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Abstract

The main focus of this thesis is algebraic modules—modules that satisfy a polynomial

equation with integer co-efficients in the Green ring—in various finite groups, as well

as their general theory. In particular, we ask the question ‘when are all the simple

modules for a finite group G algebraic?’ We call this the (p-)SMA property.

The first chapter introduces the topic and deals with preliminary results, together

with the trivial first results. The second chapter provides the general theory of alge-

braic modules, with particular attention to the relationship between algebraic modules

and the composition factors of a group, and between algebraic modules and the Heller

operator and Auslander–Reiten quiver.

The third chapter concerns itself with indecomposable modules for dihedral and

elementary abelian groups. The study of such groups is both interesting in its own

right, and can be applied to studying simple modules for simple groups, such as the

sporadic groups in the final chapter.

The fourth chapter analyzes the groups PSL2(q); here we determine, in charac-

teristic 2, which simple modules for PSL2(q) are algebraic, for any odd q. The fifth

chapter generalizes this analysis to many groups of Lie type, although most results

here are in defining characteristic only. Notable exceptions include the Ree groups
2G2(q), which have the 2-SMA property for all q.

The sixth and final chapter focuses on the sporadic groups: for most groups

we provide results on some simple modules, and some of the groups are completely

analyzed in all characteristics. This is normally carried out by restricting to the Sylow

p-subgroup.

This thesis develops the current state of knowledge concerning algebraic modules

for finite groups, and particularly for which simple groups, and for which primes, all

simple modules are algebraic.
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Chapter 1

Introduction and Preliminaries

The notion of an algebraic module originated with Jonathan Alperin: in [1], Alperin

defined an algebraic module to be a module that satisfies some polynomial with

coefficients in Z, where addition is direct sum and multiplication is tensor product.

The natural place to consider such an object is in the Green ring a(KG), which here

is defined to be all Z-linear combinations of isomorphism types of indecomposable

modules. (Of course, one can extend the ring of coefficients to either Q or C, and

there are often good reasons to do so, although we will not need to do so here.)

There is an obvious direct analogue with the case of an algebraic number. The study

of algebraic numbers has resulted in a huge edifice of mathematics, but so far the

concept of algebraic modules has been rarely directly used. That said, it has been

of considerable indirect use, since understanding the decomposition of tensor powers

of modules into their indecomposable summands has been an important aspect of

representation theory for a long time. The connection between the two areas can be

seen with the following result.

Lemma 1.1 Suppose that M is a module for a group G. The following conditions

are equivalent:

(i) M satisfies a polynomial with coefficients in Z; and

(ii) there are only finitely many isomorphism types of summand lying in M⊗n as n

varies.

The proof is simple: if M satisfies a polynomial with coefficients in Z, say of degree

n, then every summand of M⊗n has already appeared in
⊕

i<nM
⊗i, and clearly the

same can be said for M⊗j for j > n. Conversely, if there are finitely many, say n,

different indecomposable modules that appear in tensor powers of M , write M⊗i as

1



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

a sum of these modules, for each 1 6 i 6 n+ 1. This gives n+ 1 simultaneous linear

equations in the n indecomposable modules, yielding a dependence amongst the M⊗i;

i.e., it produces a polynomial with coefficients in Z that M satisfies.

Of particular significance are the tensor powers of naturally occurring modules,

such as permutation modules, projective modules, simple modules, and so on. Since

the tensor product of two projective modules is again projective, all projective mod-

ules are algebraic. More generally, the tensor product of two summands of permuta-

tion modules is a summand of a permutation module, and so they are algebraic. The

situation with simple modules is considerably more complicated, however.

In the literature, the non-trivial results on when simple modules are algebraic

can be grouped into two collections: those on soluble groups, or more generally, on

p-soluble groups; and those on (quasi)simple groups. In the former category, we find

the result of Berger ([16], [17]), proving that every simple module for every soluble

group is algebraic, and its extension to p-soluble groups by Feit [35]. In the second

category, we note that Alperin [3] proved that for G ∼= SL2(2
n), and K a splitting field

of characteristic 2, all simple modules are algebraic. In addition, it is stated in [17]

as well-known that the natural module for GL3(p) is non-algebraic. (This is proved

in Corollary 5.6.) Apart from these results, very little appears in the literature.

This thesis significantly increases the state of knowledge with respect to algebraic

modules. In particular, we prove the following theorems.

Theorem A Let G be a finite group, and let M be a non-periodic, algebraic module.

Then Ωi(M) is non-algebraic for all i 6= 0.

Theorem B Let G be a finite group, and let M be an indecomposable algebraic

module of complexity at least 3. Write Γ for the component of the stable Auslander–

Reiten quiver Γs(KG) containing M . Then M lies on the end of Γ, and no other

module on Γ is algebraic.

Theorem C Let G denote a dihedral 2-group, and let Γ be a component of Γs(KG)

with non-periodic modules. Then there is at most one algebraic module on Γ.

Theorem D Let G be the group PSL2(q) where q is odd, and let K be a field of

characteristic 2. Then all simple modules are algebraic if and only if q 6≡ 7 mod 8,

and if q ≡ 3, 5 mod 8 then all tensor products of arbitrarily many simple modules

are explicitly determined.

2



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Theorem E Let G be a sporadic group, and let K be a field of characteristic p.

Then all simple KG-modules are algebraic in the following cases:

(i) G = M11 and p = 2;

(ii) G = M22 and p = 3;

(iii) G = HS and p = 3;

(iv) G = J2 and p = 3 or p = 5;

(v) G = J1 and p = 2; and

(vi) G is a sporadic group and p2 - |G|.

Theorem F Let G be a group with abelian Sylow 2-subgroups, and let K be a field

of characteristic 2. Then all simple KG-modules are algebraic.

The paucity of results until now is not at all unexpected; decomposing tensor

products of modules is a tricky prospect, hampered by the fact that tensor products

run roughshod over the block structure, and that it is generally difficult to examine

the internal structure of indecomposable modules given nothing more than the fact

that they are summands of a particular tensor product.

In practice—that is, when dealing with specific groups—it is difficult to find a

linear dependence amongst the M⊗n, and harder still to try to prove such a depen-

dence is valid. A slightly more effective way is to perform the following procedure:

firstly, decompose M ⊗M into a sum of indecomposable modules Mi for 1 6 i 6 r;

then decompose M1 ⊗M , and if any of the summands are not isomorphic with M

or the Mi, we append them to the end of the list as Mr+1, Mr+2, and so on. Then

decompose M ⊗M2, and perform the same task again. This procedure terminates if

and only if M is algebraic, and assuming this procedure terminates, we will be left

with a list of modules M1, . . . ,Ms of all possible indecomposable summands of M⊗n

for every n. Using the decompositions of M ⊗Mi, one can if necessary construct a

polynomial that M satisfies.

Entangled with the concept of algebraic modules is that of simply generated mod-

ules. A simply generated module is one that is a summand of M1 ⊗M2 ⊗ · · · ⊗Mr

for some (possibly equal) simple modules Mi. Obviously, every simple module is

algebraic if and only if there are only finitely many simply generated modules.

This short introductory chapter will focus on the previous results that have ap-

peared before in the literature, and those that are basic enough to be placed at the

3



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

very start, together with necessary results from both representation theory and group

theory. Known results specific to a particular section will tend to be appear within

that section, however.

1.1 Basic and Previous Results

Since we will be dealing with tensor powers of modules, we will introduce the notation

T (M) to denote the tensor module of M ; this is the infinite-dimensional N-graded

module

T (M) = M ⊕M⊗2 ⊕M⊗3 ⊕ · · · .

Thus M is algebraic if and only if T (M) has only finitely many different isomorphism

classes of summand in its homogeneous components.

The purpose of this section is to collate the, mostly trivial, results on moving from

one algebraic module to another. The first two follow from the alternate characteri-

zation of algebraic modules given in Lemma 1.1.

Lemma 1.2 Suppose that M is an algebraic module. Then any summand of M is

algebraic.

Lemma 1.3 Suppose that M1 and M2 are algebraic modules. Then M1 ⊕M2 and

M1 ⊗M2 are algebraic. In addition, a module M is algebraic if and only if M⊗n is

algebraic for some positive integer n.

We can also use induction and restriction to produce new algebraic modules.

Lemma 1.4 (Berger [17]) Suppose that G is a finite group, and that H is a sub-

group of G. If M is an algebraic KG-module, then M ↓H is an algebraic KH-module.

In addition, if N is a KH-module, then N ↑G is algebraic if and only if N is algebraic.

Proof: (Feit [36]) Suppose that

n⊕
i=0

aiM
⊗i = 0

for some integers ai. Then, taking restrictions to H, we have(
n⊕

i=0

aiM
⊗i

)
↓H=

n⊕
i=0

ai(M ↓H)⊗i = 0,

and hence M ↓H is algebraic.

4



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

In the other direction, we firstly proceed by induction on |H|. Suppose that N is

algebraic; then by Mackey’s tensor product theorem,

(N ↑G)⊗n = (N ↑G)⊗(n−1) ⊗N ↑G

=
(
(N ↑G)⊗(n−1) ↓H ⊗N

)
↑G

=

(⊕
g

N g ↓Hg∩H↑H

)⊗(n−1)

⊗N

 ↑G .

This implies that (N ↑G)⊗n is a sum of modules(
n⊗

i=1

N gi ↓Hgi∩H↑H

)
↑G .

The module N g ↓Hg∩H is algebraic and by induction hypothesis so is (N g ↓Hg∩H) ↑H .

There are only finitely many different KH-modules of the form N g ↓Hg∩H , and so

there is a finite list of indecomposable summands A1, . . . , Am, such that for each n,

every summand of
n⊗

i=1

N gi ↓Hgi∩H↑H

is isomorphic with one of them. Then every summand of (N ↑G)⊗n is isomorphic with

a summand of some Ai ↑G, and so N ↑G is algebraic.

Conversely, suppose that N ↑G is algebraic. By the Mackey decomposition theo-

rem,

(N ↑G) ↓H=
⊕
t∈T

N t ↓H∩Ht↑H ,

where T is a set of (H,H)-double coset representatives. In particular, T can be chosen

so that 1 ∈ T , and so N |(N ↑G) ↓H ; hence if N ↑G is algebraic then N is algebraic.

Lemma 1.4 can be used to prove the following important result.

Proposition 1.5 Suppose that M is an indecomposable KG-module; let Q be a

vertex for M , and let S be a source of M . Then M is algebraic if and only if S is

algebraic.

Proof: The module S has the property that S|M ↓Q and M |S ↑G. The first state-

ment implies that M is algebraic if S is, and the second statement provides the

converse.

5



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

This, combined with the fact that if P is a cyclic p-group, then every KP -module

is algebraic, and the fact that if Q is a vertex of an indecomposable module M , then

Q is contained in a defect group of the block containing M , yields the following.

Corollary 1.6 Suppose that B is a block of KG with cyclic defect group. Then

every B-module is algebraic. More generally, let M be an indecomposable module

with cyclic vertex. Then M is algebraic.

Finally for the basic results, we include for reference the contrapositive of Lemma

1.4, which will be used extensively in later chapters.

Lemma 1.7 Suppose that M is a KG-module, and let H be a subgroup of G. Sup-

pose that N is a summand of M ↓H , and finally suppose that N is not algebraic.

Then M is not algebraic.

Moving on to more complicated results previously found in the literature, we start

with results of Berger. Berger’s paper [17] collects several other results not already

discussed: we give them here for future use. The first implies that we need not worry

about the size of the field over which we work.

Theorem 1.8 (Berger [17]) Let K be a field of characteristic p, and let F be an

extension field of K. Let M be a KG-module. Then M is algebraic if and only if

M ⊗K F is algebraic.

We now come to an important concept of this thesis: if K is a field of characteristic

p, and all of the simple KG-modules are algebraic, we will say that G has p-SMA; a

priori, this might depend on the size of the field K. However, it does not, as we shall

now prove.

Let N denote the sum of every simple KG-module. If M is a simple KG-module

and F is an extension field of K, then M ⊗K F is semisimple. Furthermore, every

simple FG-module is a submodule of some M⊗KF , where M is a simple KG-module.

Thus every simple FG-module is a summand of N ⊗K F , and N ⊗K F is semisimple.

All simple KG-modules are algebraic if and only if N (or equivalently by Theorem

1.8, N⊗KF ) is algebraic, and N⊗KF is algebraic if and only if all simple FG-modules

are algebraic; this proves the claim.

Corollary 1.9 Let G be a finite group, and let K and F be any two fields of char-

acteristic p. Then all simple KG-modules are algebraic if and only if all simple

FG-modules are algebraic. Hence the statement ‘G has p-SMA’ does not depend on

the size of the field involved.

6



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Earlier in the chapter we stated that M is algebraic if and only if T (M) contains

only finitely many different indecomposable summands; in fact, it can be shown that

M is algebraic if and only if M⊗n can be written as a sum of smaller tensor powers

of M .

Theorem 1.10 (Berger [17]) Suppose that M is an algebraic KG-module, where

G is a finite group and K is a field. Then M satisfies a monic polynomial with

coefficients in Z.

Let M be an algebraic KG-module. Then M satisfies a polynomial with integer

coefficients, and so M satisfies a polynomial of minimal such degree. This is referred

to as the degree of the module M , and denoted degM . Notice that by Theorem

1.20, which lies in the next section, we can easily see that the constant term of the

minimal polynomial of an absolutely indecomposable module M is non-zero if and

only if dimM is prime to p and M∗ is a summand of M⊗i for some i.

Berger’s paper [17] had the following as its main result.

Theorem 1.11 (Berger [17]) Let G be a soluble group, and let K be any field.

Then all simple KG-modules are algebraic.

Feit extended Berger’s result to the larger class of p-soluble groups.

Theorem 1.12 (Feit [35]) Let G be a p-soluble group and let K be a field of char-

acteristic p. Then all simple KG-modules are algebraic.

Feit’s proof revolved around taking a minimal non-central normal subgroup of the

p-soluble group, and proceeding by induction on the dimension of the simple module

involved. The proof relies on the classification of the finite simple groups. One of

the key themes in Chapter 2 is understanding how this theorem generalizes, and how

the normal subgroup structure of a group affects whether the simple modules are

algebraic.

Theorem 1.13 (Alperin [3]) Let K be a field, and let G = SL2(2
n). Then any

simple KG-module is algebraic.

This result demonstrates that there are groups that are not p-soluble, and that do

not have cyclic Sylow p-subgroups, that nevertheless have p-SMA. Another central

theme in this thesis will be attempting to find other groups for which this is true.

7



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

1.2 Required Results from Representation Theory

In this section we collate the results from representation theory needed for this thesis.

We start this with the definition and main results on periodicity. The concept of

periodicity was first introduced for modules in [44], where some of its properties were

proved. Recall that if M is a KG-module then Ω(M) is defined to be the kernel of the

surjective map from the projective cover P(M) to M . Similarly, Ω−1(M) is defined to

be the cokernel of the injective map from M to the injective hull of M . Write Ω0(M)

for the sum of the non-projective summands of M . Define Ωi(M) for all other i ∈ Z
inductively.

The operations Ω and Ω−1 are inverse in the sense that

Ω(Ω−1(M)) = Ω0(M) = Ω−1(Ω(M)).

If M is a non-projective indecomposable module, then Ω0(M) = M , and Ωi(M) is

a non-projective indecomposable module for all i ∈ Z. Since Ω and Ω−1 are inverse

to one another on the set of all non-projective indecomposable modules, Ω induces a

bijection on this collection. Note that Ω(P ) = 0 if P is a projective module.

Lemma 1.14 Let G be a finite group and let M1 and M2 be KG-modules.

(i) Ω(M1 ⊕M2) = Ω(M1)⊕ Ω(M2).

(ii) Ω(M1 ⊗M2) = Ω0(Ω(M1)⊗M2).

(iii) Ω−1(M1) = Ω(M∗
1 )∗.

There is some useful interaction between the Green correspondence and the Heller

operator.

Lemma 1.15 Let P be a p-subgroup of the finite group G, and let M be an inde-

composable KG-module.

(i) The p-subgroup P is a vertex of M if and only if P is a vertex of Ω(M).

(ii) If U is the Green correspondent of M in H > NG(D), then Ω(U) is the Green

correspondent of Ω(M).

(iii) If S is a source of the KG-module M , then Ω(S) is a source of the module

Ω(M).

8



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

If Ωi(M) = Ω0(M) for some non-zero i, then M is called (Ω-)periodic (as first

discussed in [2]), and its period is the smallest positive i for which this statement

holds. This section will investigate the impact of periodicity on whether a module is

algebraic.

The following is a collection of some of the most important facts on periodic

modules.

Lemma 1.16 ([36, II.6.4]) Suppose that G is a finite group. If K is periodic as a

KG-module then all modules are periodic.

The module K is periodic if and only if G has cyclic or quaternion Sylow p-

subgroups; i.e., if G has p-rank 1 (see [24, XII.7]). In these two cases then, all

modules are periodic. In the first case, where the Sylow p-subgroups of G are cyclic,

since there are only finitely many isomorphism types of indecomposable module, all

KG-modules are algebraic. The second case is considerably more difficult, and no

description of the algebraic modules is known. Part of the problem stems from the

fact that there is no good description of the indecomposable modules, unlike the

other tame cases of dihedral groups and semidihedral groups. (Even in those cases

the answer is not known, although for dihedral 2-groups there are some partial results,

given in Chapter 3.)

Theorem 1.17 (Carlson [22], Alperin–Evens [7]) A KG-module M is periodic

if and only if the restriction of M to all elementary abelian subgroups is periodic.

If P is an abelian p-group, then a periodic module has period either 1 or 2. The

corresponding result for non-abelian groups is considerably more complicated, but is

a natural generalization of the abelian case.

Theorem 1.18 (Carlson [22]) Let P be a finite p-group of order pn. Write A (G)

for the set of all maximal abelian subgroups, and let pr be the smallest order of an

element A of A (G). Then the period of any periodic module divides 2pn−r.

Finally, we give a result of Carlson’s, conjectured by Alperin in [2], on the dimen-

sions of periodic modules.

Theorem 1.19 (Carlson [21]) Let G be a finite group of p-rank r. Then a periodic

KG-module has dimension a multiple of pr−1.

9



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Having dealt with periodicity, we move on to other properties of modules. In the

rest of this thesis, we write n ·M to mean the n-fold direct sum of the module M

with itself. We begin with two results on summands of tensor products.

Theorem 1.20 (Benson–Carlson [15]) Let G be a finite group and M and N be

absolutely indecomposable KG-modules.

(i) K|M ⊗ N if and only if p - dimM and M ∼= N∗, in which case 2 ·K is not a

summand of M ⊗N .

(ii) If p | dimM , then every summand of M ⊗N has dimension a multiple of p.

Proposition 1.21 (Auslander–Carlson [11, Proposition 4.9]) Let G be a fi-

nite group and K be a field of characteristic p. If M is an indecomposable module of

dimension a multiple of p, then 2 ·M is a direct summand of M ⊗M∗ ⊗M .

These two results taken together prove that if M is any KG-module, then M is

a summand of M ⊗M∗ ⊗M . The next result shows that if M is faithful, then one

may find a free module inside some sum of tensor powers of M .

Proposition 1.22 ([4, 7.1], and [36, III.2.18]) Let M be a KG-module. Then

T (M) contains a free KG-module if and only if M is faithful. In particular, if M

is a faithful module then T (M) has every projective module as a summand, and all

projective modules are simply generated if and only if Op(G) = 1.

The next result gives us some control over the summands of tensor powers, al-

though this control is in a very real sense quite weak.

Lemma 1.23 ([36, Lemma II.2.3]) Let G be a finite group, and let H be a sub-

group of G. Let M be a KG-module, and N be a KH-module. Then

M ⊗N ↑G= (M ↓H ⊗N) ↑G .

In particular, if M1 and M2 are indecomposable KG-modules, and M1 has vertex Q,

then the vertex of each summand of M1 ⊗M2 is contained within Q.

It makes sense therefore to examine the vertices of simple modules with regard to

the blocks, and this is the focus of the last two results.

10



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Theorem 1.24 (Knörr [55]) Let G be a finite group and B be a block of KG,

with defect group D. Let M denote a simple B-module, with vertex P . Then P can

be chosen so that CD(P ) 6 P 6 D; in particular if D is abelian, then all simple

B-modules have vertex D.

Theorem 1.25 (Erdmann [29]) Let G be a finite group, let B be a block of KG,

and let M be a simple B-module. If M has cyclic vertex P , then B has defect group

P .

1.3 Required Results from Group Theory

The results from group theory that we require are essentially characterizations of

various finite groups. During the 1960s and 1970s several very deep results were

produced about finite groups whose Sylow 2-subgroups were of a prescribed type. We

begin with the characterization of groups with abelian Sylow 2-subgroups.

Theorem 1.26 (Walter [77]) Suppose that G is a finite group with abelian Sylow

2-subgroups. Then G possesses a normal subgroupH of odd index, containing O2′(G),

such that H/O2′(G) is a direct product of an abelian 2-group and simple groups with

abelian Sylow 2-subgroup, which are the groups

(i) SL2(2
n) for n > 3,

(ii) PSL2(q) for q > 5, q ≡ 3, 5 mod 8,

(iii) 2G2(3
2n+1) for n > 1, and

(iv) the sporadic group J1.

This is fairly typical of results of this type. Next, we examine groups with dihedral

Sylow 2-subgroups.

Theorem 1.27 (Gorenstein–Walter [40]) Let G be a finite group with dihedral

Sylow 2-subgroups. Then G has a subgroup H of odd index, containing O2′(G), such

that H/O2′(G) is isomorphic to one of the following groups:

(i) a dihedral 2-group;

(ii) PSL2(q), q > 5 odd;

(iii) PGL2(q), q > 5 odd; or

11



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

(iv) A7.

However, when it came to groups with semidihedral Sylow 2-subgroups, Alperin,

Brauer and Gorenstein could only prove a classification of such simple groups, not of

an arbitrary finite group.

Theorem 1.28 (Alperin–Brauer–Gorenstein [5]) Suppose that G is a simple

group with semidihedral Sylow 2-subgroups. Then G is isomorphic with one of the

groups

(i) PSL3(q) with q ≡ 3 mod 4 and q > 5;

(ii) PSU3(q) with q ≡ 1 mod 4; or

(iii) the Mathieu group M11.

In the case of wreathed Sylow 2-subgroups, the classification of simple groups

with such Sylow 2-subgroups was started in [5], and completed in [6], using character

theory developed by Brauer in [19].

Theorem 1.29 (Alperin–Brauer–Gorenstein [5],[19],[6]) Suppose that G is a

simple group with wreathed Sylow 2-subgroups. Then G is isomorphic with one of

the groups

(i) PSL3(q) with q ≡ 1 mod 4; or

(ii) PSU3(q) with q ≡ 3 mod 4 and q > 5.

In [6], the three authors also prove the result that if G is a finite simple group of

2-rank two, then G has either dihedral, semidihedral, wreathed, or is PSU3(4).

Before we begin, we will describe our conventions. All words should be read left-

to-right, and all maps are composed in the same way. Similarly, all of our modules

are right modules.

12



Chapter 2

General Theory of Algebraic
Modules

This chapter contains, as its title suggests, the general theory of algebraic modules.

This theory currently consists of two main branches: the first is the relationship

between indecomposable algebraic modules and the Heller operator and Auslander–

Reiten quiver; and the second is the relationship between the normal subgroup struc-

ture of a group and the algebraicity of simple modules.

2.1 The Green Ring and Algebraic Modules

In this section we will briefly consider the quotient by an ideal consisting solely of

algebraic modules, and then examine the minimal polynomial of an algebraic module.

Proposition 2.1 Let I be an ideal of algebraic modules in the Green ring a(KG),

and let M be a KG-module. Then M is algebraic in a(KG) if and only if M + I

is algebraic in a(KG)/I . In particular, if P denotes the ideal consisting of all

projective modules, then a KG-module M is algebraic if and only if M + P is

algebraic.

Proof: Suppose that M is algebraic. Then M satisfies some polynomial in the Green

ring, and therefore its coset in any quotient satisfies this polynomial as well. Con-

versely, suppose that M + I satisfies some polynomial in the quotient a(KG)/I .

Thus ∑
αi(M + I )i = I .

This implies that, since (M + I )i = M⊗i + I , then∑
αiM

⊗i ∈ I ,

13



CHAPTER 2. GENERAL THEORY OF ALGEBRAIC MODULES

which consists of algebraic modules. Hence there is some polynomial involving only

M witnessing the algebraicity of M .

In fact, one can extend the ideal P to one containing not only the projective

modules but all modules of cyclic vertex, by Lemma 1.23.

This proposition can be used to make the results of the next section easier to

follow, as we can effectively ignore all projective summands of modules when we wish

to determine algebraicity.

We now move on to examine the minimal polynomial of an algebraic module, as

discussed at the end of Section 1.1. The proof that induction preserves algebraic

modules did not easily yield a polynomial for the induced module in terms of the

polynomial of the original module. However, restriction is better.

Lemma 2.2 Suppose that M is a KG-module, and H 6 G. If p(x) is the minimal

polynomial for M , then p(M ↓H) = 0, and so the minimal polynomial for M ↓H

divides p(x).

If M ↓H is indecomposable, then this gives much information about the mini-

mal polynomial for M ↓H ; however, if M ↓H is not indecomposable then this gives

relatively little information about the minimal polynomial for a summand of M ↓H .

Recall that degM denotes the degree of the minimal polynomial of M . We start

by classifying modules of degree 1.

Lemma 2.3 Suppose that M is a KG-module, and that degM = 1. Then M is a

(possibly decomposable) trivial module.

Proof: This is obvious: if M satisfies a polynomial ax− b then M = (a/b) ·K.

Next, we move on to modules of degree 2.

Proposition 2.4 Let M be an indecomposable KG-module with degM = 2. Then

either M is trivial, p 6= 2 and M is the non-trivial 1-dimensional module for C2

viewed as a KG-module (assuming that G has a quotient isomorphic with C2), or M

is isomorphic with a p-group algebra KH, viewed as a KG-module (assuming that

G has a quotient isomorphic with H).

Proof: We assume that M is faithful; if not, then we quotient out by the kernel of

M first. Suppose that M satisfies the polynomial ax2 − bx− c. Then

a ·M⊗2 = b ·M ⊕ c ·K.

14



CHAPTER 2. GENERAL THEORY OF ALGEBRAIC MODULES

Thus M⊗2 is a sum of copies of M and K, so relabelling we may assume that

M⊗2 = a ·M ⊕ b ·K.

By Theorem 1.20, either b = 0 or b = 1. If b = 0, then M⊗2 = a ·M , and since T (M)

contains a free module, M itself must be free. Hence G is a p-group and M ∼= KG.

Suppose therefore that b = 1. Then M⊗2 = a · M ⊕ K. Taking congruences

modulo dimM implies that dimM = 1, and so M⊗2 = K. Again M ⊕K contains a

free module, and so either M is free, and hence M = K, or M ⊕K is free, and we

have that M ⊕K is the group algebra of C2, as required.

The main stumbling block in continuing this process, and dealing with cubics, is

that there are many modules that satisfy cubics; for example, all even-dimensional

indecomposable KV4-modules satisfy cubics, and in fact satisfy ‘the same’ cubic,

x3 − (n+ 2)x2 + 2nx = 0,

where n = dimM .

The following is an easy partial result for cubics.

Proposition 2.5 Let M be a faithful indecomposable KG-module, and write F for

the free KG-module of dimension |G|. Suppose that degM > 3 and that M⊗2 is a

direct sum of copies of K, copies of M , and copies of F . Then degM = 3.

Proof: Suppose that M⊗2 = α ·M ⊕ β · F ⊕ γ · K (where α, β, γ ∈ Z), and write

n = dimM . Then

F =
M⊗2 	 α ·M 	 γ ·K

β
,

and taking the tensor product of both sides with M and dividing by n, we see that

F =
M⊗3 	 α ·M⊗2 	 γ ·M

nβ
,

and this yields a cubic, as required.

Proceeding in this direction becomes more difficult and complicated as the degree

increases, and with little or no benefit. We will, however, note the following related

question asked by Will Turner, phrased as a conjecture.

Conjecture 2.6 Let G be a finite group, and let K be a field. Then there is an

integer n, dependent only on G and K, such that if M is an algebraic indecomposable

KG-module, then degM 6 n.

15



CHAPTER 2. GENERAL THEORY OF ALGEBRAIC MODULES

This conjecture is obviously true if K is a field of characteristic p and G has

cyclic Sylow p-subgroups. It is also true for V4, as a corollary of a theorem of Conlon

determining the tensor product of any two KV4-modules, which is given in the next

chapter.

Before we continue with this chapter, we pause to introduce a potentially better

invariant for an algebraic module than degM , and that is the number of distinct

isomorphism types of summand in T (M). If N is a summand of M then this invariant

cannot increase, unlike the degree, and its behaviour on restriction and induction is

also controllable to a certain extent. We will not develop a theory of this invariant

here, however.

2.2 Algebraicity and Periodicity

In this section we will relate the Heller operator and algebraic modules. We begin

with infinitely many examples of non-algebraic modules, at least if a finite group G

has a quotient whose p-rank is at least 2 (i.e., G has non-cyclic Sylow p-subgroups).

Proposition 2.7 Let G be a finite group of p-rank at least 2, and let K be a field

of characteristic p. Then, for all i 6= 0, the module Ωi(K) is not algebraic.

Proof: Notice that, modulo projective modules,(
Ωi(K)

)⊗n
= Ωni(K),

and so Ωni(K) appears as a summand of the nth tensor power of Ωi(K) for all n > 1,

an infinite collection of summands since K is not periodic.

If G is not of p-rank 2 and does not have cyclic Sylow p-subgroups, then p = 2

and the Sylow 2-subgroups of G are generalized quaternion. In this case, by the

Brauer–Suzuki theorem, G possesses a normal subgroup Z∗(G) such that G/Z∗(G)

has dihedral Sylow 2-subgroups, and so there are non-algebraic modules for this

quotient. Alternatively, a generalized quaternion 2-group possesses a V4 quotient,

and so there are non-algebraic modules for generalized quaternion 2-groups, whence

any indecomposable module for G with one of those modules as a source would be

non-algebraic.

Now suppose that a KG-module M is periodic; we will determine how this affects

whether M is algebraic. In the next proof, we use the fact that a module M is

algebraic if and only if M⊗i is algebraic for i > 1. (See Lemma 1.3.)
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CHAPTER 2. GENERAL THEORY OF ALGEBRAIC MODULES

Proposition 2.8 Let M be an algebraic periodic module. Then Ωi(M) is algebraic

for all i.

Proof: Suppose that Ωn(M) = M . We know that

Ω(M ⊗N) = Ω0(Ω(M)⊗N) = Ω0(M ⊗ Ω(N)).

Hence, Ω0(Ωi(M)⊗n) = Ωni(M⊗n) = Ω0(M⊗n), and since M⊗n is algebraic (as M is),

the module Ωi(M) is algebraic for all i (as Ω(M)⊗n is).

Both possibilities allowed—that the Ω-translates of M are either all algebraic

modules or all non-algebraic modules—occur in the module category of the quaternion

group. Firstly, the trivial module is an algebraic periodic module, and secondly, since

the group V4 has 2-rank 2, the non-trivial Heller translates of the trivial module for

that group are non-algebraic by Proposition 2.7, and so those modules, viewed as

modules for the quaternion group, are also non-algebraic. It should be mentioned

that no examples of non-algebraic periodic modules are known if the characteristic of

the field is odd.

Now we consider non-periodic modules. Since a module M is non-periodic if and

only if M ⊗M∗ is, we firstly consider self-dual non-periodic modules, then apply this

to the general case.

Proposition 2.9 Let M be a self-dual non-periodic module. If i 6= 0 then Ωi(M) is

not algebraic.

Proof: Consider the module

Ω0(Ωi(M)⊗ Ωi(M)⊗ Ωi(M)) = Ω3i(M⊗3);

as M is a summand of M⊗3, we see that Ω3i(M) is a summand of Ωi(M⊗3). We

can clearly iterate this procedure to prove that infinitely many different Ω-translates

of M lie in tensor powers of Ωi(M) (and these all contain different indecomposable

summands as M is non-periodic) proving that Ωi(M) is non-algebraic, as required.

The following corollary is Theorem A in the introduction.

Corollary 2.10 Let M be a non-periodic algebraic module. Then no module Ωi(M)

for i 6= 0 is algebraic.
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Proof: Suppose that both M and Ωi(M) are algebraic. Then so is M∗, and therefore

so is

Ω0(M∗ ⊗ (Ωi(M))) = Ωi(M ⊗M∗).

Since M ⊗M∗ is self-dual, this module cannot be algebraic, a contradiction.

Hence for non-periodic modules M , either none of the modules Ωi(M) is algebraic,

or exactly one module is, and in the latter case, if one of the modules is self-dual

then this is the algebraic module. In the case of the dihedral 2-groups, there are

non-periodic modules M such that no Ωi(M) are algebraic, and there are self-dual,

non-periodic algebraic modules. In fact, both possibilities for non-periodic modules

must occur since all simple modules for p-soluble groups are algebraic.

To end this section, we collate the results given here into a theorem.

Theorem 2.11 Let M be a KG-module.

(i) If M is periodic, then M is algebraic if and only if all Ωi(M) are algebraic.

(ii) If M is non-periodic, then at most one of the modules Ωi(M) is algebraic, and if

M is self-dual and one of the Ωi(M) is algebraic, then it is M that is algebraic.

Furthermore, all possibilities allowed by this theorem do occur.

This theorem has the following corollary, which will be put to use in the following

chapter.

Corollary 2.12 Let M be a non-periodic indecomposable module, and suppose that

there is some n > 2 such that Ωi(M) or Ωi(M∗) is a summand of M⊗n for some i 6= 0.

Then the module Ωi(M) is non-algebraic for all i ∈ Z.

Proof: Suppose that Ωi(M) is a summand of M⊗n, for some n > 2 and i 6= 0. Then,

for each j ∈ Z, we have

Ωnj+i(M)|Ωj(M)⊗n,

and since at least one of Ωnj+i(M) and Ωj(M) is non-algebraic, we see that T (Ωj(M)),

the sum of the tensor powers of Ωj(M), contains a non-algebraic summand; hence

Ωj(M) is non-algebraic, as required.

Similarly, if Ωi(M∗) ∼= Ω−i(M)∗ is a summand of M⊗n, then

Ωnj+i(M∗)|Ωj(M)⊗n,

and since Ωnj+i(M∗) ∼= Ω−(nj+i)(M)∗, at least one of Ωj(M) and Ωnj+i(M∗) is non-

algebraic, and so Ωj(M) is non-algebraic.
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2.3 The Auslander–Reiten Quiver

It is possible to prove extensions of the results on non-periodic modules to the stable

Auslander–Reiten quiver, but currently only in some cases. To state the theorem, we

need the notion of complexity.

Definition 2.13 Let M be a KG-module, and suppose that

· · · → P2 → P1 → P0 →M → 0

is the minimal projective resolution for M . Then the complexity of M , written cx(M),

is the smallest integer c such that there exists a constant α with

dimK Pn 6 αnc−1

for all n > 0.

It is not obvious, but true, that such an integer always exists. Projective modules

have complexity 0, periodic modules have complexity 1, and non-periodic modules

have complexity at least 2. For the basic properties of complexity, we refer to [12,

Proposition 2.2.24]. One important property that we will use is that the complexities

of every module on a particular component of the (stable) Auslander–Reiten quiver

are the same.

The theorem we will prove here is Theorem B from the introduction.

Theorem 2.14 Let G be a finite group and let K be a field of characteristic p. Let

Γ be a connected component of the stable Auslander–Reiten quiver Γs(KG), and

suppose that modules on Γ are of complexity at least 3. Then Γ contains at most one

algebraic module.

Firstly, we know that if Γ is a component of Γs(KG), and the modules on Γ have

complexity at least 3, then G has wild representation type, and so by a theorem of

Karin Erdmann in [33], Γ has tree class A∞. This will be essential in what is to

follow.

To prove this theorem, we first introduce the concept of an interlaced component

of Γs(KG). If Γ is a component and Γ consists either of non-periodic modules or of

modules of even periodicity, then for each M in Γ, the module Ω(M) does not lie

on Γ. An interlaced component is the union of the component Γ and the component

consisting of the Heller translates of the modules on Γ. The reason for the name will

become clear in the next paragraph.
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We begin by co-ordinatizing an interlaced component of Γs(KG), which will help

immensely in this section. We co-ordinatize according to the following diagram.

. . .
...

...
...

...
... . . .

· · · (−2, 2) (−1, 2) (0, 2) (1, 2) (2, 2) · · ·

· · · (−2, 1) (−1, 1) (0, 1) (1, 1) (2, 1) · · ·

· · · (−2, 0) (−1, 0) (0, 0) (1, 0) (2, 0) · · ·
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ttt
t

zz zzttt
ttt

ttt
t
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ttt

dd

zz
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zzttttttt

dd
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dd
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dd
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dd
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ddJJJJJJJ

zzttttttt

dd
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ddJJJJJJJJJ

zzttt
ttt

ttt
ddJJJJJJJJJ

dd ddJJJJJJJ

dd ddJJJJJJJ

dd

[Note that this quiver consists of interlaced ‘diamonds’; when we refer to a diamond

of an interlaced component, we mean such a collection of four vertices.]

For the rest of this section, Γ will denote an interlaced component of Γs(KG).

Write M(i,j) for the indecomposable module in the (i, j) position on Γ. (Of course,

while j is determined, there is choice over which position on Γ is (0, 0); we will assume

that such a choice is made.)

We recall the following easy result.

Lemma 2.15 ([13, Proposition 4.12.10]) Let M be an indecomposable module

with vertex Q, and suppose that H is a subgroup of G not containing any conjugate

of Q. Then the Auslander–Reiten sequence terminating in M splits upon restriction

to H.

Notice that, for our interlaced component Γ and modules M(i,j), this result be-

comes the statement that if H does not contain a vertex of M(i,j), then for i > 0,

M(i−1,j) ↓H ⊕M(i+1,j) ↓H
∼= M(i,j+1) ↓H ⊕M(i,j−1) ↓H .

In particular, this implies that if the modules attached to three of the four vertices

in a diamond of Γ have known restrictions to H, the fourth is uniquely determined.

We also need a slight extension to the result that the complexity of every module

on the same component is the same.

Lemma 2.16 Let Γ be an interlaced component of the Auslander–Reiten quiver, and

let H be a subgroup of G. Then for all M on Γ, the complexity of M ↓H is the same.
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Proof: Let M be a module on Γ such that M ↓H has the smallest complexity, say

n. Let

0 → Ω2(M) → N →M → 0

be the almost-split sequence terminating in M . Restricting this sequence to H yields

a short exact sequence whose terms are KH-modules. For any short exact sequence,

the largest two complexities of the terms are equal, and hence the complexity of N ↓H

is equal to that of M ↓H , by minimal choice of M . Thus if L is connected to any

Ωi(M), then cx(L ↓H) = n. This holds for any module M such that cx(M ↓H) = n,

so the restrictions of all modules on the component of Γs(KG) containing M have

the same complexity. The result now follows from the fact that

cx(M ↓H) = cx(Ω(M) ↓H).

This can be used to prove the next theorem, which is the key step in the proof of

Theorem 2.14.

Theorem 2.17 Let G be a finite group and let Γ be an interlaced component of

Γs(KG). Suppose that P is a p-subgroup such that P does not contain a vertex of

any module on Γ, and that for some M on Γ, the restriction of M to P is non-periodic.

Then Γ contains at most one algebraic module and such a module lies at the end of

Γ; i.e., it is M(i,0) for some i ∈ Z.

Proof: Since P does not contain a vertex of any module on Γ, any almost-split

sequence involving terms on Γ splits upon restriction to P , and so we consider all

modules M(i,j) to be restricted to P . For a co-ordinate (i, j) on Γ, we attach a collec-

tion [a1, . . . , an], which are the non-periodic summands ofM(i,j) ↓P in a decomposition

of M(i,j) ↓P into indecomposable summands. We call this collection the signature of

the vertex (i, j). Notice that, since M(i,j) = Ω(M(i−1,j)), to know the signatures of all

vertices in a row, it suffices to know the signature of one of them.

Note that by Lemma 2.16, all modules on Γ have non-periodic restriction to P ,

and so the signature of any co-ordinate is non-empty.

By the remarks after Lemma 2.15, if we know all signatures of the bottom two

rows, we can uniquely determine all signatures of higher rows, since three of the four

vertices on each diamond will have known signatures. Also, the second row can be

determined from the first row, because of the fact that the signature of (i, 1) is equal

to the sum of the signatures of (i− 1, 0) and (i+ 1, 0).
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In order to easily express the signatures of the vertices, if x is an element of a

signature, then denote by xi the ith Heller translate of x. Let [x1, . . . , xt] denote the

signature of the vertex (0, 0). Then the signature of (i, 0) is [xi
1, x

i
2, . . . , x

i
t], and the

signature of (i, 1) is

[xi−1
1 , xi−1

2 , . . . , xi−1
t , xi+1

1 , xi+1
2 , . . . , xi+1

t ],

since the almost-split sequence terminating in M(i,0) splits on restriction to P . Write

X i for the signature

[xi
1, x

i
2, . . . , x

i
t],

and write XA for the signature ⋃
a∈A

Xa.

We claim that the signature of (i, j) is

X{i+j,i+j−2,...,i−j+2,i−j}.

To prove this, we firstly note that for j = 0 and j = 1 this formula holds. Since we

know that the signatures of all vertices are uniquely determined by the first two rows,

we simply have to show that it obeys the rule that, for each diamond, the sum of the

signatures of the top and bottom vertices equal the sum of the signatures of the left

and right vertices. This is true, as the top and bottom vertices’ signatures are

X{i+(j+1),i+(j+1)−2,...,i−(j+1)+2,i−(j+1)} ∪X{i+(j−1),i+(j−1)−2,...,i−(j−1)+2,i−(j−1)},

and the left and right vertices’ signatures are

X{(i+1)+j,(i+1)+j−2,...,(i+1)−j+2,(i+1)−j} ∪X{(i−1)+j,(i−1)+j−2,...,(i−1)−j+2,(i−1)−j}.

These are easily seen to be the same, and so the above formula gives the signature of

the vertex (i, j).

If j 6= 0, then the signature contains X{i+j,i+j−2} and since it cannot be that both

xi+j
1 and xi+j−2

1 are algebraic, Mi,j is non-algebraic for all j > 0.

Finally, at most one of the modules M(i,0) can be algebraic, and so the theorem is

proved.

Now we are in a position to quickly prove Theorem 2.14; let D denote the vertex

of some module M on Γ. Since cx(M) = n > 3 and D is a vertex for M , we see that

cx(M ↓D) = n. Thus there is a subgroup P of D such that cx(M ↓P ) = n− 1. If N
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is some other module on Γ, we see by Lemma 2.16 that N ↓P has complexity (n− 1)

as well. Hence P cannot contain a vertex for N .

