof. The values
of qs, f,q depend on a further constant w € N, and we shall only use these after the value of w
has been fixed. Let

W(a) = al/lo’ h(a) := al/QO, d(a) = a1/120, gla) == a1/300’

g«(a) == a(1/300)" f(a) = (1730072 q(a) := a(1/300)""% (3.1)

Here and elsewhere we denote by g”(a) the b-fold iteration of g(a) (and similarly for the other
functions). Note that for small enough a we have h'(a) < h(a) < ¢'(a) < g(a) < g«(a) < f(a) <

q(a).

3.2. Probabilistic estimates. We shall need the concentration inequalities of Azuma and
Chernoff-Hoeffding. Xy, ..., Xy is a martingale if for all n € [N], E[X,, | Xo,..., Xn—1] = Xp—1.
We say it is c-Lipschitz if | X,, — X;,,—1| < ¢ holds for all n € [N].

Our applications of Azuma’s inequality will mostly involve exposure martingales (also known
as Doob martingales). These are martingales of the form X; := E[X | Y1,...,Y;], where X and
Y1,...,Y; are some previously defined random variables.

Theorem 3.2 (Azuma’s inequality). Suppose that \,c > 0 and that Xy, ..., Xn is a c-Lipschitz
martingale. Then
2

P[| Xy — Xo| > \] < 2e3ne. (3.2)

For n € N and 0 < p < 1 we write Bin(n,p) to denote the binomial distribution with
parameters n and p. For m,n, N € N with m,n < N the hypergeometric distribution with
parameters N, n and m is the distribution of the random variable X defined as follows. Let S
be a random subset of {1,2,..., N} of size n and let X :=|SN{1,2,...,m}|. We will use the
following bound, which is a simple form of Chernoff-Hoeffding’s inequality.

Lemma 3.3 (see [23, Remark 2.5 and Theorem 2.10]). Let X ~ Bin(n,p) or let X have a
hypergeometric distribution with parameters N,n,m. Then P[|X —E(X)| > t] < 2e2t/m

We shall need the following two inequalities for bounding tails of random variables in terms
of the binomial distribution.

Proposition 3.4 (Jain, see [34, Lemma 8]). Let B ~ Bin(n,p), and let X1, ..., X, be Bernoulli
random variables such that, for any s € [n] and any x1,...,zs—1 € {0,1} we have

P[Xs:]-’Xllea-”aXsflzmsfl]ép-

Then P[> | X; > a] <P[B > a] for any a > 0.
Likewise, if for any s € [n] and any z1,...,x5—1 € {0,1} we have

PX;=1|X1=21,...,X501 =21] 2 p,

then P[>"7" | X; < a] <P[B <a] for any a > 0.
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3.3. Graph Theory tools. In the preparation stages of our proof we shall apply the Hajnal-
Szemerédi theorem. Given a set X of size n, an equitable r-partition of X is a partition of X into
sets of size [n/r| and [n/r] (note that the number of sets of each size is uniquely determined).
An equitable k-colouring of a graph G is an equitable partition of V(G) into k independent sets.

Theorem 3.5 (Hajnal-Szemerédi [21]). Every graph G with A(G) < k admits an equitable
(k 4+ 1)-colouring.

Let R be a graph on [r| and suppose that G is a graph with vertex partition (R, Vi,...,V,).
Let d be a symmetric 7 X r matrix with entries d; ;. We say that G is (5,6?)-super—regular
with respect to (R, Vi,...,V;) if G[V;,V;] is (e, d; j)-super-regular whenever ij € E(R). We say
that an r-partite graph G with partition classes Vi, ...,V is (g, d)-super-regular with respect to
Vi,...,V, if each G[V;,V}] is (e, d)-super-regular for all distinct 4, j € [r].

Let us now recall the statement of Csaba’s extension of the blow-up lemma [12]. It will be
convenient (though not essential) to use it in Section 7 (alternatively, we could have used the
more general Lemma 5.1).

Theorem 3.6. [12] Suppose 0 < ¢ < 1/k,d,1/ARr and that R is a graph on [r] with A(R) < Ag.
Suppose disa symmetric v X matriz with entries in [0, 1] such that min;;c g(ry di,j > d. Suppose
H is an r-partite graph with partition (R, X1,...,X,) and G is an r-partite graph with partition
(R,V1,...V;) such that for all i € [r] we have |X;| = |Vi|. Suppose finally that A(H) < k and
G is (e, cf)—super—regular with respect to (R, V1,...,V;). Then G contains a copy of H, in which
for each i € [r] the vertices of V; correspond to the vertices of X;.

The next statements are standard facts about graph regularity.

Proposition 3.7. Suppose G[A, B] is (g,d)-regular and B’ C B with |B’| > ¢|B|. Then all but
at most 2¢|A| vertices in A have degree (d + 2¢)|B’| in B'.

Proposition 3.8. Suppose G[A, B| is (e, d)-reqular, and A’ C A, B' C B with |A’|/|A|,|B'|/|B| >
d. Then G[A', B'] is (¢/9,d)-regular.

Proposition 3.9. Let k > 4 and let 0 < 1/n < ¢ < 1/k,d,1/(C + 1). Suppose that G[A, B]
is (e, d)-super-regular with |A| = |B| £ C and |A|,|B| > n. If F is a spanning subgraph of G
such that for each v € V(G), dg(v) — dp(v) < ken, then F is (3v/'ke/2,d)-super-regular. In
particular, F is (k\/e,d)-super-reqular.

The following lemma states that a super-regular graph can be, at the cost of increasing ¢,
edge-decomposed into two sparser graphs, each of which is also super-regular.

Lemma 3.10. Suppose 0 < < d<1and0<1/n < e < fB,d,d— [, and that G[A, B] is an
(e, d)-super-reqular graph with |A|,|B| > n. Then there ezists a spanning subgraph P of G such
that P is (2¢, B)-super-reqular and G — P is (2e,d — [3)-super-regular.

Proof. For each edge e € E(G), we select e with probability /3/d, all choices being independent.
Let P be the spanning subgraph of G formed by the selected edges. It is a straightforward
exercise to check that the above conditions are indeed satisfied. O

The following two statements establish a link between codegree and graph regularity. The
first one is due to Duke, Lefmann and R&dl [16] (a similar result is proved in [1]), the converse
provided by Proposition 3.12 follows immediately from the definitions.

Theorem 3.11. [16] Suppose 0 < ¢ < 27299, Suppose G = G[A, B] is a bipartite graph with
|A| > 2/e, and let d = |i1(||62|' Let D be the collection of all pairs {x,x'} of vertices of A for
which

(i) d(z),d(z") > (d —€)|B|, and

(ii) |Ng(z) N Ng(2')| < (d+¢)?|B|.
Then if |D| > 1(1 — 5¢)|A|?, the graph G is (¢'/5, d)-regular.
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Proposition 3.12. Suppose 0 < 1/n < ¢ < d and that G[A, B] is (e, d)-super-regular with
|A|,|B| > n. Then all but at most |A|? vertex pairs {x,2'} C A satisfy |[Ng(z) N Ng(2')| =
(d? + 3¢)|B].

4. RANDOM PERFECT MATCHINGS

It is well-known that every (e, d)-super-regular balanced bipartite graph G contains a perfect
matching. In this section we show that the number of the perfect matchings containing a given
edge e is roughly the same for all e € E(G), i.e. each edge has the same likelihood of appearing
in a random perfect matching.

Given a bipartite graph G[U, W], we write M(G) for the set of all perfect matchings of
G, M.(G) for the set of all perfect matchings containing a given edge e € E(G), and set
M!(G) := M(G) \ M.(G). For o € M(G), we often abuse the notion and think of o as a
bijection from U to W (where o(u) = w if and only if ww is an edge in the perfect matching o).

We will use the following result of Rédl and Ruciriski [37], which implies that the edges of a
random perfect matching are uniformly distributed with respect to large sets of vertices.

Theorem 4.1. [37] Suppose 0 < 1/n < ¢ < e < d <1 and h'(a) = a'/'% is as defined in (3.1).
Let G[U, W] be an (e, d)-super-reqular bipartite graph with |U| = |W|=mn and let S CU,T C W
with |S| = sn, |T| =tn and s,t > h'(e). Then at least (1 — (1 —¢)™)|M(G)| perfect matchings o
of G satisfy |o(S)NT| = (1 h'(e))stn.

We also use the following result of Alon, R6dl and Rucinski [2] on the number of perfect
matchings in (super-)regular graphs (which was also a tool in the proof of Theorem 4.1).

Theorem 4.2. [2] Let 0 < 1/n < e < d < 1, and let GIU, W] be an (g, d)-super-regular bipartite
graph with |U| = |W| =n. Then
(d—2e)"n! < |M(G)| < (d+ 2e)"nl.
If GIU, W] is (g, d)-reqular bipartite graph, then
|M(G)| < (d+ 3¢)"nl.
We now use Theorem 4.1 to prove a ‘localised’ version of it.

Theorem 4.3. Suppose 0 < 1/n < ¢ < d < 1 and h(a) = a'/?° is as defined in (3.1). Let
G[U, W] be an (e, d)-super-reqular bipartite graph with |U| = |W|=mn. Then

| Me(G)] 1

—==(1+%h —.
In other words, if we choose a perfect matching o of G uniformly at random, then for any edge
w € E(G) withu e U andv e W,

1

P =v]=(1=xh —.
[o(u) = v] = (1 £ h(e)) o~
Proof. For 0 € M(G) and distinct vertices uj, u2,us € U such that o(uj)usa, o(uz)us, o(uz)u; €

E(G), we define the (u1,ug, ug)-switch Sy, uy.us(0) of the matching o to be a new matching o’
where

o(u) ifué¢ {ur,us, us}t,
i) oo(us) ifu=u,
o' (u) = o(uy) if u = ug,

o(ug) if u = us.
If o' € M(G) is the (u1,ug,us)-switch of o € M(G) for some uy,us,us € U, we also say that o’
is a switch of o.
Our aim is to estimate |M.(G)|/|M.(G)| for a given edge e = uv. To do so, we consider the
auxiliary bipartite graph H with bipartition A; := M.(G), A := M.(G) such that oo’ € E(H)
if and only if 0 € Aj, 0’ € Ag and o’ is a switch of 0. So V(H) = M(G). Let

A= {0 € M(G) : 0(Ng(v")) N Ng(u') = (d* + 21/ (¢))n for all ' € U,v' € W}.
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Choose a new constant ¢ such that 1/n < ¢ < e. Since G is (g, d)-super-regular, |Ng(u')| =
(d+e)n for all v’ € V(G). This together with Theorem 4.1 implies that

A > (1=n*(1—c)")|V(H) (4.1)
Note that for all o1 € Ay

dr(o1) = [{Suurus(01) 2 vur, o1 (ur)ug, o1 (u2)u € E(G),ur,ug € U\ {u} with uy # U2}|(, :
4.2

and for all g9 € Ay
dp(o2) = |{Su’u1702_1(v)(02) : u102(u),02(u1)051(v) € E(G),u1 €U\ {u,a;l(v)}H. (4.3)
Thus for any o1 € A1,09 € As, we have
dp(o1) < n? and dr(o2) < n. (4.4)

Let us now estimate the degree of vertices of A’ in the graph H. For o1 € Ay,

drr(o1) 2 1 {(ur, u2) € (U {u}) x (U\ {u}) : vur, o1 (u1 Jus, o1 (us)u € E(G), ur # us)|.

Since u; € Ng(v) we have |[Ng(v)| = (d+¢e)n choices for uj. Once u; is fixed, we have to choose
ug such that uz € Ng(oi(u1)) and o1(uz) € Ng(u). So if o1 € A, there are (d? & 2h/(¢))n
choices for ug once u; is fixed. Hence we obtain that

if o1 € Ay N A', then dy (1) = (d £ &)n - (d* £ 21/ ())n = (d° £ 3K (¢))n?. (4.5)
For o9 € AQ,
dit(02) ) fur € U\ {u, 05" (0)} : waoa(w), 02(ur)oy ' (v) € B(G)}.

Thus we count the number of choices of u; such that u; € Ng(o2(u)) and og(u1) € Ng(oy ' (v)).
Similarly as before, if oy € A’, there are (d? & 2h/(¢))n choices for u;. Hence we obtain that

if o9 € Ay N A’, then dy(o9) = (d* + 21/ (¢))n. (4.6)
Thus
E@E)] = S dule)+ S du(on) E (@B £ 30 (0))n2] A 0 A £ 04\ A
g1EAINA’ o1€A\A/
— (B £ 30 ()2 A £ 202 A0\ A ) (@B £ 3K (2))n2| Ay £ 200 (1 — )|V (H)),
and
EE) = Y dulo)+ S du(os) MY (@2 £ 2w (e)n] Ao n A £ n|As\ A

oo€AaNA’ O'QEAQ\A’

D (@2 4 20 (e))n| o] + 203 (1 — o) |V (H).

This in turn implies that
(d® £ 31/ (e))n?|A1| = (d* £ 2R/ (e))n|Az| £ 3nt(1 — )" (|Ay| + |As)).

Since 1/n < ¢, we conclude that |Ag| = (d4Th/()/d?)n|A;|. Since h(e) = /I () by (3.1), this
in turn implies that

M) _ A 44
M(G)| ~ A+ [Aa] T A+ (d£ W) [B)n[Ay]

_ (lih(a))%.

O

From Theorems 4.1-4.3 we now deduce further properties of a random perfect matching which
we will make frequent use of in Section 5.

Lemma 4.4. Suppose 0 < 1/n <e<d <d<1and0<c<d <d/9. Let h(a) = a'/*® be as
defined in (3.1) and let GIU, W] be an (g, d)-super-reqular bipartite graph with |U| = |W| = n.
Then a perfect matching o of G chosen uniformly at random satisfies the following.
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(M1) For every u € U and every S C Ng(u) C W with |S| = sn,
s
8.
(M2) For every w € W and every S C Ng(w) C U with |S| = sn,

Plo(u) € 8] = (1 + h(e))

5
7
(M3) Let G’ C G be a subgraph of G with V(G') = V(G) such that A(G') < d'n. Then

Plw e a(S)] = (1+h(e))

P [\{u €U :uo(u) € BE(G")} > 8dd,n <(1-=o™

Proof. To show (M1) and (M2), we use Theorem 4.3 to conclude that

Plo(u) € 5] = 3 Blo(w) = u] = (1 h())
weS
and S
Plw € o(S)] = Plo(u) =w] = (1+ h(e))’dn’.
uesS

To prove (M3), let U, := {u € U : uo(u) € E(G')} and let m := 8d'n/d. For given U’ C U
with |U’| = m, we shall now find an upper bound for the number of perfect matchings o in G
such that U" C U,. For each vertex u € U’, there are at most d'n ways to choose o(u) such
that uo(u) € E(G'). After having chosen o(u) for all w € U’, by Proposition 3.8, we are left
with a (y/g, d)-regular graph G[U \U’, W \ o(U")], which contains at most (d+ 31/2)" "™ (n—m)!
perfect matchings by Theorem 4.2. Thus for any set U’ C U with |U’| = m, the number of
perfect matchings o in G which satisfy U’ C U, is at most (d'n)™(d + 3y/)" "™ (n — m)!. Since
there are at most (:1) choices for U’, the number of perfect matchings o with |U,| > m is at
most

(;) (d'n)™(d + 3v/E)" "™ (n — m)!.
By Theorem 4.2, we know |M(G)| > (d — 2¢)"n!. Thus,

' »)(dn)™ n=m(n —m)!

P|{ue€U:uo(u) € E(G')}\ > 83”} < (m)(d ) ((dd‘*‘_32\§73n! ( )
_ <W>n_m _ ()™
-\ d—2¢ (d —2e)m™m!

4" (m/8)™
(d/2)m(m/3)™

) 3 8d'n/d
< (14€V3m <4) <(1-o)™

To obtain the third line we use that 8d'n = dm and m! > (m/3)™ for large m. To obtain the
final inequality we use that e,¢ < d', d. O

<(1+ 51/3)”

5. A UNIFORM BLOW-UP LEMMA

Our goal in this section is to establish a probabilistic version of the classical blow-up lemma,
which finds a ‘uniformly distributed’ copy of H in G. While the classical version asserts that,
informally, a super-regular graph G contains a copy of any bounded degree graph H, here we
show that such a copy of H can be selected to have some additional ‘random-like’ properties.
Ideally this would take a similar form as Theorem 4.3: for a randomly chosen copy of H in G,
each edge of G has the same probability of being in H. Unfortunately this is false. (Suppose
H is a triangle factor and that e € E(G) does not lie in a triangle.) However we will be able to
show that a suitable randomised algorithm gives a copy of H in G which is randomly distributed
in a very strong sense (see Lemma 5.1).
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First we need the following definitions. Let ¢ be an embedding of a graph H into a graph G
and let G’ C G. When applying Lemma 5.1, G’ will be a ‘bad’ graph which we would like to
avoid as much as possible when embedding H. We define

op(H,G,G") = ¢(E(H))NE(G),
¢(H,G,G") :={v e V(G) : there exists e € ¢pg(H,G,G") such that v € e},
$2(H,G,G") :={v € V(GQ) : there exists u € V(G) such that uwv € ¢(E(H)),u € ¢(H,G,G")}.

Note that ¢(H,G,G") C ¢2(H,G,G').

We would also like our embedding of H to be well behaved with respect to additional given
graphs Ag and P (where Ay encodes the initial candidates for the images of each vertex of H,
and P is the patching graph which will be used to adjust the embeddings later on). To formalise
this, let R be a graph on [r]. Let H be a graph and let X = {X7,..., X, } be a partition of V(H).
We say that a (not necessarily uniform) hypergraph N with vertex set V(H) = X; U--- U X,
and edge set {N, : x € V(H)} is an (H, R, X)-candidacy hypergraph if all x,y € V(H) satisfy
the following properties:

o if z € X, then [N, N X;| <1 for any j € [r], and [N, N X;| =0 if j & Ng(i),
b NH(QZ‘) c Nxa
e y € N, if and only if x € N,,.

Notice that the above definition is only applicable to graphs H which admit the vertex parti-
tion (R, X1,...,X,) with A(H[X;, X;]) <1 for all4,j € [r] (and thus A(H) < A(R)). Let P be
a graph admitting vertex partition (R,)) where V = (Vi,...,V,). Suppose that |X;| = |V;| for
all i € [r] and that ¢ : V(H) — V(P) is a bijection, mapping each X; to V;. Let Ag be a graph on
V(P)UV(H). We call a bipartite graph F on V(F) = (V(H),V(P)) an (H, P, R, Ay, $,X,V,N)-
candidacy bigraph if it satisfies the following conditions.

(CB1) N is an (H, R, X)-candidacy hypergraph.
(CB2) Np(xz) C Na,(x)N ﬂyer Np(o(y)) NV, for all z € Xj.
Note that in particular E(F[X;, V;]) = 0 for all i # j. A candidacy bigraph F will always encode
permissible images for embeddings, i.e. we may only embed z to v if zv € E(F).
For a given graph R on [r] and a symmetric 7 X r matrix E with entries (3; ;, we denote

p(R,B,i):= [] Bir (5:2)

ZENR(’L)

This will be convenient for measuring the densities of the bipartite subgraphs of the candidacy
bigraph F'. Recall that Ry denotes the K-fold blow-up of R. Now we can state our main result
in this section.

