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This dissertation will develop modular representation theory, starting from Brauer’s Three

Main Theorems. We will consider the Green Correspondence, then use G-algebras to unite

the block-theoretic and module-theoretic approaches somewhat. We then consider some

simple group theory, and finally take a cursory look at the modern-day research, and its

progress on several long-standing conjectures.
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Preface

Representation theory itself has its origins in the work of Burnside and Fröbenius, around the

turn of the twentieth century, Fröbenius being almost wholly responsible for the early development

of character theory. He completely determined the character theory of the symmetric groups in

1900 and the alternating groups the following year. Schur followed these two, and many of the

early developments in ordinary representations bear their names; for example, Schur’s Lemma, the

Fröbenius–Schur count of involutions, Fröbenius reciprocity, and Burnside’s pαqβ theorem, one of

the best early applications of character theory to simple groups.

Modular representation theory, the study of representations over fields of characteristic other

than zero, was started with Leonhard Eugene Dickson, who coined the term ‘modular’ representa-

tions. The first really major developments came with Richard Brauer, who exploited this rich and

virtually untapped area of mathematics. Brauer’s methods were mainly character-theoretic; one

of his main goals was finding numerical constraints on the orders and internal structure of finite

simple groups, and his methods were very well-suited in the case of the so-called small groups.

The next revolution in the theory came with James Green, who considered the modules them-

selves. His techniques were completely different to those of Brauer, and his main goals lay in

understanding the modules, rather than Brauer, who worked mostly with blocks and characters.

The 1970s saw the needs of the Classification of Finite Simple Groups shift away from character

theory and toward local analysis, since the ‘large’ simple groups, the so-called generic groups,

could not really be handled very well at all with modular characters. The new techniques in

local analysis supersede many of Brauer’s techniques, although for groups of small order, modular

character theory is still the best way to gain considerable information relatively easily.

The work of Brauer and those who came after him left behind several outstanding problems,

such as Brauer’s k(B)-conjecture, his Height Zero Conjecture, and the Alperin–McKay Conjecture.

Later other conjectures evolved, such as Olsson’s Conjecture, and understanding both how to prove

these conjectures, and why they are actually correct (if they are) are two of the binding concepts

throughout this approach to representation theory to this day.

The module theory has also evolved, from the pioneering work of James Green, who laid the

foundations of the module theory and also introduced the concept of G-algebras, through to the

present day. Among the open problems in this area lies the understanding of abelian defect groups.

Michel Broué’s Abelian Defect Group Conjecture is a very good example of how homological algebra
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and category-theoretic methods have been introduced into representation theory. There are many

outstanding problems in this area of representation theory, understanding the structure of the

various categories associated with a representation.

This project attempts to briefly consider both approaches, looking at Brauer’s methods first,

then introducing the module and G-algebra approach. Chapter 1 sees the original Three Main

Theorems of Brauer, relating the blocks of a group to those of its p-local subgroups in the case

of the First Main Theorem, and to the centralizers of p-elements and p-groups in the case of the

Second and Third Main Theorems. In this chapter we prove the First and Third Main Theorems,

deferring the proof of the Second to Chapter 2. At the end of this chapter, we look at the Brauer

Correspondence in the symmetric group S7.

Chapter 2 starts by discussing relatively projective modules. This leads naturally to the concept

of a vertex of a module as a minimal p-subgroup Q such that the module is relatively Q-projective.

The Green Correspondence is a fundamental result in this approach to representation theory. The

Green Correspondence links relatively Q-projective RG-modules to relatively Q-projective RH-

modules for some H containing NG(Q). After this we demonstrate the Nagao Decomposition, and

use this to prove the Second Main Theorem in a module-theoretic fashion.

Chapter 3 introduces the notions of a G-algebra and an interior G-algebra. Our original interest

in this chapter is to demonstrate that the notion of a G-algebra generalizes and combines the two

methods of Brauer and Green. After introducing this, we define the Brauer map and defect groups

for arbitraryG-algebras. We then continue with the development ofG-algebras, defining the notions

of pointed groups, and some of their associated definitions, eventually attaching an analogue of a

defect group for every pointed group.