We have therefore produced a subgroup P that does not contain a vertex of any

module on Γ. Furthermore, since cx(M ↓P ) = n − 1 > 2, the module M ↓P is non-

periodic. Having satisfied the conditions of Theorem 2.17, we get the result.

Theorem 2.17 can be used to produce similar results to Theorem 2.14, but with

various conditions. One example is the following.

Theorem 2.18 LetG be a group of wild representation type whose Sylow p-subgroups

are not isomorphic with Cp × Cp. Let Γ be a component of Γs(KG) that contains

p′-dimensional modules. Then at most one module on Γ is algebraic, and it lies at

the end of Γ.

To prove this, recall that a p′-dimensional module has a Sylow p-subgroup P as a

vertex. If P has p-rank at least 3, then the result is true by Theorem 2.14, so G has

p-rank 2. Let M denote a module on Γ. By the Alperin–Evens theorem (Theorem

1.17) there is a subgroup Q of P isomorphic with Cp × Cp, such that the complexity

of M ↓Q is 2, and so Q is a subgroup that satisfies the conditions of Theorem 2.17.

In general it appears difficult to prove a corresponding theorem to Theorem 2.14

for arbitrary A∞-components of complexity 2. For tame blocks the situation becomes

slightly more complicated. For dihedral 2-groups, the same result—that there is at

most one algebraic module on a non-periodic component—is true, and this is Corollary

3.20. For semidihedral 2-groups, it seems that it is not difficult to prove that there

are at most 2 algebraic modules on each non-periodic component, but it is not clear

whether this can be sharpened, or if this is really a difference to the general case.

We end with a small proposition needed for Chapter 6, although the method can

be used to prove that if G = Cp × Cp, and Γ is a component of Γs(KG) containing

modules of p′-dimension, then there are restrictions on the positions of algebraic

modules.

Proposition 2.19 Suppose that p is an odd prime, and letK be a field of characteris-

tic p. Let E denote the heart (radical modulo socle) of the projective indecomposable

module for Cp × Cp over K. Then E is non-algebraic.
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The module E lies directly above K on the interlaced component of Γs(KG),

and so if G is a p-group (where p is odd) that is not Cp × Cp of cyclic, then E is

non-algebraic by Theorem 2.18. Thus the case of Cp × Cp is the last remaining case.

To prove Proposition 2.19, we consider tensoring short exact sequences by mod-

ules. Note that the almost-split sequence terminating in Ω−1(K) is given by

0 → Ω(K) → E → Ω−1(K) → 0.

Tensoring this sequence by a module M gives (by [11, Theorem 3.6]) the almost-split

sequence terminating in Ω−1(M) if p - dimM and a split sequence otherwise.

Now consider the co-ordinatization of the component Γ containingK, as suggested

at the start of this section. Then K = M(0,0) and E = M(0,1), and from the paragraph

above, we see that

M(0,i) ⊗ E = M(0,i−1) ⊕M(0,i+1) (modulo projectives)

if 0 < i < p − 1. (When i = p − 1, the dimension of M(0,i) is divisible by p.) Thus

M(0,i) lies inside T (E) for 0 6 i 6 p− 1. However, since p| dimM(0,p−1), we see that

E ⊗M(0,p−1) = Ω(M(0,p−1))⊕ Ω−1(M(0,p−1))

modulo projectives. Thus, since M(0,p−1) is non-periodic, E is non-algebraic, as

claimed.

2.4 The Normal Subgroup Structure

This section examines the rôle that normal subgroups have to play in determining

the algebraicity of simple modules. Our results cluster around examining normal p-

and p′-subgroups at the top and bottom of a finite group. This will involve both

subgroups and central extensions: as such, we make the following definitions.

Definition 2.20 Suppose that G is a finite group. Then G is said to have hereditary

p-SMA if all subgroups of G have p-SMA. G is said to have projective p-SMA if

all simple projective representations of G are algebraic, or equivalently all p′-central

extensions Ĝ of G have p-SMA. Finally, a group has hereditary projective p-SMA if

all subgroups of G have projective p-SMA.

These definitions are mostly independent, and some quite surprising combinations

can occur, as we demonstrate by examples.
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Example 2.21 (i) Since all simple modules for p-soluble groups are algebraic, all

p-soluble groups have hereditary projective p-SMA.

(ii) The simple group A5, and more generally the groups PSL2(q) where q ≡ 3, 5

mod 8, have hereditary projective p-SMA for all primes p.

(iii) The group A6 has hereditary p-SMA for all primes p, and all proper subgroups

of A6 have hereditary projective p-SMA for all primes p, but A6 does not have

projective 2-SMA as there are two 3-dimensional non-algebraic simple modules

for 3.A6 in characteristic 2. (A6 has hereditary projective 3-SMA.)

(iv) The simple group PSL2(7) has two 3-dimensional non-algebraic simple modules

in characteristic 2 and so does not have 2-SMA. All proper subgroups of this

group have hereditary projective p-SMA for all primes p as PSL2(7) is a minimal

simple group.

(v) The group A7 has projective 2-SMA, and has hereditary 2-SMA, but since

A6 does not have projective 2-SMA, the group A7 does not have hereditary

projective 2-SMA.

A necessary prerequisite for the theory we will be developing is the classical Clif-

ford theory of modules, as originally described in [25]. Let G be a finite group and let

H be a normal subgroup of G. Suppose that M is a simple KG-module, and let N

be a summand of M ↓H . Suppose firstly that G is the inertia subgroup of N (i.e., N

is G-stable). Then there are (necessarily simple) projective representations V and W

of G with M = W ⊗ V , such that V ↓H
∼= N , and W is a projective representation of

G/H. Furthermore, V and W are actual representations (rather than only projective

representations) if and only if N can be extended to a KG-module.

In fact, there is a p′-central extension Ĝ of G, with central subgroup Z, such

that Ĥ = H × Z, and, viewed as a KĜ-module, M = V ⊗W , where V is a KĜ-

module with V ↓H= N and W is a K(Ĝ/H)-module. What this means is that if we

allow ourselves to pass to a p′-central extension, we may assume that N possesses an

extension to G, and we therefore can deal solely with representations and not with

projective representations.

If the module N above is not G-stable, then let L denote its inertia subgroup.

The module M is induced from a KL-module M ′, and this theory then passes to the

module M ′.

We start with an obvious result, allowing us to move between a finite group and

its quotient by a p-subgroup, at least in the case of simple modules.
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Lemma 2.22 Let G be a finite group, and let K be a field of characteristic p.

(i) G has p-SMA if and only if G/Op(G) has p-SMA.

(ii) G has hereditary p-SMA if and only if G/Op(G) does.

(iii) G has projective p-SMA if and only if G/Op(G) does.

(iv) G has hereditary projective p-SMA if and only if G/Op(G) does.

Proof: Since Op(G) acts trivially on every simple module, the tensor products of

simple KG-modules are identical to those of G/Op(G). Hence G has p-SMA if and

only if G/Op(G) does, proving (i). The proof of (ii) is exactly similar; if G has

hereditary p-SMA then certainly G/Op(G) does, and conversely if H is a subgroup

of G then H Op(G)/Op(G), which is isomorphic with H/H ∩ Op(G), has p-SMA; so

H has p-SMA by (i).

Now suppose that G/Op(G) has projective p-SMA, and let Ĝ denote a p′-central

extension of G and M be a simple KĜ-module. Notice that Op(G) ∼= Op(Ĝ), and

that Ĝ/Op(Ĝ) is a p′-central extension of G/Op(G). Since M is a simple KĜ-

module, it is also a simple K(Ĝ/Op(Ĝ))-module, and is algebraic since G/Op(G)

has projective p-SMA. Conversely, any projective representation of G/Op(G) is a

projective representation of G, and so this direction is obvious, proving (iii).

Finally, suppose that G/Op(G) has hereditary projective p-SMA, and let H be

a subgroup of G; let M be a simple projective KH-representation. Then M is a

simple projective K(H/L)-representation, where L = Op(G) ∩ H, and so M is iso-

morphic with N , a particular simple projective K(H Op(G)/Op(G))-representation,

which is algebraic since G/Op(G) has hereditary projective p-SMA. Conversely, if G

has hereditary projective p-SMA, then again G/Op(G) does so, proving the final part

of the lemma.

As an extension to (i), if M is a KG-module, then if H is the kernel of M , the

module M is also a K(G/H)-module, and M is algebraic as a KG-module if and only

if it is algebraic as a K(G/H)-module.

We can also deal with quotients by normal p′-subgroups using Clifford theory.

Lemma 2.23 Suppose that G is a finite group, and let p be a prime. Then G

has projective hereditary p-SMA if and only if G/Op′(G) has projective hereditary

p-SMA.
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Proof: Let K be a field of characteristic p. Suppose firstly that M is a simple KG-

module, and write H for the subgroup Op′(G). Let N be a summand of M ↓H , and

let L be the inertia subgroup of N . Then there are projective KL-representations

V and W such that V ↓H= N and W is a simple K(L/H)-module. Since G/H has

hereditary projective p-SMA, the module W is algebraic.

The module V is also algebraic; let L̂ be the associated p′-central extension of L.

The group L̂ is the extension of a p′-group by a p-group, and so is p-soluble. Hence V

is algebraic, since all simple modules for p-soluble groups are algebraic (by Theorem

1.12). Since both V and W are algebraic, so is M .

Hence for any group X such that X/Op′(X) ∼= G/Op′(G), all simple KX-modules

are algebraic. Let Ĝ be a p′-central extension of G; then G/Op′(G) and Ĝ/Op′(Ĝ)

are isomorphic. Hence all simple KĜ-modules are algebraic, and so G has projective

p-SMA.

Finally, let Y be a subgroup of G; then Y Op′(G)/Op′(G) has hereditary projective

p-SMA, and this group is isomorphic with Y/Op′(G)∩Y . By the above result, Y has

projective p-SMA, and so every subgroup of G has projective p-SMA, as required.

There is a converse, in the sense that, with the setup above, where M = V ⊗W

andW is aK(G/H)-module, thenM is algebraic if and only if V andW are algebraic.

The above proof dealt with the ‘if’ case; to see the rest, if M is algebraic then M ↓H

is algebraic, which is a sum of copies of V ↓H . Thus V ↓H is algebraic, and so V ↓HP

is algebraic. We proved before that this means that V is algebraic. Since V ↓H is

simple, dimV and p must be coprime, whence K is a summand of V ⊗V ∗, by Theorem

1.20. The rest is clear: as V ∗ and V ⊗W are algebraic, so is their tensor product, of

which W is a summand.

Putting the last two results together, we prove the following theorem.

Theorem 2.24 Let G be a finite group and let H be a p-soluble normal subgroup

of G. Then G has hereditary projective p-SMA if and only if G/H does.

Proof: A simple induction, by repeated, alternating application of Lemmas 2.22 and

2.23.

This covers everything currently known regarding results for G got from results

about quotients by ‘small’ subgroups. The next result allows us to move between a

group and a subgroup of p′-index; in fact, we can do this for arbitrary modules.

Proposition 2.25 Let G be a finite group and let H be a subgroup with |G : H|
prime to p. If M is a KG-module, then M is algebraic if and only if M ↓H is algebraic.
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Proof: It clearly suffices to prove this for indecomposable modules, so let M be an

indecomposable module. Since M is relatively H-projective, M is a summand of

(M ↓H) ↑G. Hence, if M ↓H is algebraic, then so is (M ↓H) ↑G, and subsequently

the summand M of this module. In general, if M is algebraic then M ↓H is, and the

result is proved.

In particular, if M is a simple module and H is a normal subgroup of index prime

to p, then M is algebraic if and only if the (semisimple) module M ↓H is algebraic.

Next, we consider the other case: suppose that G is a finite group, and H is

a normal subgroup of index p. If K is a field of characteristic p, we would like to

know whether the analogous result to Proposition 2.25 holds; that is, if M is a simple

KG-module, then M is algebraic if and only if M ↓H is. We begin with two lemmas,

which analyze the two cases where M ↓H is simple and when it is not. This depends

on the inertia subgroup of one of the summands of M ↓H .

Lemma 2.26 ([36, III.2.11]) Let G be a finite group and H be a normal subgroup.

Let M be a simple KH-module, and suppose that the inertia subgroup of M is equal

to H. Then M ↑G is simple.

Lemma 2.27 ([36, III.2.14]) Let G be a finite group and suppose that H is a

normal subgroup of G such that G/H is cyclic. Let M be a simple KH-module

whose inertia subgroup is equal to G. Then

(i) there is a (simple) KG-module V such that V ↓H= M , and

(ii) if W is a simple KG-module such that M is a summand of W ↓H , then W ↓H=

M and W = V ⊗X for some simple K(G/H)-module X.

Thus if M ↓H is not simple, then M is induced from a simple module for the

normal subgroup, and so M is algebraic if and only if M ↓H is. However, if M ↓H

is not simple, then M ↓H can be algebraic even if M is non-algebraic. An example

of this is the 7-dimensional simple module for SL2(8) o C3, which is proved to be

non-algebraic in Section 5.7. Since SL2(8) has cyclic Sylow 3-subgroups, this group

has 3-SMA. (The 7-dimensional simple module for SL2(8) o C3 restricts to the 7-

dimensional simple module for SL2(8).)

Our ultimate goal is to determine to what extent the fact that a finite group has

p-SMA is determined by its composition factors.
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Proposition 2.28 Let G be a finite group, and let H/N be a subnormal section;

i.e., N is normal in H, and H is a subnormal subgroup of G. If G has p-SMA then

so does H/N .

Proof: Certainly if G has p-SMA then so does G/N , so the proposition reduces

to showing that if G has p-SMA then so does any subnormal subgroup, and by

considering a normal series starting in G and terminating in H, we reduce to the case

where H is normal in G. Hence suppose that H P G.

By Clifford’s theorem, if M is a simple KG-module then M ↓H is semisimple,

and is algebraic since G has p-SMA. Hence if V is a simple KH-module, then V is

algebraic if V is a summand of M ↓H for some semisimple KG-module M . This is

always the case: to see this, let φ be the Brauer character afforded by V , and write

φ ↑G=
∑

aiψi,

where the ψi are Brauer characters for KG. Let M denote the semisimple module

whose Brauer character is
∑
aiψi; by Mackey’s theorem, the Brauer character of

M ↓H has φ as a constituent, and M ↓H is semisimple, and so V |M ↓H , as required.

This proposition obviously yields the following result.

Corollary 2.29 Let G be a finite group with p-SMA. Then every composition factor

of G has p-SMA.

This corollary leads naturally to the question of which simple groups have p-SMA.

Most of the rest of this thesis will be concerned with this question in various situations.

We include the last result for completeness.

Proposition 2.30 Let G be the direct product of two groups with p-SMA. Then G

has p-SMA.

Proof: Write G = H1 × H2; then this result follows easily from the fact that any

KG-module is a tensor product of a KH1-module by a KH2-module.

We now turn to the proof of Theorem F. We firstly notice that if G is a simple

group with abelian Sylow 2-subgroups, then the Schur multiplier of G is either 1 or

2. (See Tables 6.1.2 and 6.1.3 from [39].) If K is a field of characteristic 2 and H is

a direct product of simple groups with abelian Sylow 2-subgroup, then every simple

projective KH-representation is actually a standard KH-representation.
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Next, suppose that G is the direct product of H above and an abelian 2-group L,

and let Ĝ be an odd central extension of G. Then it is easy to se that Ĝ = H × L̂,

where L̂ is an odd central extension of L. In particular, if every simple group with

abelian Sylow 2-subgroup has 2-SMA, then by Theorem 1.26, every finite group G

such that

(i) G has abelian Sylow 2-subgroups,

(ii) O2′(G) = 1, and

(iii) O2′
(G) = G,

has projective 2-SMA.

Theorem 2.31 Suppose that all simple groups with abelian Sylow 2-subgroups have

2-SMA. Then all finite groups with abelian Sylow 2-subgroups have 2-SMA.

Proof: By Proposition 2.25, if the theorem is true for all such finite groups with

G = O2′
(G) then the theorem is true for all finite groups.

Write H = O2′(G). We proceed by induction on |G/H|. Let M be a simple

projective KG-representation. By replacing G with an odd central extension of G

(and noting that G/O2′(G) does not change) we may assume that M is a simple

KG-module. Let N be a simple summand of M ↓H . Let L denote the inertia

subgroup of N . If L = G, then write V for the projective KG-representation such

that V ↓H= N . If P is a Sylow 2-subgroup of G, then V ↓HP is a simple projective

K(HP )-representation, which is therefore algebraic, since HP is soluble. Thus V

is algebraic. Since G/H has projective 2-SMA, this means that M is algebraic, as

required.

Now suppose that L < G. Then there is a simple KL-module M ′ such that

M ′ ↑G= M . Now L is a group with abelian Sylow 2-subgroups, and since H 6 L < G,

we must have |L/O2′(L)| < |G/O2′(G)|, and so L has projective 2-SMA. Thus M ′ is

algebraic, and so M is, as required.

Thus Theorem F will be proved if we can prove that all simple groups with abelian

Sylow 2-subgroups have 2-SMA. Theorem 1.26 listed the simple groups with abelian

Sylow 2-subgroups. The groups SL2(2
n) have 2-SMA, by Alperin’s Theorem 1.13.

The groups PSL2(q) where q 6≡ ±1 mod 8 have 2-SMA by Theorem D, (see also

Chapter 4) and the Ree groups 2G2(q) have 2-SMA by Theorem 5.19. The last group

J1, has 2-SMA by Theorem 6.17. Therefore, modulo the proofs of those results,

Theorem F is proved.
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Chapter 3

Dihedral and Elementary Abelian
Groups

This chapter has two aims: to study the indecomposable representations of the dihe-

dral 2-groups, with a view to getting more understanding on which of these are alge-

braic; and to develop an ‘encyclopædia’ of small-dimensional modules for G = C3×C3

over K = GF(3). In the direction of the second statement, we organize all modules of

dimension at most 6 into their conjugacy classes (under the action of AutG), and then

analyze whether or not they are algebraic. Although our results are incomplete, of the

324 indecomposable KG-modules of dimension at most 6, only eight have unknown

algebraicity. From this information we generate a conjecture regarding the module

category of Cp × Cp, and consider generalizations of it to some other p-groups.

For indecomposable modules for dihedral groups, we prove in Corollary 3.20 the

analogue of Theorem 2.14 given in the previous chapter. This new focus on algebraic

modules also gives an equivalent formulation of a conjecture of Karin Erdmann on

the Green correspondence within V4 blocks. It also informs us where to concentrate

our efforts in order to find ‘nice’ tensor product structures in the indecomposable

modules for these groups.

3.1 The Group V4

Apart from the cyclic groups, the non-cyclic group of order 4 is the only group whose

tensor products have been completely analyzed. In this section we list the indecom-

posable modules and describe their tensor product structure. The decomposition of

the product of any two indecomposable KV4-modules was determined by Conlon in

[26], and we reproduce his table here. In the following section we provide the con-

struction of these modules as a special case of the construction of all indecomposable
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modules for dihedral 2-groups. The description of the tensor products makes clear

the following result.

Theorem 3.1 Let M be an indecomposable KV4-module, where K is any field of

characteristic 2. Then M is algebraic if and only if M is even-dimensional or trivial.

Theorem 3.1 allows us to wield a very powerful tool in analyzing modules in

characteristic 2.

Corollary 3.2 (V4-Restriction Test) Let K be a field of characteristic 2, and let

G be a finite group. Write P for the collection of all subgroups of G isomorphic

with V4. Finally, let M be a KG-module. If M is algebraic then M ↓P is a sum of

even-dimensional and trivial modules for all P ∈ P.

The following table describes the tensor products of any two non-projective inde-

composable modules. (Of course, the product of D, the projective indecomposable

module, with any other indecomposable module is projective, and so this row and

column have been removed.) Here, An and Bn are the odd-dimensional indecompos-

able modules Ωi(K) for i ∈ Z, and Cn(π) and Cn(∞) are even-dimensional modules;

see the next section for their construction.

n 6 n′ An Bn Cn(π) Cn(∞)
An′ nn′D ⊕An+n′ n(n′ + 1)D ⊕An′−n nn′mD ⊕ Cn(π) nn′D ⊕ Cn(∞)
Bn′ n(n′ + 1)D ⊕Bn′−n nn′D ⊕Bn+n′ nn′mD ⊕ Cn(π) nn′D ⊕ Cn(∞)

Cn′(π′) nn′mD ⊕ Cn′(π′) nn′mD ⊕ Cn′(π′) X nn′mD
Cn′(∞) nn′D ⊕ Cn′(∞) nn′D ⊕ Cn′(∞) nn′mD n(n′ − 1)D ⊕ 2Cn(∞)

The remaining entry X is nmn′m′D if π 6= π′, and nm(n′m−1)D⊕2Cn(π) if π = π′.

We therefore see that, modulo projective modules,

A⊗i
n = Ain,

B⊗i
n = Bin,

Cn(π)⊗2 = 2 · Cn(π), and

Cn(∞)⊗2 = 2 · Cn(∞).

This clearly demonstrates that An and Bn are not algebraic, and Cn(π) and Cn(∞)

are, proving Theorem 3.1.

We also notice the following result.

32



CHAPTER 3. DIHEDRAL AND ELEMENTARY ABELIAN GROUPS

Proposition 3.3 The KV4-modules all of whose summands are even-dimensional

form an ideal of algebraic modules. Consequently, if G is a finite group, K is a field

of characteristic 2, and H is subgroup isomorphic with V4, then the subgroup I of

a(KG) generated by the indecomposable KG-modules with cyclic vertex, or V4 vertex

and even-dimensional source, forms an ideal consisting of algebraic modules.

Proof: That the KV4-modules all of whose summands are even-dimensional are al-

gebraic and are closed under addition is obvious, and that the additive subgroup they

generate forms an ideal is a consequence of Theorem 1.20. Hence the first part of the

result holds.

Next, let S denote the indecomposable modules that either have cyclic vertex,

or have V4 vertex and even-dimensional source, and let N be any indecomposable

module. Suppose that M is an indecomposable module from S, and write L for a

source of M . If the vertex of M is cyclic then so are the vertices of all summands of

M ⊗N , and so M ⊗N lies inside I. If the vertex of M is V4, then all summands of

M ⊗N have either cyclic or V4 vertex, and by Lemma 1.23,

N ⊗M |N ⊗ L ↑G= (N ↓H ⊗L) ↑G .

Since L is even-dimensional, so is every summand of N ↓H ⊗L, and so all summands

of M ⊗N with vertex V4 have even-dimensional source, as required.

Since the product of an indecomposable module from I and any indecomposable

module lies in I, by linearity of tensor product, we are done.

Having seen modules with V4 vertex, it seems natural to consider blocks of defect

V4; since V4 is abelian, all simple modules in this block have vertex equal to the

defect group. In fact, we slightly expand our collection of simple modules to include

all simple modules of vertex V4.

Conjecture 3.4 (V4 conjecture) Let G be a finite group and let K be a field of

characteristic 2. Let M be a simple KG-module with vertex isomorphic with V4.

Then M is algebraic.

This conjecture can be restated in the following way, via the classification of

indecomposable algebraic modules for V4.

Conjecture 3.5 (V4 conjecture) Let G be a finite group and let K be a field of

characteristic 2. Let M be a simple KG-module with vertex V4. If M is non-periodic

then M has trivial source.
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Suppose that B is a block with defect group V4. The Green correspondence for

the simple B-modules was calculated up to a parameter by Karin Erdmann in [32],

and we will describe the theory now.

Let G be a finite group and let K be a splitting field of characteristic 2. Suppose

that G has a block B of defect group D ∼= V4, and write b for its Brauer correspondent

in NG(D). (Note that the simple b-modules are algebraic since they are projective

NG(D)/D-modules.) There are three possibilities for the simple modules and the

Green correspondence; in describing them, we write f : KG-ind → K NG(D)-ind for

the Green correspondence.

(i) Both B and b possess one simple module; write M for the simple B-module and

S for the simple b-module. Then there exists an integer i ∈ Z such that

f(M) = Ωi(S).

(ii) Both B and b possess three simple modules; write M0, M1 and M2 for the simple

B-modules and S0, S1 and S2 for the simple b-modules. Then there exists an

integer i ∈ Z such that

f(Mj) = Ωi(Sj)

for each j = 0, 1, 2.

(iii) Both B and b possess three simple modules; write M0, M1 and M2 for the simple

B-modules and S0, S1 and S2 for the simple b-modules. Then there exists an

integer i ∈ Z, and there exist uniserial b-modules T1 and T2 of length 2, with

composition factors S1 and S2 and soc(Tj) = Sj, such that

f(M0) = Ωi(S0), f(M1) = Ωi(T1), f(M2) = Ωi(T2),

and the modules M1 and M2 are periodic of period 3.

In [32], Erdmann essentially conjectured that in all cases, the integer i is equal to

0. We will call this conjecture ‘Erdmann’s conjecture’ in the next proposition.

Proposition 3.6 Erdmann’s conjecture holds if and only if the V4 conjecture holds

for simple modules lying in blocks of defect group V4.

Proof: Recall that the Green correspondence preserves algebraicity of modules, and

also whether the module is periodic. Write B for a block of KG with defect group

D ∼= V4, and write b for its Brauer correspondent in NG(D). Let M be a non-periodic
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simple B-module; in all three cases above, its Green correspondent in b is Ωi(S),

where S is some simple b-module. Since S is algebraic and non-periodic, it must have

trivial source, and so M has source Ωi(K). Hence M is algebraic if and only if M

and S are Green correspondents.

Hence Erdmann’s conjecture is true if and only if all non-periodic simple modules

in V4 blocks are algebraic. Since all periodic modules in V4 blocks are automatically

algebraic, either conjecture implies the other.

Erdmann’s conjecture, and hence the V4 conjecture for blocks, is a strengthened

form of the Puig conjecture for V4 blocks. For completeness, we state this conjecture

now.

Conjecture 3.7 (Puig conjecture) Let D be a p-group. Then there are only

finitely many different isomorphism types of source algebra of blocks with defect

group D.

In [58], Linckelmann proved, based upon Erdmann’s work in [32], that when D ∼=
V4 in the Puig conjecture, this conjecture is equivalent to the boundedness of the

integer i in the description of the Green correspondence for V4 blocks. Hence if the V4

conjecture is true then a strong form of the Puig conjecture holds, at least for these

blocks.

Erdmann’s conjecture is easily seen to be true in the case where B is a real block

with defect group V4.

Proposition 3.8 Let B be a block of a group G, and suppose that B has defect

group V4. Suppose that B is a real 2-block; i.e., suppose that for a simple module M

in B, the dual module M∗ is also in B. Then all simple B-modules are algebraic.

Proof: Since B contains either a single non-periodic simple module or three non-

periodic simple modules, there must be a self-dual, non-periodic simple module M

lying in B. This must therefore have trivial source, and so Erdmann’s conjecture

holds for this block. Hence all simple B-modules are algebraic, as required.

Obviously, if B is the unique block with defect group V4, then B is real, and so

all simple B-modules are algebraic.

Corollary 3.9 Suppose that a finite group G possesses a unique 2-block B of defect

group V4. Then all simple B-modules are algebraic.
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We should mention the case where a simple module with vertex V4 lies in a block

that is not of defect group V4.

Proposition 3.10 Let G be a finite group, and let K be a field of characteristic 2.

Let M be a simple KG-module of vertex V4, and write B for the block containing M .

Then a defect group of B is dihedral or semidihedral.

Proof: We will firstly prove that if a 2-group P contains a self-centralizing subgroup

of order 4, then P is of maximal class. To see this, we proceed by induction on the

class of P . If P has class 1 or 2, then this is obvious, so our induction starts. Suppose

that P has class n, and that P contains a self-centralizing subgroup X of order 4.

Then |NP (X) : X| = 2, as this embeds in Aut(X), and since NP (X) contains a

self-centralizing subgroup of order 4, N = NP (X) ∼= D8. Since X is self-centralizing,

Z (P ) = Z must have order 2. We claim that

CP/Z(N/Z) = N/Z.

If this is true, then P/Z possesses a self-centralizing subgroup of order 4, and so is of

maximal class; this will prove the result.

Let x be a non-central element of X, and suppose that yZ centralizes N/Z: then

yZ and xZ commute, so y−1x−1yx ∈ Z. Thus y−1xy ∈ X as Z 6 X, so that y

normalizes x. Hence N/Z is self-centralizing, as it is abelian.

The 2-groups of maximal class are the generalized quaternion groups, the dihedral

groups, and the semidihedral groups. Since the generalized quaternion groups are of

2-rank 1, they cannot contain a subgroup isomorphic with V4, and so generalized

quaternion groups cannot occur. This completes the proof.

In a series of papers, Karin Erdmann essentially classified the structural properties

of tame 2-blocks. This classification might be useful in tackling this problem, although

as of yet the author has not approached this.

3.2 The Group D4q

We begin this section by constructing all indecomposable KG-modules, where G is

a dihedral 2-group and K is an arbitrary field of characteristic 2. (As a special

case, this will include the indecomposable representations of V4.) The classification

of indecomposable KG-modules was originally found by Ringel [71], using methods

of Gelfand and Ponomarev in [38], and independently by Bondarenko in [18].
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There are two classes of non-projective indecomposable KG-module; the string

modules and band modules. The string modules are easier to describe, and we do

this first. Write G = D4q, where q is a power of 2.

Introduce symbols a and b, and let W denote the set of all finite strings of symbols

a, b, a−1 and b−1, which we will call words, with the proviso that a symbol of the form

a±1 is followed by one of the form b±1, and vice versa. Hence there are 2n strings of

length n that start with a±1. If w is a word in W , then the inverse of w will be given

by

(w1w2 . . . wn)−1 = w−1
n w−1

n−1 . . . w
−1
1 ,

so that for example if w = aba−1b−1a, then w−1 = a−1bab−1a−1. If w is a word with n

symbols, then let α = (αij) and β = (βij) be two (n+ 1)-dimensional matrices given

by the following procedure:

(i) set αii = βii = 1, and αij = βij = 0 for j 6= i;

(ii) running through the symbols of w, if the ith symbol in w is an a, then set

αi+1,i = 1, and if it is a−1, then set αi,i+1 = 1; and

(iii) running through the symbols of w, if the ith symbol in w is an b, then set

βi+1,i = 1, and if it is b−1, then set βi,i+1 = 1.

This procedure is best seen by example: if w = ab−1aba−1, then the two matrices

α and β for M(w) acting on the space V with basis {v1, . . . , v6} are given by

α =


1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

 , β =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1

 .

This can be represented by a diagram. Write x′ = x − 1 and y′ = y − 1. Then if

w = ab−1aba−1, as before, the elements x′ and y′ act as the diagram below, with all

other actions on the vi being 0.

v1 v2 v3 v4 v5 v6oo
x′

//
y′

oo
x′

oo
y′

//
x′

If G = 〈x, y : x2 = y2 = (xy)2q = 1〉, then let M(w) denote the function G →
GLn(2) defined by x 7→ α and y 7→ β. This will be a representation of the dihedral

group D4q whenever no instance of (ab)q, (ba)q, (a−1b−1)q, or (b−1a−1)q occurs. For

the subset of W so defined, we use the symbol Wq.
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There are two important points to be made about the representations M(w):

firstly, they are always indecomposable representations; and secondly, M(w) and

M(w′) are isomorphic if and only if w′ = w or w′ = w−1. This latter point is

important, and we will often blur the distinction between the words w and w−1.

The modules M(w) are called string modules. An important fact is that any odd-

dimensional indecomposable module is a string module for some string of even length.

For the group V4, the modules An and Bn, and Cn(0) and Cn(∞) are the string

modules, of odd and even dimension respectively.

The remaining modules are the band modules: let W ′
q denote the subset of words,

all of whose powers lie in Wq, but that are not non-trivial powers of smaller words,

so that for example ab−1ab−1 is not in W ′
q , but also ab is not in W ′

q because a large

power of this word does not lie in Wq. A consequence of this is that all words in W ′
q

are of even length. If w is a word in W ′
q , we will not make the distinction between

w and w−1, and between w and the word got from w by moving the first letter to

the end of w, so that abab−1 is equivalent to b−1aba. More formally, we may take

equivalence classes of words in W ′
q under this equivalence relation.

Let w be a word of even length n, and let V denote an m-dimensional vector space,

equipped with an indecomposable linear transformation φ. By cycling the letters of

w and by inverting, we may assume that w begins with either a or b. We intend to

construct matrices similar to those for string modules.

Let α′ and β′ denote square matrices of size n, initially equal to the zero matrix.

We will associate a pair of numbers to this: if it is direct, associate (i + 1, i), and if

it is inverse, associate (i, i+ 1).

Next, we place an I in all positions (i, j) of α′ where (i, j) is associated to some

a±1, and in positions (i, j) of β′ where (i, j) is associated to some b±1. (These entries

should be taken modulo n, so that n + 1 becomes 1.) The exception is the position

(1, 2) or (2, 1), which should have a φ placed in this position. Finally, add I to the

diagonal entries of both α′ and β′.

The matrices α and β are square matrices of size mn, considered as block matrices,

whose n2 blocks are given by the entries of α′ and β′. For this, regard I as the

m×m identity matrix and φ as the matrix representing the automorphism φ. Finally,

associate x with α and y with β; this produces a representation of G, which is denoted

by M(w, φ).

In the example w = aba−1b and φ is some map on an m-dimensional vector space,
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the matrices α′ and β′ are

α′ =


I 0 0 0
φ I 0 0
0 0 I I
0 0 0 I

 , β′ =


I 0 0 0
0 I 0 0
0 I I 0
I 0 0 I

 .

The matrices α and β are block matrices represented by α′ and β′, where I is the

m×m identity matrix.

Similarly to the string modules, the modules M(w, φ) are all indecomposable, and

M(w, φ) and M(w′, φ′) are isomorphic if and only if w and w′ are the same word

modulo inverses and cycling letters, and φ and φ′ are equivalent transformations.

The M(w, φ) are called band modules.

Restricting the indecomposable modules to the subgroups generated by the two

generators individually enables us to greatly restrict the structure of tensor products.

We begin with an analysis of this restriction.

Lemma 3.11 Let M be an indecomposable KG-module.

(i) If M is odd-dimensional then M ↓〈x〉 and M ↓〈y〉 are both the sum of a trivial

module and projective modules.

(ii) If M is an even-dimensional string module then either M ↓〈x〉 is projective and

M ↓〈y〉 is the direct sum of two copies of K and a projective, or vice versa.

(iii) If M is a band module, then both M ↓〈x〉 and M ↓〈y〉 are projective.

Proof: Let w be a word of even length 2n, beginning with a±1 say, and let vi denote

the standard basis, for 1 6 i 6 2n+ 1. Then the submodules of M ↓〈x〉 generated by

vi and vi+1 for 1 6 i < 2n+ 1 and i odd form a copy of the projective module, which

therefore splits off. Hence M ↓〈x〉 is the sum of n projective modules and a trivial

module. The same occurs for M ↓〈y〉, proving (i).

If M is an even-dimensional string module then it is defined by a word w of odd

length 2n−1, with first and last letters a±1 without loss of generality. ThenM ↓〈y〉 has

n−1 submodules 〈vi, vi+1〉 (for i even) isomorphic with the projective indecomposable

K〈y〉-module, and two trivial submodules, 〈v1〉 and 〈v2n〉. Similarly, 〈vi, vi+1〉 is a

projective submodule of M ↓〈x〉 for each odd i, and so M ↓〈x〉 is projective, proving

(ii).

It remains to discuss the band modules. By cycling, we may assume that the

module begins with a, and then we again see easily that the matrix corresponding to
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the action of y on M is a sum of projective modules, and this is true for any band

module for a word beginning a±1. However, by cycling the word we find that M is

isomorphic with a band module for a word beginning b±1, and hence M ↓〈x〉 must

also be projective, as required.

We collect the following basic facts about odd-dimensional string modules: for

this, we will need to know the length of a word, and we write `(w) for this quantity.

Lemma 3.12 Let w,w′ ∈ W be words, and suppose that `(w) = 2n and `(w′) = 2m

are even. Write M = M(w) and M ′ = M(w′).

(i) Either w or w−1 begins with the symbol a±1.

(ii) The restrictions M ↓〈x〉 and M ↓〈y〉 are the sum of the trivial module and n

projective 2-dimensional modules.

(iii) The restrictions of the tensor product M ⊗M ′ to 〈x〉 and 〈y〉 are both the sum

of a trivial module and 2nm+ n+m projective 2-dimensional modules.

(iv) The tensor product M ⊗M ′ is the direct sum of a string module M(w′′) for

some w′′ of even length and various even-dimensional band modules.

Proof: The proof of (i) is obvious, as is (ii) from the description of the matrices

given in the construction of string modules; (iii) follows from the fact that (M ⊗
M ′) ↓H= M ↓H ⊗M ′ ↓H for any subgroup H; and (iv) follows from the fact that

at least one odd-dimensional summand must occur in M ⊗ M ′, since it has odd

dimension, and each odd-dimensional summand would contribute one copy of K

to (M ⊗ M ′) ↓〈x〉, which only contains one trivial summand. Finally, since both

(M ⊗ M ′) ↓〈x〉 and (M ⊗ M ′) ↓〈y〉 contain exactly one trivial summand, no even-

dimensional string modules (which have two trivial summands when restricted to one

of the generators) can occur.

Lemma 3.12(iv) yields the following corollary.

Corollary 3.13 Let w and w′ be words in W of even length, and let M = M(w) and

M ′ = M(w′). If N is a module with a unique odd-dimensional summand, write N̄

for this summand. Then the set of all odd-dimensional indecomposable KG-modules

form a group under the operation

M ◦M ′ = M ⊗M ′.
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Proof: That this is a binary operation comes from Lemma 3.12, so we need to check

that ◦ is associative, that there is an identity, and that there is an inverse. The

associativity of ◦ follows immediately from the associativity of ⊗; the trivial module

clearly acts as an identity; and Theorem 1.20 implies that, if M is an odd-dimensional

indecomposable module, then

M ⊗M∗ = K,

and so therefore M∗ is the inverse of M .

This group has been studied by Louise Archer in her thesis [8], in which the

following was shown.

Theorem 3.14 (Archer [8]) The group of all odd-dimensional indecomposable mod-

ules is a torsion-free abelian group that is not finitely generated.

This result yields the following corollary.

Corollary 3.15 The only algebraic odd-dimensional indecomposable KG-module is

trivial. Moreover, for every non-trivial odd-dimensional string module M , the iter-

ated tensor module T (M) contains infinitely many different (odd-dimensional) string

modules as summands.

Now let us turn our attention to even-dimensional string modules.

Lemma 3.16 Let w,w′ ∈ W be words, and suppose that `(w) = 2n− 1 and `(w′) =

2m− 1 are odd. Write M = M(w) and M ′ = M(w′).

(i) The word w begins with a±1 if and only if it ends with a±1.

(ii) If w begins with a±1, then the restriction M ↓〈x〉 is projective, and the re-

striction M ↓〈y〉 is the sum of a 2(m− 1)-dimensional projective module and a

2-dimensional trivial module.

(iii) If w begins with a±1 and w′ begins with b±1, thenM⊗M ′ contains no summands

that are string modules.

(iv) If both w and w′ begin with a±1, then M ⊗ M ′ contains exactly two even-

dimensional string module summands.
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Proof: (i) is obvious, and (ii) easily follows from the construction of string modules,

since the only place that a trivial summand can occur is at the beginning or end of a

word. The proof of (iii) comes from the fact that if M ⊗M ′ contains a string module,

there must be a trivial summand of either (M ⊗M ′) ↓〈x〉 or (M ⊗M ′) ↓〈y〉, which is

impossible since both M ↓〈x〉 and M ′ ↓〈y〉 are projective. The proof of (iv) is similar:

if M and M ′ both begin with a±1, then both M ↓〈y〉 and M ′ ↓〈y〉 contain two trivial

summands, proving that (M ⊗M ′) ↓〈y〉 contains four trivial summands. Since band

modules restrict to projective modules, and no odd-dimensional summand can occur

by Theorem 1.20(ii), the tensor product must contain two even-dimensional string

modules as summands.

We also need to describe the action of the Heller operator Ω, and also the (con-

siderably easier) Auslander–Reiten translate Ω2 = τ , on string modules. In order to

describe the action of τ on string modules effectively, we introduce two operations,

Lq and Rq, on the set of all words Wq. Write A = (ab)q−1a and B = (ba)q−1b. The

operator Lq is defined by adding or removing a string at the start of the word w, and

Rq is the same but at the end of the word.

If the word w starts with Ab−1 or Ba−1, then wLq is w with this portion removed.

If neither of these are present, then we add either A−1b or B−1a to w to get wLq,

whichever gives an element of Wq. Similarly, if w ends with aB−1 or bA−1, then wRq

is w with this portion removed. If neither of these are present, then we add either

a−1B or b−1A to w to get wRq, whichever gives a word in Wq. The operators Lq and

Rq commute, and are bijections on Wq.

The double Heller operator Ω2 is given by

Ω2(M(w)) = M(wLqRq),

and the almost-split sequences on string modules are given by

0 →M(wLqRq) →M(wLq)⊕M(wRq) →M(w) → 0,

unless w = AB−1, in which case the almost-split sequence is

0 →M(wLqRq) →M(wLq)⊕M(wRq)⊕KG→M(w) → 0,

where KG denotes the projective indecomposable module KG, viewed as a module

over itself.

The effect of τ = Ω2 on band modules is trivially easy; every band module satisfies

M(w, φ) = Ω2(M(w, φ)). Thus all band modules are periodic of period either 1 or
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2. The only periodic string modules are those given by words ARi
q = (Ab−1)iA and

BRi
q = (Ba−1)iB.

Now we describe the action of Ω on the string modules. Let w be a word in Wq;

the generation form of w is it written as w = w1w
−1
2 w3w

−1
4 . . . w2m−1w

−1
2m, where w1

and w2m may be empty, but all other of the wi are non-trivial and consist solely of

direct letters. The integer m is called the generating number. We define K(w) to be

the word given by

K(w) = v−1
1 v2v

−1
3 v4 . . . v2m,

where all of the letters in the vi are direct, and viwi is a word of length 2q. Finally,

if w is a word, then there exist direct letters c and d, where c and d are each either a

or b, such that cwd−1 is a word as well. The Heller translate of M(w) is given by

Ω(M(w)) = M(K(cwd−1)).

Let w be a word in W ′
q , such that the first letter of w is direct and the last letter

of w is inverse. (This can be done by cycling for all words in W ′
q .) For the band

module M(w, φ), if m is the generating number of w, then

Ω(M(w, φ)) = M(K(w), (−1)mφ−1).

The periodic string modules are actually of period 1; since the modules Cn(0)

and Cn(∞) for V4 subgroups of G induce to periodic indecomposable modules for G,

and these modules are clearly string modules by Mackey’s formula and Lemma 3.11,

we see that every periodic string module for G is induced from an even-dimensional

string module for some V4 subgroup (all of which are periodic). This enables us to

prove the following proposition.