Lemma 5.1 (Uniform blow-up lemma). Suppose
I<l/nkc<Ke<gy<B,d,dy,1/k,1/AR,1/(C+1) and 1/n < 1/r.

Let K := (k+1)*Ag, let w := K2A%(Ag+1) and let f be the function defined in (3.1). Suppose
that R is a graph on [r] with A(R) = Ag. Let d, B,k be symmetric r x r matrices such that
d = minijeE(R) di’j,ﬂ = minijeE(R) ﬁ@j,k = MaX;jcE(R) ki,j and kz"j € N for all ij € E(R)
Suppose that the following hold.
e G is an (¢, d)-super-regular graph with respect to (R, V), where V = (Vi,...,V;), max;e, | Vil =
n andn—C < |Vi| <n forallie|r].
e Pisan (¢, g)—supeT—regulaT graph with respect to (R, V).
e H isan (R, k, C)-near-equiregular graph admitting the vertez partition (R, X) with X =
(X1,...,X,) where | X;| = |Vi|.
o Ay is a bipartite graph with bipartition (V(H),V(G)) such that Na,(X;) = V; and
Ao Xi, Vi] is (g,do)-super-reqular for each i € [r].
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Then there exists a randomised algorithm (the uniform embedding algorithm) which succeeds
with probability at least 1 — (1 —¢)™ in finding an embedding ¢ of H into G such that ¢(X;) =V;
for each i € [r] and ¢(x) € Na,(z) for each x € V(H). Conditional on being successful, this
algorithm returns (¢, Y, U, F, N) with the following properties.

(B1) Forallij € E(R), veV; and S C V;N Ng(v) with |S| > f(e)n,

E | Nyn(0) N S]] = (12 f(e)) 12
irj
(B2) U ={U,..., Uk} is a partition refining Vi, ..., V, and Y = {Y1,..., Yk, } is a partition
refining X1,..., X, with |Y;| = |Ui|, with max;c(g,) |Yi| = [n/K]| and |Yi| - [Y;| < C
for all i # j. F is a disjoint union of bipartite graphs F1, ..., Fg, such that each F}
has bipartition (Y;,U;). N is a hypergraph with vertex set V(H) and a hyperedge N, for
each x € V(H). Moreover, the following conditions hold.
(B2.1) N is an (H, Rk, ))-candidacy hypergraph with max{|N;|: Ny € N} < KAp.
(B2.2) For all j € [Kr] and x € Y}, Np;(z) CUj N Nay(z) N(Vyen, Nr(o(y)), thus Fis a
(H, P, Rk, Ao, ¢, Y, U, N)-candidacy bigraph.
(B2.3) P is (61/3, E’)—super—regular with respect to (R ,U), where B_” is the symmetric Kr x
Kr matriz with entries ) , 1= f3;; whenever i = [(/K| and j = [{'/K].
(B2.4) For each j € [Kr| the graph F} is (f(e), dop(Rx, 3, §))-super-regular-.
(B3) For allu+ v € V(G), PN#(6~(u) N Nir(6 () # 0] < 1/y/m.
(B4) Let G” be a subgraph of G with V(G") = V(G) such that A(G") < vn.
(B4.1) For any vertex v € V(G), Plv € ¢o(H,G,G")] < 42
(B4.2) P[{u:u € Uj,u € ¢2(H,G,G")}| <~*5n for all j € [Kr]] >1— (1 —2c)™.
(B5) Suppose v1,...,vs € V; where i € [r] with s < K. For all j € Ng(i) and v € Vj, let B,
be the random variable such that
B . { 1 if there exists ¢ € [s] with vpv € ¢(E(H)),

0 otherwise.

Then for all j € Ng(i) and all but at most 2f(e)n vertices v € Ng(v1,...,vs) NV, we
have that

P[B, = 1] = (1 +2/(2)) Sn

(B6) For alli € [r] and all sets Q C X; and W C V; with |Q|, |W| > f(e)n,
P [ls@ ) - LEFDIRIM)

n
- (I —20)".

Note that it is property (B1) that most intuitively encapsulates the ‘randomness’ of the
embedding ¢. Informally speaking, it says that a sufficiently large set S in the neighbourhood of
v will contain approximately as many neighbours of v in the embedded copy of H as expected.
As mentioned earlier, the graphs F; in (B2) can be viewed as ‘candidacy graphs’. If they are
super-regular, this means that the embedding ¢ is well behaved with respect to the patching
graph P. We will need this when replacing some edges of ¢(F(H)) by edges of P. When
applying Lemma 5.1 in Section 6, G” in (B4) will play the role of the union of certain previously
embedded graphs. (B4) shows that the overlap of these previous embeddings with the new
embedding ¢(H) is small. Note in (B5), Nyg)(v) N {v1,...,vs} # 0 if and only if B, = 1. So
(B5) can be viewed as a ‘localized’ version of (B1) which applies to most vertices v and small sets
S = {v1,...,vs}. The case s =1 of (B5) can also be viewed as a generalization of Theorem 4.3
from matchings to arbitrary bounded degree graphs H which holds for most edges e of G. We
will only use the case s < 2 of (B5). (B6) will be used in order to prove property (T3) of the
packing in Theorem 6.1.

To prove Lemma 5.1 we shall introduce the Slender graph algorithm and the Uniform embed-
ding algorithm. Before that we shall state the Four graphs lemma of R6dl and Rucinski [37],
which is required for the analysis of the Slender graph algorithm and was a key tool in their
proof of the classical blow-up lemma. Roughly speaking, it asserts the following: given three
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super-regular graphs forming a ‘blown-up triangle’, choosing a random perfect matching M in
one of the pairs and then contracting the edges of M yields a super-regular pair.

More precisely, suppose that Wi, Wy, W3 are disjoint sets of size n, and that for each pair ¢, j
with 1 <4 < j < 3 we have a bipartite graph Fj; with partition (W;, W;). We say that the triple
of graphs (Fia, F13, Fas) is (g, d12, d13, dog)-super-reqular if

(R1) each Fj; is (2e, dj;)-super-regular,

(R2) every edge uv € E(Fj2) (where u € Wi, v € W3) satisfies

|NF13 (u) N NF23 (’U)| = (d13d23 + 2e)n.

Moreover, given a bijection (which might be inducing a perfect matching) o : W7 — Wy in Fi
we define a fourth graph A, with bipartition (W7, W3), where uv € E(A,) with v € Wy if and
only if both uv € F(Fi3) and o(u)v € E(F23).

Lemma 5.2 (Four graphs lemma [37]). Suppose 0 < 1/n < ¢ < € < dy2,d13,d23,1/(C+1) < 1.
Let ¢’ be the function defined in (3.1). Let (Fio, Fi3, Fa3) be a (e,d12,dy3, da3)-super-reqular
triple of graphs with vertex sets W1, Wy, W3, each of sizen. Then if we choose a perfect matching
o : Wy — Wsy in Fio uniformly at random, then A, is (¢'(g), d13das)-super-reqular with probability
at least 1 — (1 —¢)™.

Moreover, suppose some x1,...,xc € W1,y1,...,yc € Wy are distinct and for each i € [C] they
satisfy

[Nps(#i) N Ny (yi)| = (dizdas £ 2¢)n. (5.3)
Then assigning o(x;) := y; and choosing a perfect matching in Fia \ {z1,...,2c,y1,...,yc}

uniformly at random, we still obtain, with probability at least 1—(1—c)™, a bijection o : W1 — Wy
for which Ay is (¢'(g), d13das)-super-reqular.

Note that we do not require y; € Npy, (z;).

Proof. The original proof (based on Theorem 4.1) from [37] carries over. It is straightforward
to check that artificially assigning o(x;) := y; does not affect the proof other than slightly
increasing the value of ¢'. U

Valid input. Wesay S = (G, P, H, R, Ao, U, ), T, c,e,dy, J; 5, K, AR, C) is a valid input for the
Slender graph algorithm if the following holds, where m denotes the size of the largest partition
class in Y and Y, and r := |R.|/K.

(V1) Both d and f are symmetric Kr x Kr matrices where d := mingjep(r,) dij and B =
min, ;e (g, Bi,j- Moreover, 1/m < ¢ < ¢ < f,d,dy,1/K,1/AR,1/(C +1) < 1, and
I/m < 1/r.

(V2) T=(L,...,I,) is a partition of [Kr] with w := K2A%(Ag + 1).

(V3) R, is a graph on [K7] such that each I; € 7 is an independent set of R,. Moreover,
A(R,) < KAg and A(R.[Iy, I;]) < 1 for all i/, 5 € [w].

(V4) G is a (a,cf)—super—regular graph with respect to (R.,U) where U = (Uy,...,Uk,) and
m— C < |U;| <m forall i € [Kr].

(V5) Pisa (g, 5)—super—regular graph with respect to (R, U).

(V6) Ap is a disjoint union of bipartite graphs Ag(1),..., Ag(Kr) such that each Ag(i) has
bipartition (Y;, U;) and Ao (i) = Ao[Y;, Ui] is (e, do)-super-regular for each i € [Kr].

(V7) H is a graph admitting vertex partition (R, Y) with J = (Y7,..., Yk, ) such that |Y;| =
\U;| for i € [Kr] and H[Y;,Y;] is a matching of size min{|Y;|, |Y;|}.

We now introduce the Slender graph algorithm for graphs G, P, H, R, Ag, partitions U, Y, T
and constants ¢, e, dg, K, Agr,C and Kr x Kr matrices 5, d forming a valid input (R, will play
the role of Ri in Lemma 5.1). As indicated by (V7) it views H as a union of perfect matchings.
Their vertex classes are embedded into G' in w rounds, where w is defined as in (V2). The
vertex classes of H to be embedded in a given round correspond to an independent set of R, so
their embeddings do not ‘interfere’ with each other. We will choose the images of the vertices in
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x € Y; by choosing a random perfect matching in an auxiliary graph A(7), where zv is an edge
in A(7) if v is a suitable candidate for the image ¢(x) of = (see (5.8)).

The Slender graph algorithm on (G, P, H, R., Ao,U,Y,Z, c.e,do,d. 53, K, Ag,C).

Preparation Round. The goal of the preparation round is to reduce the problem to the setting
where the vertex classes all have equal size by adding additional artificial vertices to the smaller
classes.

For all i € [Kr] and j € [m — |Y;|] we introduce additional ‘artificial” vertices y; ;,u; ;. Let
Y/ be the union of Y; together with the y; ; and define U] similarly. We now define graphs
G',P',H' and A with G C G',P C P',H C H', Ay C A} and V(G') := V(P') := UX" U,
V(H') :== X, Y/ and V(A}) == V(H') UV (G') as follows. For all vertices u; ; € U} and u € Uy
with i/ € E(R,) we include the edge uu;; in E(G’) independently with probability d;, and
include the edge uu; ; in E(P') independently with probability §; . Also, for all vertices z € ¥;
and u; j € U], we include the edge zu;; in E(A{) independently with probability dy. Similarly
for all y;; € Y/, u € U;, we include the edge uy; ; in E(Aj) independently with probability dp.
For all 1 <i # j < Kr with ij € E(R.) add at most C' missing edges to extend the matching
H[Y/,Y]] to a perfect matching H'[Y},Y]]. We define the following events.

(P1) G'[V(G)] =G, P'[V(P)] =P and A)[V(G)UV(H)] = Ay.

(P2) G' is (25,@—super—regular with respect to (R, Uj,...,U),) and P’ is (26,5)-super—
regular with respect to (R, U], ...,Uj,). Also, Aj[Y/,U/] is (2¢,dp)-super-regular for
all i € [K7].

(P3) For all i € [Kr] the following holds for any set Q1 = {q1,q2,...,qs} of s < KAp vertices
such that g, € Uj, \ Uj, and jo € Np, (i) for every £ € [s], any set Q2 C V(G) with
|Q2| < KApR and any vertex y € Y;:

(i) |Ner(Q1) N Ner(Q2) N Ny ()| = (] [ dinge)INer (Q2) N Ny ()] + 2em.

(=1
S
(ii) [Np(Q1) N Npi(Q2) N Ny () = (] [ Biie)INp(Q2) N Nogy ()] + 2em.
/=1
(P4) H'[V(H)] = H and H'[Y/,Y]] is a perfect matching for all ij € E(R.).

Note that (P1) and (P4) always hold. If (P2) or (P3) does not hold, then we end the algorithm
with failure of type 1. So if failure of type 1 does not occur, then (P1)-(P4) hold.

Round 0. Here we initialise the settings for the algorithm. Let fy be an empty partial embed-
ding which sends no vertex in H' to no vertex in G’. Recall from (V2) that Z = (I,...,I,) and

for all i € [w] let If == J,_, I;;. For all z € V(H') and ¢’ € [w] let
Ni(x) == | J ¥/ N Np ().

jer?
So Ny (z) C Ujel{’ﬂNR* © Y] for all # € Uy. Also since A(Ry[lyr, Iy]) < 1by (V3) and H'[Y,Y]]
is empty if ij ¢ E(R.) and a perfect matching if ij € E(R.), we have |{J;c;, Y; N Ny(z)| <1
J
for i’, 7 € [w]. Thus [Ny (z)| = |Ni(y)| < i’ for all z,y € Y], i’ € [w] and j € [K7].
Let g be the function defined in (3.1). So g(a) = a'/3%0 > (4K AR)V/12061/240 = ¢/ (4K ARr\/a)
for a < 1/K,1/ApR. For all t € [w] let

& = g'(2¢) and let & := 2¢. (5.4)
So
1 > g (AKAR/&)  for any ¢ € [w]. (5.5)

For all j € [Kr], let Ag = AplY;, Ul] and Bg = Ag) and define

p(d, §,0) := do and p(f, j,0) := do. (5.6)
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So (P2) implies that Ag is‘(éo,p(dq, 4, 0))-super-regular and Bg is (50,p(5, J,0))-super-regular
for each j € [Kr]. A} and B} encode the initial constraints (or candidates) for the embedding.
Move to Round 1.

Round #. Given an embedding fy_; of H’[Uje]i/_1 Y]] into G/[Ujefi/_l Uj] constructed in
1 1
Round i — 1, we aim to extend it to fy : H’[UJ.E[{-/ Y]] - G/[Ujelf’ UJ’]
Assume that for each j € [Kr] the bipartite graphs A}, | and B}, ; on (Yj’ , Uj’) constructed
in Round ¢/ — 1 are such that
o Ag‘,_l is (&1, p(d, j,i' — 1))-super-regular,
o B),_,is (§—1,p(B,],7 — 1))-super-regular.
Here the candidacy graph A?,_l encodes the constraints accumulated until Round i — 1 that

we have for embedding Yj' into UJ'- in order to extend fy_y to fi. The candidacy graph B}, ,
tracks analogous constraints for the patching graph P which we will use in Section 6 to resolve
overlaps between embeddings of distinct graphs H. Recall that |Ng,(j) N Iy| < 1 for i’ € [w],
and j € [Kr] by (V3). So for any symmetric Kr x Kr matrix Z we can let

> - I\ L Zj,@p(zvjv i’ — 1) if NR*(]) N Ii’ = {£}7
p(Z,J,7) = { p(Z,4,i —1) if Ng.(j) NIy =0. (5:7)

We will apply this with d and 5 playing the role of Z. (5.7) will be used to update the densities
of the candidacy graphs after each round. For ¢ € I/, we define a spanning subgraph A(i) of
Al,_, which contains all those edges zv € E(A!,_,) with z € Y/ and v € U/ satisfying

Ny (27) N Ne(0)] = (p(d, j. ') £ 265—)m and

—1
|NB?, 1(‘TJ) N NP’(U)| = (p(ﬁ,]’ Z/) + 2§i’—l)m (58)
for every j € N, (i), where {z;} := Ny/(x) NY]. Excluding the edges not satisfying (5.8) will
enable us to apply the four graphs lemma with A(7) playing the role of Fis.
We now choose an embedding o;(x) for all z € Y/ with ¢ € I;. Let 0i(ys;) = w;; for all
i € Iy and j € [m — |Y;|] and extend o; to a bijection from Y; to U/ by choosing a perfect
matching of A(i)[Y;, U;] uniformly at random (such a perfect matching will be shown to exist in
Lemma 5.4(i)). We now extend the current embedding. Let

fi—i(x) ifzeY/ forie If,_l
% = ) . ’ 5.9
fu(z) { oi(x) if v € Y/ fori e Iy. (5:9)
We now update the candidacy graphs to ensure that they incorporate the new constraints arising

from the embeddings in the current round. For each j € [Kr], we let Ag, be the bipartite graph
on (Y}, U}) with the edge set

E(Ag,) = {:mj ix € Yj’,v € NAg)(a:) and uv € E(G") for each u € fi/(Ni/(;p))} . (5.10)
So for all z € Y],
Ny (@) =Ny (@0 () Nolfiy)- (5.11)
yENi/(m)

For each j € [Kr|, we let Bg, be the bipartite graph on (Y, U}) with the edge set
E(B))={av:zeY/ ve N () and wv € E(P') for each u € fy(Ny(2))}. (5.12)
Note that Ag, C Ag,_l and Bg, - Bg,_l for all j € [Kr]. Note also that
A=A} and B}, = B} | if Ng.(j) N Iy = 0. (5.13)

If for some j € [Kr], Ag, is not ({i/,p(cz; Jj,1'))-super-regular or Bf, is not (fi/,p(g,j, i'))-super-
regular, then we abort the algorithm with failure of type 2. If i’ < w, then proceed to Round
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i+ 1. If i/ = w, then we return ¢(x) := fy(x) for every x € V(H) and F; := B},[Y;, U, for
every j € [Kr], and we are done with success. This completes the description of the Slender
graph algorithm.

Note that the description would be slightly simpler if we embed only one class in each round.
However, then the number of rounds would depend on |R,| rather than on K and Ag, in which
case our errors would accumulate too much.

A straightforward application of the Chernoff-Hoeffding bound in Lemma 3.3 shows that
failure of type 1 is very unlikely. We omit the proof.

Proposition 5.3. Suppose S = (G, P, H, Ry, Ao, U, Y, T, c,e,do,d, 3, K, Ag,C) is a valid input.
Then in the Slender graph algorithm, failure of type 1 occurs with probability at most (1—3c)K™.
For each 0 <4’ < w let A; be the event that the following two statements hold.
(Aly) For each j € [K7], A{, is (€, p(d, j,i'))-super-regular.
(A2y) For each j € [Kr], Bf, is (&, p(f, j,i'))-super-regular.
Note that Ay always holds for the Slender graph algorithm on S if S is a valid input (as observed
after (5.6)). We also define A} := /\?,ZO Aji.
The next lemma states that the super-regularity of the candidacy graphs is preserved through-

out the algorithm and thus that properties (M1)—(M3) from Lemma 4.4 carry over into the
current setting.

Lemma 5.4. Suppose S = (G, P,H, R, Ap,U, ), T, c,a,dg,d:g, K,ARr,C) is a valid input. As-
sume that in the Slender graph algorithm on input S, there was no failure prior to Round .
Then the following holds.

(i) For alli € Iy we have A(AY | — A(i)) < 4K Ag&—1m. In particular, this means that
A1) is (AKAR gi/_hp(d;i,i’ — 1))-super-reqular for all i € 1.

(ii) Let By—1 be an event which depends only on the history of the Slender graph algorithm
prior to Round ' such that P[Agfl,l?i/_l] > 0. Then

PlAy | A4 By y] > 1 — (1 —3c)f™.