Chapter 4 considers some of the myriad applications of modular representation theory to fi-

nite group theory. In the first section, we examine in detail the modular representations of the

alternating group A5, the smallest non-abelian simple group. As an example of the use of the

techniques of modular representation theory in the course of the mid-twentieth century during the

Classification of the Finite Simple Groups, we prove two major theorems: the Brauer–Suzuki The-

orem, which proves the non-existence of a simple group with quaternion Sylow 2-subgroups, and

the Glauberman Z∗-Theorem, which generalizes this result to any Sylow 2-subgroup with a weakly

closed involution.

In Chapter 5, we examine some of the more recent developments in the field. Broué’s Abelian

Defect Group Conjecture concerns the module categories of a block and its Brauer correspondent in

NG(D). We state the conjecture, and describe some of the work done on this conjecture. We then

state the Alperin–McKay Conjecture and Alperin’s Conjecture (also known as Alperin’s Weight

Conjecture), and again describe some of the work done on this area. Two more conjectures are

looked at in this chapter: Brauer’s k(B) Conjecture; and Brauer’s Height Zero Conjecture.

Finally, in the last chapter we conclude what we have done, and give some indications of further

work that can be done.
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We will fix some notation throughout the course of this dissertation: R denotes a characteristic

0 complete discrete valuation ring, K its field of fractions, and k the residue field of R modulo its

maximal ideal. However, often the results we quote for R work equally well for k; indeed, we will

state when a result for R (or more likely, RG) does not hold for kG. We will always assume that

K is a splitting field for G; that is, k contains enough roots of unity so that all indecomposable

representations are absolutely indecomposable.

We will assume a reasonable amount of commutative algebra. One of the most important areas

that we assume is the classical theory of lifting idempotents, which we will often use without any

comment at all. Also, we assume much of the basic block theory, such as the existence of central

characters, and the fact that there is only one ordinary and modular character in a block of defect

zero.

Finally, I would like to thank my supervisor, Geoffrey R. Robinson, without whom this project

would be non-existent, and to all my family and friends for their much-needed support and patience.

David A Craven, March 2004.
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Chapter 1

Brauer’s Three Main Theorems

In this chapter we will see three fundamental results, called Brauer’s Three Main Theorems. They

concern themselves with a correspondence between blocks with particular defect groups.

The Brauer Correspondence is defined between some of the blocks of the algebra kG and the

algebra kH, for some DCG(D) 6 H, where D is a p-group. More precisely, it is defined between

those blocks that contain D as a defect group. In particular, if we restrict our attention to blocks

with D itself as a defect group and to subgroups H containing NG(D), then this correspondence is

in fact bijective. This is the statement of Brauer’s First Main Theorem.

The First Main Theorem proves the existence of this bijection, but it doesn’t really give a

sufficient criterion for two blocks to be correspondents of one another. However, if the generalized

decomposition number between an irreducible ordinary character of G and an irreducible modular

character of CG(x), (where x is p-singular) is non-zero, then the two blocks associated with the two

characters correspond. This is the Second Main Theorem.

Finally, although we have a sufficient criterion for two blocks to correspond, we would like to

know where particular blocks go. The only particular block we can be assured to have in every case

is the block containing the trivial character. The Third Main Theorem says that if H > DCG(D),

and b is a block of kH having defect group D, then it contains the trivial character precisely when

its Brauer correspondent does.

The Three Main Theorems constitute the bulk of this chapter, including the Extended First

Main Theorem, which examines the Brauer Correspondence further down than NG(D).

Firstly we will define the Brauer homomorphism and the Brauer Correspondence, then prove the

First and Third Main Theorems, before proceeding to describe generalized decomposition numbers

and state the Second Main Theorem. Its proof will be delayed until the following chapter, namely

Section 2.5.