Proposition 3.17 Suppose that M is a periodic, indecomposable string module.

Then M is algebraic, and moreover,

M⊗2 = M ⊕M ⊕ P,

where P is a sum of a projective modules and modules with vertex C2.

Proof: Since M is a periodic string module, it is induced from an even-dimensional

string module for Q, a subgroup of G isomorphic with V4. Write S for a source of M .

Mackey’s tensor product theorem implies that

S ↑G ⊗S ↑G=
⊕
t∈T

(S ⊗ St) ↓Q∩Qt↑G,
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where T is a set of (Q,Q)-double coset representatives. Since T can be chosen such

that 1 ∈ T , we must have (2 · S) ↑G= 2 ·M as a summand of M ⊗M .

As M is an even-dimensional string module, M ⊗M contains exactly two even-

dimensional string modules by Lemma 3.16, and so all other summands are band

modules or projectives. If Qt 6= Q in the decomposition above, then all summands of

(S ⊗ St) ↓Q∩Qt↑G will have vertex C2 or be projective, and so it remains to consider

those t that lie in NG(Q).

Since Q is self-centralizing, NG(Q) has order 8, and so since Q is one (Q,Q)-double

coset, NG(Q) \ Q must be another. However, for this value of t, we must have that

St 6∼= S, since if the conjugate module were isomorphic, we would have more string

module summands, which is not possible. Hence St 6∼= S, and so their tensor product

is projective, as stated in Conlon’s table for tensor products of KV4-modules. This

completes the proof.

We turn our attention to non-periodic string modules of even dimension. In what

follows, write z for the central element of G, and X = 〈x, z〉 and Y = 〈y, z〉.

Lemma 3.18 Let M = M(w) be a non-periodic string module.

(i) If w begins with a±1, then M ↓X is a sum of periodic KV4-modules, and M ↓Y

is the sum of two odd-dimensional KV4-modules and periodic modules.

(ii) If w begins with b±1, then M ↓Y is a sum of periodic KV4-modules, and M ↓X

is the sum of two odd-dimensional KV4-modules and periodic modules.

Proof: We will prove (i) only, and simply note that (ii) is the same as (i) with x and

y reversed. By the Alperin–Evens theorem (Theorem 1.17), since M is non-periodic,

either M ↓X or M ↓Y is non-periodic. We can see that M ↓〈x〉 is free, and so is a sum

of 2-dimensional modules. Hence M ↓X is a sum of even-dimensional modules, and

so periodic. Thus M ↓Y must be non-periodic, and so must contain odd-dimensional

summands. Since there are exactly two copies of K in M ↓〈y〉, there must be exactly

two odd-dimensional summands of M ↓Y , as required.

The component of the Auslander–Reiten quiver containing a non-periodic string

module M(w) consists of all modules M(wLi
qR

j
q), where i and j are elements of Z,

and is of type A∞
∞. It is possible, using the construction of the string modules above,

to prove an analogue of Theorem 2.14 for components of the Auslander–Reiten quiver

of complexity 3. (This is Theorem C from the introduction.)
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Theorem 3.19 Let G be a dihedral 2-group as constructed above, and let w be a

word of odd length in Wq such that M(w) is non-periodic. Then at most one of the

modules

{M(wLi
qR

j
q) : i, j ∈ Z}

is algebraic.

Theorems 3.14 and 3.19 yield the following corollary.

Corollary 3.20 Let M be a non-periodic indecomposable module for a dihedral 2-

group, and suppose that M is algebraic. Then no other module on the component of

the Auslander–Reiten quiver containing M is algebraic.

We will prove Theorem 3.19 in a sequence of lemmas. We begin with the following

observation.

Lemma 3.21 Let G = V4, and let x be a non-identity element of G. Let i be a

non-positive integer, and let M = Ωi(K). Then the G-fixed points of M are equal to

the x-fixed points of M .

Proof: It is easy to see that the socle of M is of dimension i + 1. We simply note

that M ↓〈x〉 is the sum of K and i copies of the free module, and so its socle has

dimension i+ 1 also. Thus the lemma must hold.

Using this lemma, we can prove a crucial result about the summands of M(w) ↓Y

under a certain condition on w.

Lemma 3.22 Suppose that M = M(w) is an even-dimensional string module, and

suppose that w begins with a−1 or ends with a. Finally, suppose that the odd-

dimensional summands of M ↓Y are isomorphic with Ωi(K) and Ωj(K), where both

i and j are non-positive. Then (at least) one of i and j is 0.

Proof: Note that, since w begins with an inverse letter, the subspace U = 〈vi : i > 2〉
is a G-submodule of M (where the vi are the standard basis used in the construction

of the string modules). Thus if there exists a Y -fixed point

V = v1 +
∑
i∈I

vi,

then 〈V 〉 is a summand of M ↓Y isomorphic with K, as required. Let N1 and N2

denote the two odd-dimensional summands of M ↓Y . By Lemma 3.21, it suffices to

show that there is such a point V fixed by y lying inside one of the Ni.
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We will now calculate the possibilities for a trivial summand of M ↓〈y〉. Since

〈v2, . . . , vn−1〉 ↓〈y〉 (where dimM = n) is a free module, if α =
∑

j∈J vj is a fixed point

of M ↓〈y〉 with a complement, then either 1 or n lies in J . Since M ↓〈y〉 contains a

2-dimensional trivial module, we easily see that the fixed points with complements

are given by

v1 +
∑
j∈J

vj, vn +
∑
j∈J

vj, v1 + vn +
∑
j∈J

vj,

where J ⊆ {2, . . . , n − 1}. Hence for some suitable choice of I, the point V given

above is a y-fixed point, as required.

If w ends with a, then w−1 begins with a−1. Since M(w) = M(w−1), we get the

result.

As a remark, by taking duals, one sees that if M = M(w) and w begins with a

or ends with a−1, and the odd-dimensional summands of M ↓Y are isomorphic with

Ωi(K) and Ωj(K) for i, j > 0, then (at least) one of i and j is 0.

To provide the proof of Theorem 3.19, we must analyze the components of the

Auslander–Reiten quiver consisting of non-periodic, even-dimensional string modules.

To do this, let M denote such an indecomposable module, and suppose without loss

of generality that M = M(w) where w begins with a±1. Denote by Γ the component

of Γs(KG) on which M lies.

We will co-ordinatize the component Γ according to a different rule from that in

Chapter 2. Write (0, 0) for the co-ordinates of the vertex corresponding to M(w),

and (i, j) for the vertex corresponding to M(wLi
qR

j
q). Then the portion of Γ around

the module M is co-ordinatized as follows.

(0, 2) (−1, 1) (−2, 0)

(0, 1) (−1, 0)

(1, 1) (0, 0) (−1,−1)

(1, 0) (0,−1)

(2, 0) (1,−1) (0,−2)

$$JJJJJJJJ

$$JJJJJJJJ

$$JJJJJJJJ

::tttttttt

$$JJJJJJJJ

::tttttttt

$$JJJJJJJJ

::tttttttt

$$JJJJJJJJ

::tttttttt

$$JJJJJJJJ

::tttttttt

$$JJJJJJJJ

::tttttttt

::tttttttt

::tttttttt
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[In this diagram, the Ω2 operation is a functor moving from right to left, in the

opposite direction to the previous chapter. The reversal is to make notation in this

chapter slightly easier. The map M(w) 7→ M(wLq) is a function moving down and

to the left, and the map M(w) 7→M(wRq) moves up and to the left.]

In a similar fashion to the previous chapter, we call the signature of the vertex

(i, j) the object [r, s], where

Ωr(K)⊕ Ωs(K)|M(i,j) ↓Y .

[We will abuse notation slightly, and also refer to the signature of a module, as well

as the signature of a vertex.] Again, as in the previous chapter, we get a ‘diamond

rule’ for the diamonds of the Auslander–Reiten quiver using Lemma 2.15, so that if

M(i,j) does not have vertex contained within Y , then

M(i,j) ↓Y ⊕M(i+1,j+1) ↓Y = M(i,j+1) ↓Y ⊕M(i+1,j) ↓Y .

Suppose that no module on Γ has vertex Y . (Since every proper subgroup of Y

is cyclic, if N is a non-periodic indecomposable module with vertex contained within

Y , it has vertex Y .) If the signatures are known for two adjacent rows of Γ, then they

can be calculated for all rows, using the diamond rule. Since two rows (say rows α

and α+ 1) are completely known, the rows α+ 2 and α− 1 can be calculated, since

every point on either of those rows lies on a diamond whose other three corners lie in

the rows α and α+ 1. This process can be iterated to get the signatures for all rows.

This information makes the proof of the next proposition possible.

Proposition 3.23 Let M = M(0,0) be a non-periodic, even-dimensional string mod-

ule, and suppose that M is algebraic. Suppose in addition that the component Γ of

Γs(KG) containing M contains no module with vertex Y . Let M(i,j) denote the inde-

composable module M(wLi
qR

j
q). Write [r, s] for the signature of (i, j). Then exactly

one of the following three possibilities occurs:

(i) The signature of (i, j) is [2i, 2j] (or [2j, 2i]);

(ii) The signature of (i, j) is [2i, 2i]; and

(iii) The signature of (i, j) is [2j, 2j].

Proof: Firstly, we note that all three potential signatures satisfy the diamond rule

that the sum of the signatures of (i, j) and (i − 1, j − 1) is equal to the sum of the

signatures of (i− 1, j) and (i, j − 1). We need to check that these three possibilities
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are the only ones, and by the remarks before the proposition it suffices to check that

these are the only three possibilities for the two rows with vertices (i, i) and (i, i+ 1)

in the Auslander–Reiten quiver.

Since the signature of (0, 0) is [0, 0], the signature of (i, i) must be [2i, 2i], since

M(i,i) = Ω2i(M(0,0)).

Since no module on Γ has vertex contained within Y , the diamond rule for the

diamond containing (0, 0) and (1, 1) becomes

M(0,0) ↓Y ⊕M(1,1) ↓Y = M(0,1) ↓Y ⊕M(1,0) ↓Y .

The signatures of (0, 0) and (1, 1) are [0, 0] and [2, 2] respectively, and so the signature

of (0, 1) is one of [0, 2] (or equivalently [2, 0]), [0, 0] or [2, 2]. Thus the signatures of

(i, i+ 1) are one of [2i, 2i+ 2], [2i, 2i] or [2i+ 2, 2i+ 2], which correspond to (i), (ii)

and (iii) respectively in the proposition.

In fact, the same result holds for the two components containing non-periodic

modules with vertex Y , but it requires more work.

Let M be an indecomposable module with vertex Y . If M is non-periodic, then

the source S of M must also be non-periodic. Thus S = Ωi(K) for some i ∈ Z.

Therefore the modules Ωi(KY ) ↑G (where KY denotes the trivial module for Y ) are

the only non-periodic indecomposable modules with vertex Y . The module (KY ) ↑G

is algebraic, whereas all others are not.

We begin by considering the component containing M(0,0) = Ω(KY ) ↑G. This

cannot contain algebraic modules, because it can have no vertex with signature [0, 0].

To see this, notice firstly that the signature of (0, 0) is [1, 1]. We analyze the diamond

with bottom vertex (0, 0): write [r, s] for the signature of the top vertex, namely

(−1, 1), and write [p, q] for the signature of the vertex (0, 1) on the left of the diamond.

Then the diamond rule gives

[1, 1] ∪ [r, s] = [p, q] ∪ [p− 2, q − 2],

and we see that p, q, r and s are all odd. Thus all signatures of vertices (i, i + 1)

(i.e., the row above that containing M(0,0)) are a pair of odd numbers. Since all

diamonds not involving those modules with vertex Y obey the diamond rule, we see

that all modules above the horizontal line containing M(0,0) have signature a pair of

odd numbers. The same analysis holds for the lower half of the quiver, and so our

claim holds.
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The other component with modules of vertex Y , namely that containing M(0,0) =

(KY ) ↑G, does contain an algebraic module. Suppose that the signatures of the

vertices on the horizontal line containing (0, 0), and those on the lines directly above

and below this are known. (Thus the signatures for all vertices (i, i), (i + 1, i) and

(i−1, i) are known.) Then we claim that the signatures for all vertices can be deduced.

This is true for the same reason as before, since all diamonds containing at most one

point from the line of vertices (i, i) obey the diamond rule.

This will enable us to prove the next proposition easily.

Proposition 3.24 Let M = M(0,0) be the module KY ↑G, where KY denotes the

trivial module for Y . Let M(i,j) denote the indecomposable module M(wLi
qR

j
q). Write

[r, s] for the signature of (i, j). Then exactly one of the following three possibilities

occurs:

(i) The signature of (i, j) is [2i, 2j] (or [2j, 2i]);

(ii) The signature of (i, j) is [2i, 2i]; and

(iii) The signature of (i, j) is [2j, 2j].

Proof: Firstly note that the three signature patterns obey the diamond rule every-

where, so they certainly obey it for those diamonds that split upon restriction to Y .

Thus we need only show that these three possibilities are the only ones. By the pre-

ceding remarks, it suffices to show this for the horizontal lines containing the vertices

(i, i), (i, i− 1) and (i− 1, i).

We analyze the diamond with bottom vertex (0, 0): write [r, s] for the signature

of the top vertex, namely (−1, 1), and write [p, q] for the signature of the vertex (0, 1)

on the left of the diamond. Then the diamond rule gives

[0, 0] ∪ [r, s] = [p, q] ∪ [p− 2, q − 2],

and so p and q are either both 0, both 2, or one is 0 and one is 2. In any case, this

uniquely determines all modules on the horizontal line containing the vertex (0, 1),

and they are as claimed in the proposition. We need to determine the signatures of

the vertices (i, i− 1) from these.

Suppose that the signature of M(0,1) is [0, 0]. Then the dual of M(0,1) must also

have signature [0, 0]. The almost-split sequence terminating in M(0,0) is given by

0 →M(1,1) →M(0,1) ⊕M(1,0) →M(0,0) → 0,
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and since M(0,0) is self-dual, the dual of this sequence is the (almost-split) sequence

0 →M(0,0) →M(0,−1) ⊕M(−1,0) →M(−1,−1) → 0.

Thus either M∗
(0,1) = M(0,−1) or M∗

(0,1) = M(−1,0). However, the second possibility

cannot occur, since we know that the signature of (−1, 0) is [−2,−2], and thus

M∗
(0,1) = M(0,−1).

Hence the signature of (0,−1) is [0, 0], and we have proved that the three lines con-

taining the vertices (i, i), (i, i − 1) and (i − 1, i) have signatures obeying possibility

(ii).

Now suppose that the signature of M(0,1) is [2, 2]. Then M∗
(0,1) 6∼= M(−1,0) since the

signature of M(−1,0) is [0, 0]. Thus we again have

M∗
(0,1) = M(0,−1).

Since the signature of (0, 1) is [2, 2], the signature of (0,−1) is [−2,−2], and so we

have proved that the three lines containing the vertices (i, i), (i, i − 1) and (i − 1, i)

have signatures obeying possibility (iii).

Finally, suppose that the signature of (0, 1) is [0, 2]. If the signature of M(0,−1)

is not [0,−2], then its dual would have to be M(0,1), by the same reasoning as the

previous two paragraphs. However, this is not possible, and so we have proved that

the three lines containing the vertices (i, i), (i, i − 1) and (i − 1, i) have signatures

obeying possibility (i).

In the first case of Propositions 3.23 and 3.24, there is a unique vertex on Γ with

signature [0, 0], namely the vertex (0, 0), and so M is indeed the unique algebraic

module on Γ. This is in accordance with Theorem 3.19.

In the second case, K ⊕K|M(wLi
q) ↓Y for all i ∈ Z, and

Ω−2(K)⊕ Ω−2(K)|M(wLi
qR

−1
q ) ↓Y .

If i is a suitably large negative number, then wLi
qR

−1
q begins with a−1. This yields a

contradiction, since by Lemma 3.22, K must be a summand of M(wLi
qR

−1
q ) ↓Y .

In the third case, K ⊕K|M(wRi
q) ↓Y for all i ∈ Z, and so

Ω2(K)⊕ Ω2(K)|M(wL−1
q Ri

q) ↓Y .

If i is a suitably large negative number, then wL−1
q Ri

q ends with a−1. This yields a

contradiction, since by Lemma 3.22, K must be a summand of M(wL−1
q Ri

q) ↓Y .

Thus in Propositions 3.23 and 3.24 only the first possibility can occur, and so

Theorem 3.19 is proved.
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3.3 The Group C3 × C3

For this section, write P for the group C3×C3, and write K = GF(3). There are four

subgroups of order 3 in P , labelled Qi for 1 6 i 6 4. Let G denote the holomorph

P o Aut(P ). The representation type of P is wild, and so we have no classification

of the indecomposable modules. However, using a computer, we can determine the

nature of the small-dimensional indecomposable modules, by taking submodules of

projective modules.

Rather than determine whether each isomorphism type of indecomposable module

is algebraic, we will use the fact that the module M is algebraic if and only if the

conjugate module M g is also algebraic. To find conjugate modules, we induce an

indecomposable KP -module M to the group G, then restrict it back to P . By

Mackey’s theorem, all summands of this module are conjugates of M .

In this section, we will proceed by dimension.

3.3.1 Dimension 2

Here, there are four non-isomorphic indecomposable modules Mi, all obviously unis-

erial of length 2, and submodules of KP . These are the 2-dimensional modules for

P/Qi, viewed as KP -modules, and are all hence algebraic, as modules for a cyclic

group. In each case,

M⊗2
i = KP ⊕ P(KP/Qi

).

Since all subgroups of order 3 are conjugate in G, all of the Mi are conjugate. Thus

we get the following result.

Proposition 3.25 Let M be a 2-dimensional KP -module. Then M is algebraic.

3.3.2 Dimension 3

There are several different types of indecomposable module, and we deal with each in

turn. Firstly, there is the projective cover of the trivial module for P/Qi, viewed as a

KP -module: this is clearly algebraic. These modules form a G-conjugacy class of four

non-isomorphic modules, uniserial of length 3. There are eight other non-isomorphic

uniserial modules of length 3, all G-conjugate. Let M denote one of these; then

M ⊗M = M∗ ⊕ Ω(M∗).

The tensor product M ⊗ Ω(M∗) is indecomposable, but we get the decomposition

M ⊗M ⊗ Ω(M∗) = 2 ·M ⊕ 2 · Ω(M)⊕ 4 · P(K).
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Thus we need to examine the tensor products M ⊗M∗ and M ⊗ Ω(M). The second

is easy: we have

M ⊗ Ω(M) = M∗ ⊕ Ω(M∗)⊕ P(K).

This can easily be seen as Ω0(M ⊗Ω(M)) = Ω(M ⊗M), along with the fact that M

is periodic of period 2. Finally, although M ⊗M∗ is indecomposable, we have

M ⊗M∗ ⊗M = 2 ·M ⊕ 2 · Ω(M)⊕ P(K).

Thus, since the module T (M) contains only summands isomorphic with M , M∗,

P(K), Ω(M) and Ω(M∗), M ⊗ M∗ and Ω(M ⊗ M∗), we have proved that M is

algebraic.

There remain two other 3-dimensional modules, both with two socle layers, one

with simple socle and one with simple top; they are, of course, dual to one another,

and the module with simple socle is the module soc2(KP ), which is the preimage in

KP of the module soc(KP/ soc(KP )). Write N for this module.

The tensor square of this module decomposes as

N ⊗N = N∗ ⊕ Ω(N∗),

and so by Theorem 2.11, if N∗ is not periodic then at least one of N∗ and Ω(N∗)

is non-algebraic, whence N is non-algebraic. Since P is abelian, we know that all

periodic modules have period at most 2 (Theorem 1.18), whereas Ω(N) has dimension

15 and Ω−1(N) has dimension 6, so N is not periodic. (See Proposition 5.4 for a

generalization; it proves that soc2(KP ) is non-algebraic for P = Cp × Cp.)

Proposition 3.26 Let M be an indecomposable 3-dimensional module for P over

GF(3). Then M is algebraic if and only if M is periodic.

In particular, we have the following corollary.

Corollary 3.27 The natural module for GL3(3) is not algebraic, and so GL3(3) does

not have 3-SMA.

Proof: If the 3-dimensional natural module for GL3(p) were algebraic, then all re-

strictions of this module would be algebraic. Moreover, the restrictions to this module

form all possible 3-dimensional representations of all groups over GF(3), one of which

is non-algebraic by Proposition 3.26.
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We provide the first reference table for modules. Included is the number of modules

in the G-conjugacy class; the dimensions of the socle layers of the module; whether the

dual of the module M is M itself—in which case we write ‘Module’—is G-conjugate

to M—in which case we write ‘Class’—or neither of these cases—in which case we

write ‘Neither’; the dimensions of the indecomposable summands of M ⊗ M ; and

whether the module is algebraic. When the dimension is a multiple of 3, we also

include whether the module is periodic. It will emerge that periodicity appears to be

the determining factor for algebraicity of KP -modules of dimension a multiple of 3.

Although this table is small in this case, it will become considerably larger later.

Class Size Socle Layers Self-dual M ⊗M Algebraic? Periodic?
A 1 1,2 Neither 3,6 No No
A∗ 1 2,1 Neither 3,6 No No
B 8 1,1,1 Class 3,6 Yes Yes
C 4 1,1,1 Module 3,3,3 Yes Yes

3.3.3 Dimension 4

There are even more different types of 4-dimensional indecomposable KP -module; we

firstly describe those with a simple socle. There are thirteen non-isomorphic modules,

nine of which are self-dual and four of which are not. The self-dual modules split into

two G-conjugacy classes, one of length 6—a representative of which we will denote by

M1—and one of length 3—a representative of which we will denote by M2. All four

of the remaining modules, which are not self-dual, are G-conjugate, and we denote

by M3 a representative of this G-conjugacy class.

Consider the tensor square M1 ⊗M1: this decomposes as

M1 ⊗M1 = K ⊕ P(KP/Qa)⊕ P(KP/Qb
)⊕ P(K),

and so M1 is algebraic.

Next, the module M2 ⊗M2 decomposes as

M2 ⊗M2 = K ⊕ A1 ⊕ P(K),

where A1 is a 6-dimensional module. The module A2 = M2 ⊗A1 is a 24-dimensional

indecomposable module, and

M2 ⊗ A2 = A1 ⊕ A1 ⊗ A1 ⊕ 6 · P(K) = 2 · A1 ⊕ 8 · P(K)⊕ A3,

where A3 is a 12-dimensional indecomposable module. Lastly,

M2 ⊗ A3 = A1 ⊕ 2 · P(K)⊕ A2.
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Hence M2 is algebraic.

Finally, consider the tensor square M3 ⊗M3: this decomposes as

M3 ⊗M3 = K ⊕N1 ⊕N2,

where N1 is a 6-dimensional module and N2 is a 7-dimensional module. The module

N2 is, in fact, the Heller translate of a 2-dimensional indecomposable module. All

2-dimensional modules are algebraic by Proposition 3.25, and so by Theorem 2.11,

N2 is not algebraic since it is non-periodic; therefore neither is M3.

The second class of modules are those that consist of two socle layers, each

of dimension 2. There are seven non-isomorphic 4-dimensional modules with 2-

dimensional socle. These fall into two G-conjugacy classes, one of length 4 and one

of length 3. Write L1 and L2 for representatives of the respective conjugacy classes.

Note that both L1 and L2 are self-dual.

It is not known whether L1 is algebraic or not, although it appears that it is not.

To see some evidence of this, let us calculate the first few tensor powers of L1.

Firstly, we have the decomposition

L1 ⊗ L1 = K ⊕B1 ⊕B2,

where B1 is a self-dual 5-dimensional indecomposable module and B2 is a self-dual 10-

dimensional indecomposable module. While the module B2 is algebraic, the module

B1 does not appear to be so. We need to examine both L1⊗B1 and L1⊗B2 in turn.

Decomposing these tensor products gives the equations

L1 ⊗B1 = L1 ⊕B3,

L1 ⊗B2 = L1 ⊕B4 ⊕B∗
4 ,

where B3 is a (self-dual) 16-dimensional module and B4 is an 18-dimensional inde-

composable module. Since L1 is self-dual, we need only consider L1 ⊗ B4, and not

L1 ⊗B∗
4 as well. This tensor product is given by

L1 ⊗B4 = 2 · P(K)⊕ 2 ·B4 ⊕B∗
4 .

This shows that the module B2 is algebraic. Having dealt with the module B2, via

the modules B4 and B∗
4 , we turn our attention to the 16-dimensional module B3. We

have the decomposition

L1 ⊗B3 = B1 ⊕ P(K)⊕B5 ⊕B4 ⊕B∗
4 .
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In this equation, B5 is a (self-dual) 14-dimensional indecomposable module. The next

step is to calculate the tensor product L1 ⊗B5, which is given by

L1 ⊗B5 = 2 · P(K)⊕B3 ⊕B6,

with B6 a 22-dimensional self-dual indecomposable module. We continue for a few

more iterations:

L1 ⊗B6 = 5 · P(K)⊕B5 ⊕B7;

L1 ⊗B7 = 4 · P(K)⊕B4 ⊕B∗
4 ⊕B6 ⊕B8;

L1 ⊗B8 = 4 · P(K)⊕B9 ⊕B7; and

L1 ⊗B9 = 4 · P(K)⊕B8 ⊕B10

Here, the dimensions of the Bi for 7 6 i 6 10 are 29, 22, 23 and 34. While this is not

proof, it is an obvious indication that this module is not algebraic.

The final case to consider is the tensor product L2 ⊗ L2; this is given by

L2 ⊗ L2 = 2 ·K ⊕ 2 ·M g
2 ⊕ Ah

1 ,

where M g
2 and Ah

1 are conjugates of the modules given earlier in this subsection.

Hence L2 is algebraic, since M2 and A1 are.

Proposition 3.28 Let M be a 4-dimensional indecomposable module. If M has a

simple socle, thenM is algebraic if and only ifM is self-dual. IfM has a 2-dimensional

socle, then M is algebraic if M ⊗M contains K ⊕K as a summand.

While this result is unsatisfactory, it suffices for our purposes.

Class Size Socle Layers Self-dual M ⊗M Algebraic?
A 6 1,2,1 Module 1,3,3,9 Yes
B 4 1,2,1 Neither 3,6,7 No
B∗ 4 2,1,1 Neither 3,6,7 No
C 3 1,2,1 Module 1,6,9 Yes
D 4 2,2 Module 1,5,10 ?
E 3 2,2 Module 1,1,4,4,6 Yes

3.3.4 Dimension 5

We first examine the 5-dimensional submodules of P(K). There are thirteen non-

isomorphic 5-dimensional modules with simple socle, split up into three G-conjugacy

classes, of lengths 3, 4, and 6 respectively, with representatives given by M1, M2 and
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M3 respectively. None of these three modules is algebraic, and to see this, we take

tensor products:

M1 ⊗M1 = A1 ⊕ Ω2(K)⊕ P(K);

M2 ⊗M2 = A2 ⊕B1 ⊕ P(KP/Qa)⊕ P(K); and

M3 ⊗M3 = Ω2(K)⊕ P(KP/Qa)⊕ P(KP/Qb
)⊕ P(K).

Here, A1 and A2 are 6-dimensional modules, and are not important, and B1 is a 7-

dimensional module, and is important. The presence of Ω2(K) implies that M1 and

M3 are non-algebraic, and the decomposition

B1 ⊗B1 = P(KP/Qa)⊕ Ω2(K)⊕ 4 · P(K)

proves that B1, and hence M2, is not algebraic.

Turning to the indecomposable modules with 2-dimensional socle, there are twenty-

one non-isomorphic indecomposable modules with 2-dimensional socle and with top

at least 2-dimensional. (Those with simple top are the duals of the modules given

earlier.) These fall into five G-conjugacy classes, of lengths 1, 4, 4, 4, and 8. We will

give each class a name, as in the previous subsections. The table is as below.

Class Size Socle Layers Self-dual M ⊗M Algebraic?
A 6 1,2,2 Neither 3,3,9,10 No
A∗ 6 2,2,1 Neither 3,3,9,10 No
B 4 1,2,2 Neither 3,6,7,9 No
B∗ 4 2,2,1 Neither 3,6,7,9 No
C 3 1,2,2 Neither 6,9,10 No
C∗ 3 2,2,1 Neither 6,9,10 No
D 1 2,3 Neither 10,15 No
D∗ 1 3,2 Neither 10,15 No
E 4 2,2,1 Module 1,10,14 ?
F 4 2,2,1 Neither 3,4,6,12 No
F∗ 4 2,2,1 Neither 3,4,6,12 No
G 8 2,2,1 Class 10,15 Yes

(i) Class D consists of non-algebraic modules, because if M is the module contained

within Class D, then the 15-dimensional summand ofM⊗2 is Ω(N), where N is a

self-dual 12-dimensional module. Theorem 2.11 proves that this 15-dimensional

summand is non-algebraic.

(ii) Class E contains the 5-dimensional self-dual module B1 given in the previous

subsection. In that section, we proved that modules from Class D in dimension
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4 are algebraic if and only if the 5-dimensional summand of their tensor square

is algebraic. This 5-dimensional summand is from Class E, and as such its

algebraicity is unknown.

(iii) Class F consists of non-algebraic modules; if M denotes a representative from

Class F, then the 4-dimensional module that is a summand of M ⊗M is from

Class B, as given in Section 3.3.3, which is non-algebraic.

(iv) Class G consists of algebraic modules. The proof of this simply involves decom-

posing tensor products: let M be a representative from Class G. Then there are

indecomposable modules A1, . . . , A7 such that

M ⊗M = A1 ⊕ A2,

M ⊗ A1 = M ⊕ P(K)⊕ A3 ⊕ A∗
3,

M ⊗ A2 = 4 · P(K)⊕ A4,

M ⊗ A3 = 4 · P(K)⊕ A3 ⊕ 2 · A∗
3,

M ⊗ A∗
3 = 4 · P(K)⊕ A∗

3 ⊕ 2 · A3,

M ⊗ A4 = 9 · P(K)⊕ A3 ⊕ A∗
3 ⊕ 2 · A5 ⊕ A6,

M ⊗ A5 = 5 · P(K)⊕ A3 ⊕ A∗
3 ⊕ A∗

4,

M ⊗ A6 = 8 · P(K)⊕ A2 ⊕ A5 ⊕ A∗
4,

M ⊗ A∗
4 = 9 · P(K)⊕ 2 · A2 ⊕ A3 ⊕ A∗

3 ⊕ A7, and

M ⊗ A7 = 10 · P(K)⊕ A2 ⊕ 2 · A3 ⊕ 2 · A∗
3 ⊕ A5 ⊕ A4.

The dimensions of the indecomposable modules are given below.

Module Dimension
A1 10
A2 15
A3 18
A4 39
A5 24
A6 30
A7 48

Class E is therefore the only class whose modules have unknown algebraicity: this

lack of knowledge does not appear to be easily rectified, however. We therefore have

the following partial result.

Proposition 3.29 Suppose that M is a 5-dimensional indecomposable module and

that M∗ is not G-conjugate to M . Then M is not algebraic.
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3.3.5 Dimension 6

Due to the large number of indecomposable KP -modules of dimension 6, we will not

describe explicitly the tensor product structure of those that are algebraic. We will

give reasons why the non-algebraic modules are non-algebraic, however, since this

cannot be checked easily on a computer.

We begin with the table of all indecomposable modules.

Class Size Socle Layers Self-dual M ⊗M Algebraic? Periodic?
A 8 1,2,2,1 Class 3,6,9,9,9 Yes Yes
B 4 1,2,2,1 Module 3,3,3,9,9,9 Yes Yes
C 1 1,2,3 Neither 9,12,15 No No
C∗ 1 3,2,1 Neither 9,12,15 No No
D 24 2,2,2 Class 6,9,9,12 Yes Yes
E 16 2,2,2 Class 3,9,12,12 Yes Yes
F 12 2,2,2 Neither 9,12,15 No No
F∗ 12 2,3,1 Neither 9,12,15 No No
G 12 2,2,2 Neither 3,9,9,15 No No
G∗ 12 2,3,1 Neither 3,9,9,15 No No
H 12 2,2,2 Neither 9,12,15 No No
H∗ 12 2,3,1 Neither 9,12,15 No No
I 8 2,3,1 Neither 3,9,12,12 No No
I∗ 8 2,2,2 Neither 3,9,12,12 No No
J 8 2,2,2 Class 3,3,3,6,6,6,9 Yes Yes
K 8 2,2,2 Class 3,6,9,18 Yes Yes
L 8 2,2,2 Class 3,3,6,6,6,12 Yes Yes
M 8 2,2,2 Class 3,9,12,12 Yes Yes
N 4 2,2,2 Neither 3,3,3,6,6,6,9 No No
N∗ 4 2,3,1 Neither 3,3,3,6,6,6,9 No No
P 4 2,2,2 Neither 3,9,12,12 No No
P∗ 4 2,3,1 Neither 3,9,12,12 No No
Q 4 2,3,1 Neither 3,6,9,18 No No
Q∗ 4 3,2,1 Neither 3,6,9,18 No No
R 4 2,3,1 Neither 15,21 No No
R∗ 4 3,2,1 Neither 15,21 No No
S 4 2,2,2 Module 6,9,9,12 Yes Yes
T 4 2,2,2 Module 3,6,6,9,12 Yes Yes
U 4 2,2,2 Module 3,3,3,3,6,6,12 Yes Yes
V 3 2,2,2 Module 6,9,9,12 Yes Yes
W 8 3,3 Module 1,1,1,9,12,12 Yes No
X 4 3,3 Module 15,21 No No

There are thirteen isomorphism classes of module whose socle is 1-dimensional:

these are all Heller translates of 3-dimensional modules with 1-dimensional top. The
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twelve periodic such modules are therefore algebraic by Theorem 2.11, and the remain-

ing module is the translate of KP/ rad2(KP ), and so is non-algebraic, by Corollary

2.12.

Moving on to the isomorphism classes of module whose socle has dimension 2,

we find that there are 199 such modules, arranged into various G-conjugacy classes.

Using techniques similar to those above, we can deduce whether or not the modules

are algebraic. For algebraic modules, we can check all summands of tensor powers

one by one.

For the non-algebraic modules, it is fairly easy to prove that each of them is non-

algebraic; like the non-algebraic 3-dimensional module given above, in most cases a

Heller translate of either M or M∗ lies inside the tensor square of M . The non-

algebraic 6-dimensional modules are labelled by class names, as with previous di-

mensions. We will outline the reasons why the classes of non-algebraic modules are

non-algebraic now.

(i) Class N is non-algebraic because if M comes from Class N, then M⊗M contains

the indecomposable module from Class C∗ in dimension 6 (which consists of a

non-algebraic module) as a summand.

(ii) Classes F, H, I, and P are non-algebraic because in each case, if M is an element

from the class, then Ω(M∗) is a summand of M ⊗M .

(iii) Class G is non-algebraic because if M is a representative from Class G then

Ω−2(M∗) is a summand of M ⊗M .

(iv) Class Q is not algebraic; let M be a representative from Class Q. The module

M ⊗ M decomposes as the sum of a 3-dimensional module, a 6-dimensional

module, a 9-dimensional module N , and an 18-dimensional module. The tensor

product M ⊗ N has an 18-dimensional summand N ′, and the tensor product

M ⊗N ′ has the module Ω−1(M) as a summand. Hence M is not algebraic.

(v) Class R is not algebraic; let M be a representative from Class R. The module

M ⊗ M decomposes as the sum of a 15-dimensional module N1 and a 21-

dimensional module N2. Then Λ2(N1), which is a summand of N1⊗N1, contains

the module Ω(N∗
2 ) as a summand. Thus at least one of N1 and N2 is not

algebraic, and so M is non-algebraic.

There are twenty-one indecomposable KP -modules with socle of dimension 3.

Nine of these are duals of modules with 2-dimensional socle, which leaves twelve to
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consider. There are eight modules which are the direct sum of three 2-dimensional

FP -modules, where F = GF(27). When the field is extended to GF(27) (which has

no effect on algebraicity by Theorem 1.8), one can easily check that the 2-dimensional

modules are algebraic, so this leaves the four other modules, which are allG-conjugate.

The remaining four modules, which form a single G-conjugacy class, are non-

algebraic; let M denote one of these modules, and note that M ⊗M is the sum of a

15-dimensional module N and a 21-dimensional module. Finally, the module Ω(M)

is a summand of N ⊗N , proving that M is non-algebraic.

From the table, the following result is clear.

Proposition 3.30 LetM be an absolutely indecomposableKG-module of dimension

6, whereK = GF(3) and G = C3×C3. ThenM is algebraic if and only if it is periodic.

The 3-dimensional and 6-dimensional absolutely indecomposable modules are al-

gebraic if and only if they are periodic. The conjecture alluded to earlier in the

chapter is the following.

Conjecture 3.31 Let p be a prime and let G be the group Cp × Cp. Let M be an

absolutely indecomposable KG-module, where K is a field of characteristic p, and

suppose that p| dimM . Then M is algebraic if and only if M is periodic.

For elementary abelian groups of larger rank, this conjecture is definitely false.

Any extension of this conjecture will have to take account of the following two obser-

vations.

(i) Let G be the elementary abelian group of order pn and Q be a subgroup of

order p2. Let M be an indecomposable KQ-module of dimension prime to p,

and suppose that M is algebraic. For example, any 2-dimensional module for Q

over GF(p) is algebraic, since GL2(p) has cyclic Sylow p-subgroups. Then the

module M ↑G is an algebraic non-periodic KG-module of dimension a multiple

of p.

(ii) Let M be a periodic module for G/P , where G/P has order p2. Then M , viewed

as a KG-module, is a non-periodic algebraic module for G. Its complexity is at

most r − 1.

To take account of these two possibilities, we make the following, rather specula-

tive, conjecture.
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Conjecture 3.32 Let G be an elementary abelian group of order pr, and let K be a

field of characteristic p. Suppose that M is an absolutely indecomposable KG-module

such that pr−1| dimM .

(i) If M is periodic then M is algebraic.

(ii) If cxM = r then M is non-algebraic.

Theorem 2.14 tells us that if r > 3 in the conjecture above, so that we are not in

the case of Cp ×Cp, then algebraic modules of complexity r are few and far between.

This conjecture states that they are non-existent for certain dimensions.

The results of this section can be used when dealing with sporadic groups, and

the field involved is GF(3). The philosophy is to take a particular finite group G,

and then enumerate all (conjugacy classes of) subgroups isomorphic with C3 × C3.

If M is some module for G, then we restrict M to a representative from each of the

classes of C3 × C3 subgroup, and decompose it into summands. If a non-algebraic

module appears as a summand in one of these decompositions, we conclude that the

module M itself is non-algebraic. The low-dimensional results above are invaluable

in reducing the amount of work required to prove that various simple modules for

sporadic groups are non-algebraic over GF(3).
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Chapter 4

Simple Modules for PSL2

In this chapter we shall examine the simple modules for the groups PSL2(q) (or

equivalently SL2(q), where q is odd and K is a field of characteristic 2. As we have

mentioned, the groups SL2(2
n) were analyzed by Alperin, and this is why we restrict

ourselves to the ‘odd q’ case.

We will prove the following theorem, which is Theorem D from the introduction.

Theorem 4.1 Let G = PSL2(q), and K be a field of characteristic 2. Then G has

2-SMA if and only if q 6≡ 7 mod 8.

This theorem, as it stands, can be proved quite easily using Erdmann’s determi-

nation of the sources of simple modules for these groups in [30]. What is done here,

however, is to decompose, into indecomposable summands, the tensor product of an

arbitrary number of simple modules, in the cases where q ≡ 3 mod 8 and q ≡ 5

mod 8. In the case where q ≡ 7 mod 8, an alternative proof of this theorem is given

from that of considering the sources of simple modules. In the remaining case, where

q ≡ 1 mod 8, the proof here relies on Erdmann’s work. We give Erdmann’s result

on the sources of simple modules now.

Theorem 4.2 (Erdmann [30]) Let G = PSL2(q) where q is odd, with Sylow 2-

subgroup P , and let M be a non-trivial simple module lying in the principal block of

KG.

(i) If q ≡ 3 mod 4, then M has vertex P and the source of M is of dimension

|P |/2− 1.

(ii) If q ≡ 1 mod 4, then M has a Klein four-group as vertex, and 2-dimensional

source.
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If q ≡ 1 mod 8, then the non-trivial simple modules in the principal block of

PSL2(q) have vertex V4 and have 2-dimensional source, and are hence algebraic, by

Theorem 3.1. All non-principal blocks of PSL2(q) are of either cyclic defect or defect 0,

and so for q ≡ 1 mod 8, all simple modules are algebraic. The remaining congruences

modulo 8 will be dealt with below.

In the first two sections we determine the decomposition into ordinary characters

of the tensor products of various ordinary characters. In the following short section,

we examine modules for dihedral groups of twice and four times odd order: these

are the centralizers of involutions in PSL2(q), where q ≡ 3, 5 mod 8. In the four

succeeding sections we consider each congruence class modulo 8.

We begin by stating, without proof, the conjugacy classes and irreducible charac-

ters of the special linear groups SL2(q). This information can be found, for example,

in [47] and [28]. The conjugacy classes of SL2(q) are relatively easy to describe: firstly,

write z for the matrix corresponding to −1. Obviously {1} and {z} are conjugacy

classes, since they form the centre. Write v for a generator of the multiplicative group

of GF(q), and write

a =

(
v 0
0 v−1

)
, c =

(
1 0
1 1

)
, d =

(
1 0
v 1

)
.

Finally, let b denote an element of order q+1, which exists in SL2(q). Then the other

conjugacy classes are labelled as follows, together with the sizes of the conjugacy

classes, and the orders of the elements.

x 1 z a` bm c cz d dz

|xG| 1 1 q(q + 1) q(q − 1) (q2 − 1)/2 (q2 − 1)/2 (q2 − 1)/2 (q2 − 1)/2
o(x) 1 2 (q−1)

gcd(`,q−1)
q+1

gcd(m,q+1) q 2q q 2q

In this table, 1 6 ` 6 (q − 3)/2 and 1 6 m 6 (q − 1)/2. In particular, G has

exactly q + 4 conjugacy classes. Denote by τ a primitive (q − 1)th root of 1, and by

σ a primitive (q+ 1)th root of 1. Write ε = (−1)(q−1)/2. Then the character table for

SL2(q) is given below.

1 z a` bm c d
1G 1 1 1 1 1 1
ψ q q 1 −1 0 0
ζi q + 1 (−1)i(q + 1) τ i` + τ−i` 0 1 1
θj q − 1 (−1)j(q − 1) 0 −(σjm + σ−jm) −1 −1
η1 (q − 1)/2 −ε(q − 1)/2 0 (−1)m+1 (−1 +

√
εq)/2 (−1−√

εq)/2
η2 (q − 1)/2 −ε(q − 1)/2 0 (−1)m+1 (−1−√

εq)/2 (−1 +
√
εq)/2

ξ1 (q + 1)/2 ε(q + 1)/2 (−1)` 0 (1 +
√
εq)/2 (1−√

εq)/2
ξ2 (q + 1)/2 ε(q + 1)/2 (−1)` 0 (1−√

εq)/2 (1 +
√
εq)/2
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The other conjugacy classes, zc and zd, can be computed using the formula

χ(zg) =
χ(z)

χ(1)
χ(g).