(iit) Let By_y be as in (i), and let h'(a) = a'/'% and h(a) = a'/?° be as defined in (3.1).
Then the following statements hold.
(M'1)y For alli € Iy, x € Y; and every S € Nagy(z) N U;,

il — S
p(d7 Z) 7// - ].)m
(M'2); For alli € Iy, v € U; and every S C Naw(v)NY;,
S|

Plv € 03(S) | ALY, By_y] = (1 + h(AKAR\/Er_1))——————.
p(d,i,i — 1)m

(M'3)r For alli € Iy, all d with ¢ < d' < dX?r /9 and all A’ C A(i) with V(A') = U; UY;
and A(A") < d'm,
P[{z € Y : xo;(x) € BE(A)} > 8d'm/p(d,i,i' —1) | A1, By_1] < (1 —4Ke)™.
(M'4);s For alli € Iyr, all S CY/ and all T C U! with |S|,|T| > W' (4K Agr\/&v—1)m,

Pll03(S) N T| = (1 & K (4K Apy/E1)ISIITI fm | ALY By ) > 1— (1 — 4Ke)™,
Proof. First, we show (i). Let us fix i € Iy, v € U] and j € Ng, (i), and define

()" N ()] < (p(d 4, ") — 2&,_1>m} ,

where {z;} = Ny/(z) NY]. Since G'lU},Uj] is (2¢, d; j)-super-regular by (P2), [Ne/(v) N Uj| >
(di j — 2e)m. Together with the fact that Ai},l is (&/_1,p(d., j,i — 1))-regular (since there was

<
Nv,j I

(G') = {CE €Y/ N,
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no failure prior to Round ') and p(af J.i = 1)(d;j —2e) — &g > p(cz: J,i') —2&s 1 by (5.7), it
follows that \N (G| < &y—1m. Similarly we get

N5 (P < €rim, NG (G| < Goym and [NZ(P)] < &roam,

where
NP = (o € ¥4 Ny () NN 0)] < (B0 — 2600

il —1

NZ(G) = {x €Y/ N, (27) N Ne(v)] > (p(d,j,i) + 260 _1)m

]
f

N3P i= o € Y 1Ny (0) 0 Np )] 2 (8,507 + 2602

When creating A(i), we have removed an edge v from A% | if and only if = € ij(G’) U

(G’) UN= (P U NZ ;(P') for at least one j with j € Ng, (). Since |[Ng,(i)] < KAg by
(V3) this 1mphes that

dAZ/71 (U) - dA(z) (’U) < 4KAR£Z'/,17TL. (514)

In the same way, we can show that for each = € Y,
dai (2) — dye)(r) < 8KAgem < AKAREy_1m.
i/ —1

This together with (5.14) this shows that for any z € Y/ U U/,
dA:j,_l(Z) —dy)(2) < AKAREy 1m.

Thus, by Proposition 3.9 and (Al _1) it follows that (i) holds.

Now we show (ii). Assume ¢’ € [w], i € Iy and that both Ag_l and B;_1 hold. Note from
(V3) that R.[ly] is an empty graph and A(R.[Iy,I;]) < 1 for i' # j'. (ii) will follow from
several applications of the four graphs lemma (Lemma 5.2) with A(i) playing the role of Fis.
To prepare for this, we introduce the following graphs.

o For all j¢ € E(R.) let ¢, : Y] — Y] be a bijection such that {¢;¢(2)} = Nu/(2) NY
for all z € Yj’.

e For all j € Np, (i), let ng(z) = (Y/,U}; E), where zv € E if and only if z € Y}, v € U}
and v j(x)v € E(Az, 1)

e For all j € Ng, (i), et Fi(i) = (Y, Uj; E'), where xv € E' if and only if z € Y/, v € U]
and ; j(z)v € E(B]

e For all j € Npg, (i), let F2]3(i) = G'[U},U]] and Fy}(i) := P'[U},U]].

Observe that, since H'[Y/ ,Y]’ | is a perfect matching for each j € Ng, (i), the graph ng(z)
is isomorphic to Ai,_1 under the isomorphism wg,j which keeps the elements of U J’ fixed while
mapping = to ¢; j(x) for all z € Y/. Since we are conditioning on Ag_l, properties (Aly_1) and
(A2;_1) hold and so for all j € Ng, (i) we have

a) Fis(i) is ({1, p(
(') Fyh(i) is (&—1,p(B, 4,1’ — 1))-super-regular,
)-

) d. , 7,4 — 1))-super-regular,
)

(b) Fis(i) is (2¢, d; j)-super-regular,
)

(b’ Fé%( /) is (2¢, B ;)-super-regular,
where (b) and (b’) follow by (P2). For z € Y/ and v € U/, note that
NFlj3(i) () N NFgg(i) (v) = NAzul (ij(x)) N Ner(v), (5.15)
N (@) O Ny 5y (v) = Npi, (vij(z)) N Npr(v). (5.16)

Moreover, by (5.7) for all j € Ng, (i) we have
p(d,j.i") = digp(d,j.i' 1) and p(B.4,7') = Bip(B, 4,1 —1). (5.17)
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Together with (5.8) this means that we obtain A(i) from A}, | by deleting every edge zv which
does not satisfy one of

|NFf3(i)(fU) N NFgB(z‘) (v)| = (di,jp(ff, gyi’ — 1) £ 28 _1)m,
|NF1’33(1)(33) N NFQ’%;(Z-) (v)] = (/Bi,jp(gaja = 1) £ 28 -1)m (5.18)

for some index j € Ng, (7). This will be used to verify condition (R2) for Lemma 5.2. To apply
Lemma 5.2 we also need to check (5.3) for the artificial vertices introduced in the preparation
round. For this, note that two applications of (P3) imply the following property.

(P3') For all ij € E(Ry), all Q1 = {q1,...,qs} with |@Q1] < KAgr — 1 where ¢, € U] \ Uj, and
je € Ng,(j), all Q2 C V(G) with Q2| < KAg, allv' € U]\ (U; UQ1) and all y € Y, we
have

(i) [Ngr(v") N Nar(Q1) N Nar(Q2) NNy (y)] = diyj| Nar (Q1) N Ner (Q2) NN gy (y)| £ 4em,

(i) [Np(v') N Np/(Q1) N Npi(Q2) N Ny (y)| = Bij|Npr(Q1) N Npr(Q2) NN gy (y)| £ dem.

For all vertices ' € Y/ \ Y;,v' € U/ \ U; with i € Iy and ij € E(R.), we apply (P3')(i) with
Q1 = fy(Ni—1(vij(2") \ V(H)), Q2 := fir(Ny-1(thij(2)) NV (H)), v and ¢; ;(z) to obtain

(5.15)
Ny @) Ny @] 2 N (@as(a)) 0 Ner (o)
5.11
2N (845(a") N Ner(@1) 0 Ner (Qa) 0 N (o)
P3')(i
( :)( ) di,j NA% (¢i,j(l‘/)) N Ngl(Ql) N NGU(QQ)| + 4em
5.11
GV g, Ny, (i) £ dem
(A1) T
= d; j(p(d, j,i" —1) £ & _1)m £ 4em
= (digp(d,j,i — 1) £ 28 _1)m. (5.19)
Similarly, we use (P3')(ii) to obtain
’NFI’?;(z’) (xl) N NFQ%(Z') (”/N = ‘NBZ,_I (¢i,j(x/)) N NP’(U/)’ = (Bi,jp(gvjv i’ — 1) + 2§i’—1)m-

Note also that for all j € Ng, (i), z € Y] and v € U,

RS E(Ag,) A e E(A}) and uv € E(G') for each u € fy(Ny(x))

& aveB(A)_)) and fi(; ] (x)) € Ner(v)
& Y (z)v € B(F4(i) and fy(¢; ] (x))v € E(Fiy(i)). (5.20)

We now wish to apply Lemma 5.2 for each i € I;; and j € Ng, (i) with the following graphs
and parameters.

object /parameter ‘ A1) ‘ Fl, (i) ‘ Fla (i) ‘ Ag, 5Kc ‘ m ‘ AKAR\/&r—1
playing the role of‘ Fis ‘ Fis ‘ Fys ‘Agi ‘ c ‘ n ‘ €

Note that Lemma 5.4(i), (a) and (b) imply that the graphs satisfy the regularity condition (R1)
stated before Lemma 5.2. Note also that (5.19) implies that (5.3) is satisfied. Recall from the
description of the Slender graph algorithm that o; : Y/ — U/ is the bijection obtained in Round i’
for A(i) and fy (¢; (x)) = 0i(¢; ] (x)) for all z € Y] with j € Ng, (i) by (5.9). So (5.20) implies
that the graph A,, defined before Lemma 5.2 is indeed isomorphic to A}, via the isomorphism

i ; defined by ¢ ;(z) = ¢ j(z) for € Y and ¢; ;(v) = v for v € U}. Also (5.18) means that
condition (R2) before Lemma 5.2 is satisfied. So altogether this means we can indeed apply
Lemma 5.2. Recall that Aﬁl_l,Bi/_l only depend on the history prior to Round i’ and that
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& > g (AKAR\/&r—1) by (5.5). So Lemma 5.2 together with (5.17) and a union bound over all
j € Ng, (i) and i € Iy implies that

P[(Aly) | A4 By 1] > 1 — K2 Ag(l — 5Ke)™ > 1 — (1 — 4¢)K™. (5.21)
Similarly as in (5.20) it follows that
zv € E(B)) & ¢, (x)v € B(F(i)) and fy(¢; ] (z))v € E(FH(i)). (5.22)

So similarly as before, by Lemma 5.2 applied to A(z),F{é(z),Fé@(z) for each j € Ng, (i) with
1 € I;;, we obtain

P[(A2:) | A Y By_q] > 1 — (1 —4de)f™, (5.23)

Recall from (5.7) and (5.13) that for all j ¢ Uieli, Ng, (i) we have Ag, = Ag,_l, Bf/ = Bg,_l,

p(d_;]7 Z,) = p(CZ:.Ya i/ - 1) and p(g7]7 Z/) = p(gvjv i/ - 1) So these Ag’ are also (g’tﬂp(cz‘% i/))_
super-regular and these B, are also (fi/,p(g,j, i'))-super-regular. Thus, by (5.21) and (5.23), we
obtain

PlAy | Ab7Y, By 1] = P[(Aly), (A2:) | AL 5 By_] > 1—2(1 —4e)5™ > 1 — (1 — 3¢)K™.

Property (iii) follows immediately from (i) as well as Lemma 4.4 and Theorem 4.1 applied to
A(i)[Y;, Ui]. Indeed, to check (M'3)y, note that p(d,i,i — 1) > d2B) > ¢KAr > 94’ by (5.7),
(V1) and (V3). (Actually, we get an additional error arising from the existence of the artificial
vertices (i.e. from considering A(7)[Y;, U;] instead of A(i)) as well as the fact that we only have
m—C <Y;| = |U;| < m. However, this error is insignificant. Alternatively, one could have used
that Proposition 3.9 actually implies that A(7) is (3\/KAgr&s_1,p(d, i, —1))-super-regular.) [

We can now deduce from Proposition 5.3 and Lemma 5.4 that the Slender graph algorithm
succeeds with high probability, and that the candidacy graphs F; for the patching process have
strong regularity properties.

Lemma 5.5. Suppose S = (G, P, H, Ry, Ao, U, Y, Z, c,e,do,d, 3, K, Apg,C) is a valid input. Let
g« be the function defined in (3.1). Then the Slender graph algorithm applied to S succeeds with
probability at least 1 — (1 — 2¢)5™. Moreover, if it succeeds, then it returns an embedding ¢ of
H into G and bipartite graphs F; on (Y;,U;) (for each j € [Kr]) such that ¢(Y;) = U; for all
i €[r], ¢(x) € Nay(x) for all x € V(H) and such that ¢ and the graphs F; satisfy the following
condition.

(i) Each Fj is a (g+(€), dop(Rs, B, 7))-super-regular bipartite graph on (Y;,U;) such that

N (2) € Uj N Nao(2) N Vyep(vg () Ve () for all z € Y.

Proof. To show that the Slender graph algorithm succeeds with probability at least 1—(1—2¢)%™,

recall from Proposition 5.3 that the failure of type 1 occurs with probability at most (1 —3¢)%™.
Once failure of type 1 does not occur, the event A’ is equivalent to being successful. By applying

Lemma 5.4(ii) with By_; = A5 !, we obtain
PlAY] = [] Pl | AFY > (1 - (1=30)5™)" > 1 —w(1—3c)™.
=1

Thus the algorithm succeeds with probability at least 1 — w(1 — 3¢)%™ — (1 — 3¢)Kk™ > 1 —
(1 —2¢)E™m. Also ¢(Y;) = U; and ¢(z) € NAJO-(a;) NU; C Nyy(x) for € Yj are trivial from the
description of the algorithm.

Now let us assume that the algorithm succeeds, i.e. A occurs. Note that &, = g"'(2¢) by
(5.4). In particular, this means that for all j € [Kr] we obtain graphs B, on (Y], U}), each
of which is (¢.()/2, p(3, j, w))-super-regular. Thus F; = BZ,[YJ-, Uj| is (¢+(¢), p(B, j, w))-super-
regular (as Y]\ Yj| +|U;\ Uj| < 2C). But p(B3, j,w) = dop(R., 3, 7) by (5.2), (5.6) and (5.7), so
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Fj is (g«(e), dop(Rx, g,j))—super—regular. Also, by the definition of B, for any z € Y;

5.12
N, (z) G N Npi(2) N (1 Ne(w) CUNNg(x)n () Npe(w)
u€ fu(Ng (z)) u€ fu(Nu(z))
= UjnNa@n (]  Ne(w
u€(Ny (z))
as Uj N Np/(u) = U;j N Np(u) for all u € V(G) = V(P), and ¢ is the restriction of f,, to V/(H).
Thus (i) holds. O

We will find the required embedding ¢ in Lemma 5.1 via the following random algorithm,
which first preprocesses the input to satisfy the requirements of the Slender graph algorithm and
then runs the Slender graph algorithm. So suppose that (G, P, H, R, Ay, V, X, ¢, €, dy, CZ; 6, k,Ar,C)
satisfies the assumption in Lemma 5.1. Recall that H? denotes the square of the graph H. Re-
call Ri denotes the K-fold blow-up of R. In Steps 1-3 below we will refine the partitions given
by Lemma 5.1 in a suitable way to ensure that we have a valid input for the Slender graph
algorithm satisfying (V1)—-(V7). So in Step 4 we can then apply the Slender graph algorithm to
obtain the desired embedding.

The Uniform embedding algorithm on (G, P, H, R, Ay, V, X, c,e,do,d, B, k, Ar, C).

Step 1. Recall that we assume that H is (R, k,C ) near-equiregular with respect to X (which was
defined in Section 3.1). We apply the Hajnal-Szemerédi theorem (Theorem 3.5) to H2[X;] for
each i € [r] to find an equitable partition of X; into K := (k+1)2Ag sets which are independent
in H2. (Note that this is possible since A(H?[X;]) < k(k + 1)Ag.) Let Y := {Y1,...,Yk,} be
the resulting partition of V(H) such that for all i € [r]

Xi = UY]a

j€Ji
where J; ;== {(i — 1)K +1,...,iK} and m — C < |Y}| < m with m := [n/K].
Since A(R) < Apg, we can find a vertex partition of R into independent sets W7, ... WA -

Let w := (KAR)*(Ag + 1). We now view the K-fold blow-up Ry of R as being obtained from
R by replacing each vertex ¢ of R with the set of vertices J;. Note that A(Rg) < KApg. Let
Wi, ..., WX, 41 be the vertex partition of V(Rk) = [Kr] such that i € W5 if and only if
J; C W3, For each ¢’ € [Ag + 1], we choose a vertex partition of (Rk)*[W;*] into (KAR)? sets
which are independent in (Rx)?. Denote the classes of the resulting vertex partition of W;* by
I where (' — 1)(KARg)? +1 < j/ <i'(KAg)? Note that for all i, j/ € [w] we have

A(Rg[Iy, I;]) < 1. (5.24)

For all i € [r], let 4/ . be the largest index i’ such that J; NI # (), and let ¢ . be the smallest

max min

such index. Then for any 4, j € [r] with ij € E(R), one of the following holds:
i;nax < jfnim or j;nax < i;nin' (525)
We let Z :={I,...,I,}. Let d, 3" be Kr x Kr matrices such that dz’é, :=d;; and Bé,@ = Bij
whenever ¢ € J;, ¢’ € J;. So we have now satisfied (V1)-(V3) in the definition of a valid input
(with Rg playing the role of R, and d}, ,/, 8; , playing the roles of d; ; and f; ; respectively).
Step 2. Note that for all 1 <14 # j < K7, the graph H[Y;,Y;] is a matching if ij € E(Rg) and
empty if ij ¢ F(Rg). For all ij € E(Rk) we add edges to H[Y;,Y]] to obtain a graph H, on
V(H) so that each H,[Y;,Y;] is a matching of size min{|Y;|,|Y}|}. So H, satisfies (V7) (with H,
playing the role of H).
Step 3. For each i € [r] we now choose an equitable partition Uj;_1)gx41,--.,Uix of Vi. In
the case when Ag[X;, V;] is complete bipartite, we could simply consider an equitable partition
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chosen uniformly at random. In general, there are a few vertices we need to be more careful
about. More precisely, we consider

W; :={v € V; : 3j € J; such that |[Na,(v) NY;| # (do £ 2e)m}.
Since Ao[X;, Vi] is (do, €)-super-regular,
[W;| < Ken < K2em. (5.26)
Note that for each v € Wj, there exists some j € J; such that |[Na,(v) NY;| > (dy — 2¢)m.
Let (W(’i_l)KH, ..., Wiy ) be a partition of W; such that v € W} implies that [Na,(v) NYj| >
(do — 2¢)m. Now we partition V; \ W; into W(/z/‘—l)K+17 ..., W/} uniformly at random subject to
the condition W[ = |Y;| — [W/|. Let U; :== WU W/. For each j € J; and each v € W; we
delete some arbitrary edges in Ag between v and Y; to obtain a spanning subgraph A§ of Ay
such that [Nag(u) NYj| = (do + 2¢)m for all u € U; and j € J;. Let Aj := U;¢x,1 A5[Y), Ujl-
So AS - Ao.
Let U := {Uy,...,Uk,}. Note that G and P admit vertex partition (Rg,U) and H, admits
vertex partition (Rg,)). We define the following events.
(G) G[U, U;) is (63, d; ;)-super-regular for all ij € E(Rk).
(P) P[U;,Uj] is ('3, B} ;)-super-regular for all ij € E(Rk).
(A5) AS[Y;,U;] is ('3, do)-super-regular for all j € [K7].
If one of these events does not hold, we end the algorithm with failure of type 1.
Step 4. We apply the Slender graph algorithm on

S =(G,P,H,, R, Ay, U, V,T,c,e"/? do,d,f, K, AR, C).