In the final section, we consider the Brauer Correspondence in a particular example, that

of the symmetric group S7. We consider the block theory for the primes 2 and 3, calculating

normalizers of the p-subgroups, and using the First and Third Main Theorems to study the Brauer

Correspondence.
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1.1 Preliminary Lemmas

We will compile the results that we need to prove the three theorems in this section. Throughout

this section G will denote a finite group with order a multiple of p, and k will denote a splitting

field for G of characteristic p. The purely block-theoretic theorems that we will require will be

stated without proof.

We begin with one of the definitions of a defect group of a block, which relies on the defect

group of a conjugacy class. Because it includes results, we have considered it as a lemma here.

Recall that the defect group of a conjugacy class C is a Sylow p-subgroup of CG(x), for some x ∈ C .

Lemma 1.1 Let B be a block of kG with associated central character ω. Let C1,C2, . . . ,Cn denote

the conjugacy classes of G whose class sum ci does not vanish under ω. Let D be the set of all

subgroups of G which are defect groups for one of the Ci. Then each element of D contains a defect

group of B, and in particular, the minimal elements of D are the defect groups of B. Also, there

is a class Ct consisting of p-regular elements of G with defect groups the same as B.

The next lemma plays a crucial part in one step of the proof of the First Main Theorem.

Lemma 1.2 Let Q be a normal p-subgroup of G, and let I denote the k-subspace of kG generated

by the class sums of conjugacy classes of G which have Q as defect group. Then Q is contained in

the defect group of every block of kG, and if e is a block idempotent of kG, with associated block

b, and b has Q as a defect group, then e ∈ I.

The next lemma describes how conjugacy classes split when localized to the normalizer of a

p-subgroup.

Lemma 1.3 Suppose that P is a p-subgroup of G, and let C denote a conjugacy class of G. Then

(i) C ∩ CG(P ) is non-empty if and only if P is contained within a defect group of C .

(ii) If P is a defect group of C , then C ∩ CG(P ) is a single conjugacy class of NG(P ); i.e., two

elements of CG(P ) both in C are still conjugate in NG(P ).

(iii) Suppose that C̄ is a conjugacy class of NG(P ) contained within C . If P is a defect group of

C̄ , then P is a defect group of C and C̄ = C ∩ CG(P ).

Proof : Suppose that C ∩CG(P ) 6= ∅, and let x be an element of it. Since x ∈ CG(P ), P centralizes

x. This means that P 6 CG(x). Now a p-subgroup of a group is contained in a Sylow p-subgroup

P ′ of CG(x), so P 6 P ′, where P ′ is a defect group of C . Conversely, if P 6 P ′, where P ′ is a defect

group of C , then P ′ 6 CG(y) for some y ∈ C . Then y centralizes P , so y is in the intersection of

C and CG(P ). This proves (i).

Now let P be a defect group of C , but suppose that C splits up in NG(P ). Let x be an element

of C with defect group P . Then x centralizes P , so x ∈ C ∩CG(P ). Let y be any other element of
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this set, and let g be an element of G such that xg = y. Now, P centralizes y, so since y = xg, P g
−1

centralizes yg
−1

= x. Thus both P and P g
−1

are Sylow p-subgroups of CG(x). Then P and P g
−1

are

conjugate in CG(x), say P h = P g
−1

. Then hg normalizes P , and xhg = g−1h−1xhg = g−1xg = y,

so x and y are conjugate in NG(P ). This proves (ii).

Finally, let P be a defect group of C̄ , and let x ∈ C̄ be an element with P a Sylow p-subgroup

of CG(x). Then x centralizes P , giving x ∈ C ∩ CG(P ), and in particular this intersection is non-

empty. By (i) P is contained within a defect group of C , say P ′. Suppose that P 6= P ′. Then since

P ′ is a p-group and hence nilpotent, P < NP ′(P ). So there is an element d /∈ P which normalizes

P . Then 〈P, d〉 is a p-group, and since P ′ centralizes x, so does 〈P, d〉. Also NP ′(P ) 6 NG(P ), so

〈P, d〉 ∈ CNG(P )(x). This means that 〈P, d〉 is contained within a Sylow p-subgroup of CNG(P )(x),

a clear contradiction since P is such a subgroup. So P = P ′. Note that this means that P is a

defect group of C̄ , so we can apply (ii) to show that C ∩ CG(x) = C̄ , as required.