Now let us consider the conjugacy classes of PSL2(q); these are labelled by sets

of the conjugacy class representatives of SL2(q) given above. Obviously {1, z} is a

coset, as are {c, zc} and {d, zd}. It remains to discuss the a` and the bm. Clearly

a(q−1)/2 = z, and so the cosets are {a`, a`+(q−1)/2}. Now, a and a−1 are conjugate,

and so the cosets containing a` and a(q−1)/2−` are conjugate. If q ≡ 3 mod 4, then

it cannot be true that ` = (q − 1)/2 − ` for 1 6 ` 6 (q − 3)/2, whereas if q ≡ 1

mod 4, then this is possible. Thus a collection of conjugacy class representatives are

the cosets containing a`, for 1 6 ` 6 (q − 3)/4 if q ≡ 3 mod 4 and 1 6 ` 6 (q − 1)/4

if q ≡ 1 mod 4.

Now consider the elements bm; again, we have that b(q+1)/2 = z, and so the sets

{bm, bm+(q+1)/2} are cosets. Again, b and b−1 are conjugate, and so again the cosets

containing bm and b(q+1)/2−m are conjugate. If q ≡ 3 mod 4, then m = (q+1)/2−m if

and only ifm = (q+1)/4, and if q ≡ 1 mod 4, it is not possible thatm = (q+1)/2−m.

Thus a collection of conjugacy class representatives are the cosets containing bm, for

1 6 m 6 (q + 1)/4 if q ≡ 3 mod 4 and 1 6 m 6 (q − 1)/4 if q ≡ 1 mod 4. In our

discussion of PSL2(q), although the conjugacy classes are technically cosets of SL2(q),

we will label them by elements of SL2(q).

4.1 Ordinary Characters for q ≡ 1 mod 4

Using the calculations above, the conjugacy class representatives are 1, c, d, a` and

bm for 1 6 ` 6 (q − 1)/4 and 1 6 m 6 (q − 1)/4.

The character table of G ∼= PSL2(q) is given below; this is taken from the character

table for SL2(q), which appeared at the start of the chapter. As above, let τ denote

a primitive (q − 1)th root of unity, and σ denote a primitive (q + 1)th root of unity

(both in C).

G 1 a` bm c d
1G 1 1 1 1 1
ψ q 1 −1 0 0
ζi q + 1 τ i` + τ−i` 0 1 1
θj q − 1 0 −σjm − σ−jm −1 −1
ξ1 (q + 1)/2 (−1)` 0 (1 +

√
q)/2 (1−√

q)/2
ξ2 (q + 1)/2 (−1)` 0 (1−√

q)/2 (1 +
√
q)/2
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In this table, the variables i and j are both even and satisfy 2 6 i 6 (q − 5)/2

and 2 6 j 6 (q− 1)/2. Thus there are (q− 1)/4 ordinary characters θj and (q− 5)/4

ordinary characters ζi. Any sum of the ζi or the θj will be over these ranges.

In order to simplify our discussion, we introduce four reducible characters, namely

ξ1 + ξ2,
∑

i ζi,
∑

j θj and the character

ξ1 + ξ2 + 2ψ + 2
∑

i

ζi + 2
∑

j

θj.

These four characters will appear frequently when we decompose tensor products of

ordinary characters.

Proposition 4.3 The four ordinary characters described above have the values given

in the following table.

1 a` bm c d

X = ξ1 + ξ2 q + 1 2(−1)` 0 1 1
Z =

∑
ζi (q + 1)(q − 5)/4 −1− (−1)` 0 (q − 5)/4 (q − 5)/4

Θ =
∑
θj (q − 1)2/4 0 1 −(q − 1)/4 −(q − 1)/4

Φ = 2Θ + 2Z + 2ψ +X (q − 1)(q + 1) 0 0 −1 −1

Proof: Nearly all character values in the table are easily derived from those of their

irreducible constituents; the exceptions are the value of Z on a` and the value of Θ on

bm. Firstly, we deal with the value of Z on a`; write n = (q − 1)/2, and consider the

sum
∑

i ζi. Since i is even, we may replace i by 2α, and so the sought-after character

value on a` is
(n−2)/2∑

α=1

τ 2α` + τ−2α`.

Write ρ = τ 2, a primitive nth root of unity, and also notice that ρ−α` = (ρn−α)`.

Hence the character value on a` is

(n−2)/2∑
α=1

(ρα)` + (ρn−α)` =
n−1∑
α=1

(ρ`)α −
(
ρn/2

)`
.

For any (not necessarily primitive, but not equal to 1) nth root of unity λ, we

have
n−1∑
i=1

λi = −1.

Since ρ` is an nth root of unity, and is not equal to 1 for ` in the range specified, the

first term in this final expression for Z(a`) is equal to −1. The second term,
(
ρn/2

)`
,

is clearly (−1)`, and so the value that Z takes on a` is as claimed.
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Secondly, we consider the value of −Θ (note the sign) on bm. Now write ρ = σ2,

and this time write n = (q + 1)/2. Then, the value of −Θ on bm becomes

(n−1)/2∑
α=1

ραm + ρ(n−α)m =
n−1∑
α=1

(ρm)α = −1.

Hence the value of Θ on bm is 1, as required.

We will now calculate the character decompositions of various products of char-

acters, chosen specifically for the following sections, when we use the decomposition

matrices to determine the decompositions of the products of the irreducible Brauer

characters. In the modular setting, we have the equation ξ1 + ξ2 = 1G +ψ, and so we

do not need separate calculations for ψ. Thus we only concern ourselves with ξ1, ξ2,

the θα and the ζγ.

Lemma 4.4 We have the following formulae involving products of ξ1 and ξ2:

(i) ξ2
1 = ξ1 + Z + ψ + 1G;

(ii) ξ2
2 = ξ2 + Z + ψ + 1G; and

(iii) ξ1ξ2 = Θ + ψ.

Proof: All three of these formulae follow easily from the character table of G and

Proposition 4.3.

We now move onto the θα, and its products both with other θβ and with the

ξ-characters. For α even and in the range (q + 3)/2 6 α 6 q − 1, write θα for the

class function whose values on the conjugacy classes are those in the character table

for G, namely q − 1, 0, −(σmα + σ−mα), −1 and −1. We have that θα = θ(q+1)−α for

α 6= (q + 1)/2; of course, since q ≡ 1 mod 4, if α is even then α 6= (q + 1)/2.

Proposition 4.5 We have the following involving products of θα and ξ1, ξ2 and θβ,

for any α and β 6= α:

(i) θ2
α + θ2α = 2Θ + 2Z +X + ψ + 1G;

(ii) θαθβ + θα+β + θα−β = Φ;

(iii) θαξ1 = ξ2 + ψ + Θ + Z; and

(iv) θαξ2 = ξ1 + ψ + Θ + Z.
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Proof: The first two equations follow immediately from calculating the character

values of both sides of the equation. For the final two formulae, note firstly that

θαξ1 − ξ2 = θαξ2 − ξ1.

From this it becomes a simple calculation that

θαξ1 − ξ2 = Θ + Z + ψ,

which completes the proof.

Finally, we need to decompose products of ζγ with the other irreducible ordinary

characters. Again, we extend our notation, and for γ even with (q−1)/2 6 γ 6 q−3,

write ζγ for the class function with the values as given in the character table, so

that it takes the values q + 1, τ `γ + τ−`γ, 0, 1 and 1. In this case, we have that

ζ(q−1)/2 = X, and ζγ = ζ(q−1)−γ; for the ζ-characters, it is possible that γ is even and

yet γ = (q − 1)/2.

Proposition 4.6 We have the following equations involving products of ζγ and the

various irreducible ordinary characters:

(i) ζ2
γ − ζ2γ = 2Θ + 2Z +X + 3ψ + 1G;

(ii) ζγζδ − ζγ+δ − ζγ−δ = Φ for δ < γ;

(iii) ζγθα = Φ;

(iv) ζγξ1 = ξ1 + Θ + Z + ψ + ζ(q−1)/2−γ; and

(v) ζγξ2 = ξ2 + Θ + Z + ψ + ζ(q−1)/2−γ.

Proof: Unlike the previous proposition, there is a non-trivial calculation in this proof.

Again, the first three calculations are simple addition and multiplication, whereas the

final two require some manipulation. Firstly, note that

ζγξ1 − ξ1 = ζγξ2 − ξ2.

Next, we construct the characters given in the table below.

1 a` bm c d
A = ζγξ1 − ξ1 q(q + 1)/2 (−1)`(τ γ` − 1 + τ−γ`) 0 0 0
B = Z + Θ + ψ (q − 2)(q + 1)/2 −(−1)` 0 −1 −1

A−B (q + 1)/2 (−1)`(τ γ` + τ−γ`) 0 1 1
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To prove the final two equations, it suffices to show that the character whose values

are the same as A−B is ζ(q−1)/2−γ.

Since (−1)` = τ `(q−1)/2, we have

(−1)`(τ γ` + τ−γ`) = τ `((q−1)/2−γ) + τ−`(q−1)/2−γ).

Thus A−B = ζ(q−1)/2−γ, as claimed.

4.2 Ordinary Characters for q ≡ 3 mod 4

We stick to the same conventions in this section as we did in the previous one, so

that conjugacy classes of PSL2(q) will be represented by elements of SL2(q). Using

the calculations above, the conjugacy class representatives are 1, c, d, a` and bm for

1 6 ` 6 (q − 3)/4 and 1 6 m 6 (q + 1)/4.

The character table of G ∼= PSL2(q) is given below. As above, let τ denote a

primitive (q − 1)th root of unity, and σ denote a primitive (q + 1)th root of unity

(both in C).

G 1 a` bm c d
1G 1 1 1 1 1
ψ q 1 −1 0 0
ζi q + 1 τ i` + τ−i` 0 1 1
θj q − 1 0 −σjm − σ−jm −1 −1
η1 (q − 1)/2 0 (−1)m+1 (−1 +

√
−q)/2 (−1−

√
−q)/2

η2 (q − 1)/2 0 (−1)m+1 (−1−
√
−q)/2 (−1 +

√
−q)/2

Here, i and j are both even, and satisfy 2 6 i, j 6 (q − 3)/2. In particular, there

are (q − 3)/4 characters θj and the same number of the characters ζi. The variables

` and m take the values described in the first paragraph of this section.

In calculating these ordinary character decompositions, we will need four more

(reducible) ordinary characters, the characters η1 + η2,
∑
ζi,
∑
θj and Φ.

Proposition 4.7 The four ordinary characters described above have the character

values given in the following table.

1 a` bm c d
E = η1 + η2 q − 1 0 2(−1)m+1 −1 −1
Z =

∑
ζi (q + 1)(q − 3)/4 −1 0 (q − 3)/4 (q − 3)/4

Θ =
∑
θj (q − 1)(q − 3)/4 0 1− (−1)m+1 −(q − 3)/4 −(q − 3)/4

Φ = 2Θ + 2Z + 2ψ + E (q − 1)(q + 1) 0 0 −1 −1
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Proof: That E has the value given in the table is obvious, as is Φ, once one accepts

the character values for Z and Θ. The non-trivial calculations involved are proving

that Z takes the value −1 on a`, and that Θ takes the value 1−(−1)m+1 on bm. Write

n = (q − 1)/2.

Consider the sum
∑
ζi. Since i is even, we may replace i by 2α, and so the

sought-after character value on a` is

(n−1)/2∑
α=1

τ 2α` + τ−2α`.

Write ρ = τ 2, a primitive nth root of unity, and also notice that ρ−α` = (ρn−α)`.

Hence the character value on a` is

(n−1)/2∑
α=1

(ρα)` + (ρn−α)` =
n−1∑
α=1

(ρ`)α.

Now, for any (not necessarily primitive, but not equal to 1) nth root of unity λ,

we have
n−1∑
i=1

λi = −1.

Since ρ` is an nth root of unity, and is not equal to 1 for ` in the range specified, we

see that Z takes the value −1 on a`.

Finally, we consider the value of −Θ (note the sign) on bm. Now write ρ = σ2,

and this time write n = (q + 1)/2. Then, the value of −Θ on bm becomes

n/2−1∑
α=1

ραm + ρ(n−α)m =
n−1∑
α=1

(ρm)α − (ρmn/2).

Now ρmn/2 takes the value 1 when m is even, and takes the value −1 when m is odd.

The sum in the final expression takes the value −1, as it did in the previous case of

the character Z, and so the value of −Θ on bm becomes −1 + (−1)m+1, as required.

We will now calculate the character decompositions of various products of char-

acters, chosen specifically for the following sections, when we use the decomposition

matrices to determine the decompositions of the products of the irreducible Brauer

characters. In the modular setting, we have the equation 1G + η1 + η2 = ψ, and so

we do not need separate calculations for ψ. Thus we only concern ourselves with η1,

η2, the θα and the ζγ.
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Lemma 4.8 We have the following formulae involving products of η1 and η2:

(i) η2
1 = η2 + Θ;

(ii) η2
2 = η1 + Θ; and

(iii) η1η2 = Z + 1G.

Proof: All three of these formulae follow easily from the character table of G and

Proposition 4.7.

We now move onto the θα, and their products both with other θβ and with the

η-characters. For α even and in the range (q + 1)/2 6 α 6 q − 1, write θα for the

class function whose values on the conjugacy classes are those in the character table

for G, namely q− 1, 0, −(σmα +σ−mα), −1 and −1. Then we have that θ(q+1)/2 = E,

and θα = θ(q+1)−α for α 6= (q + 1)/2. These come quite easily from the fact that

σ(q+1)−α = σ−α and σ−((q+1)−α) = σα.

Proposition 4.9 We have the following equations involving products of θα, and η1,

η2, and θβ, for any α and β 6= α:

(i) θ2
α + θ2α = 2Θ + 2Z + E + ψ + 1G;

(ii) θαθβ + θα+β + θα−β = Φ for α > β;

(iii) θαη1 + θ(q+1)/2−α = Z + Θ + η2 + ψ; and

(iv) θαη2 + θ(q+1)/2−α = Z + Θ + η1 + ψ.

Proof: The first two equations are easily shown by proving that their character values

are equal. We focus on the final two parts. Firstly notice that θαη1 − η2 = θαη2 − η1,

and the character is given below, along with the character of Z + Θ + ψ.

1 a` bm c d
A = θαη1 − η2 (q − 1)(q − 2)/2 0 (−1)m(σαm + 1 + σ−αm) 1 1
B = Z + Θ + ψ q(q − 1)/2 0 (−1)m 0 0

B − A q − 1 0 −(−1)m(σαm + σ−αm) −1 −1

Now (−1)m = σm(q+1)/2, and so

−(−1)m(σαm + σ−αm) = −(σm((q+1)/2−α) + σ−m(q+1)/2−α)).

Thus B − A = θ(q+1)/2−α, as claimed.
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Finally, we need to decompose products of ζγ with the other irreducible ordinary

characters. Again, we extend our notation, and for (q + 1)/2 6 γ 6 q − 3, write ζγ

for the class function with the values as given in the character table, so that it takes

the values q + 1, τ `γ + τ−`γ, 0, 1 and 1. Again, we have that ζγ = ζ(q−1)−γ.

Proposition 4.10 We have the following involving products of ζγ and the various

irreducible ordinary characters:

(i) ζ2
γ − ζ2γ = 2Θ + 2Z + E + 3ψ + 1G;

(ii) ζγζδ − ζγ+δ − ζγ−δ = Φ for δ < γ;

(iii) ζγθα = Φ;

(iv) ζγη1 − η1 = Θ + Z + ψ; and

(v) ζγη2 − η2 = Θ + Z + ψ.

Proof: All of these formulae are simply exercises in multiplication and addition, and

there are no non-trivial calculations to perform this time.

4.3 Modules for Dihedral Groups

Let x be an involution in G = PSL2(q), where q ≡ 3, 5 mod 8. Then CG(x) is

a dihedral group of four times odd order. In the sequel, we will need to use the

Green correspondence to isolate modules of vertex C2 in G, and hence this section

will briefly describe the indecomposable modules for D4n with vertex Z = Z (D4n),

where n is odd. Of course, there are only finitely many such modules. Suppose that

an indecomposable KG-module M has vertex Z. Then M has trivial source, and so

M can be viewed as a projective CG(x)/Z-module. This quotient group is a dihedral

group of twice odd order, and it is these groups whose modules we now describe.

Let L be the dihedral group of order 2n, where n is odd, and let K be a splitting

field of characteristic 2. It is well-known that there are two linear ordinary characters

of L and (n− 1)/2 different 2-dimensional ordinary characters of L. The simple KL-

modules are also easy to compute: each of the 2-dimensional CL-modules reduces

modulo 2 to a 2-dimensional projective simple module, and the remaining two 1-

dimensional modules both reduce to the same (trivial) module. The projective cover of

the trivial module is clearly uniserial and 2-dimensional. Thus there are the projective

simple modules, the trivial module, and the projective cover of the trivial module.
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Now let H denote the dihedral group of order n, where n is odd, as above. Then

the modules of vertex C2 are just those modules discussed above, viewed as KH-

modules. Note also that the tensor product of two of these modules has dimension 4,

and splits up as the sum of two other modules of vertex C2, since all of these modules

are projective for the quotient K(H/Z (H)). This information will be invaluable

when we start decomposing tensor products of modules.

4.4 Modular Representations for q ≡ 3 mod 8

In the case where q ≡ 3 mod 8, the decomposition matrix of the principal block, as

given in [20], is as follows.

K S1 S2

1G 1 0 0
η1 0 1 0
η2 0 0 1
ψ 1 1 1

The CG-modules corresponding to the characters ζγ reduce modulo 2 to projective

modules Zγ, and the remaining modules, those corresponding to the θα, lie in pairs in

blocks of defect 1. Write Tα for the reduction modulo 2 of the module corresponding

to the character θα. We need to know which of the θj lie in the same block. Since b

has twice odd order, we should examine the values of the θj on the characters b2x for

various x; in fact, x = 1 is enough.

Thus consider the complex number θj(b
2), which is −(σ2j + σ−2j). Then

σ2α + σ−2α = σ2((q+1)/2−α) + σ−2((q+1)/2−α),

and these are the only two θj that are equal to σ2α + σ−2α. Hence Tα = T(q+1)/2−α,

and the Tj exist and are uniquely determined for 2 6 j 6 (q−3)/4, and j even. Thus

there are (q − 3)/4 modules Zi and there are (q − 3)/8 modules Tj.

The decomposition matrix above implies that the projective covers of the three

modules in the principal block have socle layers

S1

S2 ⊕K
S1

S2

S1 ⊕K
S2

K
S1 ⊕ S2

K
.

The Tα have projective covers that consist of two socle layers, each isomorphic with

Tα. The structures of these projective modules easily yield the dimensions of the
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Ext1-spaces between the simple modules. The structures of the projective modules

also implies that any KG-module has at most three socle layers, and that if a module

has three socle layers, it contains a projective.

The structure of this section is to consider firstly tensor products between the

principal block modules Si, and then to consider tensor products with the modules

Tα and both other Tβ and those modules from the principal block. Finally, we consider

any tensor product involving Zγ, which will be projective. Any other indecomposable

modules we will meet will also have their tensor products with the various simple

modules analyzed. In this section, it will transpire that there is exactly one non-

simple, non-projective, simply generated module.

We consider tensor products between modules in the principal block. Lemma

4.8(iii) implies that

S1 ⊗ S2 =
⊕

i

Zi ⊕K.

Since K ⊆ S1 ⊗ S2, we have that S2 = S∗1 . Thus S1 ⊗ S∗1 = EndK(S1) is the sum

of a projective module and the trivial module; S1 is an endo-trivial module. By

the general theory of endo-trivial modules (see, for example, [23]), we know that the

tensor product of any two endo-trivial modules is endo-trivial, and this, together with

Lemma 4.8(i)–(ii) implies that we have the decomposition

S1 ⊗ S1 =
⊕

j

P(Tj)⊕ S2,

and similarly for S2 ⊗ S2.

Thus we get the following result.

Lemma 4.11 Let M be an indecomposable summand of S⊗j
i for any j and i = 1, 2.

Then M is one of S1, S2, or K, or a projective indecomposable module.

Our next goal is to consider tensor products with the Tα, and so we now examine

the structure of Tα ⊗ X, for X one of the Tβ or Si. Our first aim is to identify the

summand of these tensor products that lies in the principal block. From this, we can

determine the structure of the rest of the module.

The formulae in Proposition 4.9 severely restrict the structure of the possible

indecomposable modules appearing as summands of Tα ⊗ S1. Write cf(M) for the

multiset of composition factors of a module M . Write T and Z for the multisets

T = {Tj : 2 6 j 6 (q − 3)/4, q even} and Z = {Zi : 2 6 i 6 (q − 3)/2, q even}.
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Proposition 4.9 then yields the statements

cf(Tα ⊗ S1) = {2 · S2, S1, K} ∪ 2 ·T ∪Z ,

cf(Tα ⊗ Tα) ∪ {T2α} = {2 · S1, 2 · S2, 2 ·K} ∪ 4 ·T ∪ 2 ·Z , and

cf(Tα ⊗ Tβ) ∪ {Tα+β} ∪ {Tα−β} = {3 · S1, 3 · S2, 2 ·K} ∪ 4 ·T ∪ 2 ·Z ,

presuming that α 6= β. (In these formulae, if X is a multiset, then n · X is the

multiset containing the same elements as X , with multiplicity n times the original

multiplicity.)

The structure of M , the summand of Tα ⊗ Si that lies in the principal block, is

easy to isolate: notice that the composition factors match those of P(S3−i), and by

simple manipulation of Hom-spaces, we have the formulae

HomKG(Tα ⊗ Si, K) = HomKG(Tα ⊗ Si, Si) = 0, HomKG(Tα ⊗ Si, S3−i) = K,

proving that M is a quotient of P(S3−i); we therefore see that M ∼= P(S3−i).

Considering the module Tα⊗Tα, we again label by M the summand of this tensor

product lying in the principal block. Suppose firstly that Tα is not self-dual: then

K is neither a summand nor a quotient of Tα ⊗ Tα, and so both copies must lie in

the heart (radical modulo socle) of M . Since M has three socle layers, it contains

projective summands, and since both copies of K lie in the heart, they must lie in

these projective summands. However, since both P(S1) and P(S2) contain exactly

one copy of K in their hearts, there must be two projective summands in M , a

contradiction since M contains only six composition factors.

By Theorem 1.20, K is not a summand of Tα ⊗ Tα, and since S1 and S2 have

vertex V4, they cannot be summands of Tα ⊗ Tα either, because Tα has cyclic vertex.

However, since Tα is a composition factor of Tα ⊗ Si by Proposition 4.9,

dimK HomKG(Tα ⊗ Tα, Si) = dimK HomKG(Tα ⊗ S3−i, Tα) > 1.

Thus socM contains a copy of each simple module from the principal block, as does

M/ radM . Since none of the simple modules is a summand of M , we see that

soc2M = M ; that is, M has no projective summands. Hence all summands of

M have vertex C2.

Finally, by the results of Section 4.3, we see that G possesses exactly one inde-

composable module with vertex C2 that is not one of the Tα, whence this must be

the module M .

We will, from now on, refer to this self-dual indecomposable module as U . This

module is the Green correspondent of the unique non-simple module of vertex C2
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in the centralizer of an involution, and has two socle layers, each with a single copy

of each simple module from the principal block as factors. Naturally, it is uniquely

determined up to isomorphism.

Let M denote the summand of Tα ⊗ Tβ lying in the principal block, where α 6= β.

Since Tα is self-dual,

HomKG(Tα ⊗ Tβ, K) = 0 = HomKG(K,Tα ⊗ Tβ).

Thus the two copies of K in this module M must both lie in the heart of M . This im-

plies that M contains two projective summands, consuming eight composition factors.

Therefore M ∼= P(S1)⊕ P(S2).

Since the Zγ are all projective, their structure in the tensor products is obvious,

and so it remains to discuss the Tα. They all have vertex isomorphic with C2, and

since G contains only one class of involutions (which is easily seen from the character

table), all of the Tα have the same vertex.

Consider HomKG(Tα ⊗ Si, Tβ): this is 1-dimensional by manipulation of Hom-

spaces, and so we get the following result.

Proposition 4.12 Let α be an even number between 2 and (q − 3)/4. Then

Tα ⊗ S1 = Tα ⊕ P(S2)⊕
⊕

i

Zi ⊕
⊕
β 6=α

P(Tβ), and

Tα ⊗ S2 = Tα ⊕ P(S1)⊕
⊕

i

Zi ⊕
⊕
β 6=α

P(Tβ).

We now discuss the remaining summands of T⊗2
α and Tα ⊗ Tβ. To do this, we

need the Green correspondence. Let x be an arbitrary involution; then L = CG(x) is

dihedral of order q + 1, and has centre 〈x〉.
Let f denote the Green correspondence. If M and N are two modules with vertex

P , then f(M ⊗ N) ≡ f(M) ⊗ f(N) modulo modules of strictly smaller vertex (see

[36, III.5.7]). In our case, this means that

f(T⊗2
α ) ≡ f(Tα)⊗2 modulo projectives.

In our case, there are exactly two summands of Tα ⊗ Tα with cyclic vertex and the

rest are projective. This follows from the similar statement at the end of Section 4.3,

that the product of two indecomposable KL-modules with vertex C2 is the sum of

two indecomposable KL-modules with vertex C2.

There are already two indecomposable summands of cyclic vertex in T⊗2
α , namely

the modules U and T2α, the second appearing because there are an odd number
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of copies of that module as a composition factor of Tα ⊗ Tα. Similarly, there are

already two indecomposable modules of cyclic vertex in Tα ⊗ Tβ—the modules Tα+β

and Tα−β—and so all other summands must be projective. This yields the following

proposition.

Proposition 4.13 Let α > β be different even numbers between 2 and (q − 3)/4.

Then

Tα ⊗ Tα = U ⊕ 2 ·
⊕

i

Zi ⊕
⊕

j

P(Tj)⊕
⊕
j 6=α

P(Tj)⊕ T2α,

and

Tα ⊗ Tβ = P(S1)⊕ P(S2)⊕ 2 ·
⊕

i

Zi ⊕
⊕

j

P(Tj)⊕
⊕

j 6=α+β,α−β

P(Tj)⊕ Tα+β ⊕ Tα−β.

Lastly, we consider tensor products involving Zγ. Since this module is projective,

any tensor product will be projective, and this fact, together with the formulae in

Proposition 4.10, yields the following proposition.

Proposition 4.14 We have the following tensor product decompositions:

(i) Zγ ⊗ Zγ = Z2γ ⊕ 2 ·
⊕

i Zi ⊕ 2 ·
⊕

j P(Tj)⊕ P(S1)⊕ P(S2)⊕ P(K);

(ii) for δ 6= γ, we have

Zγ ⊗ Zδ = Zγ+δ ⊕ Zγ−δ ⊕ 2 ·
⊕

i

Zi ⊕ 2 ·
⊕

j

P(Tj)⊕ P(S1)⊕ P(S2);

(iii) Zγ ⊗ Tα = 2 ·
⊕

i

Zi ⊕ 2 ·
⊕

j

P(Tj)⊕ P(S1)⊕ P(S2);

(iv) Zγ ⊗ S1 = P(S1)⊕
⊕

i Zi ⊕
⊕

j P(Tj); and

(v) Zγ ⊗ S2 = P(S2)⊕
⊕

i Zi ⊕
⊕

j P(Tj).

Proof: The decompositions are obvious outside the principal block; for this block,

essentially we have to solve three linear equations in three unknowns, to match up

the composition factors. Write x, y and z for the quantities of the projective covers

of K, S1, and S2 respectively. From the sets of composition factors—P(M) contains

two copies of M and one each of the other two—we get three equations

2x+ y + z = a, x+ 2y + z = b, x+ y + 2z = c,
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where a, b and c are the number of composition factors isomorphic with K, S1, and

S2 respectively. These three equations are linearly independent, and so have a unique

solution for each triple (a, b, c). The solutions given above are easily verified, yielding

the result.

We have thus determined the structure of M ⊗N for all simple modules M and

N . To complete the determination of an arbitrary tensor product of simple modules,

we need to determine the tensor product of the indecomposable module U with the

simple modules. (Technically, we should also consider the tensor product of the

other projective indecomposable modules with the simple modules, but this is easily

computable from the decompositions we have given here, together with the fact that

the resulting module is projective.)

Proposition 4.15 We have the following tensor product decompositions:

(i) U ⊗ Si = U ⊕ 2 ·
⊕

j P(Tj)⊕
⊕

i Zi;

(ii) U ⊗ Tα = 2 · Tα ⊕ 2 · P(Tα)⊕ 4 ·
⊕

j P(Tj)⊕ 4 ·
⊕

i Zi ⊕ 2 · P(S1)⊕ 2 · P(S2).

(iii) U ⊗ Zγ = 2 · Zγ ⊕ 4 ·
⊕

j P(Tj)⊕ 4 ·
⊕

i Zi ⊕ 2 · P(S1)⊕ 2 · P(S2).

Proof: We begin with the final formula, which comes from the fact that

U ⊗ Zγ = 2 · (K ⊗ Zγ ⊕ S1 ⊗ Zγ ⊕ S2 ⊗ Zγ).

The second formula can be proved using the Green correspondence: as before, in

the tensor product U ⊗ Tα, exactly two summands have vertex C2. Examining the

tensor products of Tα with the composition factors of U , one sees that all summands

are projective except for six copies of Tα. Since Tα ⊗ U must possess exactly two

summands of vertex C2, these six composition factors isomorphic with Tα must be

distributed as given in the formula.

Consider the module U ⊗ Si: as U has vertex C2, all summands of this product

are either projective or have vertex C2. Examining the decompositions of the tensor

products of Si with the composition factors of U , we see that all of the projective

modules given in the formula above must appear. The remaining composition factors

are two copies each of K, S1, and S2. Since there are only four indecomposable

modules in the principal block—P(K), P(S1), P(S2) and U—whose vertex is C2 or

trivial, we immediately see that these six composition factors must form a copy of U ,

as required.
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This implies the following theorem.

Theorem 4.16 Let M be an indecomposable simply generated KG-module, where

G = PSL2(q), for q ≡ 3 mod 8. Then M is isomorphic with a simple module, a

projective indecomposable module, or the self-dual module U defined above, with two

socle layers, each possessing a copy of K, S1, and S2. Furthermore, all tensor products

of arbitrarily many simple modules can be decomposed using the decompositions given

in this section.

4.5 Modular Representations for q ≡ 5 mod 8

This case is similar to q ≡ 3 mod 8, where only four ordinary irreducible characters

lie in the principal block. Thus let G ∼= PSL2(q), with q ≡ 5 mod 8. We again take

the information on the decomposition matrices from [20].

K S1 S2

1G 1 0 0
ξ1 1 1 0
ξ2 1 0 1
ψ 1 1 1

The CG-modules corresponding to the characters θα reduce modulo 2 to projective

modules Tα, and the remaining modules, those corresponding to the ζγ, lie in pairs in

blocks of defect 1. Write Zγ for the reduction modulo 2 of the module corresponding

to the character ζγ. We need to know which of the ζi lie in the same block. Since a

has twice odd order, we should examine the values of the ζi on the characters a2x for

various x; in fact, x = 1 is enough.

Thus consider the complex number ζi(a
2), which is τ 2i + τ−2i. Then

τ 2α + τ−2α = τ 2((q−1)/2−α) + τ−2((q−1)/2−α),

and these are the only two ζi whose character value is equal to τ 2α + τ−2α. Hence

Zγ = Z(q−1)/2−γ, and the Zi exist and are uniquely determined for 2 6 i 6 (q − 5)/4,

and i even.

As calculated in [32], the projective covers of the modules K, S1, and S2 are given

by

P(S1) =

S1

K
S2

K
S1

P(S2) =

S2

K
S1

K
S2

P(SK) =

K
S1 S2

K
⊕

K
S2 S1

K

.
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In particular, Ext1
KG(K,K) = Ext1

KG(Si, Sj) = 0 for all i and j.

Again, we will start with the modules in the principal block. The equations

(ξ1 − 1G)2 = Z + (ξ2 − 1G) + 2 · 1G,

(ξ2 − 1G)2 = Z + (ξ1 − 1G) + 2 · 1G, and

(ξ1 − 1G)(ξ2 − 1G) = Θ,

yield the composition factors of the modules Si ⊗ Sj. The decomposition of S1 ⊗ S2

is immediate.

Lemma 4.17 S1 ⊗ S2 =
⊕

j Tj.

Proof: The modules Tα are projective simple modules, and so the right-hand side is

the only possible module with character Θ.

Slightly more difficult is decomposing Si ⊗ Si. The lemma just given proves that

the Si are self-dual, and so HomKG(S1 ⊗ S1, K) = K. The composition factors of

Si ⊗ Si are two copies of K, one copy of S3−i, and two copies of each Zγ. Clearly

HomKG(Si ⊗ Si, S3−i) = HomKG(Si, Si ⊗ S3−i) = 0,

and so M , the summand of Si ⊗ Si lying in the principal block, is a quotient of

P(K). This implies that M is uniserial, with socle layers containing K, S3−i and K

respectively.

It remains to discuss the summands of S1 ⊗ S1 lying outside the principal block;

these are either Zγ ⊕ Zγ or P(Zγ) for each γ.

Lemma 4.18 We have

S1 ⊗ S1 =
K
S2

K
⊕
⊕

i

P(Zi),

and similarly

S2 ⊗ S2 =
K
S1

K
⊕
⊕

i

P(Zi).

Proof: We need to prove that HomKG(S1 ⊗ S1, Zγ) = K. Note firstly that Zγ ⊗ S1

contains exactly two copies of S1, by Proposition 4.6. If dimK HomKG(S1⊗S1, Zγ) =

2, then there must be a summand of Zγ ⊗ S1 isomorphic with S1. However, S1 has

vertex V4 by Theorem 1.24, whereas all summands of S1⊗Zγ have vertices contained

within C2, a contradiction. The result now follows.
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This uniserial module lying in the principal block, with heart Si, will be referred

to as S ′i. We are interested in its products with S1 and S2. The one is easy to

understand: S ′1⊗S2 = 2 ·S2⊕
⊕

j Tj is the only possibility, since S1⊗S2 is projective,

and S2 has no self-extensions. The other is not significantly more difficult: we have

HomKG(S ′1 ⊗ S1, K) = HomKG(S ′1 ⊗ S1, S2) = 0, and

HomKG(S ′1 ⊗ S1, S1) = HomKG(S ′1, S
′
2) = K.

Hence the summand of S ′1⊗S1 lying in the principal block is a quotient of P(S1), and

since they have the same number of composition factors, we get the following result.

Lemma 4.19 We have the equations

S ′i ⊗ Si = P(Si)⊕
⊕

i

P(Zi),

and

S ′i ⊗ S3−i = 2 · S3−i ⊕
⊕

j

Tj.

This yields the result that all of the simple modules in the principal block are

algebraic, and in particular, it determines the summands of T (Si).

Proposition 4.20 The modules Si are algebraic, and the module T (Si) contains the

non-isomorphic indecomposable summands K, Si, S
′
3−i and all projective indecom-

posable modules.

Next we consider the Zγ, and their products with the Si and the other Zδ and to

facilitate this discussion, we write T and Z for the multisets

T = {Tj : 2 6 j 6 (q − 1)/2, q even} and Z = {Zi : 2 6 i 6 (q − 5)/4, q even}.

Recall that cf(M) denotes the composition factors of the module M . The character

calculations of Proposition 4.6 yield the composition factor equations

cf(Zγ ⊗ S1) = {2 · S1, 2 ·K,S2} ∪T ∪ 2 ·Z ,

cf(Zγ ⊗ Zγ) = {6 ·K, 4 · S1, 4 · S2} ∪ {Z2γ} ∪ 2 ·T ∪ 4 ·Z , and

cf(Zγ ⊗ Zδ) = {4 ·K, 3 · S1, 3 · S2} ∪ {Zγ+δ, Zγ−δ} ∪ 2 ·T ∪ 4 ·Z .

We aim to understand the module Zγ ⊗ Zγ; similarly to the previous section, the

centralizer of an involution in G is a dihedral group of four times odd order, and in

Section 4.3 we determined the indecomposable modules with vertex C2. Each of them
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has the property that the tensor square is the sum of two indecomposable modules,

each with vertex C2. Since Zγ has vertex C2, there are exactly two non-projective

summands of Z⊗2
γ , and these have vertex C2, by the Green correspondence.

Since there are five copies of Z2γ, at least one of these is a summand. Thus it

remains to find one other non-projective summand. There is exactly one remaining

non-projective summand, and so all of the composition factors Zδ must lie in projec-

tive modules. Thus the non-projective summand must come from the principal block.

The number of modules of the centralizer of an involution with vertex C2 is one more

than the number of the Zγ: this summand is uniquely determined by being the only

non-simple indecomposable module with vertex C2.

Recall that G has a permutation representation on q+1 points. Let V denote the

associated permutation module. This module is known to be indecomposable (see,

for example, [30]), with socle structure

K
S1 ⊕ S2

K
.

Since q+1 is even but not a multiple of 4, the module V has vertex C2, and so this must

be the remaining indecomposable module with vertex C2. Hence V ⊕ Z2γ|Zγ ⊗ Zγ,

and all remaining summands are projective. By considering composition factors, it is

easy to see that

Zγ ⊗ Zγ = V ⊕ P(S1)⊕ P(S2)⊕ 2 ·
⊕

j

Tj ⊕ 2 ·
⊕

i

P(Zi)⊕ Z2γ.

Consider Zγ ⊗ Zδ, where γ > δ; this behaves in a similar way to Zγ ⊗ Zγ. Since

there are five composition factors isomorphic with Zγ+δ and five with Zγ−δ, the two

indecomposable non-projective summands are Zγ+δ and Zγ−δ, and all remaining sum-

mands must be projective. This uniquely determines the decomposition, as

Zγ ⊗ Zδ = P(S1)⊕ P(S2)⊕ 2 ·
⊕

j

Tj ⊕ 2 ·
⊕

i

P(Zi)⊕ Zγ+δ ⊕ Zγ−δ.

The last module decomposition in this group is Zγ⊗Si. We have the easy equations

HomKG(Zγ ⊗ Si, K) = HomKG(Zγ ⊗ Si, S3−i) = 0, HomKG(Zγ ⊗ Si, Si) = K,

and since the composition factors of Zγ ⊗ Si lying in the principal block are exactly

those of P(Si), we see that P(Si) is the only summand of Zγ⊗Si lying in the principal

block.

82



CHAPTER 4. SIMPLE MODULES FOR PSL2

Note that for all δ,

HomKG(Zγ ⊗ Si, Zδ) = HomKG(Zγ ⊗ Zδ, Si) = K,

and so it is P(Zδ), not Zδ ⊕ Zδ, that is a summand of Zγ ⊗ Si. We collate these

results.

Proposition 4.21 Let Zγ be one of the (q + 1)-dimensional simple modules. Then:

(i) Zγ ⊗ S1 = P(S1)⊕
⊕

j Tj ⊕
⊕

iP(Zi);

(ii) Zγ ⊗ S2 = P(S2)⊕
⊕

j Tj ⊕
⊕

iP(Zi);

(iii) Zγ ⊗ Zγ = V ⊕ P(S1)⊕ P(S2)⊕ 2 ·
⊕

j Tj ⊕ 2 ·
⊕

iP(Zi)⊕ Z2γ; and

(iv) Zγ ⊗ Zδ = P(S1)⊕ P(S2)⊕ 2 ·
⊕

j Tj ⊕ 2 ·
⊕

iP(Zi)⊕ Zγ+δ ⊕ Zγ−δ.

We next consider the projective modules Tα ⊗M for the simple modules M . In a

similar way to the case where q ≡ 3 mod 8, these are essentially linear equations in

the composition factors, and their proofs are suppressed.

Proposition 4.22 We have the following tensor product decompositions:

(i)

Tα ⊗ Tα = P(K)⊕ 2 ·
⊕
j 6=2α

Tj ⊕ T2α ⊕ 2 ·
⊕

i

P(Zi);

(ii) for β < α, we have

Tα ⊗ Tβ = P(S1)⊕ P(S2)⊕ 2 ·
⊕

j 6=α+β,α−β

Tj ⊕ Tα+β ⊕ Tα−β ⊕ 2 ·
⊕

i

P(Zi);

(iii) for all α and γ,

Tα ⊗ Zγ = P(S1)⊕ P(S2)⊕ 2 ·
⊕

j

Tj ⊕ 2 ·
⊕

i

P(Zi);

(iv) Tα ⊗ S1 = P(S2)⊕
⊕

j 6=α Tj ⊕
⊕

iP(Zi); and

(v) Tα ⊗ S2 = P(S1)⊕
⊕

j 6=α Tj ⊕
⊕

iP(Zi).

In particular, T (Tα) contains exactly the projective indecomposable modules, and Tα

is algebraic.
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We have determined the structure of M⊗N for any two simple modules M and N ;

to complete the determination of the structure of the tensor product of any collection

of simple modules, we need to understand the tensor products of the non-simple

indecomposable modules S ′i and V with all simple modules.

We begin with the two modules S ′i.

Proposition 4.23 We have the following decompositions:

(i) S ′i ⊗ Si = P(Si)⊕
⊕

iP(Zi);

(ii) S ′i ⊗ S3−i = 2 · S3−i ⊕
⊕

j Tj;

(iii) S ′i ⊗ Zγ = P(Si)⊕
⊕

j Tj ⊕
⊕

iP(Zi)⊕ P(Zγ); and

(iv) S ′i ⊗ Tα = P(S3−i)⊕
⊕

j Tj ⊕ Tα ⊕
⊕

iP(Zi).

Proof: The first two parts of the result are Lemma 4.19. The final part can be

seen by combining the expressions for the tensor product of Tα with the composition

factors of S ′i given above, remembering that Tα is projective. The third equation

holds since S ′i ⊗ Zγ is projective; to see this, note that S ′i|S3−i ⊗ S3−i, and S3−i ⊗ Zγ

is projective.

Finally, we consider decompositions of tensor products containing V .

Proposition 4.24 We have the following decompositions:

(i) V ⊗ Si = P(Si)⊕
⊕

j Tj ⊕
⊕

iP(Zi);

(ii) V ⊗ Zγ = 2 · Zγ ⊕ P(S1)⊕ P(S2)⊕ 2 ·
⊕

j Tj ⊕ 2 ·
⊕

iP(Zi); and

(iii) V ⊗ Tα = P(S1)⊕ P(S2)⊕ 2 ·
⊕

j Tj ⊕ 2 ·
⊕

iP(Zi).