Note that if we have no failure of type 1, then S satisfies (V1)-(V7). Recall that in the
preparation round of the Slender graph algorithm we define G', H,, P’ and (A{) by adding
artificial vertices and we have Y] 2Y; and Uj 2 U such that [Y]| = |Uj| = m and

(@) G'is (251/3,Ji)—super—regular with respect to (Rg, U1, ..., U,),
(P') P is (2¢'/3, 3")-super-regular with respect to (Rg, U], ..., Ukr)s
(Ap) (AQ)TY], Ul is (263, dy)-super-regular for each j € [K7]

(provided that the Slender graph algorithm does not abort with failure of type 1). If the Slen-
der graph algorithm fails, we abort the Uniform embedding algorithm with failure of type 2.
Otherwise, we obtain an embedding ¢ and bipartite graphs Fj on (Uj,Y;) for each j € [K7r].
For each x € V(H), let Ny := Ng, (z). Return (¢, Y,U,F,N), where F' := Ufiﬁ F; and
N :={N;:xz € V(H)}.

Claim 5.6. IfS = (G,P,H,R, Ay, V, X, c,¢,dy, J: 5, k, AR, C) satisfies the assumption in Lemma
5.1, then the Uniform embedding algorithm on S fails with probability at most (1 — c)™.

Proof. We first consider the event (Aj). Consider any i € [r]. For all j € J; and each u € U; we
have [Naz (u) NYj| = (do £ 2e)m = (do + £'/3)m by construction. Also for = € Y},

5.26
Nz () N U] = [Nas (2) O W7] + [ Nas (@) AW P2 | N () A W7 & K2em. (5.27)

Using the Chernoff-Hoeffding bound in Lemma 3.3, it is easy to check that with probability at
least 1 — (1 — 3¢)™ we have

WY
Vi \ Wil
= (do £ '/3/2)m.
Together with (5.27) this implies that
P[|Nas(z) N Uj| = (do £&'*)m] > 1 — (1 - 30)™.

: ) (5:26) m =+ Ken
[Nag () 0 (ViAW) =7 (1) et

[Nag (z) " W[ = (1£¢) (do + 2Ke)n
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Moreover, it is easy to check that Aj[Y;,U;] is (€'/3, dp)-regular. Together with a union bound
over all z € V(H) this shows that A§[Y;,U;] is (¢!/3, dg)-super-regular for all j € [Kr] with
probability at least 1 — rn(1 — 3¢)™.

Second, we consider the events (G) and (P). For this consider G[U;, Uy for j € J; and j' € Jy
with i’ € E(R). We have that for all u € U;

5
‘ (

Ne(u) N Uy = [N (w) WA + [N (w) nWh] P2 | N (u) n W] + K2em.

Again using Lemma 3.3, with probability at least 1 — (1 — 3¢)" we have
(W]
[Vir \ We|
(Here we use that d} ;, = d;;.) Hence, if (5.28) holds, then [Ng(u) NUy| = (d} ;, + el /3/2)m +
K2%em = (d} i +e/3)ym. Also, G[U;, Uy is (13, d’; ;1)-regular by Proposition 3.8. Together with
a union bound over all 2n vertices of G[U;,U;] and all |E(Rg)| < K?Agr edges of Ry, this
shows that (G) holds with probability at least 1 —2nK2Agr(1 — 3¢)". Similarly, (P) holds with
probability at least 1 — 2nK2Apr(1 — 3c)”. Thus failure of type 1 in the uniform embedding

algorithm occurs with probability at most (1 — 2¢)".
If failure of type 1 does not occur, then § is a valid input for the Slender graph algorithm.
Thus Lemma 5.5 implies that the Slender graph algorithm on input & fails with probability at

most (1 — 2¢)X™. Therefore, the uniform embedding algorithm succeeds with probability at
least 1 — (1 —2¢)" — (1 —2c)K™ >1— (1 —¢)™ O

[Na(u) N W) = (1) Na(u) N (Ve \ Wy)| = (d; £3/2m. (5.28)

We now proceed to the main part of the proof of Lemma 5.1, which is establishing (B1).
Claim 5.7. (B1) holds.

Proof. Suppose that ij € E(R), v € V; and S C V; N Ng(v) satisfies |S| > f(e)n. Recall from
Step 1 of the Uniform embedding algorithm that J, = {(a — 1)K +1,...,aK} for each a € [r].
Recall that in Step 3 of this algorithm, we take a partition of V, \ W, (chosen uniformly at
random) into parts W/ of size |Y;| — |W/| with ¢ € J, and that |W}| < [W,| < Ken. Then
Uy =W, UWj. For every ¢ € J; let

Sy:=85nNnU,.
So S is partitioned into S(;_1)kx11,-.-,Sjx. We define the following event.

(BB1) |S¢| = (1 + /32 for all ¢ € J;.

Since |S; N W/'| has the hypergeometric distribution, and |S; N W;| < Ken, Lemma 3.3 and the
fact that ¢ < € imply that

P[(BB1) holds | > 1 — (1 — 2¢)™. (5.29)

Recall that in Step 4 of the Uniform embedding algorithm we apply the Slender graph algorithm
on (G,P,H., Rk, A;,U, V., Z,c, el/3 do, A, ci’, K, AR, C). Inthe Preparation round of the Slender
graph algorithm we obtain equipartite graphs G’, H;, P’ as well as the graph (A{)" by adding
artificial vertices. Let Uj,...,U}, denote the partition classes of G’ such that each Uj, is
obtained from Uy by adding at most C' artificial vertices uy j. Analogously, let Y{,... Y},
denote the partition classes of H such that each Y, is obtained from Y} by adding at most C'
artificial vertices y; ;. We define the following event. It implies that the neighbourhoods of the
artificial vertices are ‘well behaved’ with respect to S. Recall that A§ is defined in terms of (Af)’

before (5.6).
(BB2) For all £ € Jj, all Q1 = {q1,...,¢s} € V(G') \ V(G) with |Q:] < KAg, ¢ € U, and
Jo € Ng, (£), for all z € Y/ and all Q2 C V(G) \ Uy with |Q2] < KAk we have

|Se N NAS(ZL') N Ne (Q1) N N (Q2)| = (H dZ,jg/)‘Sg N NAg(ZL') N N (Q2)| £ 2en.
=1



24 JAEHOON KIM, DANIELA KUHN, DERYK OSTHUS, AND MYKHAYLO TYOMKYN

So the set Q1 consists only of artificial vertices outside U;. Recall from the Preparation round of
the Slender graph algorithm that |N¢s(uy j) N Q| has the binomial distribution for each artificial
vertex uy j € U}, \ Uy and each Q C U;» with i/t € E(Rk). So Lemma 3.3 and the fact that
¢ < € imply that

P[(BB2) holds | > 1 — (1 —2¢)". (5.30)
We define Bg := (BB1) A (BB2), then (5.29) and (5.30) imply
P[Bs] > 1—2(1—2¢)". (5.31)
Note that it is easy to see that two applications of (BB2) imply the following.

(BB2') Forall ¢ € J;, any Q1 C Uj’eNRK(E)(Ug/"\UJ'/) with [Q1] < KAr—1, any Q2 C V(G)\ Uy
with |Q2| < KAg, any z € Y/, and any z € Uy, \ (V(G) U Q1) with £/ € Ng, (£),

|Nev(2) N SN NAS (£) N N (Q1) N N (Q2)] = d27£/|Sg N NAg () N N (Q1) N Ngr (Q2)| + 4en.

(BB2') will be used to check that after each round the artificial vertices have the ‘right’ number
of neighbours in Sy in the current candidacy graph. Recall that in Step 1 of the Uniform
embedding algorithm we have chosen a partition Z = (I, ..., I,) of V(Rk) such that each I is
an independent set in (Rg)?. Together with Observation 3.1 this means that there are indices

a,a', by <--- < bl and numbers by, ..., bx satisfying
K
veU., ac€ly, acJi, J; C U Iy and J; NIy = {bs}, (5.32)
s=1

where v € V; is as defined in (B1). So J; = {b1,...,bk}.
Note that by (5.4) for all ¢ € [w] we have

& = g'(2"/%) and & =213, (5.33)

(Indeed, recall that we apply the Slender graph algorithm with el/3 playing the role of £.)
Moreover,
n

m= Uil = ¥/ = | ] - (5.34)

So m is playing the role of m in the Slender graph algorithm, which is the size of a largest
partition class in U and ). Let

z = ¢ H(v),
Teo YZI — Yé/ with {Tg,g/(z)} = NH,’F (Z) N YZ/ for all z € Yg/ with ¢¢' € E(RK), (5.35)
Yy = Tap(x) and yp, := 7¢(y,) Whenever ab,bl € E(Rk).

Note that z,y; and y{w are random variables, where z is fixed in Round a/, and that 744 is a
bijection whenever (¢’ € E(Rg). Recall that S C Vj, so SNU}, # 0 only for b € J; = {b1,...,bx}
(cf. (5.32)). By (5.25), either a’ < b} or b} < a’ holds. We treat these two cases separately.
Roughly speaking, in the first case we condition on an embedding of a vertex x onto v in Round a’
and show that with high probability the ‘right’ number of vertices of Ny (x) is embedded to S.
In the second case we condition on an embedding of H restricted to S; (B1) is then determined
by the choice of z = ¢~ (v).

CASE 1. d' < b].
Fora' <V <w,and b € Jj we define the following events.

(BLL) [Ny, () 1 Sh] = (d; }p(db,0) % €0)|y)

(Bly) /\  (B1%) holds.
bseJ;:b, >l
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Here p(d’,b, ) is as defined in (5.7) with Rg playing the role of R,, and A is as defined in
(5.10). Recall that the event Ay was defined before Lemma 5.4. To motivate (B1Y), note that
conditional on Ay, p(cf; ,b,0') is the density of AY. As one would expect from the algorithm,
in Round ¢ > a’ (i.e after the pre-image z of v has been chosen), the probability that y; is
embedded onto a vertex in S, will turn out to be close to |N N Sp|/|N|, where N := NA?/ ()

This is because the set of candidates for ¢(y;) will be almost all of N and every candidate will
be (almost) equally likely. Since Sy C N¢r(v) N Uy, and since [N/ (v) N Up| ~ d; jm, for £ > d
we expect this probability to be close to |Sy|/d; jm, which is equivalent to (B1%).

We define events By in the following way:

B __{Agr for0 <V <d —1,
Y71 Ae ABly)  ford < < w.
We will see that By typically holds for any 0 < ¢/ < w. We let Bf := /\?l/zo Bj and let By be
the event which always occurs. Thus 88 =By L since Ay always holds. Note that Bg*l and Bg
are events which depend only on the history of the Slender graph algorithm prior to Round ¢'.
Thus Lemma 5.4(ii) implies that for all 0 < ¢ < w,

PlAy | BE 71 Bs] > 1— (1 —3¢)5™ >1— (1 —3¢)". (5.36)
Together with (5.31) this implies that

a’—1 a’—1
P(B; ', Bs) = PBs] [[ PIBy | B, Bs] = PBs] [] PlAr | B, Bs] >1—3(1—2¢)".
=0 =0

(5.37)

Subclaim 1. P[B, | BE ', Bs] > 1 — &,

To prove Subclaim 1, assume that Bg and BSI_I hold and we are in Round a’ of the Slender
graph algorithm. For each b € .J; consider the graph F{y(a) := (Y/,U]; E), as described in the
proof of Lemma 5.4(ii), i.e. yv € E if and only if y € Y,v € U} and 7,(y)v € E(A% ). Let
A(a) be the subgraph of A% _, as defined in (5.8) of the Slender graph algorithm.

Since 7,4 is a bijection, the graph Ff;(a) is isomorphic to AZ/—l under the isomorphism which
keeps the elements of U} fixed while mapping Y, to Y} via 7,;. Thus Fbi(a) is (5a,_1,p(d7, b,a’ —
1))-super-regular using B,/_1 = Ay 1. Also Lemma 5.4(i) implies that

A(a) is (AKAr\/€y_1,p(d', a,a’ — 1))-super-regular. (5.38)
Moreover, by Proposition 3.8,
Fl(@) [N a) (), Sp) is (€12, p(d', b, a’ — 1))-regular (5.39)
since |Sp| > f(e)m/2 by Bs. (Here we also use that 2§,_1/f(e) < 5;,/31 by (5.33)). Let
7 4
Ty :={y € Na(a)(v) N Ya : [Npp (4y(y) N Sp| = p(d', b, a —1)(1 ifi//_1)\5b|}-

Recall that the vertex x = ¢~!(v) is determined in Round a’ of the Slender graph algorithm. So
Ty is the set of candidates for z = ¢~1(v) so that 7,,(z) is ‘typical’ with respect to Sy. Then
(5.38) and (5.39) together imply that

T > (1— &/ )p(d, a,a — 1)m. (5.40)
Since N 4o () = Nav (y,)NNer (v) (see (5.10)) and Sy, C Ner(v), it follows that N 4o (y,)NSy =
a’ a’—1 al
No o (y,) NSp. This implies that if « € Tj, then

a’—1
N, )OS = N, () 0S| = [Ny () 0 Sy = p(d .’ — D)1 £6/4)1S))

B (@b 1) £ )ISH] = (Dl ba') £ )|,
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We get the final equality by (5.7) and the fact that d,, , = d; j as a € J;,b € Jj and Ng, (b)N1y =
{a} as ij € E(R) and so ab € E(Rf). Thus by (M'2),,

P{IN, () N ol = (d; }p(d b,0') & €)ISy] | B~ Bs| = P |67 (v) € Ty | B ", Bs]

> (- WK AR e ) e
p(d',a,a’ —1)m

(5.40),(3.1) Eu
> - 41
- 2K (5.41)
Thus taking a union bound over all b € J; in (5.41), we obtain
P[(Bly) | B!, Bs] > 1 — 5& (5.42)

By (5.36) and (5.42) we conclude

P[By | BE ™, Bs] = P[Aw, (Bly) | BY 71, Bs] > 1— (1 —3¢)" — % >1— &y

This completes the proof of Subclaim 1.

Subclaim 2. For all o’ < ¢/ < w we have P[By | Bs, BS 1, ¢(z) =v] > 1 — &p.

To prove Subclaim 2, assume that Bg and Bg_l hold and we are in Round ¢ of the Slender
graph algorithm. Recall that Round a’ of the Slender graph algorithm determines z = ¢~!(v),
which in turn determines y; and y; , for all b € Ng,(a) and £ € Np,(b). Note that for fixed

¢ > da, each of Bg_l, Bgs, and ¢(x) = v is an event which depends only on the history prior to
Round ¢'. Thus by Lemma 5.4(ii),

PlAp | BS ™Y, Bs, d(x) = v] > 1 — (1 —3¢)5™ >1— (1 —3¢)". (5.43)

Consider some b € J; with b € Iy for some b’ > ¢'. First, assume that b ¢ Ng, (Ir). Then
Ab, = A% | by (5.13). So (B1Y,_,) implies (B1%) since in this case p(d, b, 0 —1) = p(d', b, ') by
(5.7) and since &1 < &v. So (B14) holds in this case.

So let us next assume that b € Ng, (Iy). Then by (5.24) there is a unique index ¢ €
Ngy (b) N Iy

First we verify (B1%,) in the case when Yy ¢ 18 an artificial vertex, i.e. y, , =y € Y, \ Y for
some j' € [C]. Then, as described after (5.8), we have fy(y;,) = ue; € V(G') \ V(G). Note
that

N, (h) 185 "= Nor(forhe)) O N, (54) 015, (5.44)

and
5.11
Nyap, (y) N S = N e () NV Ner (for—1(Ner-1(yp))) 0 S (5.45)
Let
Q1= (V(G)\V(G)) N fr—1(Ne—1(yp)) and Q2 :=V(G) N for_1(Ne—1(yp))-
Since fr (y,,) € V(G') \ (V(G) U Q1), similarly as in (5.19), (BB2') (with b, £ playing the roles
of £, ¢') implies that

5.44),(5.45
N, ) 0150 T NG (o (,0) 01850 N g () 0 N (Q1) 0 Nor (@)
= dy o N N gy (1) N Ner (Q1) N Ner(Q2)| & den
(5.45)
= dyp| N, (4p) N1 Sp| + den
(Blz’*l) ! 1,/ 7 /
= dé,b(di,jp(dlvb7£ - 1) :l:gf/fl)|5b| + den
(5.7)

=1 (dip(d,b,0) £ &)|Sl. (5.46)



A BLOW-UP LEMMA FOR APPROXIMATE DECOMPOSITIONS 27

In the final equality we use that |S| > f(e)n/(2K) since we conditioned on Bg. Thus (5.46)
implies that

P((BLY) | Bs, By, 6(a) = v,y = yeg] = 1 (5.47)

Now assume that y; , is not an artificial vertex, i.e. y, , € V(H,). Note that

INawyWho)l = (p(d, £,6 — 1) £ 4K Ag/Ep_1)m (5.48)

since A(0) is (AKAp\/€p_1,p(d', £,0' —1))-super-regular by Lemma 5.4(i) and By_;. Moreover,
By _1 implies that

Ny () VS| = (dip(d, 0,6 — 1) & )| Sy)- (5.49)
Let
N*(Sb) = {u € Naw(whe) VUe: [Ner(w) N Ny, () 0S| = dy o (d [ p(d', b, — 1) % &) [ S]]
Note that (5.44) implies that (B1%) holds if d(Yh,) € N*(Sp) (recall that d;vep((f’,b,ﬁ’ —1) =

p(cf’, b,0')). We will show that almost all current candidates u € N (y;,) lie in N(Sy).
Since G'[Uy, Uy] is (26173, dy, )-super-regular by (G') in Step 4,

(5.49) (5.48) .
INY(SY)| > (1= YO)NawWho)l = (o(d, 6,6 —1) = 5KAR/Ep_1)m.

Then, by (Mll)gl,

Blo(sh) € NU(Sp) | BL " Bs, é(x) = v,y € V(HL)] = (1 — h(AK Apy/Eo1))—o Vel
p(d', 0,0 —1)m

> 1 - 2h(AKAR/Er1). (5.50)

So (5.50) implies that

P((B1Y) | BS ', Bs, ¢(z) = v,yp, € V(H.)] > 1 — 2h(4K Ap\/Ep_1). (5.51)

Let B := {b € JjN N, (Iy) : b € Iy withb' > ¢’} and for b € B let ¢, be the unique
index such that {{;} = Ng,(b) N Iy. So B keeps track of those cluster indices in .J; where
the future candidates will be affected by the embeddings in the current round. Note that
|B| < |J;| = K. Thus by (5.43), (5.47), (5.51) and our previous observation that (B1%) holds
for all b € J; \ Ng, (Iy) with b € Iy for some V' > ¢, we have

PBy | Bs,BS ', ¢(x) = v] < P[Ay | Bs, By ', p(x) = ]

+Y PUBLY) | Bs,BS T d(x) = v,h, € V(HL)Plyh,, € V(H.) | Bs, Bf ' ¢(x) = 0]
beB

+Y PUBLY) | Bs,BS T d(x) = v,hy, & VH)Plyh,, & V(H.) | Bs, By ¢(x) = 0]
beB

< (1—30)" + 2K - (4K Agy/Eo1) +0 < &,
which proves Subclaim 2.