1.2 The First Main Theorem

The aim of this section is to prove Brauer’s First Main Theorem, which we can state now.

Theorem 1.4 (First Main Theorem) Suppose that k is a splitting field for the finite group G,

and let D be a p-subgroup of G. Then there is a bijection between the blocks of kG with defect

group D and the blocks of kNG(D) with defect group D.

This one-to-one correspondence is called the Brauer Correspondence, and will have to be de-

fined before we prove the First Main Theorem. Before we do this, we need to define the Brauer

homomorphism.

Definition 1.5 Let G be a finite group, k be a splitting field for G, and suppose that D is a

p-subgroup of G. Let σ : Z (kG) → Z (kNG(D)) be defined by

σ

(∑
x∈G

αxx

)
=

∑
x∈CG(D)

αxx.

Then σ is called the Brauer homomorphism.

The Brauer homomorphism is a k-algebra homomorphism, as its name suggests. To prove

this, we first show that σ actually maps Z (kG) to Z (kNG(D)). Recall that the class sums of the

conjugacy classes of G (and NG(D)) form bases for Z (kG) and Z (kNG(D)) respectively. Let C be

a conjugacy class of G, with class sum c. Denote by C̄ the subset C ∩ CG(D), with sum c̄. Then

σ(c) = c̄, and so we must show that c̄ ∈ Z (kNG(D)). But CG(D) P NG(D), and C is a normal

subset of G, so C̄ is a normal subset of NG(D), and hence a union of conjugacy classes. Thus

c̄ ∈ Z (kNG(D)).
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Certainly σ(1) = 1, and the Brauer homomorphism is a k-linear mapping, almost from the

definition. Let c1 and c2 be class sums of G. Now σ(c1c2) =
∑

x∈CG(D) αxx, where αx is the number

of elements g1 ∈ C1 and g2 ∈ C2 such that g1g2 = x. However, σ(c1)σ(c2) =
∑

x∈CG(D) βxx, where

βx is the number of elements g1 ∈ C̄1 and g2 ∈ C̄2 such that g1g2 = x. We need to show that

αx ≡ βx mod p.

Notice that every pair that contributes to βx contributes to αx. Let Ax denote the set { (g1, g2) :

g1 ∈ C1, g2 ∈ C2, g1g2 = x}, and Bx denote this set for C̄1 and C̄2. Then

Ax\Bx = { (g1, g2) : g1 ∈ C1, g2 ∈ C2\C̄2, g1g2 = x }∪{ (g1, g2) : g1 ∈ C1\C̄1, g2 ∈ C̄2, g1g2 = x }.

The second term in this union is empty, since if g2 ∈ C̄2, then g2 (and x) both centralize D.

Hence so does g1, a contradiction since g1 /∈ C̄1. This also deals with the case where g1 ∈ C̄1 and

g2 /∈ C̄2. This leaves the case where neither g1 nor g2 centralize D.

Let D act on the set Ax \ Bx by pointwise conjugation. Since Ax \ Bx contains only pairs of

elements (g1, g2) which do not centralize D, no orbit of this action is trivial, and since all orbits are

of size a power of p, p divides |Ax \Bx|. Then αx = βx, since our field has characteristic p, and the

Brauer homomorphism is indeed a homomorphism.