Proof: The module V is a summand of Zγ ⊗ Zγ, and so V ⊗ Si lies inside the triple

tensor product Zγ⊗Zγ⊗Si. This tensor product is projective since Si⊗Zγ is, and so

V ⊗ Si is projective. The first result now follows by comparing composition factors;

there is a single possibility for the structure of V ⊗ Si given that it is projective.

To see the second part, note that V ⊗Zγ must have two non-projective summands,

because of the Green correspondence. Then, the tensor product of Zγ and Si is

projective, and so the only remaining composition factors of V ⊗ Zγ not already

definitely inside a projective module are the two copies of Zγ got from tensoring Zγ

with the two copies of K. Hence these must be summands.

84



CHAPTER 4. SIMPLE MODULES FOR PSL2

The third part of this result follows again since it is projective, and combining the

decompositions given above for tensor products of Tα with the composition factors of

V . All parts of the proposition have now been proved.

This implies the following theorem.

Theorem 4.25 Let M be an indecomposable simply generated KG-module, where

G = PSL2(q), for q ≡ 5 mod 8. Then M is isomorphic with a simple module, a

projective indecomposable module, one of the two uniserial modules S ′i, or the self-

dual module V defined above, the permutation module got from the permutation

representation on the projective line. Furthermore, all tensor products of arbitrarily

many simple modules can be decomposed using the decompositions given in this

section.

4.6 Modular Representations for q ≡ 7 mod 8

In this short section we will deal with the groups PSL2(q) where q ≡ 7 mod 8. Since

this is the only negative result in this article, we will present another proof that the

non-trivial modules in the principal block of G = PSL2(q) are not algebraic when

q ≡ 7 mod 8. We firstly reproduce the decomposition matrix for the principal block

of KG.

K S1 S2

1G 1 0 0
η1 0 1 0
η2 0 0 1
ψ 1 1 1
θj 0 1 1

Using Lemma 4.8, we again see that all of the simple modules in the principal

block are indeed endo-trivial. However, S1 and S2 are no longer of finite order; that

is, there is no integer n 6= 0 such that

S⊗n
1 = K ⊕ P,

where P is projective. (This is also true for S2 = S∗1 .)

To see this, write Q for a Sylow 2-subgroup. We firstly note that S1 ↓Q is not

trivial modulo projectives. This is simply because S1 has dimension (q− 1)/2, which

is not congruent to 1 modulo |Q|, as |Q| has order at least 8. Hence S1 ↓Q, modulo

projectives, is not the trivial element of the group of endo-trivial modules. In [23],
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Carlson and Thévenaz prove (although they note that it is well-known) that the

dihedral groups do not have any non-trivial, torsion endo-trivial modules, thus proving

that S1 ↓⊗i
Q contains infinitely many indecomposable summands as i ranges over all

positive integers, namely the elements of the subgroup of the group of endo-trivial

modules generated by S1 ↓Q. Hence S1 is not algebraic.

However, since the modules lying outside the principal block have cyclic (or trivial)

vertex, the Tα and Zγ are still algebraic. Thus we get the following result.

Proposition 4.26 Let q ≡ 7 mod 8, and G ∼= PSL2(q). Then all but two sim-

ple KG-modules are algebraic, the remaining two being non-algebraic endo-trivial

modules of dimension (q − 1)/2.

4.7 Block Invariants Determining Algebraicity

The question of how the structure of a block B of KG affects the algebraicity of the

simple B-modules is a subtle one, as these examples demonstrate. The defect group

D of the block B plays an important rôle: if D is cyclic, then all simple B-modules

are algebraic, and if D ∼= V4, then, conjecturally at least, all simple B-modules are

algebraic. If D is dihedral of order 8, however, non-algebraic simple B-modules can

be found. If G ∼= PSL2(9), and B is the principal block, then all simple B-modules

are algebraic, whereas if H ∼= PSL2(7), and B′ is the principal block, then two of

the three simple B′-modules are non-algebraic. Thus the defect group alone is not

enough to determine algebraicity of simple B-modules.

Several deep block-theoretic conjectures about modules can be expressed in terms

of the fusion system of the block involved, and so perhaps this can be of help. However,

since all involutions are conjugate in both G and H, the fusion systems FD(G) and

FD(H) are isomorphic, and so the fusion systems of the principal blocks B and B′

are also isomorphic.

Delving deeper into the block-theoretic structure of B and B′, we note that the

decomposition matrices of the two blocks are different. Furthermore, the principal

block of A7, whose simple modules are also algebraic, has the same decomposition

numbers as B. On a related note, if L is a soluble group and b is a block with dihedral

defect group of order at least 8, then b has at most two simple modules (see [34]), so

that b cannot have the same decomposition matrix as the principal block of H. We

see the following result.
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Theorem 4.27 Let K be a field of characteristic 2, and let G be a simple group with

dihedral Sylow 2-subgroups of order at least 8, and denote by B the principal block of

KG. Then B possesses three simple modules, labelled S1, S2, and the trivial module

K. Furthermore, S1 and S2 are algebraic if and only if they are not the reduction

modulo 2 of simple CG-modules. Thus the algebraicity of the simple B-modules is

determined by the decomposition numbers of the principal block.

Now consider the central extension 3·A6
∼= 3·PSL2(9), and its modules over GF(4).

There are two (dual) non-principal blocks with Sylow 2-subgroups as defect groups,

and these two blocks each contain three simple modules. Two of these modules

have dimension 3 and are non-algebraic, but the 9-dimensional module has trivial

source and is hence algebraic. This block has the same decomposition matrix as

the principal block of PSL2(7), and the bijection between the simple modules that

realizes this decomposition matrix equality maps the unique algebraic module in the

one block to that of the other.

Finally, consider the central extension 3 ·A7, which also possesses a non-principal

2-block with Sylow 2-subgroups as defect groups. This block contains a 6-dimensional

module and a 15-dimensional module, both of which are algebraic. The following is

perhaps a rash conjecture.

Conjecture 4.28 Let B be a block of a group algebra with dihedral defect group.

Then

(i) if `(B) 6 2, then the simple B-modules are algebraic, and

(ii) if `(B) = 3, then if B′ is some other block of a finite group with dihedral defect

group, then B and B′ have the same number of algebraic simple modules if B is

Morita equivalent to B′. In particular, B contains at least one algebraic simple

module.

This conjecture has now been verified for all soluble groups and all quasisimple

groups with dihedral Sylow 2-subgroup.

Since the Puig equivalence class of a block determines the sources of the simple

modules, the algebraicity of modules is determined by the Puig equivalence type.

Thus the algebraicity of modules is controlled by some block invariant. However,

Puig equivalence is very strict, and it might be of interest to see whether less strict

equivalence relations on the blocks still preserve algebraicity of simple modules.
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Chapter 5

The Groups of Lie Type

For most simple groups, the Green ring structure is far too complicated, and the

simple modules far too numerous, to expect the SMA property to hold. However,

the possibility of finding an example of a simple group with SMA where the Sylow

p-subgroup is still quite complicated, is tempting enough to attempt to answer the

SMA question for arbitrary simple groups.

An idea of just how quickly the Green ring structure becomes unmanageable is

the fact that GL3(p) does not possess the SMA property in defining characteristic.

We can use this fact to prove that the natural module is non-algebraic for all groups

of Lie type for all sufficiently large ranks. Here we will only consider the classical

groups and the Ree groups 2G2(q), although similar calculations have been performed

for the other Ree groups, and can in principle be performed for the other exceptional

groups.

Some discussion of the non-defining characteristic representation theory of these

groups is provided, in the cases of PSL3(q), PSU3(q) and 2G2(q).

5.1 The Natural Module for GL3(p)

As we said in the introduction, in [17], Berger stated that the natural module for

GL3(p) was non-algebraic, and that this was ‘well-known’. However, the author has

been unable to find a proof of this fact in the literature. Consequently, the author has

developed his own proof, based on the methods in this thesis. We begin by recalling

Jennings’ theorem on the group algebras of p-groups.

Let P be a finite p-group. Define the dimension subgroups

∆i(P ) = [P,∆i−1(P )]∆di/pe(P )p.
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This is the fastest-decreasing central series whose quotients ∆i(P )/∆i+1(P ) are ele-

mentary abelian p-groups.

Theorem 5.1 (Jennings, [54]) Let P be a p-group and K = GF(p). Denote by

KP the group algebra of P over K.

(i) Let Ai(P ) be defined by

Ai(P ) = {g ∈ P : g − 1 ∈ radi(KP )}.

Then Ai(P ) = ∆i(P ).

(ii) Suppose that we choose xi,j ∈ P such that xi,j∆i+1 form a basis of ∆i/∆i+1.

Write Xi,j = xi,j − 1. Then∏
i,j

X
αi,j

i,j , 0 6 αi,j 6 p− 1

generate KP . Furthermore, if the weight of such a product is defined to be∑
i,j iαi,j, then all products of weight i form a basis of radi−1(KP )/ radi(KP ),

and all products of weight at most i form a basis for KP/ radi(KP ).

Now let P = Cp × Cp be the elementary abelian group of order p2, and let K =

GF(p). Write Mi = KP/ radi(KP ). Then Jennings’ theorem immediately implies

the following result.

Proposition 5.2 (i) The module KP has 2p− 1 radical layers.

(ii) The module Mi has dimension i(i+ 1)/2 if i 6 p.

(iii) The module Mi is spanned by all monomials in X and Y of degree at most i−1,

for i 6 p.

In particular, (iii) of this proposition implies the next lemma.

Lemma 5.3 Let 1 6 i 6 p− 1 be an integer. Then Si(M2) = Mi+1.

Proof: This is obvious if one remembers that Si(M2) is spanned by all monomials of

degree i in the basis elements of M2, which are 1, X and Y . Thus Si(M2) is spanned

by all monomials in X and Y of degree at most i.

Finally, recall that if i < p and K is a field of characteristic p, then for any

KG-module M , the module Si(M) is a summand of M⊗i.
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Proposition 5.4 The 3-dimensional KP -module M2 is non-algebraic.

Proof: Firstly, notice that both S1 = Sp−2(M2) and S2 = Sp−1(M2) are summands

of M
⊗(p−2)
2 and M

⊗(p−1)
2 respectively, and hence if at least one of S1 and S2 is non-

algebraic, then M2 is non-algebraic and the proposition follows.

To see that not both of S1 and S2 are algebraic, we simply note that

S2 = Ω(S1)
∗.

Thus by Theorem 2.11, either S1 or S2, and consequently M2, is non-algebraic.

This proposition has two obvious corollaries.

Corollary 5.5 The elementary abelian group P has non-algebraic modules of every

dimension at least 3 over GF(p).

Corollary 5.6 The natural module for GL3(p) is non-algebraic.

5.2 Special Linear Groups

In defining characteristic, the behaviour of the natural module is relatively easy to

state.

Proposition 5.7 Let q be a power of p, and let G be the group SLn(q), where n > 3.

Then the natural module for G is non-algebraic.

Proof: The natural module for SLn(q) restricts to the subgroup SLn(p) as the natural

module for this group, so it suffices to prove the result for this group. Since the natural

module for SLn(p) is algebraic if and only if the natural module for GLn(p) is algebraic

(by Proposition 2.25), it suffices to find a non-algebraic module of dimension n over

GF(p). This is assured by Corollary 5.5.

If n = 2, then the natural module, and indeed all simple modules, are algebraic.

This is obvious for SL2(p) (since a Sylow p-subgroup of this group is cyclic) but for

other groups SL2(q), it is a more difficult result. The author will release details of

the proof in a forthcoming paper.

In non-defining characteristic, there is no obvious method by which one can per-

form induction. The groups SL2(q) were analyzed in Chapter 4, and so here we

consider n > 3.
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The order of G = SL3(q) is q3(q − 1)2(q + 1)(q2 + q + 1). Let p be a prime that

does not divide q. We claim that if P is a Sylow p-subgroup of G and p is neither 2

nor 3, then either p|(q − 1) and P is Cpa × Cpa , where pa is the highest power of p

dividing (q − 1), or P is cyclic.

To see this, first note that there are elements in G of orders q − 1, q + 1 and

q2 + q + 1. Then, if p divides both q − 1 and q + 1 then p = 2, and if p divides both

q + 1 and q2 + q + 1 then p|q and so p|1, a contradiction. If p divides both q − 1 and

q2 + q + 1 then p|3, and so we get that either p = 2, p = 3, p|(q − 1), or P is cyclic.

Finally, a maximal torus of G has the form Cq−1 × Cq−1, and the result follows.

Thus we focus our attention on the primes 2 and 3, and those that divide q − 1.

We will deal with the prime 2 first, at least for those groups for which q ≡ 3 mod 4.

In this case, the Sylow 2-subgroup P (of order 2n) is semidihedral (see Theorem 1.28),

and in [31], Erdmann calculates the vertices and sources of all modules in blocks of

full defect. Indeed, there are three simple modules in the principal block, and two

modules in all non-principal blocks. In Erdmann’s notation, these are modules F , S

and E in the principal block, and Fi and Si in the non-principal blocks of full defect.

The modules F and Fi have P as vertex, and are trivial source. The module E

has a V4 subgroup as vertex and again, trivial source. The modules S and Si have

source a uniserial module of dimension 2n−3 − 1, and vertex the quaternion 2-group

of order 2n−1.

If q ≡ 3 mod 8, then 4 is the highest power of 2 that divides (q − 1)2 and the

same is true for q + 1, and so n = 4 in this case. Hence all simple modules in blocks

of full defect have trivial source, and so are algebraic. There may be blocks of V4

defect group, and the author has not conclusively studied this possibility, although

they appear to all be real 2-blocks. The remaining blocks are all projective.

Now suppose that q ≡ 7 mod 8. In this case, the integer n is at least 5, and the

simple module S has a non-trivial source for a quaternion group Q. Although the

author has not proved this for all possible q, for q = 7 it is true that this module is

acted upon trivially by the centre of its vertex, and so it is really an odd-dimensional

indecomposable module for the dihedral group Q/Z (Q). It appears, therefore, as

though the following is true.

Conjecture 5.8 Let G = PSL3(q), where q ≡ 3 mod 4.

(i) If q ≡ 3 mod 8, then all simple modules are algebraic.

(ii) If q ≡ 7 mod 8, then there is a non-algebraic simple module lying in each

2-block of full defect.

92



CHAPTER 5. THE GROUPS OF LIE TYPE

This fits neatly with the case of the groups PSL2(q) where q ≡ 3 mod 4. We will

see in Section 5.6 that the result for unitary groups PSU3(q) with q ≡ 1 mod 4 fits

with the case of the groups PSL2(q) where q ≡ 1 mod 4.

If q ≡ 1 mod 4, then the Sylow 2-subgroup is of wreathed type (i.e., it has the

form C2n oC2). In this case, the vertices and sources are not known, and this appears

to be a subject for future research.

The next prime on our list is p = 3.

Proposition 5.9 LetG be the group PSL3(q), and let P denote the Sylow 3-subgroup

of G.

(i) If q ≡ 2 mod 3, then P is cyclic.

(ii) If q ≡ 1 mod 3 and q 6≡ 1 mod 9, then P = C3 × C3.

The smallest group not considered so far is PSL3(4) in characteristic 3. This group

has five simple modules in the principal block, and all of them are algebraic. Apart

from the trivial module, there are three 15-dimensional modules, labelled Mi, and a

19-dimensional module labelled N . If P denotes a Sylow 3-subgroup of G, then

N ↓P = A⊕ P(K),

where A is a 10-dimensional module. The tensor square of A is easy to describe, and

it is

A⊗2 = K ⊕B1 ⊕B2 ⊕B3 ⊕ 9 · P(K),

where B1, B2 and B3 are 6-dimensional indecomposable modules, and are the three

conjugates from Class V in Section 3.3.5. Thus A⊗2 is algebraic, and so N is algebraic.

In fact, this proves that the Mi are algebraic, since each Mi is a summand of

Λ2(N). (The sources of these three modules Mi are the three modules Bi.) All

modules lying outside the principal block are in blocks of defect 0, and so obviously

algebraic. Thus PSL3(4) has 3-SMA.

The same outcome occurs when q = 7 and q = 13: again, there are five simple

modules in the principal block, and they have the same vertices and sources as the

previous case. Again, the exterior square of the simple module with 10-dimensional

source contains as summands the other non-trivial simple modules in the principal

block.

It appears as though the following is true.

93



CHAPTER 5. THE GROUPS OF LIE TYPE

Conjecture 5.10 Suppose that G = PSL3(q), where q ≡ 4, 7 mod 9. Then there

are five simple modules in the principal block, and all of them are algebraic. Indeed,

apart from the trivial module, there is a simple module M with a 10-dimensional

source, and three simple modules with 6-dimensional sources, which are summands

of Λ2(M).1

Finally, we consider the case where p|(q−1). The smallest case where this happens

is q = 8 and p = 7. In this case, there are three simple modules in the principal

block, the non-trivial modules being of dimension 72 and 512. The 73-dimensional

permutation representation is semisimple, with constituents the trivial module K and

the simple module of dimension 72, and so this module is algebraic. Likewise, the

other, 512-dimensional, simple module in the principal block has trivial source. Thus

all simple modules in the principal block are algebraic. Other than the principal

block, there are four simple modules lying in four blocks of defect 1, and twenty-four

blocks of defect 0. Therefore G = PSL3(8) has 7-SMA.

The same is true in the case of PSL3(11) in characteristic 5. The permutation

representation on 133 points is semisimple, and so the one simple module in the

principal block is algebraic. The other simple module is similarly of trivial source.

All other simple modules lie in blocks of smaller defect and so PSL3(11) has 5-SMA.

It seems more difficult to offer a general strategy in this situation. An obvious

first step is to organize the modules into p-blocks, using the character tables for

PSL3(q) given in [73] and then analyze the structure of the permutation module of

dimension q2 + q + 1, which is of dimension prime to p. This should be the direct

sum of the smallest non-trivial simple module and the trivial module. Where to find

the other simple module for the principal block (if such a module exists for all q) is

more difficult.

5.3 Symplectic Groups

Write Qm for the m×m matrix
0 0 · · · 0 1

0 . . . 1 0
... . . . . . . . . .

...

0 1 . . . 0
1 0 · · · 0 0

 ,

1This conjecture has since been proved by the author.
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and Rm for the matrix (
0 Qm

−Qm 0

)
.

then the symplectic group Sp2n(q) is the group of all 2n-dimensional matrices A that

satisfy ATRnA = Rn. We will find a nicely embedded subgroup of Sp2n(q), for n > 3,

that is isomorphic with SL3(q), hence showing that the natural module for Sp2n(q) is

not algebraic.

Proposition 5.11 Suppose that G = Sp2n(q), where n > 3, and write q = pa, where

p is a prime. Write M for the natural module for G over GF(q). Then M is not

algebraic.

Proof: Firstly, suppose that n = 3, and for a ∈ SL3(q), write b = Q−1
3 (aT )−1Q3.

Then we claim that

g =

(
a 0
0 b

)
lies in Sp6(q). To see this, we calculate:

gTR3g =

(
aT 0
0 bT

)(
0 Q3

−Q3 0

)(
a 0
0 b

)
=

(
aT 0
0 bT

)(
0 Q3b

−Q3a 0

)
=

(
0 aTQ3b

−bTQ3a 0

)
,

and since b = Q−1
3 (aT )−1Q3, we easily see that this last matrix is equal to R3, as

required.

Write H for the collection of such matrices. We can clearly see that M ↓H has

the natural KH-module as a summand (and M ↓H in fact is the sum of this natural

module and its dual), and so M is not algebraic.

Finally, let G = Sp2n(q), where n > 3. Then we can embed H = Sp6(q) into G in

an obvious way: for a ∈ Sp6(q), write

a′ =

In−3 0 0
0 a 0
0 0 In−3

 ,

where Im is the m-dimensional identity matrix. Then a′ ∈ Sp6(q), and if N denotes

the natural module for Sp6(q), then

M ↓H
∼= N ⊕ 2(n− 3) ·K,

where K denotes the trivial module. Again, M is not algebraic.
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This does leave the case of Sp4(q), where we have no subgroup isomorphic with

SL3(p), even badly embedded ones. The author has not considered this case, except

to note that Sp4(2) = S6 does indeed have 2-SMA.

5.4 Orthogonal Groups in Odd Characteristic

The orthogonal groups have a similar definition to the symplectic groups, at least

in odd characteristic. Again, like symplectic groups, there is one more isomorphism

type of such group in even dimension as odd. Indeed, here there are two types of

orthogonal group in even dimension, called ‘plus-type’ and ‘minus-type’. We begin

with plus-type.

Let Qm be defined as before, and set

SO+
2n(q) = {A ∈ SL2n(q) : ATQ2nA = Q2n}.

This group SO+
2n(q) contains a quasisimple subgroup of index 2, denoted by Ω+

2n(q).

This is a new simple group if n > 4. The natural module for such a group Ω+
2n(q) is

non-algebraic for n > 3, as we prove now.

Proposition 5.12 Let p be an odd prime. Let G be the group Ω+
2n(pa), and let K be

a field of characteristic p containing GF(pa). Write M for the natural 2n-dimensional

simple KG-module. Then M is non-algebraic.

Proof: Let a be an element of SL3(q), and write b = Q3(a
T )−1Q3. Then

g =

(
a 0
0 b

)
lies in Ω+

6 (q). To see this, note that

gTQ6g =

(
aT 0
0 bT

)(
0 Q3

Q3 0

)(
a 0
0 b

)
=

(
aT 0
0 bT

)(
0 Q3b
Q3a 0

)
=

(
0 aTQ3b

bTQ3a 0

)
,

and since b = Q3(a
T )−1Q3, we see that this last matrix is Q6 again. Thus g ∈ SO+

6 (q).

Let H denote the subgroup of all matrices of this form. Since H ∼= SL3(q), a perfect

group, we must have that H 6 Ω+
6 (q). Then clearly the natural module for Ω+

6 (q)
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restricts to the sum of two 3-dimensional simple modules for H, one of which is the

natural module. Hence the natural module for Ω+
6 (q) is non-algebraic.

To prove the same result for G = Ω+
2n(q), we simply note that if a is an element

of Ω+
6 (q), then the matrix In−3 0 0

0 a 0
0 0 In−3


lies in SO+

2n(q), and again the set H of all such matrices is a perfect group, and so

H 6 G. Clearly, the natural module for G restricts to the sum of the natural module

for H and a 2(n − 3)-dimensional trivial module. Thus the natural module for G is

non-algebraic, proving the proposition.

Having dealt with plus-type, we will go on to define minus-type. Let ε denote a

non-square in the field K = GF(q), and let T2m denote the 2m-dimensional matrix

T2m =

Q2m−2 0 0
0 1 0
0 0 −ε

 .

Then we define

SO−
2n(q) = {A ∈ SL2n(q) : ATT2nA = T2n}.

This group SO−
2n(q) again possesses a subgroup of index 2, denoted Ω−

2n(q), which is

again quasisimple.

Proposition 5.13 Let p be an odd prime, and let G be the group Ω−
2n(q) for n > 4

and q is a power of p. Write K for a field of characteristic p containing GF(q), and

let M denote the natural KG-module. Then M is non-algebraic.

Proof: This easily follows, since one may embed Ω+
2n−2(q) in G: if a ∈ Ω+

2n−2(q), then

g =

(
a 0
0 I2

)
has the property that gTT2ng = T2n. The set H of all such g has the property that

M ↓H is the sum of natural module for H and a 2-dimensional trivial module. Hence

M is non-algebraic.

In the odd-dimensional case, we only have the one isomorphism type of orthogonal

groups

SO2n+1(q) = {A ∈ SL2n+1(q) : ATQ2n+1A = Q2n+1}.

Again, this is not perfect, and its derived subgroup Ω2n+1(q) is quasisimple. For

n > 3, this gives us a new (quasi)simple group. We clearly have the following result.
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Proposition 5.14 Let G be the group Ω2n+1(q), for n > 3. Then the (2n + 1)-

dimensional natural module is non-algebraic.

Proof: Let a be an element of Ω+
2n(q). Then the element

g =

(
a 0
0 1

)
is a (2n + 1)-dimensional matrix that clearly lies in SO2n+1(q). Hence the subgroup

H of all such matrices lies in Ω2n+1(q) (since H is perfect) and the natural module

for G restricts to the 2n-dimensional natural module for H, together with a copy of

the trivial module. Hence the natural module for G is non-algebraic.

5.5 Orthogonal Groups in Characteristic 2

Let f be a quadratic form on a vector space V over GF(q), for q a power of 2. The

orthogonal group of the form f is

O(V, f) = {g ∈ GL(V ) : Q(vg) = Q(v) for all v ∈ V }.

In odd dimension, all orthogonal groups of dimension 2n + 1 are isomorphic, and

indeed are isomorphic with Sp2n(q). In even dimension, there are up to isomorphism

two different orthogonal groups: write e1, . . . , e2n for a basis of V , and let x =
∑
xiei

be an element of V . Let α ∈ K be an element such that the polynomial αt2 + t + α

is irreducible in K. Then the two groups are given by the quadratic forms

f1(x) =
n∑

i=1

x2i−1x2i

and

f2(x) =
n∑

i=1

x2i−1x2i + αx2
2n−1 + αx2

2n,

and the groups are referred to as O+
2n(q) and O−

2n(q) respectively. Since the character-

istic of the field is 2, these are also the special orthogonal versions. Again, we denote

the derived subgroup by Ωε
2n(q).

Proposition 5.15 Let q be a power of 2, and let K be a field containing GF(q).

Then the natural module for Ω+
2n(q) and Ω−

2n(q) are non-algebraic.
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We first prove that the natural module M for H = Ω+
6 (2) is non-algebraic, which

begins our induction. The group Ω+
6 (2) is isomorphic with A8, and the permutation

module on 8 points is uniserial, with socle layers isomorphic with the trivial module,

M , and the trivial module again.

Let J be a transitive subgroup of H isomorphic with SL3(2) (which exists since

SL3(2) contains a subgroup of order 21), so let N be the permutation module for

J . Since J has (apart from the trivial module) two dual simple modules A and A∗

of dimension 3 and one of dimension 8 (see Section 4.6), the composition factors of

M ↓J must be A and A∗, and so the composition factors of N are two copies of K

and the modules A and A∗. The module N has at most three socle layers, since the

permutation module on H does. Also, since the trivial module is not a summand (as

p divides the number of elements being permuted) and K has no self-extensions (see

[30] for example), there must be exactly three socle layers. Finally, neither A nor

A∗ can be a summand since N is self-dual. Hence M ↓J= A ⊕ A∗, and since A is

non-algebraic, neither is M . Thus the natural module for Ω+
6 (q) is non-algebraic as

well.

Now let V be a 2n-dimensional vector space with n > 4, as above, equipped with

either of the forms fi. In both cases, if W = 〈e1, . . . , e6〉, then the restriction of fi

to W is simply the form f1 on W . Hence, if a is an element of H = Ω+
6 (q), then the

matrix

g =

(
a 0
0 I2(n−3)

)
is an element of G = O(V, fi). Since the set H of all such g forms a perfect subgroup

of G, in fact H 6 G′, and so H is a subgroup of the groups Ωε
2n(q). In both cases,

the restriction of the natural module for O(V, fi) to H is clearly the sum of the 6-

dimensional natural module for H and a 2(n− 3)-dimensional trivial module. Hence

the natural module for Ωε
2n(q) is non-algebraic, as required.

5.6 Unitary Groups

With the unitary groups, the situation is similar to that of the symplectic groups, in

the sense that there are small-dimensional cases where we do not know whether the

natural module for SUn(q) is algebraic or not. In fact, we can only determine this for

n > 6.
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First we recall the definition of the unitary groups. Let q be a power of a prime

p, and write σ for the automorphism on GLn(q2) given by

σ : (aij) 7→ (aq
ij).

This automorphism, a power of the Frobenius morphism, has order 2. Then the

unitary group is the automorphism group of a sesquilinear form, and can be written

as

SUn(q) = {A ∈ SLn(q2) : (AT )σ = A−1}.

There are alternative definitions of SO+
6 (p) and Sp6(2) that are helpful here. If p

is odd, then SO+
6 (p) can be expressed as

SO+
6 (p) = {A ∈ SL6(p) : AT = A−1},

and Sp6(2) as

Sp6(2) = {A ∈ SL6(2) : AT = A−1}.

Using this, we may prove the following proposition.

Proposition 5.16 Let q be a power of a prime p, and let M denote the natural

module for the group SUn(q), where n > 6. Then M is non-algebraic.

Proof: We begin by proving that for all primes p, the natural module for SU6(p) is

non-algebraic. Firstly, embed SL6(p) inside SL6(p
2) in the obvious manner. Then, we

notice that

H = SU6(p) ∩ SL6(p) =

{
SO+

6 (p) p is odd

Sp6(2) p = 2
.

Since the natural module for SU6(p) clearly restricts to the natural module for this

subgroup H, we see that the natural module for SU6(p) is non-algebraic. This proves

also that the natural module for SU6(q) is non-algebraic.

To prove the general case, simply embed SU6(q) inside G = SUn(q) in the obvious

way: if a ∈ SU6(q), then

g =

(
a 0
0 In−6

)
.

The set of all such g forms a copy H of the subgroup SU6(q), and the natural module

for G restricts to the natural module for H and an (n−6)-dimensional trivial module,

proving that the natural module for G is non-algebraic.
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We now turn our attention to non-defining characteristic representations. The

order of G = SU3(q) is q3(q − 1)(q + 1)2(q2 − q + 1). Let p be a prime that does

not divide q. We claim that if p is neither 2 nor 3, then either p|(q + 1), and P is

Cpa × Cpa , where pa is the highest power of p dividing (q + 1), or P is cyclic.

To see this, first note that there are elements in G of orders q + 1, q − 1 and

q2 − q + 1. Then, if p divides both q − 1 and q + 1 then p = 2, and if p divides both

q− 1 and q2 − q+ 1 then p|q2 and so p|1, a contradiction. If p divides both q+ 1 and

q2 − q + 1 then p|3, and so we get that either p = 2, p = 3, p|(q + 1), or P is cyclic.

Finally, a maximal torus of G has the form Cq+1 × Cq+1, and the result follows.

The Sylow 2-subgroup of PSU3(q) is either semidihedral or wreathed, just as with

PSL3(q). When q ≡ 1 mod 4, the group has semidihedral Sylow 2-subgroups, and in

[31] Erdmann calculates the vertices and sources of the simple modules in the blocks

of full defect. Indeed, there are three simple modules in the principal block, and two

modules in all non-principal blocks. In Erdmann’s notation, these are modules F , S

and E in the principal block, and Fi and Si in the non-principal blocks of full defect.

The modules F and Fi have P as vertex, and are trivial source. The module E

has a V4 subgroup as vertex and a 2-dimensional uniserial source. The modules S and

Si have source a uniserial module of dimension 2, and vertex the quaternion 2-group

of order 8. Since all 2-dimensional modules are algebraic (as a corollary of Theorem

1.13 of Alperin, which proves that the natural module for SL2(2
n) is algebraic), these

are also algebraic.

Proposition 5.17 Let K be a field of characteristic 2, and let G be the group

PSU3(q) where q ≡ 1 mod 4. Let M be a simple module from a 2-block of full

defect. Then M is algebraic.

In the case of q ≡ 3 mod 4, the answer is not known, although the non-trivial

simple modules in the principal 2-block of G = PSU3(3) are non-algebraic. There are

three simple modules in the principal 2-block ofG: the trivial module, a 6-dimensional

simple module A, and a 14-dimensional simple module B. These have vertex a Sylow

2-subgroup P and their sources are A ↓P and B ↓P respectively. Both are seen to be

non-algebraic by restricting to V4 subgroups.

In fact, these vertices and sources are identical for the non-trivial simple modules

in the principal block of H = PSU3(11), with the simple modules having dimensions

110 and 1110 respectively. However, H has three other interesting 2-blocks, and

we examine each of them. It has one with three simple 370-dimensional modules,

and the block has defect group C4 × C4. Each of these simple modules has the
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same 11-dimensional source, whose tensor square is the sum of a trivial module and

permutation modules. Hence this block consists of non-algebraic modules. The other

two are (conjugate) blocks of cyclic defect group C8, whose single module is a trivial

source module. (It also possesses twelve 1440-dimensional projective simple modules.)

We make the following conjecture regarding the principal 2-blocks of certain uni-

tary groups PSU3(q).

Conjecture 5.18 Let G denote the group PSU3(q), where q ≡ 3 mod 8. Then the

principal 2-block contains three simple modules, whose sources are of dimensions 1, 6

and 14. Furthermore, as q varies, these three sources remain constant. These 6- and

14-dimensional indecomposable modules for C4 o C2 are non-algebraic.

It should be possible to perform an analysis for the other non-defining character-

istics along a similar vein to that of PSL3(q).

5.7 Ree Groups 2G2(3
n)

The Ree groups of type G2 were first discovered by Ree and presented in [69] and

[70]. For each q an odd power of 3, there is a group Gq = 2G2(q) associated to it, of

order q3(q3 +1)(q−1). The groups Gq all have elementary abelian Sylow 2-subgroups

of order 8, and have centralizer of involution isomorphic with C2 × PSL2(q). In [78],

Ward almost completely determines the character table, with the unknown quantities

due to the fact that (at the time) the ‘groups of Ree type’ (defined by five conditions

on their normalizer and centralizer structure) were not known to only consist of the

groups Gq.

We will examine the characteristic 2 representations first. There are eight ordinary

characters and five modular characters in the principal block, and there are other

blocks of defect group V4, C2 and the trivial group. All of the simple modules in

the blocks of defect 0 and 1 are algebraic, and so we are left with considering the

principal block and the blocks of defect 2. In [57], Landrock and Michler determined

the Green correspondents of the five simple modules in the principal block for Gq,

where q = 32n+1 and n > 1.

It turns out that the normalizer of a Sylow 2-subgroup P has order 168, and is

the split extension of the group P by the non-abelian group of order 21 in Aut(P ).

This group N has five simple modules: three of dimension 1, denoted, as in [57], by

I, 1, and 1∗; and two 3-dimensional modules, denoted by 3 and 3∗.
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As n varies, the Green correspondents of the simple modules in the principal block

are actually always the same: the three 1-dimensional (simple) modules I, 1 and 1∗;

a (self-dual) 6-dimensional module with socle 3 and top 3∗ (assuming correct choice

of 3 and 3∗); and a (self-dual) 12-dimensional module, with socle 3∗, top 3), and heart

(radical modulo socle) 3⊕ 3∗.

Although Landrock and Michler do not explicitly state it, these are also the Green

correspondents for the five simple modules in the principal block of G3, which is

also known as SL2(8) o C3. Alperin has already proved that all simple modules of

SL2(8) are algebraic, and by Proposition 2.25, all simple modules of SL2(8) o C3 are

algebraic. Thus their Green correspondents in N , the five modules described above,

are algebraic. This means that all simple modules in the principal block of Gq are

algebraic, for any q.

It remains to discuss the blocks of defect 2. At the end of II.7 of [78], Ward notes

that the ordinary characters of defect 2 are all real. By Corollary 3.8, all of the simple

modules in real 2-blocks of defect group V4 are algebraic. Therefore we have proved

the following theorem.

Theorem 5.19 Let G be a finite group of type 2G2(3
2n+1), and let K be a field of

characteristic 2. Then all KG-modules are algebraic.

Having dealt with characteristic 2, we will turn our attention to characteristic 3;

we will see that the natural 7-dimension module is non-algebraic.

Let G be the group 2G2(3) = SL2(8) oC3. This group has a 9-point permutation

representation, which extends the 9-point permutation representation of PSL2(8) =

SL2(8). The Sylow 3-subgroup of SL2(8) is well-known to be cyclic, and so is generated

by x, a 9-cycle in this permutation representation. The outer automorphism y of

order 3 acts non-trivially on the Sylow 3-subgroup, and must clearly fix the subgroup

〈x3〉. Thus Q = 〈x3, y〉 is a subgroup of G isomorphic with C3 × C3. Furthermore,

its representation on the 9 points can easily be seen to be transitive, and so this is

the regular representation of Q. Hence the KQ-module got from this permutation

representation over K = GF(3) is isomorphic with the projective indecomposable

module P(K).

Next, recall that SL2(8) has five simple modules over a field of characteristic

3: the trivial module, a 7-dimensional simple module, and three 9-dimensional pro-

jective simple modules. It is not hard to see that the 9-dimensional permutation

module of G given above is uniserial, with socle layers consisting of the trivial mod-

ule, the 7-dimensional simple module, and the trivial module. The restriction of
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this 9-dimensional indecomposable module to Q is the projective indecomposable,

and so the restriction of the heart of the permutation module to Q is the heart of

the projective indecomposable. This 7-dimensional indecomposable module for Q is

non-algebraic by Proposition 2.19.

We have therefore proved that the 7-dimensional simple module for G is non-

algebraic. Clearly the 7-dimensional simple module for 2G2(q) restricts to G as this

simple module, and so we have proved the following.

Proposition 5.20 Let G be the Ree group 2G2(q). Then the 7-dimensional natural

module for G is non-algebraic.
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Chapter 6

The Sporadic Groups

The twenty-six sporadic groups are split into four families: the Mathieu groups;

the Leech lattice groups; the Monster sections; and the pariahs. The five Mathieu

groups have been almost completely analyzed, and so we know, with a few exceptions,

whether a given simple module is algebraic for any of the five groups, and any prime

p. No other family has been so comprehensively analyzed like the Mathieu groups. In

this family, we find that M11 has algebraic simple modules in characteristic 2, and M22

has algebraic simple modules in characteristic 3, but other than those two examples,

the rule for these groups is that if the group has non-cyclic Sylow p-subgroups, then

G has at least one non-algebraic simple module. This also gives us the only two

examples known of simple groups with abelian Sylow p-subgroups yet which have

non-algebraic simple modules, namely M11 and M23, both in characteristic 3.

The second section deals with the Leech lattice groups; that is, it contains all

groups involved in the Conway group Co1 that are not Mathieu groups. In this

section, it is proved that the Higman–Sims group in characteristic 3, and the Janko

group J2 in characteristics 3 and 5, have SMA.

The third section involves the Monster sections: these are all groups not already

considered that are involved in the Monster. The Held and Harada–Norton groups

are quite well-understood, and some results are available for the Fischer groups, but

understandably the Baby Monster and Monster are not considered.

The final section involves the Pariahs. These are the six sporadic simple groups

not involved in the Monster. The group J1 has been completely calculated, and

has p-SMA for all primes p. The other Janko groups and the Rudvalis group have

results on them, but the remaining two groups—The O’Nan group and the Lyons

group—remain unanalyzed.

In this chapter, various assertions are made about simple modules for the various

sporadic groups, particular concerning their restrictions to subgroups. Much of the
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information about the simple modules for simple groups came from the websites [10]

and [63]. All of the calculations in this chapter were performed using MAGMA,

and more detail on those calculations is given in Appendix A. This includes all

algorithms developed by the author to complement MAGMA’s internal procedures

for decomposing tensor products.

Before we begin, we will give a word on notation. For each group G, we will

examine each prime in turn, and will list the p-blocks of G and give the simple

modules belonging to each. We will denote the smallest non-trivial module in the

principal block by S1, and number consecutively, so that the third-smallest simple

module in the principal block is S3. For the second block, the smallest simple module

is denoted by T1, and so forth, so that the second-smallest module in the fourth block

is denoted by V2. However, we shall rarely need to go to the fourth block.

6.1 The Mathieu Groups

The five Mathieu groups, detailed by Émile Mathieu in two papers in 1860 and 1873,

have been extensively studied. They appeared in two papers—[60] and [61]—in the

nineteenth century, and remained the only sporadic finite simple groups known for

nearly a century, until the flurry of activity following the Feit–Thompson theorem.

6.1.1 The Group M11

The Mathieu group M11 is of order 7920 = 24 · 32 · 5 · 11, and is generated by the two

permutations x = (1, 4, 3, 8)(2, 5, 6, 9) and y = (2, 10)(4, 11)(5, 7)(8, 9). The group

was originally constructed in [60], and by a well-known theorem of Jordan is the only

sharply 4-transitive group on eleven points. Let us first note that the only important

primes for considering algebraicity of modules are p = 2 and p = 3, as for other

primes M11 possesses a cyclic or trivial Sylow p-subgroup.

Theorem 6.1 Let G ∼= M11, the Mathieu group on eleven points. Let K be a field

of characteristic p, and let M be a simple KG-module.

(i) If p = 2, then M is algebraic.

(ii) If p = 3, then M is algebraic if and only if M is self-dual; i.e., M is algebraic if

and only if M has dimension 1, 24 or 45, or if M has dimension 10 and M is

self-dual.
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We will first analyze the case where p = 2, and then deal with the case p = 3.

The dimensions of the simple modules in characteristics 2 and 3 are given in the table

below. As usual, the dual module is denoted by an asterisk. If two or more modules

of the same dimension exist up to duality, then they are labelled with a subscript.

For example, if M is the dual of the third module of dimension 8, then we would

write 8∗3. For each prime, the blocks are given with the defect group listed in the

right-hand column.

p Block Simple Modules Defect Group
2 1 {1, 10, 44} Sylow

2,3 {16}, {16∗} Defect 0
3 1 {1, 5, 5∗, 101, 102, 10∗2, 24} Sylow

2 {45} Defect 0

We firstly focus on p = 2, and write K = GF(4). We know from the table above

that G has three blocks: the first, the principal block, contains three simple modules,

all realizable over GF(2); and the other two blocks are of defect 0, each with a simple

module of dimension 16, realizable over GF(4). The two simple modules of dimension

16 are obviously algebraic, as is the trivial module, and so the discussion rests with

the two non-trivial simple modules in the principal block. Recall our convention of

writing S1 for the 10-dimensional module and S2 for the 44-dimensional module.

Both S1 and S2 have trivial source; the 11-dimensional permutation representation

given above is semisimple, and isomorphic with K ⊕ S1. However, this is not needed

since M11 contains a subgroup isomorphic with a non-split extension of A6 by C2.

This subgroup has index 55, and the permutation representation on the cosets of one

of these subgroups is semisimple; it is the sum of the three simples in the principal

block. This proves that all simple modules are algebraic.

Now consider the prime p = 3: in this case, all modules are realizable over GF(3).

We again use our standard convention, so that the two 5-dimensional modules are

denoted by S1 and S2, and so on.

Firstly, if we take the 11-dimensional permutation representation, it is again

semisimple, with one constituent the trivial module, and the other a 10-dimensional,

self-dual, simple module. This must be S3, and hence S3 is algebraic. We will deal

with the modules S1, S2, S4 and S5—the modules that are not self-dual—next. It is

true that Λ2(S1) = S4 and Λ2(S2) = S5, upon a suitable labelling of the Si, where Λ2

denotes the usual exterior square. Thus, since in odd characteristic,

M ⊗M = Λ2(M)⊕ S2(M),
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if S4 is non-algebraic then S1 and S2 are also non-algebraic.

