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Abstract. In 1973 Bermond, Germa, Heydemann and Sotteau conjectured
that if n divides

(
n
k

)
, then the complete k-uniform hypergraph on n vertices

has a decomposition into Hamilton Berge cycles. Here a Berge cycle consists of
an alternating sequence v1, e1, v2, . . . , vn, en of distinct vertices vi and distinct
edges ei so that each ei contains vi and vi+1. So the divisibility condition is
clearly necessary. In this note, we prove that the conjecture holds whenever
k ≥ 4 and n ≥ 30. Our argument is based on the Kruskal-Katona theorem. The
case when k = 3 was already solved by Verrall, building on results of Bermond.

1. Introduction

A classical result of Walecki [12] states that the complete graph Kn on n vertices
has a Hamilton decomposition if and only if n is odd. (A Hamilton decomposition
of a graph G is a set of edge-disjoint Hamilton cycles containing all edges of G.)
Analogues of this result were proved for complete digraphs by Tillson [13] and
more recently for (large) tournaments in [9]. Clearly, it is also natural to ask for
a hypergraph generalisation of Walecki’s theorem.

There are several notions of a hypergraph cycle, the earliest one is due Berge:
A Berge cycle consists of an alternating sequence v1, e1, v2, . . . , vn, en of distinct
vertices vi and distinct edges ei so that each ei contains vi and vi+1. A Berge
cycle is a Hamilton (Berge) cycle of a hypergraph G if {v1, . . . , vn} is the vertex
set of G and each ei is an edge of G. So a Hamilton Berge cycle has n edges.

Let K
(k)
n denote the complete k-uniform hypergraph on n vertices. Clearly, a

necessary condition for the existence of a decomposition of K
(k)
n into Hamilton

Berge cycles is that n divides
(
n
k

)
. Bermond, Germa, Heydemann and Sotteau [5]

conjectured that this condition is also sufficient. For k = 3, this conjecture follows
by combining the results of Bermond [4] and Verrall [15].

We show that as long as n is not too small, the conjecture holds for k ≥ 4 as
well.

Theorem 1. Suppose that 4 ≤ k < n, that n ≥ 30 and that n divides
(
n
k

)
. Then

the complete k-uniform hypergraph K
(k)
n on n vertices has a decomposition into

Hamilton Berge cycles.
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Walecki’s theorem has a natural extension to the case when n is even: in this
case, one can show that Kn−M has a Hamilton decomposition, whenever M is a
perfect matching. Similarly, the results of Bermond [4] and Verrall [15] together

imply that for all n, either K
(3)
n or K

(3)
n −M have a decomposition into Hamilton

Berge cycles.
We prove an analogue of this for k ≥ 4. Note that Theorem 2 immediately

implies Theorem 1.

Theorem 2. Let k, n ∈ N be such that 3 ≤ k < n.

(i) Suppose that k ≥ 5 and n ≥ 20 or that k = 4 and n ≥ 30. Let M be any set

consisting of less than n edges of K
(k)
n such that n divides |E(K

(k)
n ) \M |.

Then K
(k)
n −M has a decomposition into Hamilton Berge cycles.

(ii) Suppose that k = 3 and n ≥ 100. If
(
n
3

)
is not divisible by n, let M be

any perfect matching in K
(k)
n , otherwise let M := ∅. Then K

(3)
n −M has

a decomposition into Hamilton Berge cycles.

Note that if k is a prime and
(
n
k

)
is not divisible by n, then k divides n and so

in this case one can take the set M in (i) to be a union of perfect matchings. Also
note that (ii) follows from the results of [4, 15]. However, our proof is far simpler,
so we also include it in our argument.

Another popular notion of a hypergraph cycle is the following: a k-uniform
hypergraph C is an `-cycle if there exists a cyclic ordering of the vertices of C
such that every edge of C consists of k consecutive vertices and such that every pair
of consecutive edges (in the natural ordering of the edges) intersects in precisely
` vertices. If ` = k− 1, then C is called a tight cycle and if ` = 1, then C is called
a loose cycle. We conjecture an analogue of Theorem 1 for Hamilton `-cycles.

Conjecture 3. For all k, ` ∈ N with ` < k there exists an integer n0 such that
the following holds for all n ≥ n0. Suppose that k− ` divides n and that n/(k− `)

divides
(
n
k

)
. Then K

(k)
n has a decomposition into Hamilton `-cycles.