We also need to define the correspondence between the blocks that the First Main Theorem tells

us exists. This will be done with the help of central characters. Since a block has a unique central

character associated with it, if we can produce a bijection between the central characters whose

associated block has defect group D, then we have a ‘corresponding’ bijection between the blocks

themselves. We may as well say that the central character has defect group D to mean that the

block associated with the central character has defect group D. Then the alternative formulation

we will prove is:

There is a one-to-one correspondence between the central characters of NG(D) with

defect group D and the central characters of G with defect group D.

To this end, we will have to find a function sending a central character of NG(D) to a central

character of G. Let H be a subgroup of G, and b be a block of the algebra kH, with associated

character ω. Suppose that the defect group of b contains a particular p-subgroup D of G. Now,

by Lemma 1.1, there is a conjugacy class C of G whose defect group contains that of b, and hence

contains D. Thus by Lemma 1.3(i), C̄ = C ∩CG(D) is non-empty. Then we can define a mapping

ωG on the k-algebra Z (kG) by

ωG(ci) = ω(c̄i),

where C̄i is the intersection Ci ∩CG(D). Notice that ωG(c) 6= 0 if and only if C ∩CG(D) 6= 0, and

so ωG(c) 6= 0 if and only if D is contained in a defect group of C .

However, ωG need not be a central character of G. If H contains DCG(D) and is contained

within NG(D), then the function ωG is a central character. We will call this the induced central

character of G from H. We will prove this assertion now.

4



Theorem 1.6 Suppose that G is a finite group, and let D be a p-subgroup. Suppose that H is a

subgroup of G such that DCG(D) 6 H 6 NG(D). Let ω be a central character of kH, associated

to the block b. Then ωG = ω ◦ σ, and is a central character of G, associated to the block B.

Furthermore, both b and B have defect groups containing D.

Proof : We will first show that ωG = ω◦σ. From this, and the fact that both ω and σ are k-algebra

homomorphisms, we see that ωG is a central character of G. Since CG(D) P H, for each conjugacy

class C of H, either C is contained within CG(D) or they are disjoint. Clearly then from the

definition of ωG, ωG = ω ◦ σ. So ωG is a central character of kG.

Since D P H, D is a subgroup of every defect group of every block b of kH, and so b has a

defect group containing D. Let B be the block associated with ωG. Thus there exists a class of

p-regular elements C (with class sum c) with ω(c) 6= 0 by Lemma 1.1. Then ω(σ(c)) 6= 0, and

so σ(c) 6= 0. Thus there is some conjugacy class C̄ of H such that ω(C̄ ) 6= 0, and this conjugacy

class is contained within C . Since D P G, D is contained within every defect group of C̄ , and

so D 6 CH(x) for all x ∈ C̄ ⊆ C . Thus there is some x ∈ C such that D 6 CH(x) 6 CG(x).

Therefore D is contained in some defect group of B.

If DCG(D) 6 H 6 NG(D), then we can create a function between the blocks of kG with defect

group containing D and the blocks of kH with defect group containing D by the map between

central characters with this property. It is this function which is called the Brauer Correspondence.

The Brauer Correspondence will provide the bijection that we need to prove the First Main

Theorem. However, for the correspondence to be bijective, we need to set H = NG(D). We will

prove the theorem in stages, requiring several lemmas.

Firstly suppose that D is a defect group of the conjugacy class C̄ in NG(D). We know from

Lemma 1.3(iii) that D is a defect group of the conjugacy class C of G containing C̄ , and that

C̄ = C ∩CG(D). Since stating Lemma 1.3 we have defined the Brauer homomorphism, we can see

that if c is the class sum of C , and c̄ is the class sum of C̄ , then

σ(c) =
∑

x∈C∩CG(D)

x = c̄,

so σ(c) = c̄.

We have all of the information we need to show that the Brauer Correspondence that we defined

previously actually maps blocks of kNG(D) with defect group D to blocks of kG also with defect

group D. We knew before that it mapped them to blocks with defect group containing D, but this

is the extra refinement that we need.

Lemma 1.7 The Brauer Correspondence maps blocks of kG with defect group D to blocks of

kNG(D) with defect group D, and vice versa.