Let P denote a Sylow 3-subgroup of M11, which is elementary abelian of order

9, and consider the restriction S4 ↓P . This is indecomposable, and so S4 ↓P is a

source of S4. This KP -module is actually isomorphic with the module Ω2(K), which

is non-algebraic by Proposition 2.7. Since S4 ↓P is non-algebraic, so is S4, and so

S1, S2, S4 and S5 are non-algebraic. [We do not need to know that the source is

non-algebraic, merely that there is some subgroup H such that S4 ↓H contains a

non-algebraic summand. As the order of the group increases, this will become the

dominant method for proving modules are non-algebraic.] Although it is not required,

the restriction S1 ↓P is indecomposable, and is in Class C (or Class C∗) as given in

Section 3.3.4, proving again that S1 is non-algebraic.

Since the 45-dimensional projective simple module T1 is clearly algebraic, it re-

mains to discuss the module S6. Restricting this module to the Sylow 3-subgroup P ,

we get

S6 ↓P = 2 · P(K)⊕M,

where P(K) is the (only) projective indecomposable K(C3×C3)-module, and M is a

6-dimensional module, the source of S6. This source is from Class V of Section 3.3.5,

and is hence algebraic; therefore so is S6.

We have therefore proved both parts of the theorem.

6.1.2 The Group M12

The Mathieu group M12 is of order 95040 = 26 · 33 · 5 · 11, and is generated by the two

permutations x = (1, 4)(3, 10)(5, 11)(6, 12) and y = (1, 8, 9)(2, 3, 4)(5, 12, 11)(6, 10, 7).

It can also be generated by the permutations a = (2, 3)(5, 6)(8, 9)(11, 12) and b =

(1, 2, 4)(3, 5, 7)(6, 8, 10)(9, 11, 12), and this produces a conjugate subgroup of S12,

where this conjugation induces the outer automorphism of M12. This group was

also originally constructed in [60], and the same theorem of Jordan proves that it is

the only sharply 5-transitive group on 12 points. Again, the only important primes

are 2 and 3.

Theorem 6.2 Let G = M12, the Mathieu group on 12 points, and let K be a field

of characteristic p. Let M be a simple KG-module.

(i) If p = 2, then M is algebraic if and only if M is trivial or lies outside the

principal block.
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(ii) If p = 3, then M is algebraic if and only if M is trivial or lies outside the

principal block.

As with the previous group, we organize the information regarding the simple

modules into a table, with the same conventions. This format of table will be used

throughout the chapter.

p Block Simple Modules Defect Group
2 1 {1, 10, 44} Sylow

2 {16, 16∗, 144} Defect 2
1 {1, 101, 102, 15, 15∗, 34, 451, 452} Sylow

3 2 {453, 99} Defect 1
3 {54} Defect 0

We begin with characteristic 2. The modules in the principal block, together

with the 144-dimensional module in the second block, can be realized over GF(2),

whereas the two 16-dimensional modules require GF(4). Write S1 and S2 for the

10-dimensional and 44-dimensional modules respectively, and T1, T2 and T3 for the

two 16-dimensional modules and the 144-dimensional module. We claim that the

modules S1 and S2 are not algebraic, but the modules T1, T2 and T3 are.

That the Ti are algebraic follows immediately from Corollary 3.9, and so we focus

on the principal block. Unfortunately, we found no non-algebraic modules for M11,

and so cannot prove that any of the simple modules for M12 are non-algebraic by

restricting to a subgroup. In fact, the only way that we can easily prove that the

modules in the principal block are non-algebraic is by Corollary 3.2, the V4 Restriction

Test; there are four conjugacy classes of subgroups isomorphic with V4, and in the

table below we collect the lengths of their conjugacy classes.

Class Number of Conjugates
C1 495
C2 1320
C3 1980
C4 2970

The restriction of S1 to a V4 subgroup Q lying in the conjugacy class C1 is given

by

S1 ↓Q= Ω2(K)⊕ Ω−2(K).

Since Ωi(K) is non-algebraic for non-zero i, we must have that S1 is non-algebraic.

[The restrictions to representatives from the other Ci are algebraic.] The restriction

of S2 to the same subgroup Q is given by

S2 ↓Q= 2 · Ω(K)⊕ 2 · Ω−1(K)⊕ 8 · P(K),
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whereas the restrictions of S2 to representatives from the other Ci are algebraic. Since

Ω±1(K) is non-algebraic, we see that S2 is non-algebraic as well.

Having dealt with the characteristic 2 case, let us move on to when p = 3: in this

case, all modules can be realized over GF(3).

Firstly, consider the two (non-isomorphic) 12-dimensional permutation represen-

tations corresponding to the two conjugacy classes of maximal subgroup isomorphic

with M11, representatives of which are labelled H1 and H2. These 12-dimensional

permutation representations are both uniserial, with heart (radical modulo socle)

isomorphic with the two 10-dimensional simple modules S1 and S2. We choose the

labelling so that the heart of the permutation module on the cosets of H1 is S1, and

similarly forH2 and S2. Restricting S1 to theHi, we see that S1 ↓H1 is simple (and self-

dual) and hence algebraic, whereas S1 ↓H2 is the direct sum of the two 5-dimensional

simple KH2-modules, which in the last section we proved are non-algebraic. Simi-

larly, S2 ↓H1 is the sum of the two 5-dimensional simple KH1-modules, and so both

S1 and S2 are non-algebraic.

This can be used to prove the non-algebraicity of the 45-dimensional modules

S6 and S7. The tensor square of S1 decomposes as the direct sum of the trivial

module, the 54-dimensional projective simple module and a 45-dimensional simple

module. Since the trivial and the 54-dimensional modules are clearly algebraic, this

45-dimensional module must be non-algebraic, and so it cannot come from the block

of defect 1. Without loss of generality, label this simple module S6. The tensor square

of S2 is not isomorphic with that of S1, and so the 45-dimensional simple module in

the (semisimple) module S⊗2
2 must be the other 45-dimensional module, S7. Thus we

have proved that S6 and S7 are non-algebraic.

It remains to discuss S3, S4 and S5. To prove that S3 and S4 are non-algebraic,

we restrict to subgroups of the Sylow 3-subgroup. There are three conjugacy classes

of subgroup of G isomorphic with C3 × C3, as given in the table below.

Class Number of Conjugates
C1 220
C2 220
C3 1760

Let Q be a subgroup from either C1 or C2. The module S3 ↓Q is indecomposable, and

its tensor product breaks up as

S⊗2
3 ↓Q= 21 · P(K)⊕M ⊕ Ω−1(M),
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where M is a 15-dimensional non-periodic module and Ω−1(M) is 21-dimensional.

Since not both of M and Ω−1(M) are algebraic, S3 ↓Q is definitely not algebraic.

The last module, S5, has a 7-dimensional source M with vertex P , a Sylow 3-

subgroup. Taking the restriction to Q, this module remains indecomposable, and is

in fact isomorphic with the heart of the projective indecomposable KQ-module. In

Proposition 2.19, we proved that this module was non-algebraic, and so neither is S5,

completing Theorem 6.2.

6.1.3 The Group M22

The Mathieu group M22 is of order 443520 = 27 · 32 · 5 · 7 · 11, and is generated by

the two permutations x = (1, 13)(2, 8)(3, 16)(4, 12)(6, 22)(7, 17)(9, 10)(11, 14) and y =

(1, 22, 3, 21)(2, 18, 4, 13)(5, 12)(6, 11, 7, 15)(8, 14, 20, 10)(17, 19). Originally defined by

Mathieu in [61], it was proved to be one of the two simple groups (the other being

A10) with a particular centralizer of a central involution almost a hundred years later

by Janko in [50].

Theorem 6.3 Let G = M22, the Mathieu group on 22 points, and let K be a field

of characteristic p. Let M be a simple KG-module.

(i) If p = 2, then M is algebraic if and only if M is trivial.

(ii) If p = 3, then M is algebraic.

As usual, we summarize the simple modules in the relevant characteristics.

p Block Simple Modules Defect Group
2 1 {1, 10, 10∗, 34, 70, 70∗, 98} Sylow

1 {1, 49, 49∗, 55, 231} Sylow
3 2 {21, 210} Defect 1

3,4,5 {45}, {45∗}, {99} Defect 0

We begin with p = 2; the two simple modules of dimension 70 require GF(4) to

be realized, whereas all other modules can be realized over GF(2).

The maximal subgroups of M22, although including several groups with non-

algebraic simple modules, do not help us in proving that the non-trivial simple mod-

ules are non-algebraic. We therefore require the V4 Restriction Test. There are four

conjugacy classes of V4 subgroup lying in M22: the lengths of their conjugacy classes

are given below.
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Class Number of Conjugates
C1 1155
C2 1540
C3 2310
C4 4620

Labelling a 10-dimensional module S1, we see that while the restriction of S1 to a

subgroup from C4 is algebraic, the other three conjugacy classes of subgroup provide

witness for the non-algebraicity of S1; for example, for a particular choice of S1, we

have that the restriction of S1 to a representative from C1 is given by

K ⊕ P(K)⊕ Ω2(K).

The 34-dimensional simple module S3 has algebraic restriction to subgroups from

C2 and C4, and restrictions to subgroups from the other two classes are given by

Ω2(K)⊕ Ω−2(K)⊕ 6 · P(K).

Similarly, the 98-dimensional simple module S6 has algebraic restriction to sub-

groups from C2 and C4, and restrictions to subgroups from the other two classes are

given by

Ω2(K)⊕ Ω−2(K)⊕ 22 · P(K).

Finally, we examine the two simple modules that are only realizable when the field

contains a cube root of 1. Again, their restrictions to subgroups from C2 and C4 are

algebraic, and the restrictions to subgroups from C1 and C3 look like

Ω(K)⊕ Ω−1(K)⊕ 16 · P(K).

This proves that every non-trivial simple KG-module is non-algebraic.

Having dealt with the case where p = 2, we move on to the case where p = 3,

where we have to prove that all simple modules are algebraic; the two projective

simple modules of dimension 45 require GF(9) to exist, but all other simple modules

have realizations over GF(3). For the rest of this section, the field over which we

work is K = GF(3).

To prove that all of the simple modules are algebraic, it suffices to consider the

two 49-dimensional simple modules S1 and S2, the 55-dimensional module S3 and

the 231-dimensional module S4. The group G has a maximal subgroup of index 77,

isomorphic with a semidirect product (C2)
4 oA6, and the permutation representation

on the cosets of this subgroup is semisimple, with constituents the trivial module, the
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21-dimensional simple module T1, and the 55-dimensional module S3. Thus S3 is a

summand of a permutation module, so is certainly algebraic.

Since S1 and S2 are dual, it suffices to consider the module S1. Let P denote a

Sylow 3-subgroup of G, an elementary abelian group of order 9. Then

S1 ↓P = M ⊕ 5 · P(K),

where M is a self-dual 4-dimensional module, the source of S1, with simple socle. To

identify it via Section 3.3.3, we need to know how its tensor square decomposes: in

fact, its summands have dimensions 1, 6 and 9, whence M comes from the (algebraic)

Class C from that section. Thus S1 and S2 are algebraic.

It remains to prove that S4 is algebraic. We have

S4 ↓P = N ⊕ 25 · P(K),

where N is a 6-dimensional periodic indecomposable module from Class V of Section

3.3.5. Therefore by Proposition 3.30, N is algebraic.

6.1.4 The Group M23

The Mathieu group M23 is of order 10200960 = 27 · 32 · 5 · 7 · 11 · 23, and is generated

by the two permutations x = (1, 2)(3, 4)(7, 8)(9, 10)(13, 14)(15, 16)(19, 20)(21, 22) and

y = (1, 16, 11, 3)(2, 9, 21, 12)(4, 5, 8, 23)(6, 22, 14, 18)(13, 20)(15, 17). Just as with the

group M22, this was defined by Mathieu in [61]; it is characterized by being the

unique simple group with centralizer of a central involution a particular extension of

the elementary abelian group of order 16 by the simple group PSL2(7).

This is the first group for which we do not have a complete result. In particular,

there is a simple module of dimension 252 in characteristic 2 for which it is not known

whether it is algebraic.

Theorem 6.4 Let G = M23, the Mathieu group on 23 points, and letK be a splitting

field of characteristic p. Let M be a simple KG-module.

(i) If p = 2, then M is non-algebraic if M is not trivial and does not have dimension

either 252 or 896. If M is trivial or has dimension 896, then M is algebraic.

(ii) If p = 3, then M is algebraic if and only if M is not one of the two (dual)

104-dimensional simple modules.

We begin with the now-obligatory table of dimensions of simple modules.
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p Block Simple Modules Defect Group
2 1 {1, 11, 11∗, 44, 44∗, 120, 220, 220∗, 252} Sylow

2,3 {896}, {896∗}, Defect 0
1 {1, 22, 104, 104∗, 253, 770, 770∗} Sylow

3 2 {231} Defect 1
3,4 {45}, {45∗}, Defect 0

5,6,7 {990}, {990∗}, {1035} Defect 0

We start with p = 2: all of the modules in the principal block are realizable over

GF(2), and the remaining two projective simple modules require a cube root of unity

to be present in the field.

The point stabilizer in the usual 23-dimensional permutation representation is

isomorphic with M22, and by Proposition 2.25, a KG-module M is algebraic if and

only if its restriction to this point stabilizer is algebraic. However, the restriction of

any simple KG-module to one of these subgroups is indecomposable but not simple,

and we therefore gain nothing from this. We therefore resort to the V4 Restriction

Test.

There are two conjugacy classes of subgroup isomorphic with V4, and the lengths

of these are given below.

Class Number of Conjugates
C1 8855
C2 53130

Let us begin with the 11-dimensional modules S1 and S2. Their restrictions to

subgroups from C2 are algebraic, whereas (with the correct choice of S1 and S2) the

restriction of S1 to a subgroup in C1 is isomorphic with

K ⊕ 2 · Ω(K)⊕ P(K),

and S2 is the dual of this. Hence S1 and S2 are not algebraic.

Likewise, the restrictions of the 44-dimensional modules S3 and S4 to a subgroup

from C2 are algebraic, but restricting one of them to a subgroup from C1 gives (up to

duality) the decomposition

M ⊕N ⊕ 2 · Ω(K)⊕ 7 · P(K),

where M is the sum of the three non-isomorphic 2-dimensional indecomposable mod-

ules, and N is a 4-dimensional self-dual indecomposable module with two socle layers.

In any case, S3 and S4 are non-algebraic.
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The restriction of the 120-dimensional module S5 to a subgroup from C1 is

4 ·K ⊕ 2 · Ω(K)⊕ 2 · Ω−1(K)⊕ 26 · P(K),

and so despite the restriction to subgroups from C2 being algebraic, S5 is still non-

algebraic.

The restriction of one of the 220-dimensional modules S6 and S7 to a subgroup

from C1 is given by

M ⊕ 2 · Ω(K)⊕N ⊕ 51 · P(K),

where M and N are as above. The restriction of S6 to a subgroup from C2 is algebraic.

Thus the modules S6 and S7 are non-algebraic.

The 252-dimensional module S8 is very difficult to analyze; this simple module has

a 28-dimensional source S, and the restriction of S to representatives from the two

conjugacy classes of V4 subgroup are algebraic. Furthermore, even the elementary

abelian subgroups of order 8 are of no help; there are three conjugacy classes of

subgroups isomorphic with (C2)
3, and any summand of the restriction of S to any one

of them is either trivial, 2-dimensional, projective, or a 4-dimensional module that has

a kernel of order 2. Hence these restrictions are all algebraic as well. Furthermore,

there is no 2-subgroup for which the restriction of S contains a non-trivial odd-

dimensional indecomposable summand. The author knows of no way to prove whether

or not this module S is algebraic.

Now let us consider characteristic 3: for this group, all simple modules lying in the

principal block can be realized over GF(3), along with the 1035-dimensional projective

simple module. The other four projective simple modules can only be realized when

the field contains GF(9).

The permutation module on 23 points is semisimple, with constituents K and the

22-dimensional simple module S1. The permutation module on 506 points (the cosets

of a maximal subgroup isomorphic with A8), while not semisimple, has a summand

isomorphic with the simple module S4.

The restriction of the 104-dimensional module S2 to a Sylow 3-subgroup P is given

by

S2 ↓P = M ⊕ 11 · P(K),

where M is a 5-dimensional indecomposable module from Class C (or Class C∗) of

Section 3.3.4 and so is non-algebraic. Its dual is similarly non-algebraic.
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It remains to deal with the two 770-dimensional simple modules S5 and S6. Re-

stricting S5 to a Sylow 3-subgroup gives

S5 ↓P = 2 ·K ⊕ 84 · P(K)⊕N,

where N is a the direct sum of the four 3-dimensional indecomposable modules that

are induced from the trivial module for the four subgroups of order 3. Thus S5 (and

S6) are trivial-source modules, and so algebraic.

6.1.5 The Group M24

The Mathieu group M24 is of order 244823040 = 210 ·33 ·5 ·7 ·11 ·23, and is generated

by the two permutations

x = (1, 4)(2, 7)(3, 17)(5, 13)(6, 9)(8, 15)(10, 19)(11, 18)(12, 21)(14, 16)(20, 24)(22, 23)

y = (1, 4, 6)(2, 21, 14)(3, 9, 15)(5, 18, 10)(13, 17, 16)(19, 24, 23).

It is the largest of the groups found by Mathieu, and appears in [61]. It is the last

group to be considered in this section. Again, we do not have a complete result in

characteristic 2, and only have the following.

Theorem 6.5 Let G = M24, the Mathieu group on 24 points, and letK be a splitting

field of characteristic p. Let M be a simple KG-module.

(i) If p = 2, then M is non-algebraic if M does not have dimension 1, 320 or 1792.

(ii) If p = 3, then M is algebraic if and only if M is not one of the two (dual)

770-dimensional simple modules.

It is not know whether the 320-dimensional modules or the 1792-dimensional

module are algebraic. This appears to be a difficult problem, and more will be said

about it later.

We start with the necessary table of simple module dimensions.

p Block Simple Modules Defect Group
2 1 {1, 11, 11∗, 44, 44∗, 120, 220, 220∗, Sylow

252, 320, 320∗, 1242, 1792}
1 {1, 22, 231, 483, 770, 770∗, 1243} Sylow

3 2,3 {45, 990}, {45∗, 990∗} Defect 1
4,5 {252, 5544}, {1035, 2277}, Defect 1
6 {10395} Defect 0
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Let us first examine the case where p = 2, and write K = GF(2). In this case, G =

M24 has only one block, which contains thirteen simple modules, all realizable over

K. We will show that all non-trivial simple modules apart from those of dimensions

320 and 1792 are non-algebraic.

Write H for the point stabilizer under the 24-point permutation action of G; then

H is isomorphic with the group M23. In fact, the nine smallest simple modules (all

those of dimension at most 252) all remain simple when restricted to H. Since the

11-, 44-, 120- and 220-dimensional simple modules for M23 are non-algebraic, so are

their correspondents for M24. This deals with the Si for 1 6 i 6 7. Since we do not

know if the 252-dimensional simple KH-module is algebraic, we need to examine the

V4 subgroups.

There are nine conjugacy classes of subgroup isomorphic with V4, and the lengths

of these are given below.

Class Number of Conjugates
C1 10626
C2 26565
C3 26565
C4 239085
C5 425040
C6 478170
C7 637560
C8 956340
C9 956340

Consider the simple module S8: the restriction of this module to all V4 subgroups

except those from C2 is algebraic, whereas the restriction to those from C2 is given by

6 ·K ⊕ 2 ·M ⊕ Ω2(K)⊕ Ω−2(K)⊕ 56 · P(K),

where M is the direct sum of the three non-isomorphic 2-dimensional KV4-modules.

Thus S8 is non-algebraic.

The 1242-dimensional simple module S11 restricts to a V4 subgroup from the

classes Ci, for i = 3, 4, 5, 7, 9 as

2 ·M ⊕ Ω(K)⊕ Ω−1(K)⊕ 306 · P(K),

where M is as above. The restriction to a subgroup from the class C2 is given by

4 ·K ⊕ 4 ·N ⊕ Ω3(K)⊕ Ω−3(K)⊕ 302 · P(K),
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where N is a 4-dimensional indecomposable module with two socle layers. The re-

striction to subgroups from the classes C1, C6 and C8 are algebraic. Hence S11 is

non-algebraic.

The remaining two modules, of dimensions 320 and 1792, are of unknown alge-

braicity. This is because the restriction of either module to either conjugacy class of

involutions is a free module, and so the V4 Restriction Test cannot be used. Moreover,

the restriction of either module to any dihedral subgroup will consist solely of band

modules, and so results from Chapter 3 offer no help here. Like the 252-dimensional

module for M23 in characteristic 2, the author knows of no way to determine the

algebraicity of these modules.

Now consider the prime 3: the 45- and 990-dimensional modules lying in the

blocks of defect 1 require GF(9) to be realized, whereas all other modules can be

realized over GF(3). Only the modules lying in the principal block have any chance

of being non-algebraic, so we restrict ourselves to these modules. We again write Si

for the ith non-trivial simple module lying in the principal block, so that for example

S3 is 483-dimensional, and S6 is 1243-dimensional. We will prove that S4 and S5 are

non-algebraic, and all other simple modules are algebraic.

The 759-dimensional permutation module, while not semisimple, is the direct sum

of the 24-dimensional permutation representation (on the cosets of M23), the 252-

dimensional simple module V1 in the fourth block, and the 483-dimensional module

S3. Thus S3 is a trivial-source module, and so algebraic.

Denote by P a Sylow 3-subgroup of G: this is extraspecial of type 31+2
+ , so of

exponent 3. The group P contains a unique normal subgroup Q of order 3. The

restriction of the 22-dimensional module S1 to P is given by

S1 ↓P = A⊕B1 ⊕B2;

the Bi are permutation modules induced from subgroups of P of order 3, and the

module A is the 4-dimensional source. This module has kernel Q, and so can be

considered a module for C3×C3. Its tensor square has three summands, of dimensions

1, 6 and 9, and so this module is from Class C of Section 3.3.3. Hence this module is

algebraic.

The fact that S1 is algebraic proves that S2 is also algebraic, since S2 = Λ2(S1).

As Λ2(S1) is a summand of S⊗2
1 , we see that S2 is also algebraic.

Let S4 denote one of the 770-dimensional simple modules. Restricting to P , we

have

S4 ↓P = M ⊕ 25 · P(K)⊕ 2 ·N1 ⊕ 2 ·N2 ⊕N3 ⊕N4;
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here, N1 and N2 are 18-dimensional modules induced from 2-dimensional modules

for two different non-central subgroups of order 3, and N3 and N4 are 9-dimensional

modules induced from the trivial module for the other two non-central subgroups of

order 3, and M (or M∗, depending on the choice of S4) is a 5-dimensional module

with simple socle. This 5-dimensional module, the source of S4, has kernel Q, just as

with the source for S1, and so can be viewed as a module for C3 × C3. The tensor

square of M has four summands, of dimensions 3, 3, 9, and 10, and so M comes from

Class A (or Class A∗) from Section 3.3.4. Hence S4 and its dual S5 are non-algebraic.

It remains to discuss the largest module in the principal block, the module S6

of dimension 1243. We will slowly reduce the problem of algebraicity down until we

reach something that can be managed. This module has a 19-dimensional source M ,

so we will analyze this module rather than the (rather unwieldy) 1243-dimensional

module. The module S2(M) decomposes as the direct sum of K and seven copies

of the projective indecomposable module KP ; thus we concern ourselves with the

module Λ2(M). This module decomposes as five copies of the projective indecompos-

able module, together with two non-isomorphic 18-dimensional modules, which are

induced from subgroups of order 9 in P . Hence we are interested in the 6-dimensional

sources for the two 18-dimensional modules: these are from Class V in Section 3.3.5,

and so are algebraic. Hence S6 is algebraic, as required. This proves the final theorem

in this section, Theorem 6.5.

6.2 Leech Lattice Groups

The Leech lattice groups are all (non-Mathieu) groups involved in the group Co0,

the full automorphism group of the Leech lattice. They are the Higman–Sims group,

the second Janko group, the three Conway groups, the McLaughlin group, and the

Suzuki group. We will consider each of them in turn.

Our results for the Higman–Sims group are complete in characteristics 2 and 3.

However, in characteristic 5, it seems difficult to prove anything concrete. We make

some remarks in this direction at the end of Section 6.2.1. Even better, Janko’s second

group J2 is completely understood in all characteristics. The abundance of results

in these two groups contrasts with the three Conway groups, about which nothing is

known.

The final two groups are the McLaughlin group, for which some results are known

in characteristic 3 but little else, and the Suzuki group, for which non-algebraic mod-

119



CHAPTER 6. THE SPORADIC GROUPS

ules are known for p = 2 and p = 3, and two non-trivial algebraic modules have been

found in characteristic 5.

6.2.1 The Higman–Sims Group HS

The Higman–Sims group HS is of order 44352000 = 29 · 32 · 53 · 7 · 11. It has a

100-point permutation representation, as originally described in Donald Higman and

Sims’ paper [45], and a 176-point permutation representation, as described soon after

Higman–Sims’ original construction in Graham Higman’s paper [46], which means

that a computer can study it with ease. Note that the point stabilizer under this 100-

point representation is the Mathieu group M22, which will be useful in this section.

The primes p for which HS does not have a cyclic Sylow p-subgroup are 2, 3 and 5,

and we summarize the dimensions of the simple modules, as usual, in the table below.

p Block Simple Modules Defect Group
2 1 {1, 20, 56, 132, 518, 1000} Sylow

2 {896, 896∗, 1408} Defect 2
1 {1, 22, 1541, 321, 748, 1176, 1253} Sylow

3 2 {49, 49∗, 77, 1542, 1543, 770, 770∗} Sylow
3 {231, 825} Defect 1

4,5,6 {693}, {1386}, {2520} Defect 0
1 {1, 21, 55, 98, 1331, 1332, 210, 280, 280∗, 518} Sylow

5 2 {175, 650, 1275, 1925} Defect 1
3,4 {1750}, {2750} Defect 0

Theorem 6.6 Let G = HS, the Higman–Sims sporadic simple group, and let K be

a splitting field for G of characteristic p. Let M be a simple KG-module.

(i) If p = 2, then M is algebraic if and only if M is trivial or lies outside the

principal block.

(ii) If p = 3, then M is algebraic.

After proving this theorem, we conclude the subsection with some remarks about

the case where p = 5.

We begin with the prime 2: the six modules in the principal block and the 1408-

dimensional module can be realized over GF(2), whereas the two modules of dimension

896 require GF(4).

To use the V4 Restriction Test, we need information on the (conjugacy classes of)

V4 subgroups. There are five conjugacy classes of V4 subgroup, with class lengths as

given in the table.

120



CHAPTER 6. THE SPORADIC GROUPS

Class Number of Conjugates
C1 28875
C2 77000
C3 184800
C4 231000
C5 346500

The restriction of the 20-dimensional module S1 to one of the subgroups in con-

jugacy class C1 is isomorphic with

2 ·K ⊕ 2 · P(K)⊕ Ω2(K)⊕ Ω−2(K),

and so is not algebraic. The restrictions down to representatives from the other Ci

are algebraic.

The restriction of the 56-dimensional module S2 to one of the subgroups in con-

jugacy class C1 is isomorphic with

2 ·M ⊕ 2 · Ω(K)⊕ 2 · Ω−1(K)⊕ 8 · P(K),

where M is the direct sum of the three non-isomorphic 2-dimensional indecomposable

modules. This is therefore clearly not algebraic. The restrictions down to represen-

tatives from the other conjugacy classes Ci are algebraic.

The restriction of the 132-dimensional module S3 to one of the subgroups in

conjugacy class C1 is isomorphic with

2 · Ω2(K)⊕ 2 · Ω−2(K)⊕ 28 · P(K),

and so is not algebraic. The restrictions down to representatives from the other

conjugacy classes Ci are algebraic.

The restriction of the 518-dimensional module S4 to one of the subgroups in

conjugacy class C1 is isomorphic with

120 · P(K)⊕ 2 · Ω2(K)⊕ 2 · Ω−2(K)⊕ Ω4(K)⊕ Ω−4(K),

whereas its restriction to one of the subgroups in conjugacy class C2 is isomorphic

with

2 ·M ⊕ 124 · P(K)⊕ Ω2(K)⊕ Ω−2(K),

where M is as above. The restrictions down to representatives from the conjugacy

classes C3, C4 and C5 are algebraic.
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The restriction of the 1000-dimensional module S5 to one of the subgroups in

conjugacy class C1 is isomorphic with

4 ·K ⊕ 8 ·M ⊕ 2 · Ω(K)⊕ 2 · Ω−1(K)⊕ 234 · P(K),

where M is as above. Hence S5 is not algebraic. The restrictions down to represen-

tatives from the other conjugacy classes Ci are algebraic. This deals with all modules

from the principal block.

The second block is the unique block of defect 2, and in fact is of defect group V4.

Therefore by Corollary 3.9, all simple modules in this block are algebraic.

We now turn our attention to characteristic 3: in this case, all of the simple

modules are realizable over GF(3). We will show that they are all algebraic. The

group G has a maximal subgroup H1 of index 100 and two conjugacy classes of

maximal subgroup of index 1100, representatives of which will be denoted by H2 and

H3.

The 100-dimensional permutation representation on the cosets of H1 is semisim-

ple, with summands the trivial module, the 22-dimensional simple module S1 in the

principal block, and the 77-dimensional module T3 in the second block. Since these

three modules are trivial-source modules, they are algebraic. The permutation rep-

resentation on the cosets of H2 behaves very differently to that on the cosets of H3:

the one contains a summand isomorphic with S1, and the other contains a summand

isomorphic with the 154-dimensional simple module S3 lying in the principal block.

[One can distinguish between the three simple modules of that dimension using the

fact that, if T1 denotes one of the 49-dimensional simple modules, then S1 ⊗ T1 is

indecomposable and contains both 154-dimensional simple modules from the second

block.]

If P denotes a Sylow 3-subgroup of G, and T1 denotes a 49-dimensional simple

module, as above, then

T1 ↓P = M ⊕ P(K),

where M is a 4-dimensional indecomposable K(C3 × C3)-module. We classified all

such modules in Section 3.3.3: the tensor square of this module M decomposes as the

sum of the trivial module, a projective module, and a 6-dimensional module. Hence it

belongs to Class C from Section 3.3.3, and so is algebraic. The dual of T1, the module

T2, has the same 4-dimensional source (as M is self-dual), and thus the modules T1

and T2 are algebraic. [Alternatively, one can note that the restriction of T1 to the

point stabilizer M22 is simple, and the 49-dimensional modules for M22 were proved

to be algebraic. Then Proposition 2.25 proves the result.]
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The exterior square of a 49-dimensional module T1 is the 1176-dimensional simple

module S5 in the principal block. Since the 49-dimensional module is algebraic, and

as the characteristic of the field is odd, we have

T⊗2
1 = Λ2(T1)⊕ S2(T1),

the module S5 = Λ2(T1) is algebraic.

To prove that the 1253-dimensional simple module S6 is algebraic, we restrict

to the point stabilizer H1 under the 100-point permutation representation of HS.

Recall that this group is the Mathieu group M22, for which we proved that every

simple module is algebraic when K = GF(3). Restricting S6 down to this subgroup

H, we get

S6 ↓H= N1 ⊕N∗
1 ⊕N2 ⊕N3,

where N1 is one of the 49-dimensional simple modules for M22, the module N2 is

isomorphic with the 210-dimensional simple module for M22, and N3 is the projective

cover of the 231-dimensional simple module. Each of the simple modules for M22 is

algebraic, as are projective covers, and so this module S6 ↓H is algebraic. Thus by

Proposition 2.25, S6 is algebraic.

The same method proves that the 321-dimensional module S3 is algebraic: the

restriction to H1 is semisimple, and since all simple modules for M22 are algebraic,

S3 is algebraic since H1 has index prime to 3.

For the rest of the modules, we will have to restrict to a Sylow 3-subgroup P , and

work from there: for the 154-dimensional simple modules T4 and T5 in the second

block, we get

T4 ↓P = K ⊕ 17 · P(K), T5 ↓P = K ⊕ 17 · P(K),

so that both T4 and T5 are trivial-source modules, whence they are algebraic.

For the 748-dimensional simple module S4, we get

S4 ↓P = M ⊕ 82 · P(K),

where M is a 10-dimensional indecomposable module. The module M⊗2 is the di-

rect sum of a trivial module, three 6-dimensional modules (the three non-isomorphic

modules from Class V of Section 3.3.5) and nine projective summands. Thus M⊗2

is algebraic, and so therefore is M . Since M is a source for S4, we see that S4 is

algebraic.

123



CHAPTER 6. THE SPORADIC GROUPS

It remains to deal with the two 770-dimensional simple modules, T6 and T7. Re-

stricting the module T6 to the Sylow subgroup P gives

T6 ↓P = 2 ·K ⊕M ⊕ 84 · P(K),

where M is the sum of the four uniserial modules that are the projective covers of

the trivial module for the four different cyclic quotients of P (i.e., the four modules

that form Class C in Section 3.3.2). The module T6 is therefore trivial source, so in

particular is algebraic. Since T7 is the dual of T6, it is algebraic, and we have dealt

with all of the simple modules in the non-cyclic blocks.

Thus Theorem 6.6 is proved.

We now turn our attention to the prime 5. In this case, all modules are realizable

over GF(5). We cannot determine the algebraicity of any of the non-trivial sim-

ple modules in the principal block, although we can link the algebraicity of certain

modules with others by means of decomposing tensor products.

The tensor square of the 21-dimensional module S1 is semisimple, with

S⊗2
1 = K ⊕ S2 ⊕ S6 ⊕ T1,

where S2 is the 55-dimensional simple module in the principal block, S6 is the 210-

dimensional simple module in the principal block, and T1 is the 175-dimensional

module in the block of defect 1.

The exterior square of the module S2 is also semisimple, and Λ2(S2) = S6 ⊕ T3.

The exterior square of S3 is similarly semisimple, and given by

Λ2(S3) = S6 ⊕ S9 ⊕ T3 ⊕ V1.

The tensor product of S1 and S3 is semisimple as well, and is written

S1 ⊗ S3 = S2 ⊕ S6 ⊕ S9 ⊕ T3.

From these decompositions, we see that if S1 is algebraic, then both S2 and S6

are algebraic, and if S3 is algebraic then so are S6 and S9.

The module S4 has an 8-dimensional source, A, which appears to be algebraic,

although this cannot be proved with the current techniques. The tensor square of A

is given by

A⊗ A = K ⊕ A⊕B1 ⊕B2,
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where B1 is a 20-dimensional module and B2 is a 35-dimensional module. Both are

periodic, and so if, for odd p, every periodic module is algebraic, as might be possible,

then S4 and S5 are indeed algebraic. To indicate the problem, we decompose some

larger tensor powers of A: we have the first decomposition

A⊗B1 = B1 ⊕ 2 ·B2 ⊕B3,

where B3 is a 70-dimensional (periodic) indecomposable module. Continuing, we get

A⊗B2 = 2 ·B1 ⊕ 3 ·B2 ⊕B3 ⊕B4,

where B4 is a 65-dimensional (periodic) indecomposable module. The tensor product

A⊗B3 is given by

A⊗B3 = B1 ⊕ 2 ·B3 ⊕B5 ⊕B6,

where B5 is a 110-dimensional indecomposable module and B6 is a 290-dimensional

indecomposable module. The next decomposition is given by

A⊗B4 = B2 ⊕B3 ⊕B6 ⊕ P(K).

The algorithms in Appendix A can be used to decompose the resulting 880-dimensional

and 2320-dimensional modules A⊗ B5 and A⊗ B6, but the author has not pursued

this yet.

The module S7 has a 155-dimensional source. This is non-periodic, since its

restriction down to one of the two conjugacy classes of elementary abelian subgroups

of G is non-periodic. This is therefore unlikely to be algebraic, in light of Conjecture

3.31.

Putting all this together, we arrive at the following conjecture.

Conjecture 6.7 Let G = HS and let K be a field of characteristic 5. Let M be

a simple module. If M lies outside the principal block, then M is algebraic. If M

lies inside the principal block, then M is algebraic if and only if M is trivial or has

dimension 133.

This conjecture is far from being verified.
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6.2.2 The Janko Group J2

Janko’s second sporadic simple group has order 604800 = 27 · 33 · 52 · 7, and is also

known as the Hall–Janko group, HJ . It was considered first in [51], and existence

and uniqueness are proved in [41]. It has a presentation

〈 a, b : a2 = b3 = (ab)7 = [a, b]12 = (ababab−1abab−1ab−1ababab−1ab−1abab−1)3 = 1〉,

although it can be generated as a permutation representation on a hundred points.

This group behaves similarly to the previous group, HS, in several respects.

Firstly, the three relevant primes are 2, 3 and 5; secondly, for the prime 2, we again

get two blocks, one of which has defect 2; and thirdly, for two primes we get the same

result. We begin with the table of dimensions of simple modules for the relevant

primes.

p Block Simple Modules Defect Group
2 1 {1, 61, 62, 141, 142, 36, 84} Sylow

2 {641, 642, 160} Defect 2
1 {1, 131, 132, 211, 212, 571, 572, 133} Sylow

3 2,3 {36, 90}, {63, 225} Defect 1
4,5 {1891}, {1892} Defect 0
1 {1, 14, 21, 41, 85, 189} Sylow

5 2 {70, 90} Defect 1
3,4,5 {175}, {225}, {300} Defect 0

Theorem 6.8 Let G be the group J2, and let K be a splitting field for G of charac-

teristic p. Let M be a simple KG-module.

(i) If p = 2, then M is algebraic if and only if M is trivial or lies outside the

principal block.

(ii) If p = 3, then M is algebraic.

(iii) If p = 5, then M is algebraic.

The first thing that we should note is that J2 lies between PSU3(3) = G2(2)′ and

G2(4), so that in particular,

PSU3(3) < J2.

Thus we can restrict the simple modules for J2 down to modules for PSU3(3), and

use the facts we know about PSU3(3) given in Section 5.6. The group PSU3(3) has

non-algebraic simple modules of dimensions 6 and 14, and the 6- and 14-dimensional
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simple modules for J2 can easily be seen to restrict to these simple modules. Hence

the simple modules Si for 1 6 i 6 4 are non-algebraic.

To determine the fate of the 36-dimensional simple module S1 and the 84-dimensional

simple module S2, we will apply the V4 Restriction Test, which means that we need

to know information about the conjugacy classes of V4 subgroups.

Class Number of Conjugates
C1 525
C2 840
C3 12600
C4 18900

Let P denote a subgroup from C1. Restricting the modules S5 and S6 to the largest

three classes results in an algebraic module, but

S5 ↓P = 2 ·K ⊕ Ω2(K)⊕ Ω−2(K)⊕ 6 · P(K)

and

S6 ↓P = 2 ·K ⊕ Ω2(K)⊕ Ω−2(K)⊕ 18 · P(K).

Hence both S5 and S6 are non-algebraic, completing the study of all modules in the

principal block.

Of course, since the second block is the unique block of defect 2, all simple modules

contained within it are algebraic by Corollary 3.9.

Moving on to characteristic 3, all of the modules in the principal block require

GF(9) to be realized except for K and the 133-dimensional module S7, which only

require GF(3).

Firstly, assume that S1 is algebraic. Then

S⊗2
1 = K ⊕ S3 ⊕ S5 ⊕ T2,

so that both S3 and S5 are algebraic. Since S2, S4, and S6 are the Frobenius twists

of the modules S1, S3, and S5, these are also algebraic. Lastly, the tensor product

S1 ⊗ S2 is also semisimple, and is

S1 ⊗ S2 = S7 ⊕ T1,

so that all simple modules in the principal block are algebraic.

It remains to show that S1, or equivalently its source A1, is algebraic. The square

of A1 is given by

A1 ⊗ A1 = K ⊕ C1 ⊕ A3 ⊕ A5 ⊕ 5 · P(K),
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where C1 is the permutation module on the cosets of a subgroup of order 3, and A3

and A5 are the 21-dimensional and 3-dimensional sources of S3 and S5 respectively.

Since C1 has cyclic vertex, we may ignore this by Proposition 2.1. Then

A1 ⊗ A3 = B1 ⊕ 9 · P(K)

and

A1 ⊗ A5 = B2 ⊕ P(K),

where B1 is a 30-dimensional indecomposable module and B2 is a 12-dimensional

indecomposable. The modules B1 and B2 have tensor products with A1 given by

A1 ⊗B1 = 2 · A3 ⊕B3 ⊕ 4 · C1 ⊕ 11 · P(K)

and

A1 ⊗B2 = 2 · A5 ⊕B4 ⊕ 4 · C1 ⊕ 4 · P(K),

where B3 is a 15-dimensional indecomposable module and B4 is a 6-dimensional

indecomposable. Finally,

A1 ⊗B3 = C1 ⊕ A3 ⊕B1 ⊕ 5 · P(K)

and

A1 ⊗B4 = A5 ⊕B2 ⊕ C1 ⊕⊕2 · P(K).

Thus A1, and hence S1, is algebraic, as required.

Now, let p = 5: in this case, all modules are realizable over GF(5). As in the

previous case, we begin by proving that if S1 is algebraic then all simple modules are

algebraic. To this end, suppose that the 14-dimensional S1 is algebraic.

The tensor square of this module is semisimple, and is given by

S1 ⊗ S1 = K ⊕ S1 ⊕ S2 ⊕ T1 ⊕ T2.

Thus S2 is algebraic. The tensor square of S2 is also semisimple, and given by

S2 ⊗ S2 = K ⊕ S1 ⊕ S2 ⊕ S3 ⊕ S4 ⊕ S5 ⊕ T2.

Thus all simple modules are algebraic, as claimed.

We will prove that the source A1 of the simple module S1 is algebraic, thus finishing

the proof of Theorem 6.8. There are twenty-two different indecomposable modules

lying in T (A1), and the exact decompositions are given in Section A.4.
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6.2.3 The Conway Groups Co1, Co2 and Co3

The Conway groups are three sporadic simple groups found by John Conway in [27].

The 2-fold central extension of the largest of these is the group of automorphisms

of the Leech lattice, a certain 24-dimensional unimodular lattice. Inside the simple

group Co1 are the maximal subgroups Co2 and Co3.

The first Conway group has order 4157776806543360000 = 221 ·39 ·54 ·72 ·11·13·23.

Although it has some low-dimensional simple modules, it seems difficult to prove any

algebraicity results about them.

The second Conway group has order 42305421312000 = 218 ·36 ·53 ·7 ·11 ·23. This

group is much smaller than Co1, but despite this, no algebraicity results are known

either.