We are now ready to conclude the proof of Claim 5.7 in Case 1. Consider any b € J; and let
b’ be such that b € Iy. Then b’ > a’ since we are in Case 1. We first calculate the probability
that ¢(y;) € Sy conditional on Bg, B} !, ¢(z) = v. Note that Lemma 5.4(i) implies that

INawy(yp) N Ssl = ’NAZ,A (yp) N Sp| £ 4K AR&y_1m

Bl _ kT
P @ (@0, Y — 1) £ AKAREr IS, (5.52)
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(In the last equality we also use that |Sy| > f(e)m/2 by Bs.) Suppose that y; € V(H,). Then
by (Mll)b’a

[N agw)(yp,) N S

Plp(y,) € S | Bs, By 1, o(x) = v] = (1+h(AKAREy—1))—=
p(d', b,/ — 1)m
(5.52),(BB1) |S|
= (1+&) don (5.53)

By Subclaim 2, (5.53), and the fact that 2w&,, < f(£)?/3 and & < & for i <" (cf. (3.1) and
(5.33)), we obtain

Plp(y;) € S | Bs, B, ¢(x) = v]

b'—2 b'—2
=Plo(y;) € Sy | Bs, B ', ¢(x) = v] [[ PBis1 | Bs, By, ¢(x) =v] + > P[Byiq | Bs, By, ¢(x)
_ S N A
=(1+&) dmnu +&,) + 0 —d -1)& = <1 + = ) din (5.54)

Note that once z = ¢~'(v) has been determined, the set Ny (x) N X; is also determined.
Recall that |Ng(z) N X;| € {kij, kij + 1} since H is (R, k, C)-near-equiregular. Let X% be
the set of vertices z in X; that satisfy | Ny (z) N X;| = k; ;. First assume that = € X9, Write
Nu(z) N Xj = {z1,..., 2y} and for £ € [k; ;] define by by z¢ € Yyy. So by € J;j and x4 = yl’)z.

Thus by (5.54), for each € X9°°? we have

E|l6(Nu (@) N S| | Bs, B, 6(x) = v| = > Plo(uy) € Sy | B, Bg o) = v]

()

) (5.55)
%

We now show that the contribution from the vertices = € X; \ X9 is insignificant (see
(5.59)). Note that (5.37) and Subclaim 1 together imply that

P[Bg,BY] > 1 — 2¢,. (5.56)
Since A(a) is (4K AR o1 p(d, a,d — 1))-super-regular by Lemma 5.4(i) and Bg,_l, we can
apply Theorem 4.3 to see that for any x € Y,,
2

Plp(z) = v | Bg, BY '] < — .
[¢p(x) = v | Bs, By ] @ ad —m

(5.57)

Note that
Plo(x) = v | Bs, By '] = Plo(x) = v | Bs, B |P[By | Bs. 5§ '] £ P[Bu | Bs. B3 ']
Together with Subclaim 1 and the fact that 3kC¢, < g.(c'/3) (by (3.1) and the assumption
e < 1/k,1/(C + 1)) this yields
Plp(z) =v | Bs, By '] £ P[By | Bs,B§ ]
P[By | Bs, Bol_l]
653 2(p(d 0 — hm) £ _ (V)

Plp(z) = v | Bs,BY] =

5.58
B 1+&y - Ck ( )

Now (5.58) together with the fact that | X; \ XfOOd| < Ck implies
> Blo=¢7'(0)| Bs, By) < (V7). (5.59)

zeX;\X9°%%
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Therefore,

E[|Ng(ry(v) N S]]

= Y PBs, By Pz = ¢~ (v) | Bs, BY[E[l¢(Np(2)) N S| | Bs, BY , é(x) = v]

reX;

+(kij + 1)P[Bs vV BY ]

P2 Y (260 Pl = 07 (v) | Bs, B Il (Na(2)) S| | Bs, B ¢(x) = v] £ 2kiy + 1w
:tEXi
(5.55,5.59) (1+2¢) Z Plx = (;5_1(1;) | BS,BSI] <1 + J?) k;]]? + (kij + 1)6]*(51/3)
IEGXfODd "
iz(k%] + 1)€a’
O (1+2,) [(1 +q.(c'/%)) (1 * ﬂ?) kaljji‘ + (ki 1)q*(51/3)] 2 Ve
B ki ;| S|
= sl (500

To obtain the final equality we used that [S| > f(e)n and 3(k;; + 1)(qu(e"/?) + €u) < 6(k +
1)5(1/3)(1/300)w+1 < g3(1/300)"+ (f(¢))? by (3.1) and the assumption ¢ < 1/k. This proves
Claim 5.7 in Case 1.

CASE 2. V. < d'.
So in this case ¢~1(.9) is determined before ¢~!(v). For each y € Y,, we consider

Ly={teJj: Nu(y)nY, #0} = {j1,. .-, g}, (5.61)
where k' € {k; j, ki j + 1}. For each L € (kJJ ) define

X(L):={ye YYa N Nag(v): L, = L}. (5.62)

So the X (L) partition most of the initial set Y, N Naa(v) of candidates y for ¢~ (v) according
to the set L, that records the clusters Y; C X; which contain the neighbours of y. Let

L= {L € <lij> DX (L) > (f(s))3n}, X' :={yeYanNNas(v): Ly ¢ L}, xp:= |XT(nL)|
! (5.63)
Since |J;| = K we have |£| < (,ff]) < ([k() and
X< (fe)n () ) + O < (F0) " im (5.64)

We will calculate E[| Ny gy (v) N.S]] by conditioning on ¢~!(v) € X (L) for each fixed L. For this,
we consider the following sets: for b € J;, let

N®(Sp) := Nz (671 (S)) N Yy = 7.a(¢7 1 (). (5.65)

These sets are relevant for the following reason: the definitions of X (L) in (5.62) and N*(S}) in
(5.65) imply that under the assumption that ¢~'(v) € X(L) and b € J; we have

Mantoinsi={ & 10 e s L
We now define events (Cly) and (C2) for all 0 < ¢ < a’ and b € (I; U---UIy) N J; as follows.
(Clp) [Nas, (v) NX(L)| = dy 'p(d, a, ') (1 % & )awpm for all L € L.

(C2%) [Nag, (v) "N(Sp) N X(L)] = daldgjlp(ci’,a,ﬂ’)(l + &) |Sy| for all L € L.

(5.66)
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Let (C2¢) be the event that (C25,) holds for all b € (I3 U---UIy) N J;. Note that if ¢/ = 0, then
(Cly) holds by (5.6) and (C2) is vacuous.

Note that conditional on (Aly), p(d, a, ') is the density of AY,, so (Cly) is exactly what one
would expect (the extra dy' arises since we assumed X (L) C N Ag(v)). Similarly as in (B1%),
the extra d;jl in (C2Y%) comes from the fact that S, € S C Ng(v).

For all 0 < /' < a’ we next define the event Cy by:

Cg/ = Agl A (Clel) A (0241)
and let Cgl = /\ﬁ/':o Cjr. So in particular, Cy is the event which always holds.
Subclaim 3. For all ¢ € [a' — 1], P[Cy | Bs,C5 1] > 1 — (1 —2¢)™

To prove Subclaim 3, note that Bg and Célfl are events only depending on the history of the
Slender graph algorithm prior to Round ¢'. Thus Lemma 5.4(ii) implies that for each ¢’ € [a'—1],

PlAy | Bs,CL 1 >1—(1—3c)K™ >1—(1-3¢)™ (5.67)

If InNNRg, (a) = 0, then Af, = A}, by (5.13) and p(d,a,0) =p(d,a,l'—1) by (5.7). Moreover,
IpNJ;j=0as Jj C Ng,(a). So in this case (Cly) and (C2p) are immediate from Cp_.
So let us next assume that Iy N Ng, (a) = {¢}. We now show that
P[(Cly) | Bs,CE ™Y > 1 — (1 —3¢)" (5.68)

Recall that o, : Y,/ — U, for £ € Iy denotes the bijection chosen in Round ¢ of the Slender
graph algorithm. By the definition of Af in (5.10), (similarly as in (5.20))

Nag,(v) N X (L) = Nas,_ (v) N X (L) N 7,00, (Ngr (v) N UY)). (5.69)
Since we assume that (Cly_1) holds, for all L € £ we have
[Nas, () N X(L)| = dy'p(d', a, ' = 1)(1 % & y)zpm. (5.70)
For each L € L, we let
Qf, = Tae(Nag,_ (v) N X(L)). (5.71)
So Q% C Y/ and
570) 4 =
Q4 2 dy ol a, € = 1)(1 £ &)z, (5.72)
Using that oy o 7,4 : Y, — U, is a bijection, we obtain
5.71
o1(Q0) N Ner(v) "2 oy (7 (Nag,_ () N X(1))) 1 (Ner () N )

= 000 Tap <NA;,71 (U) N X(L)) NogoTyy (Te,a(agl(NG’ (U) N Ué)))

= ororue (Nag_, (0) N X(L) Nrealoy (Ne (0) N U)))

-1
=" 070 Tae(Nag (v) N X(L)).
Since oy o 7, ¢ is a bijection, this implies that
|oe(Q7) N N (v)] = [ Nas, (v) N X (L)) (5.73)

We will now apply (M'4), with Q%, Ng(v) N U} playing the roles of S, T'. Note that |Ngr(v) N
Ul=(1=+ 251/3)d;’gm by (G’) in Step 4 and also that

QL = dVwpm > d(f(e))*m > W (4K Ap\/E—1)m (5.74)
by (5.63) and (5.72), so the conditions of (M'4), are satisfied. Moreover
(1£ W (AKARVE 1)) Ne (v) NULIQL|/m
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O N UK ARYE )1+ 26 ) gy (0, = 1) (1 € )anm
(5.7)é5~33) dalp(J;, (I,E/)(]. + §£’>me'

So (M'4), implies
i v_1y 67 ¢ RS A 01
P[(CIy) | Bs,C§ ™' < ) Plow(QL) N Ner(v)| # dy 'p(d’,a, €)(1 £ & )zpm | B, Cy ')

Lel
< L)1 - 4Ke)™ < (1 - 30)",

and so (5.68) holds.
Our next aim is to show that for all ¢’ € [a

P[(C2¢) | Bs,CE 4 > 1 — K(1—3¢)™ (5.75)

" — 1] we have

Consider any b € (I} U---UIy)NJ;. We first consider the case when b € Iy. Then Ng, (a)NIy =
{b}. Note

5.72 o -
(14 W (4K AryE D))QLISH/m P2 dy'p(d,a,¢ = 1)(1 + &)a1|S))

= daldi_’jlp(cz;, a, 0)(1 + &)z Sy,

because d; j = d;’b. This shows that, for each L € £, we can apply (M'4)y with QY%, S, playing
the roles of S, T to see that

Pllon(Q) N Syl = dy td tp(d' a, ) (1 % &) |Sy| | Bs,CH ]
>1 - (1-4Ke)™ >1— (1 - 3¢)" (5.76)

(Here we also use (5.74) and that |Sy| = (1 + 51/3)% by (BB1) to verify the conditions of
(M'4),.) We now consider Tbﬂ(ab_l(ab(Q’i) N Sy)) CY,. Since 74,05 are both bijections,

7.a(0,  (06(QF) N Sy))| = [ow(QY) N Sy (5.77)
Moreover, using that S, C N/ (v) N Uy,
Tha(oy, (05(QF) N Sb)) = T5,a(Q%) N To.a(0y, ()
CIV Nay (0) N X (D) N maloy (S)
= Nag,  (v) N X(L) N7y0(0y () N Thaloy,  (Ner(v) N T))
PORLLON N 4o (0) A X (L) A N(S))- (5.78)

So (5.76), (5.77) and (5.78) together imply that for each b € Iy N J;
P[(C2%) | Bs,CE ™Y > 1 — (1 —3¢)" (5.79)

So assume next that b € (I; U--- U Ip_1) N J;. (In particular, this means that ¢ > 2.) Then
Cp—1 implies that for all L € £ we have

Nag,  (0) A N(S,) N X (L)] = dg d ) pl(d@a, € = 1)(1 £ €y )|,
Thus, this time we consider ¢ € Iy N N, (a) and for each L € £ we let
QF = Ta,(Nag,_ (v) N N(Sp) N X(L)).

Note Q% C Y/. Similarly as in (5.76) (but with Ng/(v) N U} playing the role of T') one can use
(M'4) 4 to see that

Plloe(QF) N (Ner(v) NUp)| = dy di tp(d,a, ) (1 £ &p)wr| Syl | Bs,C§ '] > 1— (1—3c)".
(5.80)
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Similarly as in (5.78),

Toa (a;l (Ue( )0 (New(v) N U,g))) = Nag () NN*(S) N X(L) N 7ea (07" (Ner (v) NTY))
5.69
(5.69) Nag, (v) N X(L) N N(Sp).
Thus |o¢(Q) N (Ner(v) N Uf)| = [Nag, () N X(L) N N(Sp)]. Soif be (I U+~ Ulp_1) N Jj, we
have
P[(C2%) | Bs,CE Y > 1 — (1 —3¢)"

Together with (5.79) and a union bound taken over all b € (I3 U---UIy)NJ;, this implies (5.75).
Thus, by (5.67), (5.68), (5.75) we obtain

P[Cy | Bs,Co ™Y > 1— (1 —2¢)™

This completes the proof of Subclaim 3.

We now proceed with the proof of Claim 5.7 in Case 2. Subclaim 3, (5.31) and the fact that
Co always holds together imply that
a’ —1
P[Bs,C§ '] =P[Bs] [[ PlCr | C§ " Bs] = 1= (1— )™ (5.81)
=1
Consider any L € £. We now compute the expectation of | Ny g (v)NS| conditional on Bg, Cglfl,
and ¢~ 1(v) € X(L). Since Co_1 holds we have Ay 1, (Cly_1) and (C24_1). By Lemma 5.4(i),
[N a(a)(v)] = ’NA“,,l(’U)’ + 4K A&y —1m. Together with (Cly 1), (C24/_1) this implies that for
any b € Jj

[N () N X(L)| = dy 'p(d,a,d’ — 1)azpm £ 5K Ap€y_ym, (5.82)
INa@) () N X(L) N N“(Sy)| = dy'd; | p(d', a,a' — 1)ap|Sy| £ 5K Ap&y_1m. (5.83)

(Here we also use that J; C I; U---U Iy_1 by (5.32) and since we are in Case 2.) (M'2), and
(3.1) together imply that for every L € £ and every b € J; we have

INa@)(v) N X(L) N NSp)|

Pl (v) € X(L)NNYSy) | Bs,C&™Y = (1+h(4KARVEy 1)) ~
p(d',a,a’ —1)m
(5.83) 1/3 zr|Sp| (BBI) 1/3 zr|S|
and
_ o' [N a(a)(v) N X (L)
Plo~'(v) € X(L) | Bs,C¢™Y] = (1+h(AKAR/Er 1)) —2)
p(d',a,a’ —1)m
(5.82)

T
(L)
0

Thus
Pl¢~"(v) € X(L) N N*(Sy) | Bs,Cd ]
Plo~1(v) € X(L) | Bs,C§ ]

E

= (1 £ 3q. (/321
(1£3¢.(c77?)) o

Plp~(v) € N%(Sy) | Bs,C§ ™, ¢ (v) € X(L)] =

(5.84)

Thus for any L € £
E[[No(i) (v) 0 5] | Bs, €5, 67! (v) € X (L)]
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L S Ble () € NU(Sy) | Bs,C§ 67 (v) € X (D)

beLl
(5.84) 1/3yy S| (5.63) fe) KijlS|
=7 (1 +3qu(e ))di =~ (1 A (5.85)
bel J J
Moreover, by (M'2), and (5.64),
) / 11/4
Plo~ () € X' | Bg, o <2 X1 S HE T pss (5.86)

p(d,a,a’ —1)m —  dod®
Furthermore, note that |¢(Ng (¢ (v)))NS| < A(H) < (k+1)Ag always holds. (Recall k; ; < k
for all ij € E(R).) Thus,

E |INo (v) N S| Bs,C§ ™|

= DB |INogn(0) N1 S]] Bs, €567 (v) € X(L)| - PloT(v) € X(L) | Bs, Gy ]
LeL

+(k+1)ARP[¢ ' (v) € X' | Bs,C§ ]

(685589 2 <1 + f?) ]mmw(v) € X(L) | Bs,C§ '] % (h+ ) Arf(e)*

k; ilS _ , o —
- (1282 e e sy 07

(5.86) f(e)\ kijlS|
2 (1 1) s )

Therefore, by Subclaim 3, (5.31), (5.81) and (5.87)

E[|Nym(v)nSl] = E [|N¢(H)(v)ﬂ5| | Bs,cg’-l] P[Bs,C§

a'—1
+(k+ 1)ARP[Bs] £ (k+1)Ar Y P[Cy | C§ ", Bs]
=1
= (1 + f(;)) kzl]S|(1 +t(1—-0)") £ (k+1)Ar(2(1 —20)" +w(l —2¢)")
i
ki j|S|
= (1+ ==
(1 FE) 5
This completes the proof of Case 2 of Claim 5.7. O

Claim 5.8. (B2) holds.

Proof. Note that if the Slender graph algorithm applied to S as defined in Step 4 does not
fail, the graphs F; satisfy property (i) in Lemma 5.5. Since we defined N, = Np,(x) in Step
4, we have x € N, if only if y € N, for x,y € V(H). Also, since H,[Y;,Y;] is a matching if
ij € E(Rk) and H.[Y;,Y;] is empty otherwise, for every = € Y; we have [N, NY;| < 1 for all
j € [Kr], and [N, NY;| =0if j ¢ Ng,(i). Thus for all z € V(H), |N,| < A(Rg) < KAp and
so (B2.1) holds. Properties (B2.2) and (B2.4) are immediate consequences of property (i) in
Lemma 5.5 (note that H,, Aj play the roles of H, Ap in Lemma 5.5 and Aj C Ap) and the fact
that g, (1/3) = (1/3)(1/300)" 1 < (1/300)"*2 _ f(2) by (3.1) with room to spare. Finally, (B2.3)
holds since we assume that the Uniform embedding algorithm does not fail (and thus (P) in
Step 3 holds). O

Claim 5.9. (B3) holds.
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Proof. Assume u € U;,v € U; and so ¢~ 1(u) € Y/ and ¢~ 1(v) € Y/. If i,j € I, then the fact
that (Rg)?[Iy] is an independent set implies that

P [Np (¢~ (u)) N N (67! (v) # 0] = 0.

Therefore, without loss of generality, we may assume that ¢ € Iy, j € Iy with £/ < ¢”. Then
during Round ¢” of the Slender graph algorithm, when we are about to determine how to map
Y/ to U}, x:= ¢~ 1(u) is already determined. Let Y/ C Y/ be the set of all those vertices which

are at distance two from z in H. So [Y}'| < (A(H))? < ((k+1)AR)% Recall that .Ag/*l was
defined before Lemma 5.4. By (M'2), we have

_ " 2((k +1)AR)? 1
Plo(v) e Y | AL~ < 22 < .
[¢ (v) ’ | ‘ ] B p(d’,j,é” - 1)m a 2\/ﬁ

Moreover, Lemma 5.4(ii) implies that P[A5 '] > 1 — (1 — ¢)". Thus

P[Np (¢~ (1)) N Neg (¢ (v)) # 0] < P[Ng (¢~ () N Neg (¢ (v)) # 0 | A§ Y PLAS Y + PLAS Y

<Plp () eY] AT+ (1-0" <

5i-

Claim 5.10. (B/) holds.

Proof. Given v € V(G), as before, let a denote the index such that v € U, and a’ be such
that a € I,. Let fp be the partial embedding we obtain after Round ¢ in the Slender graph
algorithm. For all ¢ € [Kr] let Wf, be the set of vertices in U; which are incident to an edge in
E(G")N fu(E(H)). (So Wf CUy.) Let 755 : Y/ — Y] be as defined in (5.35).