Proof : Let Φ define the function ω 7→ ωG, where ω is a central character of kNG(D). We must

show that a central character of kG with defect groupD is mapped to a central character of kNG(D)
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with defect group D, and vice versa. Suppose that ωN is such a central character of kNG(D), and

that ωG is such a central character of kG.

We suppose that Φ(ω) = ωG has defect group D. Then by Lemma 1.1 there is a conjugacy

class C of G (with class sum c) such that C has defect group D and ωG(c) 6= 0. By Lemma 1.3(ii),

C̄ = C ∩ CG(D) is a conjugacy class of NG(D). The defect of C̄ is equal to that of C by Lemma

1.3(iii). Also, ω(c̄) 6= 0 since σ(c) = c̄, so by Lemma 1.1 again, the block b of kNG(D) associated

with ω has defect group a subgroup of that of C̄ . But a defect group of b must contain D, since

D P NG(D). Hence D is a defect group of b. So if ωG has defect group D, ω also has defect group

D.

Now suppose that ω has defect group D. Then, using Lemma 1.1 yet again, we find a conjugacy

class C̄ of NG(D) with class sum c̄ such that ω(c̄) 6= 0, and with D as a defect group. Denote by

C the conjugacy class of G which contains C̄ . Then by Lemma 1.3(iii) D is a defect group of C ,

and C̄ = C ∩ CG(D). So if c denotes the class sum of C , σ(c) = c̄. Then

ωG(c) = ω(σ(c)) = ω(c̄) 6= 0.

Again, we can use Lemma 1.1 to show that D contains every defect group of ωG. Now D was a

defect group of ω, so since the Brauer Correspondence maps central characters with defect groups

containing D onto central characters with defect groups containing D, any defect group of ωG must

also contain D. Hence D is a defect group of ωG.

We have therefore proved that the Brauer Correspondence maps central characters with defect

group D onto central characters with defect group D, and vice versa.

We now have to show that the function Φ is bijective. We prove that Φ is one-to-one first.

Recall the k-subspace I from Lemma 1.2 – we will use this in the next proof.

Lemma 1.8 Let Φ : ω 7→ ωG be as before. Then Φ is injective.

Proof : Suppose that ωG1 = ωG2 , but ω1 and ω2 are distinct. Let e denote the block idempotent of

b1 (where b1 is associated to ω1). Then ω1(e) = 1 and ω2(e) = 0. Now Lemma 1.2 shows that e

is an element of the subspace of kNG(D) generated by the conjugacy classes of NG(D) with D as

defect group. By the discussion before Lemma 1.7, I is contained within the image of σ, and so

we can find i such that σ(i) = e. But then ω1(e) = ω1(σ(i)) = ωG1 (i), and similarly ω2(e) = ωG2 (i).

These are equal since ωG1 = ωG2 , but these are unequal since ω2(e) 6= ω2(e), a contradiction.

Finally we show that Φ is surjective.

Lemma 1.9 Let Φ : ω 7→ ωG be as before. Then Φ is surjective.

Proof : Let B be a block of kG with defect group D. We need to show that there is a block b of

kNG(D) with defect group D such that bG = B. In fact, we do not need to know that b has defect
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group D, since this is implied from Lemma 1.7. So we only need to find a central character ω of

kNG(D) such that ωG is the central character associated to B.

Let e be the block idempotent of B. Then σ(e) is an idempotent of kNG(D). So we can

divide the block idempotents of f1, . . . , fn of kNG(D) into two, those which feature in a decom-

position of σ(e) into block idempotents and those which do not. Suppose that fi features in such

a (unique) decomposition, and let ω be the central character of the block b which has associated

block idempotent fi. Then ωG is a central character of G, and ωG(e) = (ω ◦ σ)(e), which becomes

ω(
∑
fi) =

∑
ω(fi) = 1, by the definition of ω. So ωG is the central character associated to the

block B, and we have found b, a block of kNG(D) such that bG = B, as required.