To see that the divisibility conditions are necessary, note that every Hamilton
`-cycle contains exactly n/(k − `) edges. Moreover, it is also worth noting the
following: consider the number N := k−`

n

(
n
k

)
of cycles we require in the decompo-

sition. The divisibility conditions ensure that N is not only an integer but also a
multiple of f := (k− `)/h, where h is the highest common factor of k and `. This
is relevant as one can construct a regular hypergraph from the edge-disjoint union
of t edge-disjoint Hamilton `-cycles if and only if t is a multiple of f .

The ‘tight’ case ` = k−1 of Conjecture 3 was already formulated by Bailey and
Stevens [1]. In fact, if n and k are coprime, the case ` = k−1 already corresponds to
a conjecture made independently by Baranyai [3] and Katona on so-called ‘wreath
decompositions’. A k-partite analogue of the ‘tight’ case of Conjecture 3 was
recently proved by Schroeder [14].

Conjecture 3 is known to hold ‘approximately’ (with some additional additional
divisibility conditions on n), i.e. one can find a set of edge-disjoint Hamilton `-

cycles which together cover almost all the edges of K
(k)
n . This is a very special
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case of results in [2, 6, 7] which guarantee approximate decompositions of quasi-
random uniform hypergraphs into Hamilton `-cycles (again, the proofs need n to
satisfy additional divisibility constraints).

2. Proof of Theorem 2

Before we can prove Theorem 2 we need to introduce some notation. Given
integers 0 ≤ k ≤ n, we will write [n](k) for the set consisting of all k-element

subsets of [n] := {1, . . . , n}. The colexicographic order on [n](k) is the order in
which A < B if and only if the largest element of (A ∪ B) \ (A ∩ B) lies in B

(for all distinct A,B ∈ [n](k)). The lexicographic order on [n](k) is the order in
which A < B if and only if the smallest element of (A ∪ B) \ (A ∩ B) lies in A.

Given ` ∈ N with ` ≤ k and a set S ⊆ [n](k), the `th lower shadow of S is the

set ∂−` (S) consisting of all those t ∈ [n](k−`) for which there exists s ∈ S with

t ⊆ s. Similarly, given ` ∈ N with k + ` ≤ n and a set S ⊆ [n](k), the `th upper

shadow of S is the set ∂+
` (S) consisting of all those t ∈ [n](k+`) for which there

exists s ∈ S with s ⊆ t. We need the following consequence of the Kruskal-Katona
theorem [8, 10].

Lemma 4.

(i) Let k, n ∈ N be such that 3 ≤ k ≤ n. Given a nonempty S ⊆ [n](k), define
s ∈ R by |S| =

(
s
k

)
. Then |∂−k−2(S)| ≥

(
s
2

)
.

(ii) Suppose that S′ ( [n](2) and let c, d ∈ N ∪ {0} be such that c < n, d <

n− (c+ 1) and |S′| = cn−
(
c+1
2

)
+d. If n ≥ 100 and c ≤ 8 then |∂+

1 (S′)| ≥
c
(
n−c
2

)
+ 2dn/5.

(iii) If S′ ⊆ [n](2) and |S′| ≤ n − 1 then |∂+
2 (S′)| ≥ |S′|

(
n−|S′|−1

2

)
+
(|S′|

2

)
(n −

|S′| − 1).

Proof. The Kruskal-Katona theorem states that the size of the lower shadow of
a set S ⊆ [n](k) is minimized if S is an initial segment of [n](k) in the colexico-
graphic order. (i) is a special case of a weaker (quantitative) version of this due

to Lovász [11]. In order to prove (ii) and (iii), note that whenever A,B ∈ [n](k)

then A < B in the colexicographic order if and only if [n] \ A < [n] \ B in the

lexicographic order on [n](n−k) with the order of the ground set reversed. Thus,
by considering complements, it follows from the Kruskal-Katona theorem that the
size of the upper shadow of a set S′ ⊆ [n](k) is minimized if S′ is an initial segment

of [n](k) in the lexicographic order. This immediately implies (iii). Moreover, if
S′, c and d are as in (ii), then

|∂+
1 S
′| ≥

(
n− 1

2

)
+

(
n− 2

2

)
+ · · ·+

(
n− c

2

)
+ d(n− c− 2)−

(
d

2

)
≥ c

(
n− c

2

)
+

2

5
dn,

as required. �
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We will also use the following result of Tillson [13] on Hamilton decompositions
of complete digraphs. (The complete digraph DKn on n vertices has a directed
edge xy between every ordered pair x 6= y of vertices. So |E(DKn)| = n(n− 1).)

Theorem 5. The complete digraph DKn on n vertices has a Hamilton decompo-
sition if and only if n 6= 4, 6.