Recall the number of rounds w was defined in (V2). For each 0 < i’ < w we define I¥ :=
I U---Uly. Forie[Kr]and @ € [w] welet RY = [N, (i) NI7|. So Ry < KAg. For cach
0 < ¢ < w we define the following event:

(D1y) [WS| < RYYA4/5n for all € € Ng,(a) N IV

Note that (D1p) is vacuously true. For a’ < ¢ < w we define the following event:

(D20) ¢(Tap(d~1(v))) ¢ W for all £ € N, (a) NIY.

Recall that Ay was defined before Lemma 5.4. For each 0 < ¢ < w we define Dy and Dy, as
follows:

_ J Ae AN(Dly) itV <d,
Do = { Apr A (Dlg/) A (D2g/) if 0 >d, (588)
Dip = Av 1 (D1e) (5.89)
We denote Dg/ = /\i,/:0 Dy and Dg,j/ — Z’/:O DZ‘,. Note that (D2,) implies that there is no

y € V(H) with ¢~'(v)y € E(H) such that ¢(y) is incident to an edge in ¢(E(H))NE(G"). Thus
v ¢ ¢o(H,G,G"). Accordingly, our aim is to show that both P[Dy | DS 1] and P[D}, | DS’Z,_I]
are close to 1 (see (5.102) and (5.103)).

Consider any ¢ € I and let A(¢) C A% | be as defined in (5.8). Since Dg_l and DS’KI_l are
events only depending on the history prior to Round ¢ and are contained in A, _1, Lemma 5.4(ii)
together with the fact that (1 — 3¢)%™ < (1 — 3¢)™ implies that

PlAy [ DY >1— (1-3¢)" and PlAy | DL >1—(1-30¢)" (5.90)

We now show that P[(D1y) | Dgl_l] is close to 1 (see (5.95)). We say that y € Y, is dangerous
for u € Uy if there exists ¢ € N, (£) N I~ such that

fo-1(1eq(y))u € E(G"). (5.91)
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Note that if y is dangerous for u then u € Uy, and choosing ¢(y) = u would mean u € Wf/,
unless y74(y) € E(H,) \ E(H). Let A, be the subgraph of A(¢) such that yu € E(A)) if y is
dangerous for u € U;. Note that E(A)) = E(A}[Y/,U).

We now bound d 4 (u) for u € Uj. Since dgr(u) < yn, there are at most yn vertices y' € V/(H)
such that fy_1(y') € Ngv(u). Thus for any fixed u, (5.91) can occur for at most yn distinct
vertices y in Yy, i.e. dy (u) < yn.

Next we bound d, (y) for y € Y/. Note that uy € E(A}) implies that

u e U NG”(fZ’—l(TE,q(y))) N Ué?
qE€NR, (NI~

so da(y) < A(Rk)A(G") < KAgyn. Thus
A(A)) < KAgyn < K2Arym < ~%10m, (5.92)
Note that once fy is determined, if a vertex u € Uy is in Wf,, then there must exist an index
g € I' =1 N Ng, () such that fo_y(104(fr (w)u € E(G"). Thus f; (w)u € E(A)[Ye, Uf).
Since we are conditioning on Dg_l - Ag_l, by (M'3)y (with 4910 playing the role of d’ and
A}Ye, Uy| the role of A')
i [wa,| > 445y | Dg’—l} <P [\W;y > 89910 /p(d', €, 0 — 1) | Dg’—l] <(1-30" (5.93)
Assume
(W] < ~+*n for all £ € Ip. (5.94)
We now consider |[W| for ¢ € I f’_l under this assumption. Note that if u € W\ W_, then u
must be incident to an edge in E(G")N fp(E(H))\ (E(G")N fyr_1(E(H))). Recall that for each
qe€ Iflfl, we have |Ng, (q) N Ip| < 1. We let gp be such that {qr} = Ng, (¢) N Iy if it exists.
Then if ¢y exists,
(5.94)
WEANWE | < W' < +*on,

If N, (q) NIy =0, then W) =W} _,. Suppose Dy_; holds in addition to (5.94). Since Dy
implies (D1y_1), it follows that

. . a q (Dl _y)
|Wg/’ S |We/_]_| + |Wf/ \ Wé’—1| S

In other words, (D1) holds. Thus, for all £’ € [w]
P[(Dly) | DY > PWS| < 4Yonforall € € Iy | DE ]
(5.93)

R%/’y‘l/ n.

ST 1 |In|(1-3¢)" >1— Kr(1 - 3¢)" (5.95)
The same argument also shows that for any ¢’ € [w],
P[(D1y) | D5Y 7Y > 1 — Kr(1 — 3c)". (5.96)
In particular, (5.95) together with (5.90) gives us that for any ¢ < d/,
P[Dy | D571 > 1 - 2Kr(1 — 3¢)™ (5.97)

Now we consider (D2/) for the case when ¢/ = a’. Let N*(v) be the set of vertices y € Y, which

(i) are dangerous for v (so there exists ¢ € Ng, (a)NI¥ ! such that Jar—1(Taq(y))v € E(G"))
or
(ii) for which there exists ¢ € N, (a) N I¢ "1 such that fu_1(7aq(y)) € wi ..
Note that f,,'(v) ¢ N%(v) guarantees that (D2,) holds. (Indeed, first observe that Ng, (a) N
I{ = Npy(a) N Iflfl since a € I,. Write z := f'(v). So if z ¢ N%(v), then (ii) means that
Jar (Ta,f(l')) g—f W(f’—l for all £ € NRK (CL) n If/' But if fa’(Ta,Z(:E)) € Wf’ \ Wf'_p then for (Ta,ﬁ(x))
is incident to an edge in E(G”)N fu(E(H)))\ E(G")N for—1(E(H))). So fo(Tae(z))v € E(G"),
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i.e. x is dangerous for v, which means that (i) holds, a contradiction. Thus fu(7a.(7)) & W,
as required.)

Now we estimate |[N%(v)|. By (5.92) there are at most K Agyn vertices y such that y is
dalngerous for v. Also y satisfies (ii) if and only if y € 7,4 (f,;,} (W5 _,)) for some g € Ng, (a) N
Iy ~1. Suppose Dy_; and thus (Dly_;) holds. This shows that the number of vertices y
satisfying (ii) is at most ZQGNRK (@nre' 1 (W || < K2A2~%5n. Thus

IN“(v)| < KQA%74/5n + KAgyn < ~*m.

So by (M/2)a’7

) 2/3
Pf,'(v) € N%(v) | DY 7Y < (1 + hAK Apy/Ey—1) — " < /5. (5.98)
p(d',a,a’ —1)m
Thus by (5.90), (5.95) and (5.98),
) / ~2/3
P[Dy | Df '] = PlAx, (Dla), (D20/) | DF '] > 1= (K7 + 1)(1 = 30)" —9*° > 1 — <.
(5.99)

Finally we consider (D2y) for the case when ¢ > a’. Let x := ¢~ 1(v). For any q € Ng, (a),
let yg 1= Taq(2), and let y, , == 740(y) and yg , := y; for £ € N, (q). Note that y, , € Uj. Let
Ng, (a) be the set of all those ¢ € Ng, (a) for which either |Ng, (q) N Iy| =1 or q € Iy. For
q € Ny _(a)\ Ip, let £, be such that Ng,(q) NIy = {4}, and for ¢ € Nj (a) N Iy, let £; == q.
Then (5.92) and (M'1), together imply that

~9/10

> PlieWhe,) € Nay () I D571 < Y0 AN
9€NE, (a) 9€NR (@) P b€~ 1)

< 45, (5.100)

Note that if Df ! (and thus (D2¢_;)) holds, then fy_i(y,) ¢ Wg_, for all ¢ € Ng, (a) N I{ .
Thus if in addition we have f(y, eq) ¢ Na, (Vg éq) for all ¢ € N}, (a), then fu(y;) ¢ W}, for all
K q )

{ € Ng,(a) N I{, which implies (D2;). Hence (5.100) gives
P[(D2¢) | DS 7Y > 1 — 4. (5.101)

Now (5.90), (5.95) and (5.101) together imply that for ¢/ > a
~2/3

P[Dy | D§ 1> 1~ (Kr+1)(1—3¢)" —7"5 > 1
w

(5.102)
Therefore, by (5.97), (5.99) and (5.102),

w 2/3\ "
PDY] — L pt-1 0 _ A2
Dy = [ Pow | DY) > (1 e ) 1y
=1
Recall that DY implies v ¢ ¢o( H, G, G"). Hence, Plv € ¢o(H,G,G")] < 1—P[D¥] <~ ie.
(B4.1) holds.
Now we show that (B4.2) holds. Assume that (D1,,) holds. If u € Uj satisfies u € ¢2(H,G,G"),

then either u € Wi, or there exists v, £ such that v € W., ¢ € Ng, (j) and uv € ¢(E(H)). Since
(E(H)) is a matching between Uy and U, there can be at most |W(| vertices u € U; such that
uv € ¢(E(H)) for some v € WY. Thus (D1,,) implies that for all j € [K7] we have
fu:ueUjue go(H,GG < Wi+ Y [Wol <Rt Y Ry“"n
CeENR, (5) LeNR (7)
< (KAR 4+ 1)(KAR)YY5n < ~43/n.
Also, by (5.90) and (5.96),

P[D; | DY 7Y > 1 - 2Kr(1 — 30)™. (5.103)
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Thus we get
P[(D1y)] > P[Dy"] > H P[D} | Dg’él_l] >(1-2Kr(1-3¢)")" >1—(1-2c)".
=1
Thus
P[[{u:u € Uj,u € ¢po(H,G,G")}| <~%°n for all j € [Kr]] > 1 - (1—2¢)",
i.e. (B4.2) holds. O

We can now deduce (B5) from (B1) and (B3).
Claim 5.11. (B5) holds.
Proof. First, by part (B1) of Lemma 5.1, for any T' C Ng(v1,...,vs) NV; with |T| > f(e)n,

El6(B(H)) 0 {ueo v € 7,0 € [s1H] = 3 [INoqan () 1 71] = (1 £(2) 2227 (5.104)
(=1

1,3

Let X := Ng(v1,...,vs) N'Vj. Consider

Ty = {v €X:PB,=1]> (1+ 2f(5))’]8} and T := {v € X :P[B, = 1] < (1—2f(e)) =2 } .
dmn diyjn
First, we show that |T1| < f(e)n. Assume |T1| > f(¢)n. Since B, = 1 implies that |¢p(E(H)) N
{vpv : £ € [s]}| > 1, we get
k‘i s|Th
E[lo(B(H)) N {uw v € Th, € )] = 3 BB, = 1] > (1 + 24(2)) 2
veT) ©J

which is a contradiction to (5.104). Thus |T1| < f(e)n.

Now, we show that [T3| < f(e)n. Assume |T5| > f(e)n. Let A(vi,...,vs) be the number of
pairs vy, vy such that ¢~ '(vs) and ¢~1(v}) share a common neighbour in H. Then by part (B3)
of Lemma 5.1,

E[A(vi,...,v5)] < (5.105)

S

Suppose a > 0 is defined by
p(EH)) N {vw:veTyle[s]}=a+ Y By
vETH

By considering the bipartite subgraph of ¢(H) spanned by {vi,...,vs} and T, it is easy to see
that there are at least a/A(H) > a/(k+1) pairs vy, vy for which there exists a vertex v € T, such
that vpv,vvp € ¢(E(H)). Thus in this case ¢~ (vy) and ¢~ !(vy) share a common neighbour in
H,and so a < (k+1)A(v1,...,vs). Therefore,

G(E(H)) N {vew :v €Ty, L € [s]H < D Byt (k+1)A(vr,...,vs).
veTH
Thus by (5.105),
E(|¢(E(H)) N {vw:v €Tyl €[s]}] < Y P[By = 1]+ (k+ DE[A(v1, ..., vs)]
veTH

kijs|Tol (K §
< (1-2/(e)) g;’j’ 4 f/%)s

< (1310 i

dmn

a contradiction to (5.104). Thus |T1| + |T2| < 2f(e)n, which proves (B5). O
Claim 5.12. (B6) holds.



38 JAEHOON KIM, DANIELA KUHN, DERYK OSTHUS, AND MYKHAYLO TYOMKYN

Proof. We are given sets Q C X;, W C V; with |Q|, |W| > f(e)n. For all ¢ € J;, let Qy := QN Yy,
and define ¢y by |Q¢| = gen. Then

> a= Ef’ (5.106)

Led;
Similarly for all £ € J;, let Wy := W N Uy. We define the following event.
(BW1) (W = (13 for anl ¢ € J;.

By a similar argument as in (5.29), we have
P[(BW1) holds | > 1 — (1 — 3¢)". (5.107)
Similarly as in (5.32), let ] < --- < ¢} be the indices such that J; C UJK:1 Iy and J; N Iy =
{¢;} for some ¢;. So J; = {l1,...,Lk}. For j € [K] define the event (QWZQ) by
(QWZ;> |f€; (Q@j) N ij’ = qg]‘W| + f(E)Bm
For 0 < ¢/ < w, where w is defined as in (V2) of the definition of a valid input, we define

Oy = Ap N (QWp) if 0= f; for some j € [K],
CT Ap otherwise,

and let Qel = /\g,:0 Qyr. In particular, Qg is the event which always occurs. Since Qg_l and
(BW1) are events which only depend on the history of algorithm prior to Round ¢/, Lemma 5.4(ii)
implies that for all ¢ € [w]

PlAy | 571, (BW1)] > 1— (1 —3¢)5™ >1— (1 —3¢)™. (5.108)
Now we show that when ¢ = £/ for some j € [K], we have
P[(QW,) | Q51 (BW1)] > 1— (1 —3¢)™ (5.109)

Let £ :={;. If go < f(¢)?/K, then we have | fo(Q¢) N Wy| = qo|W| £ f(£)3m, so we immediately
get (QWy). So suppose g > f(¢)?/K and note that f()3 > 2Kh/(4KAg+/Er_1). Also note
that by (BW1) we have |W;| = (1 +&/3)|W|/K > W (4K Ar\/&_1) and

(1 + W (4K Apy/Er ) |W£”QZ| (BED <1i "12(5;) (1151/3)“?{/'1(% = @|W| £ f(e)®m

Thus we can apply (M'4), with Qg, Wy playing the roles of S, T to see that
PI(QWp) | Q5 1, (BW1)] = P[|fo (Qe) N Wil = gl W| % f(e)*m | QF 1, (BW1)]

P[|fo(Qe) N Wil = (14 B (4K ARy/Er 1)) Wil |Qel /m | 5, (BW1)]
1—

>
>1—(1-4Ke)™ >1—(1-3c)™

Hence, (5.109) holds. Therefore, (5.108) together with (5.109) imply
P[Qy | Q571 (BW1)] > 1 —2(1 — 3¢)" (5.110)
Thus by (5.107)
P[QY, (BW1)] > 1 — (2w + 1)(1 — 3¢)" > 1 — (1 — 2¢)™.
Note that if Qf holds, then

(5.106)
)

QUw|

n

B(@Q)NW] = 16(Q)) N Wil = Y (a,|W| % f(e)*m

Led; JE[K]

1+ f(e))

In the final equality we used that |Q|,|W| > f(e)n. This proves (B6). O
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We now deduce from Lemma 5.1 another extension of the blow-up lemma, which we shall
also apply in our main algorithm in the next section. Suppose we are given an embedding ¢
of H into G and a set Z of vertices whose embedding is unsuitable (this will be the case if
¢(H) overlaps with the edges of previously embedded graphs in the main packing algorithm in
Section 6). Then we can re-embed these vertices using edges of a ‘patching graph’ P provided
¢ was well behaved with respect to P. This notion of being well behaved is captured by the
candidacy bigraphs F' being super-regular. Let Z; := ZNX; and W; := ¢(Z;) C V;. A candidacy
bigraph F' will encode the possible new images of a vertex, i.e. we may only embed z € Z; to
w e W; if zw € E(F). So the case of Lemma 5.13 when each F[Z;, W;] is a complete bipartite
graph means that there are no constraints.

Lemma 5.13. Suppose 0 <1/n<1/m<é < f,5,1/k,1/(C+1) <1, and1/m < 1/r. Let
be a graph on [r] with A(R) < k. Let 3 be a symmetric rxr matriz such that mingjep(r) Bij =
Suppose H is a graph admitting vertex partition (R, X) with X = (X1,...,X,) such that A(H)
k and A(H[X;, X;]) <1 for allij € E[R]. Suppose Ag is a graph with bipartition (V(H),V(P))
such that E(Ao) = U,ep E(Ao[Xi, Vi]). Suppose P is a graph admitting vertex partition (R, V)
with V = (V1,...,V;), where max;cp, |Vi| = n and n — C < |Vi| = |X;| < n. Suppose further
that ¢ : V(H) — V(P) is a bijection between V(H) and V(P) such that ¢(X;) = V;. Suppose N
is an (H, R, X)-candidacy hypergraph and F is an (H, P, R, Ao, ¢, X,V, N)-candidacy bigraph.
Suppose also that Z; C X;, and W; = ¢(Z;) C V; are sets such that |Z;| = |W;| = m, and let
Z:=U,_1Z;i, and W :=J;_; Wi. Finally, suppose the following conditions hold:

(a) F[Z;,W;] is (0, 8)-super-reqular for every i € [r].

(b) P[W] is (8, )-super-reqular with respect to (R, W1, ..., W,).

Then we can find a bijection ¢’ : V(H) — V(P) with ¢'(X;) = V; for alli € [r], and such that

(i) ¢'(x) = ¢(x) for every x ¢ Z,
(i) ¢'(x)¢'(y) € E(P) for every edge xy € E(H) with {xz,y} N Z # (),
(iii) ¢'(x) € Np(x) C Ny, (z) for every x € Z.

R
8.
<

Proof. Choose an additional constants ¢, satisfying 1/m < c < § < v < f,6,1/k,1/(C +1).
Let 2 :=(Zy,...,Z,) and W := (Wy,...,W,). Let Q be an r-partite graph admitting vertex
partition (R,) such that Q[W;, W;] is a complete bipartite graph for all ij € E(R). Let
7 be the r x r matrix such that 7;; = 1 for ij € E(R) and 7;; = 0 for ij ¢ E(R). Since
A(H[Z;, Z;]) < 1for all ij € E(R), we can add edges to H[Z] to obtain a graph H' O H[Z] such
that H'[Z;, Z;] is a perfect matching for each ij € E(R). Apply Lemma 5.1 with the following
graphs and parameters.

object/parameter | PW] | Q | H' | FIZUW]|R| W | Z|m|c|d
playing the roleof | G | P | H Ao R|V |[X|n|c|e
object /parameter 5 1|8 B 1]k Jolg]7]7
playing the role of v Bl d do k|Ag | C d E k

Then by Lemma 5.1, with probability at least 1 — (1 — ¢)™, we get an embedding ¢’ : Z — W
of H' into P[W] (and thus also of H[Z] into P[W]) such that for all z € Z, ¢/(x) € Np(z). Let
¢ (x) := ¢(z) if ¢ Z. Then (i) holds by definition.