The smallest of the three Conway groups has order 495766656000 = 210 · 37 ·
53 · 7 · 11 · 23. Even for this group, no results are known. We will briefly describe

why in characteristic 2. The dimensions and blocks of the simple modules in this

characteristic are given below.

p Block Simple Modules Defect Group
1 {1, 22, 230, 1496, 3520, 7084, 9372, 9372∗, 38456, 88000} Sylow

2 2 {896, 896∗, 19712, 73600, 131584} Defect 3
3 {129536} Defect 1

All modules can be realized over GF(2) except for the 896-dimensional modules,

and possibly the 9372-dimensional modules, which the author has not constructed.

There are three conjugacy classes of V4 subgroup of G = Co3. For each of them,

the simple modules Si for 1 6 i 6 4 have algebraic restriction to that subgroup.

Consequently, it is difficult to analyze these modules.

It is hoped that in future, some results for these groups will become feasible, and

in particular for the simple modules in the abelian block.

6.2.4 The McLaughlin Group McL

The McLaughlin group McL has order 898128000 = 27 · 36 · 53 · 7 · 11. The group was

originally constructed in [62] as the (index 2 subgroup of the) automorphism group of

a graph on 275 points, with point stabilizer PSU4(3), and uniqueness was proved by

Janko and Wong in [53]. It can be characterized by the centralizer of an involution

being isomorphic with the 2-fold central extension of the alternating group A8.
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p Block Simple Modules Defect Group
1 {1, 22, 230, 748, 748∗, 2124, 2124∗, 3584} Sylow

2 2 {3520} Defect 1
3,4,5,6 {896}, {896∗}, {9856}, {9856∗} Defect 0

3 1 {1, 21, 104, 104∗, 210, 560, 605, 605∗, 1498, 2794} Sylow
2,3,4 {5103}, {8019}, {8019∗} Defect 0

1 {1, 21, 210, 230, 560, 896, 896∗, Sylow
5 1200, 1200∗, 3038, 3245, 3245∗}

2,3,4,5,6 {1750}, {4500}, {8250}, {8250∗}, {9625} Defect 0

We have the following result for this group, restricted to characteristic 3.

Proposition 6.9 Let G be the McLaughlin simple group, and let K be a field of

characteristic 3. Then the smallest four non-trivial simple modules are non-algebraic.

There are four conjugacy classes of subgroup isomorphic with C3 × C3, and their

lengths are given in the following table.

Class Number of Conjugates
C1 616000
C2 693000
C3 693000
C4 4158000

To see that the 21-dimensional simple module is non-algebraic, let P denote a

subgroup from class C1. Then

S1 ↓P = E ⊕M1,

where M1 is a 14-dimensional module, and E is the heart of the projective indecom-

posable module. This is non-algebraic by Proposition 2.19, and so S1 is non-algebraic.

This can also be used to prove that S4 = Λ2(S1) is non-algebraic.

Let E again denote the heart of the projective indecomposable module for K(C3×
C3). Then S2(E) is the direct sum of K and projective modules, and so is algebraic.

Since E is not algebraic, Λ2(E) cannot be algebraic. Finally,

Λ2(S1 ↓H) = Λ2(E ⊕M1) = Λ2(E)⊕ Λ2(M1)⊕ E ⊗M1,

and therefore S4 is non-algebraic also.

Let Q be a representative from the conjugacy class C2; then we have the formula

S2 ↓Q= M2 ⊕M3 ⊕N ⊕ Ω(K)⊕ 8 · PK,
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where M2 and M3 are 6-dimensional indecomposable modules from Class B in Section

3.3.5 and N is a 12-dimensional indecomposable module. Hence S2 and the dual S3

are non-algebraic. [The restriction of S2 to a subgroup from class C3 is the sum of a

projective module and a 32-dimensional indecomposable module.]

This proves Proposition 6.9.

In the case where p = 2, all modules in the principal block are realizable over

GF(2). However, all modules in the principal block have algebraic restrictions to the

single conjugacy class of V4 subgroups. The author has not explored other means of

proving non-algebraicity for this group. There are no results for characteristic 5.

6.2.5 The Suzuki Group Suz

Suzuki’s sporadic group has order 448345497600 = 213 · 37 · 52 · 7 · 11 · 13. It was

discovered, as the name suggests, by Suzuki in [75], and uniqueness was proved by

Patterson and Wong in [68], characterizing Suz by the centralizer of a central invo-

lution, and by Yamaki in [79], characterizing Suz by its Sylow 2-subgroup. It has a

1782-dimensional permutation representation on the cosets of the maximal subgroup

G2(4), which makes it relatively easy to work with on a computer.

p Block Simple Modules Defect Group
1 {1, 1101, 1102, 142, 572, 572∗, 638, 3432, Sylow

2 4510, 4928, 93281, 93282, 105041, 105042}
2 {66560, 79872, 102400} Defect 3
1 {1, 64, 78, 286, 429, 649, 1938, 2925, Sylow

3 4785, 8436, 14730, 19449, 32967}
2 {51031, 51032, 15795, 72657, 160380} Defect 2
3 {18954, 189540} Defect 1
1 {1, 143, 363, 1001, 3289, 11869, 16785, Sylow

18953, 41822, 75582, 85293, 116127}
2,3 {780, 15015}, {5005, 5005∗, 935551, 935552} Defect 1

5 4 {5940, 40040, 60620, 128920} Defect 1
5,6,7,8,9 {10725}, {14300}, {250251}, {250252}, {25025∗2} Defect 0

10,11,12,13 {50050}, {50050∗},{643501},{643502}, Defect 0
14,15,16,17 {75075}, {100100},{163800},{193050}, Defect 0

This group has the following result attached.

Theorem 6.10 Let G be the Suzuki sporadic simple group.

(i) If p = 2, then the nine smallest non-trivial simple modules are non-algebraic.
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(ii) If p = 3, then the seven smallest non-trivial simple modules are non-algebraic.

The 15795-dimensional module is algebraic.

(iii) If p = 5, then the 143-dimensional and 1001-dimensional simple modules are

algebraic.

We analyze the case where p = 2 firstly: in this case, the 110-dimensional, 572-

dimensional, and 9328-dimensional simple modules require GF(4). The author does

not know whether the 10504-dimensional modules require a cube root of unity to

exist in the field. All other modules can be realized over any field.

The group G = Suz contains a maximal subgroup isomorphic with J2 o C2, and

the restriction of S1 to this subgroup, while not semisimple, has an 84-dimensional

simple module as a summand. This module remains simple upon restriction to the

sporadic group J2, and from the results of Section 6.2.2, this module is non-algebraic.

Hence S1 and S2 are non-algebraic simple modules.

We can restrict the simple module S3 to the sporadic group J2 firstly, and then

apply the V4 Restriction Test to prove non-algebraicity. Recall that there are four

conjugacy classes of V4 subgroup lying in J2, as given in Section 6.2.2. The restrictions

of S3 to subgroups from the largest three of these classes are algebraic, but the

restriction of S3 to a subgroup Q from the smallest class is

6 ·K ⊕ 4 · Ω2(K)⊕ 4 · Ω−2(K)⊕ 24 · P(K).

The simple module S4 restricts to the same V4 subgroup Q of J2 as

S4 ↓Q= 8 · Ω(K)⊕ 8 · Ω−1(K)⊕ 2 · Ω3(K)⊕ 2 · Ω−2(K)⊕ 124 · P(K).

Hence both S4 and S5 = S∗4 are non-algebraic. The subgroup Q can also be used to

prove that S6 is non-algebraic, since

S6 ↓Q= 4 ·K ⊕ 4 · Ω(K)⊕ 4 · Ω−1(K)⊕ Ω4(K)⊕ Ω−4(K)⊕ 148 · P(K).

This trend continues: in fact,

S7 ↓Q=8 ·K ⊕ 16 · Ω(K)⊕ 16 · Ω−1(K)⊕ 4 · Ω2(K)

⊕ 4 · Ω−2(K)⊕ 4 · Ω3(K)⊕ 4 · Ω−3(K)⊕ 808 · P(K),

and

S8 ↓Q= 4 ·K ⊕ 4 · Ω(K)⊕ 4 · Ω−1(K)⊕ Ω4(K)⊕ Ω−4(K)⊕ 1116 · P(K).
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The largest module we will consider, S9, has decomposition

S9 ↓Q= 24 ·K ⊕ 16 · Ω2(K)⊕ 16 · Ω−2(K)⊕ 4 · Ω4(K)⊕ 4 · Ω−4(K)⊕ 1184 · P(K).

Now let us consider characteristic 3. In this case, all modules are realizable over

GF(3), except possibly the 5103-dimensional modules, whose field of definition the

author does not know.

There are eight conjugacy classes of C3×C3 subgroup, and their lengths are given

below.

Class Number of Conjugates Class Number of Conjugates
C1 3203200 C5 153753600
C2 17297280 C6 461260800
C3 38438400 C7 461260800
C4 76876800 C8 1383782400

Let P denote a subgroup from class C3. Then the restriction of S1 to P is

S1 ↓P = E ⊕ Ω(A)⊕ Ω−1(A∗)⊕ 3 · P(K),

where E is the heart of the projective indecomposable module, and A is the unique

3-dimensional module from Class A of Section 3.3.2. The module S1 is non-algebraic

either since E is non-algebraic (Proposition 2.19) or because Ω(A) is non-algebraic

(Corollary 2.12).

The same subgroup proves that S2 is non-algebraic. This restriction is given by

S2 ↓P = 6 · P(K)⊕ Ω2(A)⊕ Ω−2(A∗),

where A is as above. The module Ω2(A) is also non-algebraic, and so S2 is non-

algebraic. This proves that S6 is non-algebraic as well: as we stated in the previous

section, Λ2(E) is non-algebraic, and is a 21-dimensional indecomposable module. The

module Λ2(S1) is semisimple, and is in fact isomorphic to S2 ⊕ S6. Recall that

Λ2

(
n⊕

i=1

Ni

)
=

n⊕
i=1

Λ2(Ni)⊕
⊕
i<j

Ni ⊗Nj.

Since E is a summand of S1 ↓P , the non-algebraic module Λ2(E) must be a summand

of

Λ2(S1 ↓P ) = S2 ↓P ⊕S6 ↓P .

However, Λ2(E) is not a summand of S2 ↓P since we decomposed that above. Hence

S6 is non-algebraic.
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The same technique proves that S7 is non-algebraic as well: we have Λ2(S2) =

S2 ⊕ S7, and

Λ2
(
Ω2(A)

)
= 4 · P(K)⊕ Ω−4(A∗),

and since the 39-dimensional indecomposable module Ω−4(A∗) is not a summand of

S2 ↓P , it must belong to S7 ↓P . Thus S7 is non-algebraic.

Coming back to S3, we restrict to the same subgroup P , to get

S3 ↓P = K ⊕ Ω2(A)⊕ Ω−2(A∗)⊕M1 ⊕ 28 · P(K),

where M1 is a self-dual, non-projective, indecomposable, 9-dimensional module. Thus

S3 is not algebraic, since Ω2(A) is not.

Examining the restriction of S4 to this subgroup P , we see that

S4 ↓P = Ω(A)⊕ Ω−1(A∗)⊕ 41 · P(K)⊕M2 ⊕M∗
2 ,

(where M2 is a 15-dimensional indecomposable module) and so S4 is non-algebraic as

well.

Finally, consider the module S5 ↓P . This has similar summands to before, and in

fact,

S5 ↓P = E ⊕ Ω(A)⊕ Ω−1(A∗)⊕ 68 · P(K),

proving that S5 is indeed non-algebraic, as claimed.

To prove that the 15795-dimensional module T3 is algebraic, it suffices to show

that it has trivial source. The permutation module on the cosets of the maximal

subgroup of index 22,880 has a unique composition factor from the second block,

namely T3. Hence T3 must, in fact, be a summand of this permutation module.

Lastly, suppose that the characteristic of K is 5, and let P denote a Sylow 5-

subgroup. Let S1 denote the simple module of dimension 143. This module has a

28-dimensional source N , and this module satisfies

Λ2(N) = N ⊕ 14 · P(K)

and

S2(N) = K ⊕X ⊕ 15 · P(K),

whereX is a sum of the six non-isomorphic permutation modules on the six subgroups

of P of order 5. Hence N is algebraic, since modulo the ideal generated by modules

of cyclic vertex, it satisfies the polynomial x2 = x + 1. Thus S4 and S5 are both

algebraic.
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The simple module S3 is algebraic, since it is a trivial-source module. To see this,

note that the permutation representation on the 1782 points of the maximal subgroup

G2(4) is semisimple, and this decomposes as

K ⊕ S3 ⊕ T1.

This proves all parts of Theorem 6.10.

6.3 Monster Sections

The last remaining sporadic groups that are sections of the Monster are given here.

The sheer size of some of these groups makes anything more than cursory remarks

impossible. For instance, we prove nothing about the Baby Monster or the Monster.

However, some results are given for all other groups in this section, although in the

case of Fi′24, we analyze only one module.

6.3.1 The Held Group He

The Held group has order 4030387200 = 210 ·33 ·52 ·73 ·17. It has a 2058-dimensional

permutation representation on the cosets of a maximal subgroup isomorphic with

a subgroup H isomorphic with Sp4(4) o C2. It first appeared in [43], where Held

examines the possible groups with centralizer of an involution isomorphic to one of

those in M24. The normalizer structure and conjugacy classes of such a group are

described, but the group was eventually constructed in unpublished work of Graham

Higman and McKay.

Theorem 6.11 Let G = He be the Held sporadic simple group. Let K be a splitting

field of characteristic p, and let M be a simple KG-module.

(i) Suppose that p = 2. Then M is algebraic if and only if M is trivial or M lies

outside the principal block.

(ii) Suppose that p = 3. Then M is algebraic if M lies outside the principal block,

or is one of the four smallest simple modules in the principal block.

(iii) Suppose that p = 5. Then M is algebraic if M lies outside the principal block,

or if M is one of the three smallest simple modules in the principal block.

We now give the table of simple modules.
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p Block Simple Modules Defect Group
1 {1, 51, 51∗, 101, 101∗, 2461, 2462, 680, 2008, 2449, 2449∗} Sylow

2 2 {1920, 4352, 4608} Defect 2
3,4 {215041}, {215042} Defect 0
1 {1, 679, 12751, 3673, 6172, 6272, 10879} Sylow

3 2 {51, 51∗, 10291, 10292, 12752, 1275∗2, 1920} Defect 2
3,4,5 {153, 7497}, {153∗, 7497∗}, {7650, 14400} Defect 1
6,7 {11475}, {11475∗} Defect 0
1 {1, 51, 51∗, 104, 153, 153∗, 9251, 9252, Sylow

3197, 3197∗, 4116, 4249, 6528, 10860}
5 2 {680, 1240, 4080, 9640} Defect 1

3,4,5,6,7 {12751}, {12752}, {1275∗2}, {76501}, {7650∗1} Defect 0
8,9,10,11 {76502}, {11475}, {11475∗}, {11900} Defect 0
12,13,14 {14400}, {20825}, {22050} Defect 0

1 {1, 50, 153, 426, 798, 1072, 1700, 3654, 4249, 6154} Sylow
7 2 {6272, 7497, 14553} Defect 1

3,4,5,6,7 {10291}, {10292}, {13720}, {17493}, {23324} Defect 0

We begin our analysis with characteristic 2: all simple modules from the principal

block are realizable over GF(2), which makes computation easier. The author does

not know whether the two projective simple modules can be realized over GF(2), or

whether they require GF(4).

There are eight conjugacy classes of subgroups isomorphic with V4, and their

conjugacy class sizes are given in the table below.

Class Number of Conjugates Class Number of Conjugates
C1 8330 C5 3935925
C2 437325 C6 5247900
C3 437325 C7 5247900
C4 999600 C8 7871850

Since both C2 and C3, and C6 and C7, have the same conjugacy class length, we

will avoid using results based on these conjugacy classes where we can. However, this

is not normally possible, and so there is a small amount of choice involved, both in

the labelling of the simple modules and in the labelling of the conjugacy classes. This

will not affect our results.

The 51-dimensional simple modules are algebraic upon restriction to the repre-

sentatives from the conjugacy classes C1, C4, C5 and C8, and so we immediately have

to use the paired conjugacy classes. The labelling of the simple modules S1 and S2,

and that of the Ci, can be chosen so that the restriction of S1 to a subgroup from C2

is isomorphic with

2 ·K ⊕ 10 · P(K)⊕ Ω4(K),
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and the restriction to a subgroup in class C6 is given by

M ⊕ Ω2(K)⊕ 10 · P(K),

where M is the direct sum of the three non-isomorphic indecomposable modules of

dimension 2. Thus S1 and S2 = S∗1 are not algebraic.

The 101-dimensional simple modules are similarly algebraic upon restriction to

the representatives from the conjugacy classes C1, C4, C5 and C8, and so we again have

to use the paired conjugacy classes. The simple module S3, and the labelling of the

Ci, can be chosen so that the restriction of S3 to a subgroup in class C2 is given by

Ω(K)⊕ 2 · Ω−2(K)⊕ 22 · P(K),

and the restriction to a subgroup in class C6 is given by

M ⊕ Ω(K)⊕ 23 · P(K),

where M is as above. Thus S3 and S4 = S∗3 are not algebraic.

Next, we consider the 246-dimensional simple modules. The restriction of S5

to subgroups from C5 and C6 are algebraic, but restrictions to the others are non-

algebraic. For example restricting the 246-dimensional module to a subgroup from

C4, we get

60 · P(K)⊕ Ω(K)⊕ Ω−1(K).

Keeping the same choice of conjugacy classes, the restriction of S6 to subgroups from

C5 and C7 are algebraic, but restrictions to the others are similarly non-algebraic. For

instance, both S5 and S6 have the same restrictions to subgroups from C4. Hence S5

and S6 are non-algebraic.

The 680-dimensional module S7 is the next smallest to be analyzed. The restric-

tion of this module to a subgroup from C1, C4, C5, C6, C7 or C8 is algebraic. However,

the restriction of S7 to a subgroup from either C2 or C3 is given by

4 ·K ⊕ 2 · Ω4(K)⊕ 2 · Ω−4(K)⊕ 160 · P(K).

Hence this module is non-algebraic as well.

There remain the 2008-dimensional module S8 and the two dual 2449-dimensional

modules S9 and S10. The module S8 is non-algebraic, since its restriction to a sub-

group from either class C2 or C3 is given by

4 ·K ⊕ 2 · Ω3(K)⊕ 2 · Ω−3(K)⊕ 494 · P(K).
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The restriction of the largest two simple modules in the principal block, the mod-

ules S9 and S10, to six of the eight conjugacy classes of V4 subgroup are algebraic.

However, the restriction of S9 to a subgroup from C6 is given by

Ω4(K)⊕ 610 · P(K),

and S10 restricts to the dual of this module. Hence these two modules are also non-

algebraic.

Finally, He contains a single block of defect 2 which, as in all previous occasions,

consists solely of algebraic modules. The same can be said for the two projective

simple modules, and hence we arrive at our result.

Let us now consider the case where p = 3: in this case, we will need to extend our

field to GF(9) in all cases where there are two modules of the same dimension, with

the possible exception of the two projective simple modules, whose smallest field of

definition is not known to the author.

Let P denote a Sylow 3-subgroup of G, which is extraspecial of order 27 and of

exponent 3. Let Q denote the unique normal subgroup of order 3.

Several of the modules in characteristic 3 are trivial-source modules. For exam-

ple, the 2058-point permutation representation is not semisimple, but has summands

isomorphic with T1, T2 and S2. (The remaining summand, which we will label X,

is uniserial, with socle layers consisting of K, S1 and K.) The exterior square of T1

is T5, and similarly Λ2(T2) = T6, and so these two modules are both algebraic and

trivial-source modules. In fact,

T1 ⊗ T1 = T2 ⊕ S3 ⊕ T6.

The tensor product of the two 51-dimensional modules is not semisimple, but has

summands isomorphic with T7 and X, the module described above. Hence T7 is also

a trivial-source module.

The 2058-dimensional permutation module is on the cosets of the maximal sub-

group PSp4(4) oC2. Taking the 4116-dimensional permutation module on the cosets

of the subgroup PSp4(4), we get the module

T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ S3 ⊕X,

and so T3 and T4 are also algebraic. This proves that all modules from outside the

principal block are algebraic.

The module S1 is algebraic, since

S1 ↓P = M1 ⊕ P(KP/Q)⊕ 22 · P(K)⊕ A1 ⊕ A2,
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where A1 and A2 are permutation modules on subgroups of P of order 3, and M1 is

the 4-dimensional source. The kernel of the source M1 is Q, and so M1 can be viewed

as a module for C3 × C3, and if viewed as such, it comes from Class C in Section

3.3.3. Hence M1 is algebraic.

The module S3 is also algebraic: the 19-dimensional source M2 of S3 has tensor

square

K ⊕B1 ⊕B2 ⊕ 12 · P(K),

where B1 and B2 are 18-dimensional modules induced from (different) subgroups of

order 9. The 6-dimensional sources for these two modules are from the algebraic Class

V in Section 3.3.5, and so M⊗2
2 is algebraic.

The remaining simple modules are difficult to work with. Only the simple module

of dimension 6272 is relatively easy to construct, lying as a composition factor in

the 29155-dimensional permutation module. The author has not yet managed to

construct the source of this module, and so no analysis can take place.

Finally, suppose that the characteristic is 5, and let P denote a Sylow 5-subgroup.

The 2058-dimensional permutation representation is semisimple, with the two 51-

dimensional modules S1 and S2 as composition factors.

Now consider the two (dual) 153-dimensional modules S4 and S5. The module S4

has a 28-dimensional source N , which is isomorphic with the 28-dimensional source

of the smallest (non-trivial) simple module for Suz in characteristic 5. Since that

module is algebraic, so is this.

The tensor product (with some choice of S4 and S5) of S1 and S4 is given by

S1 ⊗ S4 = S13 ⊕ V1

where V1 is one of the two 1275-dimensional projective simple modules. Hence S13 is

also algebraic.

This completes the proof of Theorem 6.11.

When the characteristic of the field is 7, we cannot say very much. For exam-

ple, the modules S1 and S2 remain indecomposable upon restriction to the Sylow

7-subgroup, and so these modules are difficult to work with. The module Λ2(S1) is

semisimple, and in fact

Λ2(S1) = S2 ⊕ S5.

The symmetric square is also semisimple, and we have

S2(S1) = K ⊕ S1 ⊕ S3 ⊕ S4.
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Thus if S1 is algebraic, then so are S2, S3, S4 and S5. Also,

Λ2(S2) = S2 ⊕ S5 ⊕ S8 ⊕ S9,

and

S1 ⊗ S2 = S1 ⊕ S2 ⊕ S3 ⊕ S5 ⊕ S6 ⊕ S8.

Thus if S1 is algebraic, then so are S6, S8 and S9 as well.

6.3.2 The Harada–Norton Group HN

The Harada–Norton group has order 273030912000000 = 214 ·36 ·56 ·7·11·19. Harada,

in [42], determined many of the properties of HN , starting from the fact that G is a

simple group with centralizer of involution isomorphic with a double cover of either

HS or its automorphism group. The group itself was constructed by Simon Norton

in his Ph.D. thesis [64].

The smallest permutation representation of HN is on the cosets of a maximal

subgroup isomorphic with the alternating group A12, and this representation has

dimension 1,140,000. This makes calculations within this group especially difficult.

The best way appears to be to restrict the representation to a maximal subgroup,

one in which calculations are easier.

The subgroup A12 appears ideal here: although some information is lost in re-

stricting to this subgroup, enough is retained, at least with the few representations

available, to prove that these modules are non-algebraic.

The modular characters and decomposition matrices have been calculated in all

characteristics apart from 3, and their degrees are given below.

p Block Simple Modules Defect Group
1 {1, 1321, 1322, 760, 2650, 2650∗, 3344, 15904, 310861, 310862, Sylow

343521, 343522, 43416, 43416∗, 177286, 217130, 1556136}
2 2 {2140161, 13619201, 29859841} Defect 4

3 {3424256} Defect 0
1 {1, 133, 626, 2451, 6326, 8152, 9271, 54473, 69255, 84798, Sylow

5 131747, 145275, 170258, 335293, 638571, 784379}
2 {653125, 2131250, 2678125, 3200000} Defect 1

3,4,5,6 {6562501}, {6562502}, {2375000}, {4156250} Defect 0

For this group, we have the following result.

Theorem 6.12 Let G be the sporadic simple group HN , and let K be a field of

characteristic p.
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(i) If p = 2, then the six smallest non-trivial KG-modules are all non-algebraic.

(ii) If p = 3, then the two simple modules of dimension 133 are non-algebraic.

Of the modules that can be constructed, the 760-dimensional and 3344-dimensional

can be written over GF(2), whereas the two 132-dimensional and two 2650-dimensional

modules require a cube root of unity.

Let H denote a maximal subgroup of G isomorphic with A12. There are thirteen

conjugacy classes of V4 subgroups of H, and the 132-dimensional simple module S1 is

algebraic upon restriction to eleven of them. We therefore make the judicious choice

of P , a subgroup isomorphic with V4, from the conjugacy class with 103,950 elements.

(This is the third smallest class.)

With this choice of subgroup, one can see that the modules S1, S2 and S3 are all

non-algebraic, since

S1 ↓P = 2 ·K ⊕ Ω4(K)⊕ Ω−4(K)⊕ 28 · P(K)

and

S3 ↓P = Ω(K)⊕ Ω−1(K)⊕ 3 · Ω3(K)⊕ 3 · Ω−1(K)⊕ 178 · P(K).

In fact, this subgroup can detect the non-algebraicity of S4, S5 and S6 as well, since

S4 ↓P = 2 ·K ⊕ 8 ·M ⊕ 3 · Ω2(K)⊕ 3 · Ω−2(K)⊕ Ω4(K)⊕ Ω−4(K)⊕ 639 · P(K),

and

S6 ↓P = 8 ·K ⊕ 4 · Ω4(K)⊕ 4 · Ω−4(K)⊕ 816 · P(K).

Now consider the prime 3: we again take restrictions to H. There are eight

conjugacy classes of subgroup of A12 of isomorphism type C3×C3. Two of these have

61,600 elements in them, and the restriction of a 133-dimensional module S1 over

GF(9) to either of them is

Ω3(K)⊕ Ω−3(K)⊕ 11 · P(K).

These decompositions provide the proof of Theorem 6.12.

6.3.3 The Thompson Group Th

The Thompson sporadic simple group has order 90745943887872000 = 215 · 310 · 53 ·
72 · 13 · 19 · 31. The first evidence for this group appeared in [76], and existence was

proved by a computer construction of Smith [74], with uniqueness coming via a paper
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of Parrott [67]. The smallest permutation representation of Th is on 143,127,000

points, on the cosets of a semidirect product of the Steinberg triality group 3D4(2) by

C3. As with the Harada–Norton group, we work with maximal subgroups, and hope

that we do not lose too much information in passing down.

In all characteristics, there is a non-trivial simple module of dimension 248.

Proposition 6.13 For p = 2 or p = 3, the smallest non-trivial representation of the

Thompson sporadic simple group over a field of characteristic p, which has dimension

248, is non-algebraic.

The Thompson group possesses maximal subgroups isomorphic with PSU3(8)oC6,

so let H be such a subgroup. We will deal with the characteristic 2 case first. The

group H contains two conjugacy classes of V4 subgroup, namely the class C1 with

3591 elements and the class C2 with 344736 elements. While the restriction of S1 to

a subgroup from class C2 is algebraic, the restriction to a subgroup from class C1 is

the module

Ω(K)⊕ Ω−1(K)⊕ 3 · Ω3(K)⊕ 3 · Ω−3(K)⊕ 50 · P(K).

This proves the proposition for p = 2.

Now consider the module for p = 3. There are eight conjugacy classes of subgroup

isomorphic with C3×C3 lying in H, so let P denote a representative from the smallest

conjugacy class, which has length 25,536. Then the restriction of the 248-dimensional

module to this subgroup P is given by

Ω3(K)⊕ Ω−3(K)⊕ 20 · P(K)⊕X ⊕M ⊕M∗,

where X is a sum of four 3-dimensional modules and M is an 11-dimensional inde-

composable module. Hence the smallest non-trivial simple module is non-algebraic

in characteristic 3 as well.

6.3.4 The Fischer Group Fi22

The Fischer group Fi22 has order 64561751654400 = 217 · 39 · 52 · 7 · 11 · 13, and has

a permutation representation on 3510 points. This is the smallest of Fischer’s three

simple groups, generated by so-called 3-transpositions. The first details appeared in

[37], although the rest of the proof of Fischer’s theorem on 3-transposition groups

remained unpublished until Aschbacher’s account in [9].

The table of dimensions of simple modules is given below.
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p Block Simple Modules Defect Group
1 {1, 78, 350, 572, 1352, 5824, 5824∗, 7942, Sylow

24596, 31668, 34892, 629521, 629522, 163084}
2 2 {2555904} Defect 1

3 {1441792} Defect 0
{1, 77, 351, 924, 2651, 2926, 4823, 4823∗, 7722,

1 124741, 124742, 17226, 21175, 29821, 50050, 55573, Sylow
3 92378, 92378∗, 133925, 182897, 182897∗, 193479}

2,3 {360855, 577368}, {852930, 1876446} Defect 1
4 {1791153} Defect 0

{1, 78, 428, 1001, 3003, 31954, 47620,
1 80653, 223808, 254254, 322035, 492920, Sylow
5 618905, 906269, 1156715, 1313090}
2 {1430, 3080, 41965, 318890} Defect 1
3 {30030, 43680, 175890, 677040} Defect 1

35 blocks of defect 0

We have the following result for this group.

Theorem 6.14 Let G ∼= Fi22, the smallest sporadic group of Fischer, and let K be

a field of characteristic p.

(i) If p = 2, then the four smallest non-trivial simple modules are non-algebraic.

(ii) If p = 3, then the smallest two non-trivial simple modules are non-algebraic, as

well as the 2651-dimensional and 2926-dimensional simple modules.

(iii) If p = 5, then the smallest two non-trivial simple modules are algebraic, as well

as the 3003-dimensional simple module.

We begin with characteristic 2. In this case the 5824-dimensional modules require

GF(4), and the author does not know whether the 62952-dimensional modules require

GF(4). All other modules obviously only require GF(2).

The smallest maximal subgroup of Fi22 is isomorphic with the Mathieu group

M12. Earlier in the chapter, we stated that M12 possesses four conjugacy classes of V4

subgroup, representatives of which we will denote by Pi for 1 6 i 6 4, in accordance

with the labelling from Section 6.1.2.

The simple module S1 has algebraic restrictions to P2 and P3, whereas its restric-

tions to P1 and P4 are given by

S1 ↓P1= Ω3(K)⊕ Ω−3(K)⊕ 16 · P(K),

and

S1 ↓P4= X ⊕ Ω(K)⊕ Ω−1(K)⊕ 12 · P(K),
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where X is a sum of 2-dimensional indecomposable modules.

The simple module S2 is also non-algebraic: the restriction of S2 to P3 is algebraic,

whereas the other subgroups can detect the non-algebraicity of S2. For example,

S2 ↓P1= 2 ·K ⊕X ′ ⊕ Ω(K)⊕ Ω−1(K)⊕ Ω4(K)⊕ Ω−4(K)⊕ 78 · P(K),

where again X ′ is a sum of 2-dimensional indecomposable modules.

The restriction of S3 to either P2 or P3 is non-algebraic, whereas the restriction

to P1 is given by

S3 ↓P1= Ω(K)⊕ Ω−1(K)⊕ 3 · Ω2(K)⊕ 3 · Ω−2(K)⊕ 134 · P(K).

Hence S3 is also non-algebraic.

The largest simple module present in the permutation module on 3510 points is

the module S4. This is also non-algebraic, as for example

S4 ↓P1= 4 ·K ⊕ 2 · Ω4(K)⊕ 2 · Ω−4(K)⊕ 328 · P(K).

In the case of characteristic 3, we restrict to a C3 × C3 subgroup of Fi22. There

are fifteen conjugacy classes of subgroup isomorphic with C3 × C3.

Class Number of Conjugates Class Number of Conjugates
C1 153753600 C9 8302694400
C2 205004800 C10 16605388800
C3 1230028800 C11 22140518400
C4 1383782400 C12 33210777600
C5 2460057600 C13 44281036800
C6 2767564800 C14 66421555200

C7, C8 5535129600 C15 132843110400

Let Q denote a representative from C2. [This subgroup can be found for example

inside a maximal subgroup of index 61, 776.] This will be used to prove that both S1

and S2 are non-algebraic. The restriction of S1 to a subgroup from one of them is

isomorphic with

K ⊕ 2 · E ⊕ P(K)⊕M1 ⊕M2,

where M1 is a 21-dimensional indecomposable module and M2 is a 32-dimensional

indecomposable module. The module E is a 7-dimensional module, and is in fact

isomorphic with the heart of the projective indecomposable module. In Proposition

2.19, we prove that this module is non-algebraic, and so S1 is non-algebraic, as re-

quired. The module M1 will appear again in the decomposition of the restriction of

S2 to Q; this decomposition is

S2 ↓Q= 3 ·K ⊕M1 ⊕M3 ⊕ 2 ·M4 ⊕ 24 · P(K).
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Here, M1 is the 21-dimensional non-periodic module above, which will turn out to

be non-algebraic, M3 is a 23-dimensional indecomposable module, and M4 is a 44-

dimensional indecomposable module. The module M3 satisfies

S2(M1) = 19 · P(K)⊕ Ω2(M1)⊕ Ω−2(M1).

Thus by Corollary 2.12, M1, and hence S2 is non-algebraic.

One may use the fact that S1 is non-algebraic to prove that S4 and S5 are non-

algebraic as well. The module Λ2(S1) is in fact S4, and the module S2(S1) is semisim-

ple, with

S2(S1) = K ⊕ S2 ⊕ S5.

Recall that

Λ2

(
n⊕

i=1

Ni

)
=

n⊕
i=1

Λ2(Ni)⊕
⊕
i<j

Ni ⊗Nj

and

S2

(
n⊕

i=1

Ni

)
=

n⊕
i=1

S2(Ni)⊕
⊕
i<j

Ni ⊗Nj;

the fact that 2 ·E is a summand of S1 ↓Q implies that E ⊗E|Λ2(S1) ↓Q, and since E

is non-algebraic (by Proposition 2.19), so is S4.

To prove that S5 is non-algebraic, notice that S2(S1 ↓Q) contains (as a summand)

the module E ⊗ M1. This is (modulo projectives) the module Ω(M1) ⊕ Ω−1(M1),

a direct sum of two, clearly non-algebraic, 24-dimensional indecomposable modules.

Since these do not lie in S2 ↓Q, they must be summands of S5 ↓Q, and so S5 ↓Q is

non-algebraic also.

Now let p = 5: in this case, all modules from the principal block can be realized

over GF(5).

The smallest non-trivial module S1, of dimension 78, is algebraic. This module

has full vertex (since the block has abelian defect group) and a 28-dimensional source

M1. The exterior square of this module is given by

Λ2(M1) = M1 ⊕ 14 · P(K),

and the symmetric square is given by

S2(M1) = K ⊕X ⊕ 15 · P(K),

where X is the sum of the six 5-dimensional modules corresponding to permutation

modules on the cosets of the six subgroups of index 5. Thus, modulo summands with

cyclic vertex,

M1 ⊗M1 ≡ K ⊕M1.
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Therefore by Proposition 2.1, M1 is algebraic.

The module S2 behaves exactly similarly: it also has a Sylow 5-subgroup as vertex

and a 28-dimensional source M2. (The modules M1 and M2 are not conjugate.) The

exterior square of this module is given by

Λ2(M2) = M2 ⊕ 14 · P(K),

and the symmetric square by

S2(M2) = K ⊕X ⊕ 15 · P(K),

where X is the sum of the six 5-dimensional modules corresponding to permutation

modules on the cosets of the six subgroups of index 5. Thus, modulo summands with

cyclic vertex,

M2 ⊗M2 ≡ K ⊕M2.

Thus by Proposition 2.1, M2 is algebraic.

The exterior square of S1 is the 3003-dimensional module S4, and so this module

is also algebraic. This completes the proof of Theorem 6.14.

6.3.5 The Fischer Group Fi23

The Fischer group Fi23 has order 4089470473293004800 = 218 ·313 ·52 ·7 ·11 ·13 ·17 ·23,

and has a permutation representation on 31,671 points. It is the second of Fischer’s

three sporadic simple groups to come out of his study of 3-transposition groups. The

modular character table is not known in characteristic 3, but all other characteristics

are available.

p Block Simple Modules Defect Group
{1, 782, 1494, 3588, 19940, 57408, 79442, 94588, 94588∗,

1 583440, 724776, 979132, 1951872, 19978721, 19978722, Sylow
2 5812860, 7821240, 8280208, 17276520, 34744192}

2 {97976320, 166559744} Defect 3
3 {73531392} Defect 1

4,5 {5046272001}, {5046272002} Defect 0
{1, 3588, 5083, 25806, 274482, 1948284, 7193549, 9103653,

1 9103653∗, 10267269, 16864290, 37544142, 38625004, Sylow
46961837, 48125453, 178866469}

5 {782, 30106, 60996, 76637, 111826, 751893, 7954894,
2 11218572, 21074118, 25223342, 26324076, 48196224, Sylow

66457029, 120262284, 170042380, 269117549}
5 blocks of defect 1
33 blocks of defect 0
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We have the following result for this group.

Theorem 6.15 Let G denote the sporadic simple group Fi23, and let K denote a

splitting field of characteristic p.

(i) If p = 2 then the three smallest non-trivial simple modules are non-algebraic.

(ii) If p = 3 then the two smallest non-trivial simple modules are non-algebraic.

(iii) If p = 5 then the smallest non-trivial simple module is algebraic.

We begin with characteristic 2. Let H denote a maximal subgroup of G iso-

morphic with S12. The subgroup H contains many conjugacy classes of subgroup

isomorphic with V4, two of which have 103,950 elements in the conjugacy class. Label

representatives from these classes by P1 and P2. For a particular choice of the Pi, we

have

S1 ↓P1= 8 ·K ⊕ 3 · Ω4(K)⊕ 3 · Ω−4(K)⊕ 180 · P(K),

and the restriction to P2 is algebraic. Hence S1 is non-algebraic.

The same choice of the Pi gives

S2 ↓P1= 5 · Ω2(K)⊕ 5 · Ω−2(K)⊕X ⊕ 352 · P(K),

and

S2 ↓P2= Ω(K)⊕ Ω−1(K)⊕ Y ⊕ 354 · P(K)

where the module X is a direct sum of 2-dimensional modules and 4-dimensional

non-projective modules, and Y is a direct sum of 2-dimensional modules. Thus S2 is

non-algebraic as well.

To prove that the simple module S3 is non-algebraic, we note that

S3 ↓P1=6 ·K ⊕ Ω(K)⊕ Ω−1(K)⊕ 3 · Ω3(K)

⊕ 3 · Ω−3(K)⊕ 3 · Ω4(K)⊕ 3 · Ω−4(K)⊕ 870 · P(K).

This completes our analysis of characteristic 2.

Moving on to characteristic 3, let S1 denote the 253-dimensional simple module,

and S2 denote the 528-dimensional simple module. These are the two smallest non-

trivial simple modules, and both are self-dual and realizable over GF(3).

Let H denote the stabilizer of a point under the 31,671-point permutation action

of G; then H is the 2-fold central extension of Fi22. The restrictions of S1 and S2 are

semisimple and, in fact,

S1 ↓H= M1 ⊕N1,
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and

S2 ↓H= K ⊕N2 ⊕M2,

where M1 and M2 are simple modules for the simple quotient Fi22 of H, and N1

and N2 are (different) 176-dimensional simple modules for H. The module M1 is the

77-dimensional simple module for Fi22, which is non-algebraic by Theorem 6.14, and

M2 is the 351-dimensional simple module for Fi22, also non-algebraic by the same

result. This proves (ii) of our claim.

Now consider characteristic 5: restricting the 782-dimensional module T1 to a

Sylow 5-subgroup P , we see that

T1 ↓P = 2 ·K ⊕M ⊕ 30 · P(K),

where M is the direct sum of the six non-isomorphic 5-dimensional permutation

modules. Since T1 is therefore a trivial-source module, it is algebraic.

6.3.6 The Fischer Group Fi′24

The third Fischer group Fi′24 has order 1255205709190661721292800 = 221 · 316 · 52 ·
73 · 11 · 13 · 17 · 23 · 29, and has a permutation representation on 306,936 points. Very

little is known about the modular representation theory of this group: it has a 3774-

dimensional representation in characteristic 2, and a 781-dimensional representation

in characteristic 3. This latter module can be shown to be non-algebraic.

Proposition 6.16 Let G be the sporadic simple group Fi′24, and let K be a field of

characteristic 3. Then the smallest non-trivial simple module, of dimension 781, is

not algebraic.

Let S1 denote this simple module. The stabilizer H of a point under the 306,936-

point action of G is the smaller Fischer group Fi23. The simple module S1 restricts to

H as a semisimple module, and is the sum of the 253-dimensional and 528-dimensional

simple modules, both of which are non-algebraic by Theorem 6.15. Hence S1 itself is

non-algebraic.

6.3.7 The Baby Monster B and Monster M

The Baby Monster is the second largest simple group, and has order

4154781481226426191177580544000000 = 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47.
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It has a 4370-dimensional representation in characteristic 2, which is within the

limits of computing resources, but due to problems with generation of subgroups, the

author has not studied it yet.

The Monster has order

808017424794512875886459904961710757005754368000000000,

which factorizes as 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71. The

smallest non-trivial module for this group has dimension nearly 200 000, and so we

cannot analyze any of the modules for this group over any field.

6.4 The Pariahs

Those six sporadic simple groups that are not involved in the Monster (although this

is a highly non-trivial fact) form the so-called Pariahs. Wildly varying amounts

of information is known, from complete information on the Janko group J1, to

the rather sporadic information about the others. They range in order from the

easy-to-handle group J1, of order 175560, to the largest group J4, which has order

86775571046077562880. The main result in this section is that J1 has p-SMA for all

primes p.

6.4.1 The Janko Group J1

The first Janko group has order 175560 = 23 ·3·5·7·11·19. The group has presentation

〈 a, b : a2 = b3 = (ab)7 = (ab(abab−1)3)5 = (ab(abab−1)6abab(ab−1)2)2 = 1〉,

although it has a (relatively) easy permutation representation on 266 points. It

can also be represented as 20-dimensional matrices over GF(2), and as 7-dimensional

matrices over GF(11). It was first considered by Janko in [49], and is the only sporadic

simple group with abelian Sylow 2-subgroups.

The complete result on this group is the following.

Theorem 6.17 The group J1 has p-SMA for all primes p.

Firstly, note that all Sylow p-subgroups are cyclic if p is odd, and so this result is

really about 2-SMA.
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p Block Simple Modules Defect Group
1 {1, 20, 561, 562, 761} Sylow

2 2 {762} Defect 1
3,4 {563}, {564} Defect 0

5,6,7 {1201}, {1202}, {1203} Defect 0

The four simple modules of dimension 56 all require GF(4) to exist, and the

120-dimensional modules require GF(8). All other modules can be realized over any

field.