Proof of Theorem 2. The first part of the proof for (i) and (ii) is identical.
So let M be as in (i),(ii). (For (ii) note that if

(
n
3

)
is not divisible by n, then 3

divides n and n divides
(
n
3

)
− n

3 .) Let

` :=

⌊(
n
k

)
− |M |

n(n− 1)

⌋
and m :=

(
n
k

)
− |M | − `n(n− 1)

n
.

Note that m < n−1 and m ∈ N∪{0} since n divides
(
n
k

)
−|M |. Define an auxiliary

(balanced) bipartite graph G with vertex classes A∗ and B of size
(
n
k

)
− |M |

as follows. Let A := E(K
(k)
n ) and A∗ := A \ M . Let D1, . . . , D` be copies

of the complete digraph DKn on n vertices. For each i ∈ [`] let Bi, B
′
i be a

partition of E(Di) such that for every pair xy, yx of opposite directed edges,
Bi contains precisely one of xy, yx. Apply Theorem 5 to find m edge-disjoint
Hamilton cycles H1, . . . ,Hm in DKn. We view the sets B1, . . . , B`, B′1, . . . , B

′
`

and E(H1), . . . , E(Hm) as being pairwise disjoint and let B denote the union of
these sets. So |B| = |A∗|. Our auxiliary bipartite graph G contains an edge
between z ∈ A∗ and xy ∈ B if and only if {x, y} ⊆ z.

We claim that G contains a perfect matching F . Before we prove this claim,
let us show how it implies Theorem 2. For each i ∈ [`], apply Theorem 5 to
obtain a Hamilton decomposition H1

i , . . . ,H
n−1
i of Di. For each i ∈ [`] and each

j ∈ [n − 1] let Aj
i ⊆ A be the neighbourhood of E(Hj

i ) in F . Note that each

Aj
i is the edge set of a Hamilton Berge cycle of K

(k)
n −M . Similarly, for each

i′ ∈ [m] the neighbourhood Ai′ of E(Hi′) in F is the edge set of a Hamilton Berge

cycle of K
(k)
n −M . Since all the sets Aj

i and Ai′ are pairwise disjoint, this gives a

decomposition of K
(k)
n −M into Hamilton Berge cycles.

Thus it remains to show that G satisfies Hall’s condition. So consider any
nonempty set S ⊆ A∗ and define s, a ∈ R with k ≤ s ≤ n and 0 < a ≤ 1 by
|S| = a

(
n
k

)
=
(
s
k

)
. Define b by |NG(S)∩B1| = b

(
n
2

)
. Note that |NG(S)∩B1| ≥

(
s
2

)
by Lemma 4(i). But

bk

a2
≥
(
s
2

)k(n
k

)2(
n
2

)k(s
k

)2 ≥ 1,

and so b ≥ a2/k. Thus

|NG(S)| ≥ 2`|NG(S) ∩B1| ≥ 2`a2/k
(
n

2

)
= a2/k(|B| − |E(H1) ∪ · · · ∪ E(Hm)|)

≥ a2/k (|A∗| − n(n− 2)) .
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Let

g :=

(
n
k

)
− |A∗|+ n(n− 2)(

n
k

) .

So if

(1) a1−2/k ≤ |A∗|(
n
k

) − n(n− 2)(
n
k

) = 1− g,

then |NG(S)| ≥ |S|. We now distinguish three cases.

Case 1. 4 ≤ k ≤ n− 3

Since

|A∗|−2n(n−1) ≤ |A∗|−
((

n

k

)
− |A∗|

)
−2n(n−2) = (1−2g)

(
n

k

)
≤ (1−g)2

(
n

k

)
,

in this case (1) implies that |NG(S)| ≥ |S| if |S| ≤ |A∗| − 2n(n − 1). So suppose
that |S| > |A∗| − 2n(n − 1). Note that if k ≥ 5 then every b ∈ B satisfies

|NG(b)| =
(
n−2
k−2
)
−|M | ≥

(
n−2
3

)
−n ≥ 2n(n−1) since n ≥ k+3 and n ≥ 20. Hence

NG(S) = B.
So we may assume that k = 4 and S′ := B \NG(S) 6= ∅. Thus S′1 := S′∩B1 6= ∅

and |S′| ≤ (2`+ 2)|S′1|. Note that |NG(S′1)| ≤ |A∗ \ S| < 2n(n− 1). First suppose

|S′1| ≥ 7. Then |NG(S′1)| ≥ 7
(
n−8
2

)
+ 21(n− 8)− |M | > 2n(n− 1) by Lemma 4(iii)

and our assumption that n ≥ 30. So we may assume that |S′1| ≤ 6. Apply
Lemma 4(iii) again to see that

|NG(S′)| ≥ |S′1|
(
n− 7

2

)
− |M | ≥

(
n−7
2

)
2` + 2

|S′| − n ≥ 6(n− 7)(n− 8)

(n− 2)(n− 3) + 24
|S′| − n

≥ 2|S′| − n > |S′|.