Since ¢’ is an embedding of H[Z] into P[W], ¢'(x)¢'(y) € E(P) for every edge zy € E(H|[Z]).
If zy € E(H), x € Z; and y ¢ Z, then ¢'(y) = ¢(y). Since F is an (H, P, R, Ay, $, X,V,N)-
candidacy bigraph, ¢'(x) € Np(z) and (CB2) imply that

¢/(x) € Np(x) € Nagla) () Ne(é(y)) Vi € Nag(@)n () Ne(6(y) Vi
y' €N, Y ENg (z)
C Ny () N Np(#(y)) = Nay(2) N Np(6/(3))-

Thus (ii) and (iii) hold. (Note that we do not require properties (B1)—(B6) in this application
of Lemma 5.1.) O
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6. MAIN PACKING ALGORITHM

In this section we combine the results derived in previous sections to establish Theorem 6.1,
which we consider the main packing result of this paper. It guarantees an approximate decom-
position of a super-regular graph G into bounded degree graphs Hj,..., Hs, provided the H;
reflect the large scale structure of G. More precisely, we assume that G has a reduced graph R
of moderate degree, and for each edge ij of R, the corresponding pair is e-regular in G, and this
pair also corresponds to an almost regular bipartite graph in each H;.

Theorem 6.1. Suppose 0 < 1/n < c < e < n,n,a,d,dy,1/k,1/(C+1),1/AR and 1/n < 1/r.
Let s € N be an integer such that s < n~'n. Suppose the following assertions hold.

(S1) R is a graph on [r] with A(R) < Ag.

(S2) d'(md k' are symmetric r X r matrices for all i € [s] such that minjcpryd;y = d,
k% € N and k} ;, < k for all jj' € E(R), and d; j; = ki =0 if j7' ¢ E(R).

(S3) For alli € [s], H; is an (R, Kt C)-near-equiregular graph with respect to (R, X1,...,Xy)
such that max;cp, | X;| =n and n — C < |X;| <n for all j € [r].

(S4) For all jj' € E(R), Y5 1 k., < (1 —a)dj m.

i=1"j5 =
(S5) G is an (e, d)-super-reqular graph with respect to (R, V1, ..., V;) such that | X;| = |Vj| for
all j € [r].
(S6) For alli € [s], A; is a bipartite graph with bipartition (V (H;), V(G)) such that Na,(X;) =
Vj and A;[X;,V;] is (e, dy)-super-reqular for all j € [r].
(S7) For all j € [r], there is a collection Q; of subsets of X; and a collection W; of subsets of
Vj such that |Q|,|W| > n'n for all Q € Q;, W € Wj and such that |Q;||W;| < (1 +¢)™.
Then for each i € [s| there exists an embedding ¢} : V(H;) — V(G) of H; into G such that the
following hold.

(T1) ¢i(x) € Na,(x) for all x € V(H;).

(T2) ¢i(E(H;)) N ¢y (E(Hy)) =0 fori#i'.

(T3) For all j € [r] and i € [s] and any sets Q € Q; and W € W;, we have |¢L(Q) N W| =
(1+7) lQIw]|

(T1) and (T3) will be used in further applications elsewhere. They will not be required
when we apply Theorem 6.1 in Section 8. Note that in such a situation, i.e. when we apply
Theorem 6.1 but conclusion (T3) is not required, then we can ignore condition (S7) along with
the parameters ¢ and 7. Similarly, if we do not require (T1), then we can ignore (S6) along
with the parameter dy (by taking A;[X;, V}] to be a complete bipartite graph).

Remark 6.2. Theorem 6.1 holds even if we replace (S6) by the following.
(S6") For all i € [s], let X; C X, be a subset with ]Xj’\ < en and let A; be a bipartite graph
with bipartition (V(H;), V(G)) such that, for all j € [r],
o Ny, (X;)=Vj, . )
o da,(z) > don for all z € X, and Ny, (z) =Vj for all z € X; \ X;.

Indeed, if (S6') is given, a random subgraph A; of A; such that du/(2) = don for all 2 € X;
satisfies (S6) with high probability (with e replaced by /¢, say). Thus Theorem 6.1 holds even
after we replace (S6) by (S6'). In other words, (S6") and (T1) together imply that for each i € [s]
we can specify a linearly sized target set for a small linear fraction of the vertices of H;.

Let us now briefly sketch the proof idea of Theorem 6.1. The desired packing will be con-
structed via a randomised algorithm, called the Main packing algorithm, which will be shown
to succeed with high probability. The algorithm runs in 7T ‘rounds’, indexed by a parameter
t. In Round ¢ we take a collection of yn graphs H; (where 7 is a small constant and i € I,
with |I;| = yn) and embed them into the current remainder G* of G. For this, we first apply
Lemma 5.1 to each H; with i € I; independently, in order to define embeddings ¢; of H; into G*
for all i € I;. We then let G'T! be the graph obtained from G* by deleting the edges in all the
¢i(H;) with i € I; from G, and proceed to the next round.
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Clearly, in each round the embeddings ¢; with ¢ € I; need not be pairwise edge-disjoint.
However, the overlap can be shown to be small, which will allow us to apply Lemma 5.13
in order to define slightly modified new embeddings ¢;, which will be pairwise edge-disjoint,
as desired. The ‘patching graph’ P C G, used in Lemma 5.13 to carry out these ‘patching
procedures’ in all rounds, is set aside at the beginning of the algorithm and its edges are not
used for any ¢;. This procedure is repeated in every round, and in order to do so, we have to
ensure that certain graphs remain sufficiently super-regular throughout the algorithm.

Since the main packing algorithm is randomised, at various steps there will be a chance of
failure, and our goal is to show that the total probability of all possible failures is small.

In order to describe the main packing algorithm, we need the following definitions. Choose
additional constants 3,+,d so that

1 1

1
il ) ,d, dy, —
<<c<<s<<7<< <nn,a,B OkC—i—lA

and <K a,d.

Let 3 be the r x r matrix with entries Bjjr = Bdj j/d for each j, j' € [r]. Somin;ycpr) B = B-
Let It := {(t — 1)yn+1,...,tyn}. Let

1 - S
T := [S—‘ <=, d':=d-F, and K := (k+1)%Ag, (6.1)
n Y
d;fj} =, H (1 — J) for all t € [T] and jj’ € E(R). (6.2)
i€l

T will be the total number of rounds and the d; j track the densities of the unused leftover
G'[V;, V] in the t-th round. Let

e1:=2¢ and &4 :=q(e) for all t € [T7, (6.3)

where ¢ is the function defined in (3.1). Note that by the choice of the functions in (3.1) (which
depend only on w := (KARg)?(Ag + 1) and the argument), we can assume that

er L 7. (6.4)

We are now ready to describe the main packing algorithm.

Main packing algorithm

Round 0. It will be convenient that in each of the T" rounds we embed exactly yn graphs. For
this, let H' be an arbitrary (R, k', C')-near-equiregular graph With vertex partition (R, X1,...,X,)
where k7, := 1 for all jj' € E(R) and k) ., := 0 for all jj' ¢ E(R). Also let A be a union of
r complete bipartite graphs between X and V; for j € [r]. Now we let (H,, Ap) := (H', A) for
s+1<p<Tyn. Let H := {(H;,4;) :i € [Tyn]} and ® := (). We apply Lemma 3.10 to find
a graph P C G such that P! := P is (51,5) -super-regular and G'.=G—-Plis (El,czl) -super-
regular with respect to (R, V), where V := (Vi,...,V,). Let d’ ,B’ be the Kr x Kr matrices with
entries dyf, = d' ;,, 8) 4 := Bj; where [¢/K] = j,[('/K] = j and j,j" € [r]. Recall that Ry
denotes the K-fold blow-up of R. Let X := (Xy,...,X,). Let t := 1, and proceed to Round 1.
Round t.

Step 1. Assume that in Round ¢ — 1 we have defined

(A1) a graph G C G, which is (5t,cﬁ)—super—regular with respect to (R, Vi,...,V;), and
(A2) a graph P' C P!, which is (6'/4, §)-super-regular with respect to (R, Vi, ..., V;).
G' U P! is the set of currently available edges, the main part of the embedding will be done in
G*, the patching graph P! will be used to partially re-embed overlapping copies of the H.
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We apply the Uniform embedding algorithm from Lemma 5.1 with the following graphs and
parameters for each ¢ € I; one by one in the increasing order (we may do so because of (6.4),
this is justified in detail in the proof of Claim 6.7).

object/parameter‘Gt‘P‘Hi R‘Ai V‘X‘?c‘st‘élkrARw‘g‘d ‘do‘ﬁ k:‘
playingtheroleof‘G‘P‘H‘R‘AO‘V‘X‘c‘s‘ vy ‘E‘J‘do‘lz‘k‘

kS

Ar|C
A |C

r
r

Note that we apply it with P rather than P?; this is crucial to ensure that the regularity property
of the candidacy bigraph in (F5) below is sufficiently strong. If the Uniform embedding algorithm
fails for some ¢ € Iy, then end the algorithm with failure of type 1. Otherwise, let

G =G - | ¢i(BE(H))). (6.5)

i€l

We also define the following event which will be relevant for (T3).

(QW,;) For all j € [r] and any sets Q € Q; and W € Wj;, we have |¢;(Q) N W| = (1 :I:fy)'QHW‘

.
If (QW,) fails for some i € Iy, then we end the algorithm with failure of type 2.

The above applications of Lemma 5.1 give for every i € I; a tuple (¢;, X", V", F;, N*) satisfying
(B1)-(B6) of Lemma 5.1. In particular, for each i € I,

(F0) G*, P both admit the vertex partition (Rk, V"), and H; admits the vertex partition
(RKa Xl)a

(F1) ¢i: H; — G" is an embedding such that ¢;(z) € Na,(z), ‘

(F2) the partitions X" = (X{,....,X}(T) and V' = (V{,..., Vg,) with maxje(g,) |Xj| = m/
and m’' — C < |X}| = |V}| < m/, where m’ = [n/K], act as ¥ and U in Lemma 5.1,
respectively, ' '

(F3) N'is an (H;, Rg, X")-candidacy hypergraph with |[N| < KApg for all x € V(H,;),

F4) P is el/g,ﬁ’ -super-regular with respect to (Rx, V'),

t
(F5) Fi = Ujern F,[Xt, VY], where F;j[ X% V] is (f(et), dop(Ri, ', j))-super-regular. More-

VAR VAR
over, each F; is an (H;, P, Ry, Ai, ¢i, X*, V', N')-candidacy bigraph. In particular, for
all z € X3,
Ni(x) = Npxs v (@) € Na(@) 0 () Np(ou(y) N V5. (6.6)
yeN;

For (6.6) recall that candidacy bigraphs are defined before Lemma 5.1. As remarked after the
definition of a candidacy hypergraph, (F3) implies that A(H; [XJZ:, X)) <lforallj# j e [Kr].
Now for each i € I, we define F} C F; by

E(F{[X’: V.i]) =R axv e E(F;):x¢€ X;,v € Vf N m Npi(¢i(y)) ¢ - (6.7)

AR
yeN,

The graph F can be viewed as an update of the candidacy bigraph F; which accounts for further
restrictions imposed in the current round by the fact that the edges of P — P! are no longer
available for the patching process.

If G**! as defined in (6.5) is not (stH,d_iH)-super-regular with respect to (R,V4,...,V,),
then end the algorithm with failure of type 3. Otherwise, proceed to Step 2.

Step 2. Observe that in Step 1 we allowed the edge sets of different ¢;(H;) to intersect. In
Steps 3-5 we aim to resolve this issue by altering the embeddings ¢; in order to make them
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edge-disjoint. For each i € I, let
Ei:= | (¢i(E(H))N;(E(H;)),

jel\{i}
Ui:={vee:ec E},
NU; : = U {v e V(G) : ¢i(e) = uv}.

uGUi,eeE(Hi)
Note that in particular we have U; C NU;. We define the following two events.
(U1) [{i € I; : v € NU;}| < *3n holds for all v € V(G).
(U2) [NU; NV} < 4*Pm/ for all i € I, and j € [K7].
If (U1l) or (U2) does not hold, then end the algorithm with failure of type 4. Otherwise,
proceed to Step 3.

Step 3. Our aim is now to change the embedding ¢; for the vertices in U;. It turns out that
it is much easier to change the embedding on U; UY;, where Y; is randomly chosen vertex set
of appropriate size. For each i € I; we choose a set Y; C V(G) \ U; uniformly at random,
subject to |(U; UY;) NV} = ém’ for all j € [K7] (this is possible since, by (U2) above, we have
Ui NV} < INU;N V)| < 42/5m! < 6m/ for all i € ;). Let
Wi :=U;UY; and Z; := ¢; {(W;). (6.8)
We define the following events.
(W1) For all i € I; the graph PUW,] is (51/25,5’)—super—regular with respect to (R, Vi N
Wi, ..., Vg, NWw;).
(W2) For all v € V(G) we have
(i) Hi € Iy v e Wi} < 207n,
(i) Xier, {e € E(H;) v € ¢i(e), pi(e) N Wi # O} < 3kAgdyn.
(W3) For alli € I; and j € [K7] the graph F/[Z;N X}, WinV/]is (6/%°, dop(Rk, B, j))-super-
regular.
So part (ii) of (W2) says that the total number of necessary changes at a given vertex in the
current round will be small, and (W3) implies that ¢; is compatible with the structure of P!, so

we can use P! to modify ¢;. If one of (W1)—(W3) fails, then end the algorithm with failure of
type 5. Otherwise, proceed to Step 4.1.

Step 4.¢. Consider i = (¢t — 1)yn + £. Define

=P — | ] ¢j(E(H)). (6.9)
Jelj<i
Let F* C F/ be defined by
E(Ff(X;, Vi) :=Save F iz e XjveVin () Np(eiy)) ¢ (6.10)
YENL

In other words, F} is the maximal subgraph of F! that is an (H;, P!, Rx, Ai, ¢i, X%, V!, NY)-
candidacy bigraph. It can be viewed as a further update of the candidacy bigraph F/ which
takes into account restrictions arising from the ¢ — 1 embeddings qb;- with j € I, 7 < i already
made in the current round. Note that

P{HWH =P' and Fi i1 = Flio1yynt (6.11)
We now check whether the following conditions hold.
(a') For all j € [Kr] the graph F}[Z; N X]’:, Win V]’] is (0Y/°9, dop(Rx, 3, j))-super-regular.
(b') PHW;] is (461/%0, 3")-super-regular with respect to (Rg, Vi N Wi, ..., Vi NW;).
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If one of (a') and (V') does not hold, end the algorithm with failure of type 6. Otherwise,
note that by (5.2), p(Rg, 5, §) = p(R, 5,7)% > pE2% as g = min;;e p(R) Bi,j- Thus Lemma 3.10
implies that we can find a spanning subgraph F? C F; such that

(a") FZ; N X;, win ij] is (201/%0, doBKAR /2)-super-regular for each j € [Kr].

Let A} = Ujeixn Ai[X]i-,Vﬁ. Note that since F' is a spanning subgraph of F7, F' is an
(H;, P!, R, AL, ¢;, X', V', N%)-candidacy bigraph. We apply Lemma 5.13 with the following
graphs and parameters to find a new embedding ¢, of H; into G' U P} C G* U P! in order to

make sure that the images of different ¢, are edge-disjoint.

object/parameter | H; | P! pad Al N; Vi X' | Rx | Win Vji
playing the role of | H | P F Ag N 1% X R W;
object/parameter | m/ | dm’ | 461/°0 | B | doBEAR/2 | Kr | KAR | C N
playing the role of | n | m 1) I} B r k C 10)

(Lemma 5.13 can be applied by (a”) and (¢’).) Then Lemma 5.13(i) and (iii) imply that ¢}(z) =
¢i(z) whenever z ¢ Z; and ¢;(z) € Npi(x) € Na(z) € Ny, (z) for all z € Z;. Together with
(F1) this gives that

¢'(z) € Na,(z) for all z € V(H;). (6.12)
If ¢ < yn, proceed to Step 4.(¢ + 1). If £ = yn and t < T — 1, then define the graph
P= Pl — | ¢i(E(H))), (6.13)
i€l

and proceed to Round ¢t + 1. If £ = yn and t = T, then we end the algorithm with success.

Let us now prove some properties of the above algorithm. The first one concerns the density
dj i of GV, V.

Claim 6.3. For allt € [T] and all jj' € E(R) we have d;,j’ > ad/2.

Proof. Clearly, we may assume that ¢t > 2. Then for jj’ € E(R),
(6.2) 3. 5 3. ko
t t—1 i€li—1 V5,5 _ g1 €li—1 v,y
J:
By (6.2) and (6.14), we get
tE—Dyn i (sa)
t T 1 3’ 1
i=1
> (ldj’j//Q > Oéd/Q
OJ

Part (ii) of next claim ensures that the super-regularity assumption (A2) in Step 1 is justified.

Claim 6.4. Let t € [T]. Assuming no failure prior to Round t, the following hold.
(i) For any vertex v € V(P), dp_pt(v) < 6*/5n.
(ii) P!is (51/4', 5)-super-regular with respect to (R, V) and (6'/4, B_")-super-regular with respect
to (Ri,V").
(iii) For alli € I and all jj' € E(Rk), let

SPj (i) = {{m'} € <ZJ>  \Npe({0,0'}) N V| # (B2 i363/5)m/} .

Then |SP} ;,(i)| < ym/2.
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Proof. Note that for each v € V(Q)
{e € E(H;) : v € ¢j(e), ¢i(e) "W # O} = [{e € E(Hy) : v € ¢i(e), ie) N Wi # 0} £ Ap,

where we need the =Ag only if v € W;. Moreover, since the algorithm has not ended with failure
before, (W2) in Step 3 was satisfied in all Rounds ¢’ with ¢’ < t. Hence, for each v € V(G) and
each t/ <t

dpo_pra(®) 2 ST fe € B(H) : v € ¢i(e), dile) N W; # 0}

iEIt/
< Y He€ B(H;):v e dile), di(e) NWi # 0} + Agl{i € Iy - v € Wi
iEIt/
(W2)
< bkApgdyn. (6.15)
Thus
t—1 (6.1)
dp_pt(v) < Z5/~cAR&yn <T-5kApdyn < §/°n. (6.16)
t'=1

The graph P! = P, defined in Round 0, is (25,5)—super—regular with respect to (R,V) by
construction, and so also (53/ 5 g)—super—regular since € < 4. Thus Proposition 3.9 implies that
Ptis (614, g)—super—regular with respect to (R, V). Similarly, (F4) and Proposition 3.9 together
imply that P! is ((51/4, @)—super—regular with respect to (Rg, V).

For all i € I; and jj' € E(Rk), let

5P (@)= { vy e ) Ne(fo, o) AV £ (3 32l e .

Then (6.16) implies that SPt (i) € SP;j(i). Also (F4) and Proposition 3.12 together imply
that |SP;ji(i)] < 51/3 2, Thus |SP} (i) < ez/3m’2 < ym’. This completes the proof of
Claim 6.4. O

The following claim implies that the embedded copies of Hy, ..., Hs are indeed edge-disjoint.

Claim 6.5. Assume that in Round t we have constructed the embeddings ¢ for all i € I;. Then
the following statements hold.

(i) Uzeft ¢ (E(H;)) € E(G") U E(PY),

(i) ¢i(E(H;))N ¢l (E(Hy)) =0 for all distinct 1,7 € I,
(iii) Uzelt ¢(E(H;)) N (E(GH) U E(P™)) = 0.
(iv) ¢j(x) € Na, ().