Let P denote a Sylow 2-subgroup, with N = NG(P ) denoting its normalizer in

G = J1. The group P is elementary abelian of order 8, and therefore all simple

modules have vertex that of the defect group of their respective block, by Theorem

1.24. There are five blocks of defect 0, with two simple modules of dimension 56

and the remaining three of dimension 120. Another block is of defect 1, with only

one simple module, of dimension 76. The principal block is the only unaccounted for

block, and contains five simple modules.

Firstly, we note that the normalizer N of a Sylow 2-subgroup P of G is isomorphic

with those of the Ree groups 2G2(q). As we proved earlier in Chapter 5, the simple

modules for the Ree groups are algebraic in characteristic 2, and it can be seen

easily using a computer (or by considering the module structure) that the Green

correspondent of the module S1 for J1 also appears as the Green correspondent of the

12-dimensional simple module for 2G2(3) = SL2(8) o C3. Thus S1 is algebraic.

In the normalizer N = NG(P ), there are five simple modules: the trivial module,

two other dual 1-dimensional modules only realizable over GF(4), and two dual 3-

dimensional modules, realizable over any field.

Consider the simple module S4: again, we take its Green correspondent A4 in the

subgroup N . Since S4 is realizable over GF(2), we will consider this field. Therefore

N has four simple modules: the trivial module K, the 2-dimensional simple (but not

absolutely simple) module W1, and the two dual 3-dimensional simple modules W2

and W ∗
2 .

The tensor square of A4 is given by

A4 ⊗ A4 = 2 · C1 ⊕ C2,

where C1 is a 28-dimensional module with Ω(C1) = C1 and C2 is a non-periodic

88-dimensional indecomposable module. The decomposition of A4 ⊗ C1 is given by

A4 ⊗ C1 = 2 · P(K)⊕ 2 · P(W1)⊕ 4 · P(W2)⊕ 4 · P(W ∗
2 )⊕ 2 · C3,

150



CHAPTER 6. THE SPORADIC GROUPS

where C3 is a 56-dimensional module with Ω(C3) = C3. Finally in this direction, we

have the decomposition

A4 ⊗ C3 = 2 · P(K)⊕ 3 · P(W1)⊕ 8 · P(W2)⊕ 8 · P(W ∗
2 )⊕ 4 · C1 ⊕ 2 · C3.

Moving on to the product of A4 and C2, we have

A4⊗C2 = 4·P(K)⊕3·A1⊕4·P(W1)⊕14·P(W2)⊕14·P(W ∗
2 )⊕2·C1⊕2·C3⊕C4⊕C5,

where C4 is a 12-dimensional indecomposable module and where C5 is a periodic 84-

dimensional indecomposable module. Decomposing more tensor products, we have

A4 ⊗ C4 = P(K)⊕ P(W1)⊕ 2 · P(W2)⊕ 2 · P(W ∗
2 )⊕ C6,

where C6 is a 24-dimensional indecomposable module. The next decomposition is

A4 ⊗ C6 = 2 · C4 ⊕ 2 · P(K)⊕ 2 · P(W1)⊕ 4 · P(W2)⊕ 4 · P(W ∗
2 )⊕ C7,

where C7 is another 24-dimensional indecomposable module. Decomposing the next

tensor product gives

A4 ⊗ C7 = 2 · P(K)⊕ 2 · P(W1)⊕ 4 · P(W2)⊕ 4 · P(W ∗
2 )⊕ C8,

where C8 is a 48-dimensional indecomposable module. Finally, we have

A4 ⊗ C8 = 2 · C4 ⊕ 2 · C7 ⊕ 3 · P(K)⊕ 3 · P(W1)⊕ 9 · P(W2)⊕ 9 · P(W ∗
2 ).

Thus the remaining module to deal with is C5. This decomposes as

A4 ⊗ C5 = 5 · P(K)⊕ 5 · P(W1)⊕ 15 · P(W2)⊕ 15 · P(W ∗
2 )⊕ C9,

where C9 is a 168-dimensional periodic module.

A4 ⊗ C9 = 10 · P(K)⊕ 10 · P(W1)⊕ 30 · P(W2)⊕ 30 · P(W ∗
2 )⊕ 2 · C5 ⊕ C10,

where C10 is another 168-dimensional periodic module. Next,

A4 ⊗ C10 = 10 · P(K)⊕ 10 · P(W1)⊕ 30 · P(W2)⊕ 30 · P(W ∗
2 )⊕ C11,

where C11 is a 336-dimensional periodic module, and finally

A4 ⊗ C11 = 21 · P(K)⊕ 21 · P(W1)⊕ 63 · P(W2)⊕ 63 · P(W ∗
2 )⊕ 2 · C5 ⊕ 2 · C10,

proving that S4 is algebraic.
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The last two modules to analyze are S2 and S3. In this case, we really do need

to extend our field to K = GF(4), and we do so. Let X1 denote the source of S2, an

8-dimensional non-periodic KP -module. The module X⊗2
1 is indecomposable, but

X⊗3
1 = 2 ·X2 ⊕

3⊕
i=1

X3,i ⊕ Y ⊕ 48 · P(K),

where X2 is a periodic 8-dimensional module, the X3,i are periodic 28-dimensional

modules, and Y is a sum of 4-dimensional permutation modules with cyclic vertex.

The tensor product of X1 and X2 is simply a sum of modules with cyclic or trivial

vertex, and so we consider the tensor product of X1 and X3,i. In this case,

X1 ⊗X3,i = X4,i ⊕ 21 · P(K),

where the X4,i are (non-isomorphic) 56-dimensional indecomposable modules. Next,

X1 ⊗X4,i = 2 ·X3,i ⊕X5,i ⊕ 42 · P(K),

where the X5,i are (different) 56-dimensional indecomposable modules. The module

X5,i ⊗X1 behaves similarly to X3,i ⊗X1, and indeed

X1 ⊗X5,i = X6,i ⊕ 42 · P(K),

where the X6,i are 112-dimensional indecomposable modules, and

X1 ⊗X6,i = 2 · A3,i ⊕ 2 · A5,i ⊕ 91 · P(K).

This implies that S2 and S3 are algebraic, since we have decomposed all possible

tensor products.

This confirms that all simple modules in the principal block are algebraic, proving

Theorem 6.17.

6.4.2 The Janko Group J3

Janko’s third sporadic group has order 50232960 = 27 · 35 · 5 · 17 · 19. It was originally

considered, along with J2, in [51], although both existence and uniqueness are not

proved there. It has a permutation representation of degree 6156, which makes it

very amenable to computation. The table of dimensions of simple modules is given

below.
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p Block Simple Modules Defect Group
2 1 {1, 781, 782, 80, 84, 84∗, 244, 3221, 3222, 966} Sylow

2,3,4,5 {19201}, {19202}, {19203}, {2432} Defect 0
1 {1, 181, 182, 84, 84∗, 1531, 1532, 934} Sylow

3 2 {324, 2754}, Defect 1
3,4 {12151}, {12152} Defect 0

Proposition 6.18 Let G denote the sporadic group J3, and let K be a field of

characteristic 2. Then the 78-dimensional, 244-dimensional, and 322-dimensional

simple modules are non-algebraic.

In the principal block, those modules that occur in pairs (of dimensions 78, 84 and

322) all require a cube of unity to exist, whereas the other modules can be written

over any field. Outside of the principal block, the 1920-dimensional modules require

GF(8) to exist, and the 2432-dimensional module can be realized over GF(2).

We use the V4 Restriction Test to prove non-algebraicity of some of the simple

modules. There are two conjugacy classes of subgroups isomorphic with V4, as given

in the table below.

Class Number of Conjugates
C1 43605
C2 523260

Restricting either of the 78-dimensional simple modules S1 and S2 to a subgroup

from C1 gives

Ω(K)⊕ Ω−1(K)⊕ 18 · P(K),

whereas the restriction to a subgroup from C2 is algebraic. This means that S1 and

S2 are non-algebraic.

Unfortunately, the simple modules S3, S4, S5 and S9 all have algebraic restrictions

to V4 subgroups, and so this simple test will not work for these modules. However,

restricting the simple module S6 to a representative from class C1, we get the module

2 ·K ⊕ Ω2(K)⊕ Ω−2(K)⊕ 58 · P(K).

(The restriction to a representative from class C2 is algebraic.) Hence S6 is non-

algebraic.

Similarly, the modules S7 and S8 are non-algebraic: the restriction of S7 (or

equivalently S8) to a representative from C1 is given by

Ω2(K)⊕ Ω−2(K)⊕ 78 · P(K).
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(The restriction to a representative from class C2 is algebraic.) Hence S7 and S8 are

non-algebraic. This proves the proposition.

The 80-dimensional simple module has a 16-dimensional source, and it might be

possible to prove whether this is non-algebraic, although the author has not attempted

this calculation.

In characteristic 3, the exterior square of S1 is the simple module S5, and so if S1

is algebraic then S5 is algebraic. However, this appears not to be the case. There are

two conjugacy classes of subgroup of G isomorphic with C3 ×C3, and the restriction

A of S1 to a representative P from the smallest class is indecomposable. In fact,

the tensor square A⊗2 contains a 30-dimensional non-periodic module, and so it is

probable that A is non-algebraic.

6.4.3 The Rudvalis Group Ru

The Rudvalis sporadic group has order 145926144000 = 214 ·33 ·53 ·7 ·13 ·29. Rudvalis

announced its existence in [72], although Conway and Wales actually proved this

result. Indeed, it is the unique 3510-point rank 3 extension of the group 2F4(2).

p Block Simple Modules Defect Group
2 1 {1, 28, 376, 1246, 7280, 16036} Sylow

2 {81921, 81922, 102400} Defect 2
1 {1, 406, 8440, 13310, 17836, 31030, 31060, 34944, 45094} Sylow

2,3 {3276, 20475}, {3654, 9135} Defect 1
3 4,...,9 {378}, {378∗}, {783}, {270001}, {270002}, {270003} Defect 0

10,...,14 {27405}, {438481}, {438482}, {438483}, {712531} Defect 0
15,...,19 {81432}, {982801}, {982802}, {1105921}, {1105922} Defect 0

1 {1, 133, 273, 378, 378∗, 783, 2219, 3380, 3613, 8645, 12285, Sylow
15219, 18495, 22546, 24843, 30234, 43848, 58099}

5 2 {20475, 36425, 54925, 65975} Defect 2
3,4,5,6 {21750}, {270001}, {270002}, {270003} Defect 0

7,8 {45500}, {76125} Defect 0

There are results in all three non-trivial characteristics.

Theorem 6.19 Let G denote the sporadic simple group Ru, and let K be a splitting

field of characteristic p.

(i) If p = 2, then the simple modules of dimensions 28, 376, and 1246, are non-

algebraic. The three modules outside the principal block are algebraic.

(ii) If p = 3, then the smallest non-trivial simple module in the principal block is

algebraic.
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(iii) If p = 5, then the two 378-dimensional modules are non-algebraic.

We begin with characteristic 2: all of the modules from the principal block are

realizable over GF(2). The author does not know whether the 8192-dimensional

simple modules require the presence of a cube root of unity.

MAGMA cannot produce subgroups of this group directly, and so we pass to a

maximal subgroup: one that suffices for our purposes is the alternating group A8.

This group has six conjugacy classes of V4 subgroup, and we use for proving non-

algebraicity the two conjugacy classes C1 and C2 of subgroup with 105 elements in

each class. Let Pi be a representative from the class Ci.

The 28-dimensional simple module S1 has non-algebraic restrictions to both P1

and P2, given by

S1 ↓P1 = 2 · Ω(K)⊕ 2 · Ω−1(K)⊕ 4 · P(K),

and

S1 ↓P2 = Ω(K)⊕ Ω−1(K)⊕ Ω3(K)⊕ Ω−3(K)⊕ 2 · P(K).

The 376-dimensional simple module S2 also has non-algebraic restrictions to both P1

and P2, which are

S2 ↓P1= 2 ·K ⊕ 2 · Ω(K)⊕ 2 · Ω−1(K)⊕ Ω2(K)⊕ Ω−2(K)⊕ 4 ·M ⊕ 82 · P(K),

and

S2 ↓P2=4 · Ω(K)⊕ 4 · Ω−1(K)⊕ Ω2(K)⊕ Ω−2(K)

⊕ Ω4(K)⊕ Ω−4(K)⊕ 2 ·M ⊕ 78 · P(K).

(Here M denotes the sum of the three different 2-dimensional permutation modules

on the cosets of the three different subgroups of index 2.)

The 1246-dimensional module S3 has the restrictions

S3 ↓P1 = 12 ·M ⊕ 2 · Ω(K)⊕ 2 · Ω−1(K)⊕ Ω2(K)⊕ Ω−2(K)⊕ 288 · P(K)

and

S3 ↓P2 = 8 ·M ⊕ 6 · Ω(K)⊕ 6 · Ω−1(K)⊕ Ω2(K)⊕ Ω−2(K)⊕ 288 · P(K),

which prove that this module is also non-algebraic.
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The second block is the unique block with defect 2, and so by Corollary 3.9, all

modules from this block are algebraic. Thus Theorem 6.19(i) is true.

Now let us consider characteristic 3. In this case, all simple modules in the prin-

cipal block can be realized over GF(3).

The simple module S1 is algebraic, since it has trivial source. To see this, recall

that the largest maximal subgroup of G is 2F2(2), which has an index 2 subgroup

(the Tits group). The permutation module of dimension 8120 on the cosets of this

subgroup has S1 as a summand. Its other summands come from non-principal blocks,

all of whose summands are obviously algebraic.

Lastly, suppose that p = 5. In this case, all simple modules from the principal

block are realizable over GF(5).

Let S3 denote one of the 378-dimensional simple modules. There are two conjugacy

classes of subgroup of G isomorphic with C5 × C5.

Class Number of Conjugates
C1 12160512
C2 145926144

Let Q denote a subgroup from C1. Then the restriction of S3 to Q is (up to duality)

S3 ↓Q= Ω3(A)⊕B ⊕ 11 · P(K),

where B is a 76-dimensional module and A is a self-dual 48-dimensional indecom-

posable module, whose third Heller translate has dimension 27. This module Ω3(A)

cannot be algebraic, and so S3 and S4 are not algebraic either.

This completes the proof of Theorem 6.19.

Staying with characteristic 5 for the moment, we briefly consider the simple mod-

ule S1. This has an 8-dimensional source, A1, and

Λ2(A1) = A1 ⊕M1 ⊕M∗
1 ,

where M1 is a non-periodic 10-dimensional indecomposable module. The restriction

of M1 to a representative from C2 is periodic, whereas the restriction to a subgroup Q

from C1 is non-periodic, and is, in fact, the module soc4(P(K)). This module should

be non-algebraic, unless Conjecture 3.31 in incorrect, but the first few tensor powers

of M1 don’t appear to offer an easy way to prove non-algebraicity.

156



CHAPTER 6. THE SPORADIC GROUPS

6.4.4 The Janko Group J4

Janko’s fourth sporadic group has order 86775571046077562880 = 221 · 33 · 5 · 7 ·
113 · 23 · 29 · 31 · 37 · 43. The first information about this group appeared in [52],

where in particular its character table is given. The group was constructed by a

team of Cambridge researchers led by Simon Norton [65] using a computer, whereas

a computer-free construction was given in [48].

Little is known about this group’s modular representations: for example, the

decomposition matrices of J4 are not known for the primes 2, 3 and 11. Indeed, since

the smallest permutation action of J4 is on nearly 175 million points, this group is

very difficult to study from a representation-theoretic perspective.

Proposition 6.20 Let G be the sporadic simple group J4, and let K be a field

of characteristic 2. Then the four smallest non-trivial simple KG-modules are all

non-algebraic. (These consist of the 112-dimensional simple module, two dual 1220-

dimensional simple modules and the 3774-dimensional simple module.)

The group G = J4 possesses a maximal subgroup which is of the form M22 o C2,

and this retains enough of the group structure of J4 to prove that all of the non-trivial

simple modules that can be easily constructed in characteristic 2 are non-algebraic.

Specifically, one may restrict representations to a maximal subgroup isomorphic with

M22 o C2; Restricting to a particular V4 subgroup of this subgroup, we let Q denote

a subgroup from the (unique) conjugacy class of V4 subgroups with 1540 elements,

and will restrict our representations to this subgroup.

The 112-dimensional simple module S1 is non-algebraic, since its restriction to Q

is given by

S1 ↓Q= 2 ·K ⊕ 4 ·M ⊕ Ω(K)⊕ Ω−1(K)⊕ 20 · P(K).

(Here, M denotes the sum of the three non-faithful 2-dimensional indecomposable

modules over Q.)

The two dual 1220-dimensional simple modules S2 and S3 are also non-algebraic,

as both restrict to the subgroup Q as

6 ·K ⊕ 16 ·M ⊕ Ω(K)⊕ Ω−1(K)⊕ 278 · P(K).

Lastly, the 3774-dimensional module S4 restricts to Q as

S4 ↓Q= 16 ·M ⊕ Ω(K)⊕ Ω−1(K)⊕ 918 · P(K).

Unfortunately, in characteristics 3 and 11 calculations are much more difficult to

perform, and as yet there are no results in this direction.
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6.4.5 The O’Nan Group ON and Lyons Group Ly

The O’Nan simple group has order 460815505920 = 29 · 34 · 5 · 73 · 11 · 19 · 31. It was

first investigated by O’Nan in [66], and constructed by Sims.

It has a permutation representation on 122,760 points, and is a subgroup of

GL154(3). Its minimal faithful degree in characteristic 2 is 10944. This is why the

prime 2 has not been analyzed. Even outside of the prime 2, it seems difficult to

compute with this group, and as such the author has no results for this group.

The Lyons simple group has order 51765179004000000 = 28 ·37 ·56 ·7·11·31·37·67.

The group was first studied in [59], and existence was proved by Sims, with uniqueness

not appearing properly in the literature until 1997.

There are not many accessible representations of this group: in characteristic 2, the

only representation has degree 2480 (over GF(4)), and in characteristic 3 the smallest

representation has degree 651. Characteristic 5 is better, with a representation of

degree 111. It has not been possible, however, to analyze any of these modules.

6.5 Summary

We summarize our results in the table on the next page: in this table, a tick implies

that the group has p-SMA, a cross indicates that the group does not, a question mark

indicates that the answer is unknown, and no mark indicates that p does not divide

the order of the group.

In particular, we have the following theorem, which is Theorem E from the intro-

duction.

Theorem 6.21 Let G be a sporadic group, and let K be a field of characteristic p.

Then G has p-SMA in the following cases:

(i) G = M11 and p = 2;

(ii) G = M22 and p = 3;

(iii) G = HS and p = 3;

(iv) G = J2 and p = 3 or p = 5;

(v) G = J1 and p = 2; and

(vi) G is a sporadic group and p2 - |G|.
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There are in addition some likely candidates for groups with p-SMA, such as the

Held group in characteristic 3.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 59 67 71
M11 X " X X
M12 " " X X
M22 " X X X X
M23 " " X X X X
M24 " " X X X X
HS " X ? X X
J2 " X X X
Co1 ? ? ? ? X X X
Co2 ? ? ? X X X
Co3 ? ? ? X X X
McL ? " ? X X
Suz " " ? X X X
He " ? ? ? X
HN " " ? X X X
Th " " ? ? X X X
Fi22 " " ? X X X
Fi23 " " ? X X X X X
Fi′24 ? " ? ? X X X X X
B ? ? ? ? X X X X X X X
M ? ? ? ? ? ? X X X X X X X X X
J1 X X X X X X
ON ? ? X ? X X X
J3 " ? X X X
Ru " ? " X X X
J4 " ? X X ? X X X X X
Ly ? ? ? X X X X X
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Appendix A

MAGMA Computer Programs

This appendix details the computer-based techniques and algorithms used in the

research of the author’s thesis.

A.1 Constructions

In this section we detail the constructions of groups and modules that were used in

this thesis.

A.1.1 Constructing Groups

There are several ways of constructing groups in MAGMA. The most important two

for us is using pre-defined functions and using permutation representations of the

group. For example, to construct the symmetric group on 10 letters you use the

command

> G:=SymmetricGroup(10);

which assigns to G the symmetric group on ten letters.

Alternatively, one may use the permutation representation of a group. For exam-

ple, to construct the Mathieu group M24, one may use the command

> G<x,y>:=PermutationGroup<24|

> \[4,7,17,1,13,9,2,15,6,19,18,21,5,16,8,14,3,11,10,24,12,23,22,20],

> \[4,21,9,6,18,1,7,8,15,5,11,12,17,2,3,13,16,10,24,20,14,22,19,23]>;

The permutation representations of most sporadic simple groups can be found at [10].

To construct a permutation representation of a group already defined in MAGMA,

one much first construct the subgroup H upon whose cosets the group G will act as

permutations. Given these, one uses the command
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> temp,G:=CosetAction(G,H);

to construct G as a permutation group. Groups defined as permutations are compu-

tationally better than groups defined by other methods, such as by matrices.

As an example, we suppose that G is the Harada–Norton group defined as matrices,

and that H is a maximal subgroup isomorphic with A12. To construct H in such a

way that it can be used for computation, we would construct code as such. (When

MAGMA returns a matrix group, it also returns the generators, which have been

removed from the output below.)

> G;

MatrixGroup(132, GF(2^2))

> H;

MatrixGroup(132, GF(2^2))

> MaxSubs:=MaximalSubgroups(H);

> H2:=MaxSubs[#MaxSubs]‘subgroup;

> Index(H,H2);

12

> temp,G2:=CosetAction(H,H2);

> G2;

Permutation group G2 acting on a set of cardinality 12

(1, 2)(3, 4)(5, 7)(6, 8)(9, 10)(11, 12)

(1, 3, 5, 7)(4, 6)(8, 9)(10, 11)

This is how the restrictions of the modules for HN to the maximal subgroup A12 are

achieved in Section 6.3.2.

We should also mention how certain subgroups are constructed. Sylow p-subgroups

are constructed using the command

> P:=SylowSubgroup(G,p);

where G and p have the obvious meanings. To construct the collection of all normal

subgroups of G, one uses the command

> X:=NormalSubgroups(G);

Note that the set X is a collection of records, and if you want to access the actual

subgroup corresponding to, for instance, the second element of X, one needs to write

> H:=X[2]‘subgroup;
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To construct conjugacy classes of subgroups of a particular order, say 6, one uses

the command

> X:=Subgroups(G:OrderEqual:=6);

Again, this is a collection of records, not of subgroups. If one needs representatives

from all conjugacy classes of subgroups of the form C3 ×C3, then one must enter the

code

> X:=Subgroups(G:OrderEqual:=9);

> Subs:=[];

> for i in X do

for> if(Exponent(i‘subgroup) eq 3) then Append(~Subs,i‘subgroup);

for|if> end if;

for> end for;

which yields a list Subs with subgroups, not records.

A.1.2 Constructing Modules

This section deals with constructing the representations considered in the thesis.

Simple representations can, in the main, be easily constructed. There are two ways of

doing this: by constructing permutation representations; and by constructing tensor

powers of known simple modules. We begin with permutation representations.

Suppose that G is a group and H is a subgroup of G. Then the permutation mod-

ule of G on the cosets of H over the field K can be produced using the command

PermutationModule(G,H,K). (If G is defined as a permutation group to begin with,

then the natural permutation module can be defined with PermutationModule(G,K).)

For example, let G denote the group M11. Then to construct some permutation rep-

resentations, we perform the following.

> G;

Permutation group G acting on a set of cardinality 11

(2, 10)(4, 11)(5, 7)(8, 9)

(1, 4, 3, 8)(2, 5, 6, 9)

> MaxSubs:=MaximalSubgroups(G);

> MaxSubs;

Conjugacy classes of subgroups

------------------------------
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[1] Order 48 Length 165

Permutation group acting on a set of cardinality 11

Order = 48 = 2^4 * 3

(1, 3)(2, 7)(5, 8)(6, 11)

(1, 7, 6)(2, 3, 11)(4, 5, 8)

(1, 9, 11, 10)(2, 3, 7, 6)

(1, 6, 11, 3)(2, 9, 7, 10)

(1, 11)(2, 7)(3, 6)(9, 10)

[2] Order 120 Length 66

Permutation group acting on a set of cardinality 11

Order = 120 = 2^3 * 3 * 5

(2, 7)(4, 10)(5, 11)(6, 8)

(1, 11)(2, 6, 4, 8, 10, 7)(3, 5, 9)

[3] Order 660 Length 12

Permutation group acting on a set of cardinality 11

Order = 660 = 2^2 * 3 * 5 * 11

(1, 7)(2, 10)(5, 6)(9, 11)

(1, 6, 10)(2, 8, 11)(3, 4, 5)

[4] Order 144 Length 55

Permutation group acting on a set of cardinality 11

Order = 144 = 2^4 * 3^2

(2, 9)(3, 7)(5, 11)(6, 10)

(1, 5, 4, 3)(6, 7, 10, 11)

(1, 10, 4, 6)(3, 11, 5, 7)

(1, 4)(3, 5)(6, 10)(7, 11)

(1, 5, 10)(3, 4, 6)(7, 11, 8)

(1, 8, 4)(3, 10, 11)(5, 7, 6)

[5] Order 720 Length 11

Permutation group acting on a set of cardinality 11

Order = 720 = 2^4 * 3^2 * 5

(1, 3)(2, 9)(4, 11)(8, 10)

(2, 8, 7, 10)(3, 5, 11, 9)

> M:=PermutationModule(G,GF(2));

> CompositionFactors(M);

[
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GModule of dimension 10 over GF(2),

GModule of dimension 1 over GF(2)

]

> N:=PermutationModule(G,MaxSubs[3]‘subgroup,GF(3));

> CompositionFactors(N);

[

GModule of dimension 1 over GF(3),

GModule of dimension 5 over GF(3),

GModule of dimension 5 over GF(3),

GModule of dimension 1 over GF(3)

]

Now suppose that one already has modules M and N , entered on the computer as

M and N. Then one may construct the modules M⊗n, Λn(M), Sn(M), and M⊗N . The

commands to do this will be given below in a worked example. Suppose that we have

the group He entered into the computer as G, via the 2058-dimensional permutation

representation.

> X:=CompositionFactors(PermutationModule(G,GF(5))); X;

[

GModule of dimension 1 over GF(5),

GModule of dimension 1275 over GF(5),

GModule of dimension 102 over GF(5),

GModule of dimension 680 over GF(5)

]

> SS1:=X[3];

> Bool,S1,S2:=IsIrreducible(ChangeRing(SS1,GF(25)));

> S1;

GModule S1 of dimension 51 over GF(5^2)

> Y1:=IndecomposableSummands(ExteriorSquare(S1)); Y1;

[

GModule of dimension 1275 over GF(5^2)

]

> Y2:=CompositionFactors(TensorProduct(S1,S2));

> Y2;

[

GModule of dimension 680 over GF(5^2),
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GModule of dimension 1240 over GF(5^2),

GModule of dimension 680 over GF(5^2),

GModule of dimension 1 over GF(5^2)

]

> SocleFactors(SymmetricPower(S1,2));

[

GModule of dimension 1326 over GF(5^2)

]

Moving away from simple groups, consider the problem of constructing all inde-

composable modules for the group C3×C3, which was performed in Chapter 3. Since

every module is a quotient of a free module, one needs to construct the free module,

and to have a program that constructs submodules.

Also in that chapter, we organized these modules into conjugacy classes according

to the action of the automorphism group, and so we will detail how to do that.

We begin by setting up the groups with which we will be working.

> H:=CyclicGroup(3);

> G:=DirectProduct(H,H);

> A:=AutomorphismGroup(G);

> Hol:=Holomorph(G,A);

> G:=NormalSubgroups(Hol)[2]‘subgroup;

> G;

Permutation group G acting on a set of cardinality 9

Order = 9 = 3^2

(1, 9, 5)(2, 7, 6)(3, 8, 4)

(1, 4, 7)(2, 5, 8)(3, 6, 9)

Now G is the group C3×C3, lying in the group GoAutG. Construct the free mod-

ule, and some of its quotients to determine all indecomposable modules of dimension

4.

> KG:=PermutationModule(G,sub<G|>,GF(3));

> KG2:=DirectSum(KG,KG);

> KG3:=DirectSum(KG2,KG);

> X1:=Submodules(KG:CodimensionLimit:=4);
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At this stage, X1 consists of all submodules of the indecomposable projective

module of dimension at least 5, whose quotients will provide us with the modules of

dimension 4. To construct the other indecomposable modules, we look for quotients

of the 18-dimensional and 27-dimensional projectives. However, we remove the top

of the module, as we want to guarantee that the quotients definitely have the correct

top themselves.

> L2:=SocleSeries(KG2)[4];

> L3:=SocleSeries(KG3)[4];

> X2:=Submodules(L2:CodimensionLimit:=2);

> X3:=Submodules(L3:CodimensionLimit:=1);

We begin by only considering those quotients of dimension exactly 4, then remove

all those that are not indecomposable.

> Y1:=[]; Y2:=[]; Y3:=[];

> for i in X1 do

for> if(Dimension(i) eq 5) then Append(~Y1,KG/i); end if;

for> end for;

> for i in X2 do if(Dimension(i) eq 14) then

for|if> if(not(IsDecomposable(KG2/i))) then Append(~Y2,KG2/i); end if;

for|if> end if; end for;

> #Y2;

338

Similarly, the modules filling Y3 are constructed (which in this case is the empty

set). Finally, we need to remove all duplicates of isomorphism types. Since we will

need this more often, we create a new function, called IsIsomorphicToList, which

checks whether the module M lies on the list of module I.

function IsIsomorphicToList(M,I);

for i in I do

if(IsIsomorphic(M,i)) then return true;

end if;

end for;

return false;

end function;
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function StripDuplicates(I);

J:=[];

for i in I do

if(not(IsIsomorphicToList(i,J))) then Append(~J,i);

end if;

end for;

return J;

end function;

With these functions, we proceed.

> Z1:=StripDuplicates(Y1);

> Z2:=StripDuplicates(Y2);

> Z:=Z1 cat Z2;

> #Z;

24

Thus the list Z contains all 24 indecomposable modules for C3 × C3 over GF(3). To

determine conjugacy classes, we induce and restrict.

> W1:=IndecomposableSummands(Induction(Z[1],Hol));

> W2:=IndecomposableSummands(Restriction(W1[1],G));

All modules in Z conjugate to Z[1] are present in W2, and this allows us to easily

construct the conjugacy classes.

A.2 Decomposing Tensor Products

Suppose that we wish to write the moduleM⊗N as a sum of indecomposable modules.

The easiest way (most applicable for small dimensions) is to use the command

> IndecomposableSummands(TensorProduct(M,N));

In large dimensions, this is not feasible. Let M be a module whose summands we wish

to compute. Begin by computing the composition factors of M, using the command

CompositionFactors(M). The fact that Ext1(A,B) = 0 if A and B lie in different

blocks has a bearing on which summands are present in M. Suppose that N is a projec-

tive simple module that is a composition factor of M. Then M possesses a complement

M1 to N, and the problem becomes constructing M1 without decomposing M. We can
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attempt to find a submodule or quotient isomorphic with N, using the command

IsIrreducible.

In general, IsIrreducible only returns a submodule, but in this case one al-

ready knows that this submodule is a summand. Computationally, this is a much

less expensive procedure. For another example, suppose that M is a self-dual module,

and that M contains exactly one copy of the self-dual simple module S. Suppose that

IsIrreducible returns S as a submodule. Then S is a summand, and is comple-

mented by a module isomorphic to M/S.

In Chapter 6, much use was made of the V4 Restriction Test. To decompose

3000-dimensional modules over GF(2) for the group V4, one cannot use the intrinsic

command IndecomposableSummands, and the following algorithm was developed1.

Suppose that M is a module over GF(2) for a group G that is isomorphic with V4.

Let KG denote the projective indecomposable module for G.

> Dimension(M);

2340

> while(Dimension(M) gt 200) do

while> Bool,A,B:=IsIrreducible(M);

while> if(IsIsomorphic(A,KG)) then delete M; M:=B; end if;

while> delete A; delete B; delete Bool;

while> end while;

> Dimension(M);

200

This method requires user intervention, because as it has been given, this al-

gorithm might never terminate, since IsIrreducible might stop finding projective

submodules of M before its dimension drops below 200. A simple way around this is to

add code to make the program display the dimension of M every hundred dimensions

or so. It becomes obvious when the program has run into a problem because if M has

dimension less than 500 or so, then this program runs very efficiently. Although this

situation is not ideal, it suits our purpose.

To make matters worse, despite our being careful with memory, MAGMA is not,

and so if M is of dimension more than about 7000, reducing all the way down to a

summand of dimension 200 will use about twenty gigabytes of memory. Also, this

1This algorithm is far from the best available. One may (probably) find a free submodule of a
module M for a p-group quite easily by taking the submodule generated by a random element. This
is a very effective algorithm, that however will only work for a p-group.
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method only removes projective summands, although as we saw in Chapter 6, almost

all summands of such modules are projective.

This method will work when the field has order 4 as well, but is much slower.

This is due to the fact that there are many more low-dimensional submodules when

the field is GF(4) than when it is GF(2). This method will not work at all when the

group is not V4, however, since in other cases, the projective indecomposable module

is too big, and will not be found randomly using IsIrreducible.

To get around this problem, recently the author has produced a new algorithm,

that works with an arbitrary p-group. Let G be a p-group, and suppose that M is a

is a module for G. Suppose that G and M are initiated on the computer as G and M

respectively. Let KG be assigned to the projective indecomposable module.

function RemoveProjectiveSummands(M,KG);

n:=#SocleFactors(KG);

X:=SocleFactors(M);

if(#X lt n) then return M; end if;

m:=Dimension(SocleFactors(M)[n]);

nn:=Dimension(M);

limit:=Dimension(M)-Dimension(KG)*m;

homs:=AHom(M,KG);

while(Dimension(M) gt limit) do

ker:=Kernel(Random(homs));

if(Dimension(ker)+Dimension(KG) eq nn) then

if(Dimension(ker + M) eq nn) then

M:=M meet ker;

end if;

end if;

end while;

return M;

end function;

The first few commands are there so that the program knows how many summands

of M are projective, and sets limit to be the dimension of Ω0(M). This function then

constructs the space of all homomorphisms from M to KG, and continually picks homo-

morphisms from this space. The first if command checks that the homomorphism is

onto, and the second if command checks that the kernel ker of this homomorphism

is a partial complement to M. Then the second isomorphism theorem says that the
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quotient of M by M meet ker is isomorphic with KG. Thus we may replace M with M

meet ker and continue until all projectives are removed.

Computationally, the expensive parts of this algorithm are the two commands

SocleFactors(M) and AHom(M,KG); after that, removing the projective summands

is quick. Thus for large modules, this method can be sped up by constructing the

set homs and then manually removing a few summands until the module M becomes

a reasonable size (under 1200 dimensions, say) where this algorithm can be easily

applied.

This algorithm should make decomposing tensor products of modules for p-groups

very easy when such products have many projective summands. This algorithm was

developed only very recently, and so its full power has not been examined, although

it was the primary tool in confirming Theorem 6.17, as well as the odd characteristic

parts of Theorem 6.8.

A.3 Determining Periodicity

Let G be a finite group and let M be a module for G. There are two ways of

determining whether M is periodic: construct the Heller translates of M directly

then use Theorem 1.18 which bounds the period of a periodic module; or use more

theoretical results about complexity.

Given a module M , one will need to produce Ω(M) by a computer algorithm. To

perform this, suppose that M is a module, and Proj is a list of projective modules,

constructed using

> Proj:=[KG];

> for i in [1..4] do

for> Append(~Proj,DirectSum(Proj[1],Proj[#Proj]));

for> end for;

The set Proj will be a list of all projective modules from which we can choose our

projective cover.

function HellerTranslate(M,Proj);

n:=Dimension(M)-Dimension(JacobsonRadical(M));

if(n gt #Proj) then

for i in [1..n-#Proj] do

Append(~Proj,DirectSum(Proj[1],Proj[#Proj]));

end for;
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end if;

homs:=AHom(Proj[n],M);

repeat

OM:=Kernel(Random(homs));

until (Dimension(OM)+Dimension(M) eq Dimension(Proj[n]));

return OM;

end function;

This function automatically increases the number of projective modules in Proj if it

proves not to be enough.

There is another way to produce both Ω(M) and Ω−1(M) if M has dimension a

multiple of p. In this case, denote by E the heart of the projective indecomposable

module. Then E ⊗M is, modulo projective modules, Ω(M)⊕ Ω−1(M). This can be

used to easily check if a module is periodic when the ambient group is abelian, since

in this case the period of a periodic module is either 1 or 2. In either case,

Ω(M) = Ω−1(M).

To implement this in MAGMA, assume that M is a module of dimension a multiple

of p, and that KG is, as always, the projective indecomposable.

> E:=JacobsonRadical(KG)/Socle(KG);

> N:=RemoveProjectiveSummands(TensorProduct(E,M),KG);

> X:=IndecomposableSummands(N);

The list X contains the two modules corresponding to Ω(M) and Ω−1(M): which is

which can easily be checked by comparing socle layers.

For another way to determine periodicity, suppose that G is the group Cp×Cp. It

is true (as a corollary of [14, Corollary 5.10.3]) that a module for G is periodic if and

only if, for any two generators x and y of G, the restriction of M to at least one of

〈x〉 and 〈y〉 is free. To check this, we can use the Subgroups command. For instance,

suppose that M is a 6-dimensional module for the group G, which is isomorphic with

C3 × C3. Then code to determine whether M is algebraic is given below.

> for i in Subgroups(G:OrderEqual:=3) do

for> IndecomposableSummands(Restriction(M,i‘subgroup));

for> end for;

[

GModule of dimension 3 over GF(3),
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GModule of dimension 3 over GF(3)

]

[

GModule of dimension 1 over GF(3),

GModule of dimension 1 over GF(3),

GModule of dimension 2 over GF(3),

GModule of dimension 2 over GF(3)

]

[

GModule of dimension 3 over GF(3),

GModule of dimension 3 over GF(3)

]

[

GModule of dimension 3 over GF(3),

GModule of dimension 3 over GF(3)

]

This module is therefore periodic.

A.4 Analyzing Algebraicity

In Chapter 3, we stated that 6-dimensional periodic modules were algebraic without

giving decompositions of the relevant tensor products. The following program ter-

minates if and only if the module M is algebraic. As usual, G is the group and since

this works for an arbitrary group, Proj is the list of all projective indecomposable

modules.

function CheckAlgebraicity(M,Proj);

Mods:=Proj cat [M];

i:=#Mods;

j:=i;

while(i le #Mods) do

i-j;

W:=IndecomposableSummands(TensorProduct(M,Mods[i]));

for i in W do

if(not(IsIsomorphicToList(i,Mods))) then Append(~Mods,i);

end if;
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end for;

i:=i+1;

end while;

return "Module is algebraic.";

end function;

This method prints the number of non-projective indecomposable summands of

tensor powers of M that it has so far decomposed. This is meant as a ‘progress report’

on the number of summands being analyzed.

As an example, we demonstrate this algorithm working on the group J2. Let p = 5,

and let P be the Sylow 5-subgroup of G, the simple group J2. The simple module S1

is of dimension 14. We will use a modified version of CheckAlgebraicity, which will

collect the decompositions of the tensor products as well as the isomorphism types of

the summands themselves.

> A1:=Restriction(S1,G);

> KP:=PermutationModule(P,sub<P|>,GF(5));

> Mods:=[KP,A1];

> Tens:=[];

> i:=2;

> while(i le #Mods) do

while> i-1;

while> N:=TensorProduct(A1,Mods[i]);

while> N2:=RemoveProjectiveSummands(N,KP);

while> Append(~Tens,IndecomposableSummands(N2));

while> for M in Tens[#Tens] do

while|for> if(not(IsIsomorphicToList(M,Mods))) then

while|for|if> Append(~Mods,M); end if;

while|for> end for;

while> delete N; delete N2;

while> i:=i+1;

while> end while;

1

2

[This has been removed]

20

21
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> #Mods;

22

Using the list Tens we are able to reconstruct the decompositions of the tensor prod-

ucts of members of Mods with A1. Firstly, the trivial module and projective inde-

composable modules are elements of Mods, and so we remove them. Write Ai for the

module corresponding to the ith element of Mods. Then the decompositions are given

by:

A1 ⊗ A1 = K ⊕ A1 ⊕
8⊕

i=2

Ai ⊕ 4 · P(K);

A2 ⊗ A1 = 3 · A5 ⊕ P(K);

A3 ⊗ A1 = 3 · A6 ⊕ P(K);

A4 ⊗ A1 = 3 · A7 ⊕ P(K);

A5 ⊗ A1 = 3 · A2 ⊕ 3 · A5 ⊕ 6 · P(K);

A6 ⊗ A1 = 3 · A3 ⊕ 3 · A6 ⊕ 6 · P(K);

A7 ⊗ A1 = 3 · A4 ⊕ 3 · A7 ⊕ 6 · P(K);

A8 ⊗ A1 = A1 ⊕ A8 ⊕ A9 ⊕
7⊕

i=5

Ai ⊕ 7 · P(K);

A9 ⊗ A1 = A8 ⊕ A9 ⊕ A10 ⊕ A11 ⊕
7⊕

i=2

Ai ⊕ 16 · P(K);

A10 ⊗ A1 = A10 ⊕ A12 ⊕ 2 · P(K);

A11 ⊗ A1 = A9 ⊕ A10 ⊕ 7 · P(K);

A12 ⊗ A1 = 2 · A10 ⊕ A12 ⊕ A13 ⊕ 40 · P(K);

A13 ⊗ A1 = A13 ⊕ A12 ⊕ A14 ⊕ 4 · P(K);

A14 ⊗ A1 = A13 ⊕ A15 ⊕ A14 ⊕ 40 · P(K);

A15 ⊗ A1 = A15 ⊕⊕A16A14 ⊕ 6 · P(K);

A16 ⊗ A1 = A16 ⊕ A17 ⊕ 14 · P(K);

A17 ⊗ A1 = 2 · A16 ⊕ A17 ⊕ A18 ⊕ 16 · P(K);

A18 ⊗ A1 = A17 ⊕ A18 ⊕ A19 ⊕ 28 · P(K);

A19 ⊗ A1 = A19 ⊕ A18 ⊕ A20 ⊕ 16 · P(K); and

A20 ⊗ A1 = A10 ⊕ A16 ⊕ A19 ⊕ A20 ⊕ 28 · P(K).

Here, the dimensions of the modules Ai are given in the following table.
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Module Dimension Module Dimension
A1 14 A11 16
A2 5 A12 80
A3 5 A13 20
A4 5 A14 80
A5 15 A15 20
A6 15 A16 30
A7 15 A17 40
A8 21 A18 60
A9 39 A19 40
A10 10 A20 60

This proves that the simple module S1 is algebraic. In Section 6.2.2, it is shown

that S1 is algebraic if and only if J2 has 5-SMA, and so we get Theorem 6.8(iii).
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