(Here we use that |S′| ≥ 2` > n and n ≥ 30.) Thus |NG(S)| ≥ |S|, as required.

Case 2. k = 3

Since

|A∗|−3n(n−1) ≤ |A∗|−2

((
n

k

)
− |A∗|

)
−3n(n−2) = (1−3g)

(
n

k

)
≤ (1−g)3

(
n

k

)
,

in this case (1) implies that |NG(S)| ≥ |S| if |S| ≤ |A∗| − 3n(n − 1). So suppose
that |S| > |A∗|−3n(n−1) and that S′ := B \NG(S) 6= ∅. Thus S′1 := S′∩B1 6= ∅
and |S′| ≤ (2`+2)|S′1| ≤ ((n−2)/3+2)|S′1|. Let c, d ∈ N∪{0} be such that c < n,

d < n−(c+1) and |S′1| = cn−
(
c+1
2

)
+d. Note that |NG(S′1)| ≤ |A∗\S| < 3n(n−1).

Thus c < 8 since otherwise

|NG(S′1)| ≥ 8

(
n− 8

2

)
− |M | ≥ 8

(
n− 8

2

)
− n

3
>

32

5

(
n

2

)
> 3n(n− 1)

by Lemma 4(ii) and our assumption that n ≥ 100. Let M(S′1) denote the set of
all those edges e ∈ M for which there is a pair xy ∈ S′1 with {x, y} ⊆ e. Thus
M(S′1) = ∂+

1 (S′1)∩M . Recall that M is a matching in the case when k = 3. Thus
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|M(S′1)| ≤ |S′1|. In particular |M(S′1)| ≤ d if c = 0. Apply Lemma 4(ii) again to
see that

|NG(S′)| ≥ |NG(S′1)| ≥ c

(
n− c

2

)
+

2

5
dn− |M(S′1)|

≥ 4c

5

(
n

2

)
+

2

5
dn−

{
n/3 if c ≥ 1

d if c = 0

≥ (cn + d) · 11

10
· n− 2

3
≥ |S′1|

(
n− 2

3
+ 2

)
≥ |S′|,

where we use that n ≥ 100. Thus |NG(S)| ≥ |S|, as required.

Case 3. n− 2 ≤ k ≤ n− 1

If k = n − 1 then K
(k)
n itself is a Hamilton Berge cycle, so there is nothing to

show. So suppose that k = n − 2. In this case, it helps to be more careful with
the choice of the Hamilton cycles H1, . . . ,Hm: instead of applying Theorem 5
to find m edge-disjoint Hamilton cycles H1, . . . ,Hm in DKn, we proceed slightly
differently. Note first that ` = 0. Suppose that n is odd. Then M = ∅ and
m = (n − 1)/2. If n is even, then |M | = n/2 and m = n/2 − 1. In both cases
we can choose H1, . . . ,Hm to be m edge-disjoint Hamilton cycles of Kn. Then a
perfect matching in our auxiliary graph G still corresponds to a decomposition of

K
(k)
n −M into Hamilton Berge cycles. Also, in both cases E(H1) ∪ · · · ∪ E(Hm)

contains all but at most n/2 distinct elements of [n](2).
Consider any b ∈ B. Then

|NG(b)| ≥
(
n− 2

k − 2

)
−|M | =

(
n− 2

2

)
−|M | ≥

(
n

2

)(
1− 5

n− 1

)
≥ 2

3

(
n

2

)
≥ 2

3
|A∗|.

Now consider any a ∈ A∗. Then

|NG(a)| ≥
(
k

2

)
− n

2
≥ 2

3

(
n

2

)
≥ 2

3
|B|.

So Hall’s condition is satisfied and so G has a perfect matching, as required. �

The lower bounds on n have been chosen so as to streamline the calculations,
and could be improved by more careful calculations.
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[12] E. Lucas, Récréations Mathématiques, Vol. 2, Gautheir-Villars, 1892.

[13] T.W. Tillson, A Hamiltonian decomposition of K
∗
2m, 2m ≥ 8, J. Combin. Theory B 29

(1980), 68–74.
[14] M.W. Schroeder, On Hamilton cycle decompositions of r-uniform r-partite hypergraphs,

Discrete Math. 315-316 (2014), 1–8.
[15] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Discrete Math.

132 (1994), 333–348.
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