Proof. By Lemma 5.13, if e = uwv € ¢}(E(H;)) \ E(G"), then uwv € E(P}) C E(Pt). Thus (i)
holds. Statements (i) and (iii) are immediate consequences of (6.5), (6.9) and (6.13). (iv)
follows from (6.12). O

Claim 6.6. Let t € [T]. Assume that the main packing algorithm did not fail prior to Round t
and that within Round t failure of type 1 did not occur. Then for alli € Iy, j € [Kr] and any
vertez z € Vi U X3,

dp/(2) = (dop(Ric, B, 5) £ 84*)m/

Moreover, let

)= { 0’} & (57) IV D (Con(Rc, 7o) 62}

Then |S;(i)| < ym'.



46 JAEHOON KIM, DANIELA KUHN, DERYK OSTHUS, AND MYKHAYLO TYOMKYN

Proof. By (6.7), for all x € X]Z: and v € Vji, if zv € E(F; — F/) then there exists y € N such
that ¢;(y)v € E(P — P*). Since dp_pt(¢;(y)) < 6%/°n by Claim 6.4(i),

. (F3)
dp,_pi(x) < |NLS*Pn < KARS*on. (6.17)
Similarly, for all x € XJZ: and v € ij" if zv € E(F; — F}) then
CAS U Np_pt(¢i(y)) < v e U .NP—Pt(¢i(y)) ST E U N;;l(u)- (6.18)
yeEN? y: xEN] UENp_ pt(v)

Since dp_pt(v) < 6/°n, we have dp,—r(v) < KAR6%/°n. Together with (6.17), this implies
that

A(F; — F]) < KARs®/on. (6.19)
By (6.4), f(et) <~ < 6%/2/2. Thus for each vertex z € Vj U X]’:,

F5 > > .
dp:(2) = dp, ()2 K Aps®*Pn 2 (dop(Ric, B, §)% f (e0))m/ £ K ARd®on = (dop(Ric, ', )6V 2)m!.

Let
Si:= { e’y € (75) s Wl DI # (on(c 730 235 |

Then (6.19) implies that Sj(i) C S;;. Also (F5) together with Proposition 3.12 implies that
S| < f(e¢)m/2. Thus |S;(i)| < f(er)m < ym/2 -

We will now show that each type of failure occurs with very small probability.

6.1. Failure of type 1.
Claim 6.7. Failure of type 1 occurs with probability at most (1 — c)™.

Proof. Suppose t € [T] and we are in Round ¢. Then we can assume that there was no failure in
a previous round. So by the definition of failure of type 3 (if ¢ > 1) or as observed in Round 0
(if t = 1), the graph G! is (st,d_i)-super—regular with respect to (R, V4,...,V,). Moreover, as

-,

stated in Round 0, P is (g1, §)-super-regular with respect to (R, Vi,...,V,). Since by Claim 6.3
and (6.4) we have ¢y < ep < 7 < ad/2 < d;’,j’ for all jj7' € E(R), Lemma 5.1 can be applied
(with 2¢ playing the role of ¢), and for each i € I; the Uniform embedding algorithm fails with
probability at most (1 — 2¢)™.

Since the number of times we apply the Uniform embedding algorithm over all rounds is at
most s < i~ 'n, the probability that failure of type 1 ever occurs is at most 7 'n(1 — 2¢)" <
(I —c)™ O

6.2. Failure of type 2. We define the following event.

(QW5) For all j € [r] and any sets Q € Q; and W € W, we have |¢,(Q) NW| = (1+ n’)mull‘.
Claim 6.8. Failure of type 2 occurs with probability at most (1 —c)™. Moreover, (QW;) implies
(QW3).

Proof. For given Q € Q;,W € W;, i € [s], let &(Q,W) be the event that [¢;(Q) N W| =
(1+ 7)% Then we have

(QW,) = N E(Q.W).
JE[r],QEQ;,WeW;

Note that (B6) of Lemma 5.1 together with the fact that f(s;) < « imply that for given
icly, Qe Q;,WeW,; we have

PE&E@Q,W)] >1— (1 —20)".
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A union bound and (S7) imply that
PQW)] = 1= > [Q[IW;l(1 —20)" > 1 —r(1+¢)"(1 - 20)". (6.20)

JE[r]

Since 1 < i < s, there are s < n~'n possible values for which the failure of type 2 can occur.

Therefore, failure of type 2 ever occurs with probability at most rs(1+ ¢)™(1 — 2¢)™ < (1 — ¢)™.
Now we show the ‘moreover’ part of Claim 6.8. Let us assume that (QW,) holds. Note that
for j € [r],

(6.8)
Hx € X : ¢i(z) # ¢i(x)] < |[Wi| < dn. (6.21)
So for any sets @ € Qj, W € W; we have
6@ W] 27 6@ Wl n DY (12 AW 5, g ) AV

We obtain the final identity since |Q|,|W| > n'n and v < § < n'. Thus (QW,) implies
(QW3). O

6.3. Failure of type 3. In this subsection we show that failure of type 3 occurs with small
probability. We will achieve this by checking that the degrees and codegrees of G* decrease by
the expected amount when constructing G**!. Then we invoke Theorem 3.11.

Claim 6.9. Assume that we are in Step 1 of Roundt € [T] and condition on there being no failure
of type 1 in this step (in particular, Gt is (g, cﬁ)—super—regular with respect to (R, Vi,...,V;)).
Then, with probability at least 1 — (1 — 2¢)", Gt s (5t+1,cﬁ+1)—supe7“—regular with respect to
(R, VA, ..., V).

Proof. By (6.3), this means that we need to show that with high probability G*![V;,V;] is
(q(4), ditH)-super-regular for all jj’ € E(R).

75,5
Fix an outcome of the algorithm running for Rounds 1,...,¢— 1. (For the proof of this claim,

all probabilities and expectations are conditioned on this outcome.) We also condition on there
being no failure of type 1 in Step 1. Let S be a set of s" vertices in Vj» with s’ < 2, and let
N;(S) := Nge(S) NV;. Also we assume that S satisfies

IN;(S)| = ((df ;)*" £ 3e¢)n. (6.22)
We are applying the Uniform embedding algorithm to G* and H; for i € I; to obtain embeddings
¢; for all i € I;. Then
Nge+1(S) NV = {u € N;(S) : vu ¢ ¢;(E(H;)) for all i € I; and all v € S}.
For i € I; U {(t — 1)yn}, let Q; be the random variable defined by
Qi=E [|NGt+1(S) N VJ| | ¢(t71)'yn+17 - '>¢i] .

Note that this is an exposure martingale. Also, if we change one ¢;/, then the value of | Nge+1(S)N
Vj| changes by at most s'(k + 1), thus

Qiv1 — Qi < 5'(k+1). (6.23)

In other words, the martingale @Q); is s’(k + 1)-Lipschitz. Our aim now is to compute E[Q¢,] =
E[|Ng+1(S) NVj|] and then to apply Azuma’s inequality. For each u € N;(S) and i € I, let B!,
be the random variable such that

B { 1 if vu € ¢;(E(H;)) for some v € S,

i,
By = 0 otherwise.

It is easy to see that

Qtyn = |Nge+1(S) N V‘ Z H (1-— Bl

ueN;(S)1€lx
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Let p; o := P[B! = 1]. Then the fact that ¢;, ¢ are independent for i # i’ implies that
Q(tfl)'yn = Qt“/n = Z H 1 _pzu (6.24)

ueN;(S) 1€l
We will show that p;,, is usually very close to s’k ;, /(d’ ;n). For this, let A, B C N;(S) x I be
defined as follows.

/ ’L

s’k:Z s
A= {(u,z) S Piu > dt ( + 2f(5t))} and B := {(u,z) D Diw < dt (1 — 2f(5t))}
(6.25)

Let A; be the set of vertices u € N;(S) such that (u,i) € A, and let B; be defined analogously.
Let A} be the set of indices i such that (u,i) € A and define B} analogously. Then |4,|, |B;| <
2f(e¢)n by (B5) of Lemma 5.1. Therefore

Al =D Ai| < 2f(e))yn® < fe)n®, (6.26)
i€l
and similarly
|B| < f(e¢)n?. (6.27)
Moreover, we have
4s' f(ep)kt
Piu < fc(ltt)“ (6.28)
u€A; 7,3’

Indeed, if not, consider a set A" C N;(.S) of size 2f(;)n with A; C A" and obtain a contradiction

via
45’ f(er)k:
TH < Z Diu < Z piw =E [{u€ A" :vu € ¢;(E(H;)) for some v € S}]

V) u€A; ueA’
kl - A, 33, 3 k?Z 2/
< (L fle) % i < f(tt) -
d; 4.

Note that the second line follows from (Bl) of Lemma 5.1. We also obtain
28/f(5t)k’i~ -y
> pin < oK L |Bi| <~ (6.29)
u€eB; 757 7,3

/L.

because p;, < ”n/ for u € B; and |B;| < 2f(e¢)n. Thus

dt ,
323
(6.28) , ; ¢
Z Z Piu Z Z Piu < 4s f(gt)kj,j”yn/dj,j’ < f(Et)n,
u€N;(S) i€A], i€l ueA;
620 (6.30)
S S =Y o 2 2 ek i < fem.
u€eN;(S)1€B;, i€l ueB;

Let C be the set of vertices u € N;(5) satisfying at least one of } ;4. piu > f(er)"/? and
> iens Piu > f(e1)'/2. By (6.30), we have
IC| < 2f(e)/?n. (6.31)
Then u € N;(S) \ C implies that

> piw < fle)? and Y pia < fle)V2 (6.32)

i€Ax i€B:
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Similarly, let D be the set of vertices u € N;j(S) such that |A%| > f(e;)/?n or |BX| > f(e:)'/?n.
Then, by (6.26) and (6.27),

|D| < 2f () ?n. (6.33)
Now, consider any vertex u € N;(S) \ (C'UD). Since u ¢ D,
|A* U BE| < 2f(e)Y?n. (6.34)

Moreover, for every u € N;(S) \ (C'U D), we have (note that A}, B;; are disjoint)

H(l _pi,u) = H (1 - pi,u) H (1 - pi,u) H (1 _pi,u)

1€l 1€l \(ALUB}) i€A}, 1€BE\AY
Sk (6.35)
= ] (1 — (1+2f(er)) 7 j;) IT @ =piw) [T Q= pi)-
i€l \(A%UB) 7,3 icAx i€B;

Estimating the above products by sums yields

H (1 —piw) H( — Piu) = (1i pr) (1i ZPW> 632 (14 f(e )1/2)2 636

i€A}, i€B} €AY 1€B};
=1+ f(e)'/.
Recall that dt > ad/2 by Claim 6.3. Combining (6.35) and (6.36), we obtain

sk,
[Ta=-piw)=xrE)? ] <1 — (1+2f (1)) %)

i€l 1€l\(A3UB})

. -1 ‘
25k \ ™" Sk, ok
_ 14 Sk )
1) )<1i3f(5t)ad”> ( 11 (1 dl n>> 1 (1 & n
zGAZUB; J5J i€l J5J
25’k 35’k |ALUBI 'kt .,
~ss (areott) " (e 3) I (1
i€l

O20 (1 £ 25(e)) /) (H (1 - d’?%)) .

i€l

Taking the sets C' and D into account, we get

/

ki, ®
EQn) Y (NiS) = 101 - 1D £ 200" (H (“m)) +(|c| + D))
3,3

i€l

CIMLI (1 05 (H (1 - fﬂ)) NG (8)] £ 104 (e0)"n

5/

iel; J:J
(6.22) s k§7j/ °
= £ fe)) (11 1= |N;(S)]-
iely 5,3

So, applying Azuma’s inequality (Theorem 3.2) to Q; with i € I;U{(t—1)yn}, which is s'(k+1)-
Lipschitz by (6.23), we get

K, s
P {Qm # (1£2f(=0)) <H (1 - dt“n)) [N; (S)]
i 3.3’

ZEIt

<(1-3e)"

since ¢ < €. This holds for all sets S C Vjr of s’ < 2 vertices with |[N;(S)| = ((d;j,)sl + 3e¢)n.
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Let Djy = {{u,0} € ('7) : [Ne:({u,0}) N V| = ((d} ;)? + 3e)n}. Since G'[Vj, Vi) is

2
(e, dz. j,)—super—regular, Proposition 3.12 implies that

n 1 31 /1
|Dj 1| > (2) —em? > 5(1 —2e)n? > <2 - 5q(€t)6> n’.

Then with probability at least 1 —r?(n + |D; y[)(1 —3¢)" > 1 — (1 — 2¢), for all j,j’ € [r] and
any S € D; y we have

oo\ 2
NG (S) NV = (1+2f(er)'/?) (H (1 - dﬂ%)) ((df ;1)* £ 3e)n

i€l 9,3
. 2
1t g (o 1-
= (g’ (d; ]] o))"
i€l I
(6.2)

and for any v € Vj

Ko, 6.2)
[N (v) V| = (1% q(e)°) (dzyj’ I1 (1 - dt”n>> n = (L efy)dln.
i€l 3.3

This together with Theorem 3.11 implies that Gt is (g1, d%“)—super—regular with probability
at least 1 — (1 —2¢)™. O

Claim 6.10. Fuailure of type 3 occurs with probability at most (1 — c)™.

Proof. By Claim 6.9, for every ¢t € [T], conditioned on no previous failure, G* is (g, cﬁ)—super—
regular with probability at least 1 — (1 —2¢)™. Thus failure of type 3 ever occurs with probability
at most T'(1 —2¢)" < (1 —¢)™. O

6.4. Failure of type 4.
Claim 6.11. Failure of type 4 occurs with probability at most (1 — ¢)™.

Proof. Suppose we are in Round ¢, Step 2 and that ¢; for i € I; are the embeddings we define
in Round ¢, Step 1. We prove the following two subclaims.

Subclaim 1. In Round t (U1) fails with probability at most 2rn(1 — 2¢)™.
To prove Subclaim 1, fix v € V(G) and i € I;. Let G“<(i) be the spanning subgraph of G*
with edge set

EG"<(@) = J ¢s(B(H)),

el i’ <i
and, similarly, let G% (i) be the spanning subgraph of G be defined by
E@GZ@) = |J ¢n(EH))
i/EIt,i/>i
Let

I 1 if v e (¢y)2(H;, Gt GH<(4)),
YY1 0 otherwise,

where (¢;)2(H;, G*, Gv<(i)) is as defined at the beginning of Section 5. Similarly, let

1 if v € (¢s)2(H;, Gt GH(4)),
Jyi = i
) 0 otherwise.

Note that since A(Hy) < (k+ 1)Apg for all i € I}, we have
A(GY<(i)), A(GH (i) < 2kAgyn. (6.37)
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Recall that in Round ¢, Step 1, we apply Lemma 5.1 with 4kAgr~vy playing the role of ~ for
each i € I; independently to obtain embeddings ¢;. Thus, by (B4.1) of Lemma 5.1, for any
T(4—1)yn+1s - - > Ti-1 € {0,1} we have

Pllyi =111y (t—1)yn+1 = T(—1)yns1s -+ -5 Loio1 = Tim1] < (4kARy)Y2 < A13/4.

Let X have binomial distribution with parameters (yn,y'/3/4), so E[X] = v*/3n/4. Then, by
Proposition 3.4 and Lemma 3.3,

P ZI >~3n 2| <P[X > 2E[X]] < (1 —2¢)". (6.38)
Licly |

A symmetric argument for J, ; (considering the reverse-ordering of [yn]) yields

P i >y"n/2| <PIX > 2E[X]] < (1-20)". (6.39)
Lie 1 _
Since v € NU; implies that I,,; > 0 or J,; > 0, we get
{i€L:ve NU < (Lo + Jus)-
N
Thus, by (6.38) and (6.39), for any given v € V(G),

P [[{z €l,:veNU} > 74/371} <P ZIW- + ZJW- >~ < 2(1 —2¢)™.

i€l i€l
Thus, with probability at least 1 — 2rn(1 — 2¢)™, (U1) holds in Round ¢ for all vertices. This
completes the proof of Subclaim 1.

Subclaim 2. (U2) fails with probability at most yn(1 — 2¢)™.
To prove Subclaim 2, let G»<(i) and G~ (i) be the graphs defined in Subclaim 1. Let & be
the event that

H{u € VJ’ cu € (¢i)a(Hi, Gt GH<(i) UGH™ (i)} < ~*5m/ for all j € [K7].

Since A(GH=(i) UG (i) < 4kApgyn by (6.37) and the random variable ¢; is independent from
the random variable G< (i) U G%>(4), (B4.2) of Lemma 5.1 together with a union bound imply
that

P [/\ é}] >1—yn(l—2c)".
i€l

(Note that (4kAgr7y)%/°n < 42/5m/.) If & occurs for all i € I, then |[NU; N V;] < ~%/>m/ holds
for all i € I; and j € [Kr|. Thus (U2) fails with probability at most yn(1—2c¢)™. This completes
the proof of Subclaim 2.

To summarise, in Round ¢, (U1) fails with probability at most 2rn(1 — 2¢)”, and (U2) fails
with probability yn(1 — 2¢)™. Thus the probability that either one of them ever fails is at most
T(2rn(l —2¢)" +yn(l —2¢)™) < (1 —¢)™. O

6.5. Failure of type 5.

Claim 6.12. Fuailure of type 5 occurs with probability at most (1 — c)™.

Proof. Suppose that the algorithm has reached Round ¢, Step 3, and no previous failure has
occurred. In particular, (U1),(U2) of Step 2 hold.

First, we show that (W1) holds with high probability. Let i € I; and j # j' € [Kr| with
jj’ € E(Rk) be fixed. Since by (U2) we have

Ui NV < INU; 0 V]| <25, (6.40)
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it follows that

4 _(6.40)
YN Vi|=6ém' —|UnVi| > om —+*"m/. (6.41)
Thus, (6.40) and (6.41) together imply that for any given vertex v € VJ’ \ U; we have
Yin V| 1/3
Plv € W;] =Pv € Vj] = ——2 = (1L £~'/3)s. (6.42)
Vi \ Uil

Let
t

5P (i) = {{v v} e < ) INpe ({0, 0'}) N Vi = (82 % 36%)m }
Let S C V; be such that either |S| =1 or S consists of a pair of vertices in STL,(@) Then the

definition of SiP;j,(i) together with the fact that by Claim 6.4(ii) P* is (6'/4, 5")-super-regular
with respect to (Rx, V?) implies that |Np:(S) N Vl| = (B; /|S| + 26%/*)m’. Tt follows that

(Npe(S) VN T 2 (5] 2 284 2y
Thus,
E[|[Np:(S) NV NYi|] = (1£4Y3)8|(Npe(S) N V) \ U]
= (1£~3)5(815) + 2614 £ /) (5;'5,' + 351/4) sm’.
By the choice of Y;, the above random variable is hypergeometrically distributed. Thus by
Lemma 3.3,
P [|Npe(S) N Vi Wi = (81 + 551/4)5m’] S p [|Npt( )NVENY| = ( 318l ¢ 451/4) 5m}
> 1—(1-20)™ (6.43)

Moreover,

(Wi N V| = |Win V)| =om/, (6.44)

VN, / 1
(M5 0P| 2 () - = g - 2sa o

by Claim 6.4(iii). So Theorem 3.11 together with (6.43) and a union bound over all S €
Vji U 57P§7j, (i) implies that P![W; N Vji, Wi N VJ’,] is (61/%, ﬁé’j)—regula