We have finally proved Brauer’s First Main Theorem. This proof is based on that of [79], itself

based on [92]. Brauer’s original proof is in [16] – he offers an alternative proof in [18] and [19].

Other proofs include [75] and [94].

To close this section, we notice that if H is any subgroup of G containing NG(D), then NH(D) =

NG(D). So we can define the Brauer Correspondence between both G and NG(D), and between H

and NH(D) = NG(D). Thus we have the following corollary to Theorem 1.4:

Corollary 1.10 Suppose that G is a finite group, D is a p-subgroup of G, and that k is a splitting

field for G of characteristic p. Then for any subgroup H of G containing NG(D), there exists a

one-to-one correspondence between the blocks of kG with D as defect group, and the blocks of kH

with D as defect group.

1.3 Extended First Main Theorem

We have defined the Brauer Correspondence down all the way to DCG(D), although we have

only shown that the correspondence is bijective down to NG(D). This is because it fails to be

bijective below this. However, considerable information can still be gleaned, since although the

correspondence is not bijective, it is surjective, and bijective modulo a natural-looking equivalence

relation, that of two blocks being conjugate.

Definition 1.11 Let B and B′ be blocks of a group algebra kH, where H P G. Then B and

B′ are G-conjugate if there is an element g ∈ G such that eg = e′, where e and e′ are the block

idempotents of B and B′ respectively.

Suppose that χ is an ordinary character lying in the block B. Suppose that B is G-conjugate to

another block B′, say e′ = g−1eg, where e and e′ are the block idempotents for B and B′. Consider

the character χ′ obtained from χ by the action χ′(x) = χ(g−1xg). If χ is afforded by the module

M , then χ′ is afforded by the module Mg, where Mg is the conjugate module with action defined

by mx = m(gxg−1). Now M lies inside B, and so e /∈ kerM . Therefore Mg(g−1eg) is non-zero,
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since Me is non-zero. This means that Mg lies in the block B′, and so conjugate modules lie in

conjugate blocks. In particular, we have also shown that eg lies in Bg.

Now consider the block B which contains the trivial character χ1. So χg1 lies in Bg. But χg1 = χ1,

since χ1(x) = 1 for all x, and so the B is not G-conjugate to any other block.

We will now consider the Brauer Correspondence below NG(D).

Theorem 1.12 (Extended First Main Theorem) Let D be a p-subgroup, and suppose that

DCG(D) 6 H 6 NG(D). Then the Brauer Correspondence maps blocks with defect group contain-

ing D of kH to blocks of defect group containing D of kG, this map is surjective, and if b1, b2 ∈ kH,

then bG1 = bG2 if and only if b1 and b2 are G-conjugate.

In the same way as we proved the First Main Theorem, this proof will go in stages. Notice that

Theorem 1.6 has proven the statement that the Brauer Correspondence maps blocks with defect

group containing D to blocks of defect group containing D.

Lemma 1.13 Suppose that D is a normal p-subgroup of G, and let H be a subgroup of G contain-

ing DCG(D). If B1 and B2 are blocks of kH with defect group D, then B1 and B2 are G-conjugate

if and only if B1 and B2 have the same Brauer correspondent in kG.

Proof: Firstly suppose that B1 and B2 are G-conjugate. Let ei be the block idempotent of Bi, and

notice that eg1 = e2 for some g ∈ G. Write f for eG1 , a central idempotent of kG. Since f is central

in kG, fg = f . Let ω denote the central character of B1. Then σ(f) = e1 + · · ·+ en, where the ei
are central idempotents of kH.

1 = ωG(f) = ωG(fg)

= ω ◦ σ(fg)

= ω

(
n∑
i=1

egi

)

=
n∑
i=1

ω(egi ).

This means that ω(egi ) = 1 for some i. So eG2 = (eg1)
G = eG1 , since their induced central characters

are the same. We can see this because a central character is determined by when it takes 1, and

we have shown that the central characters of both eG1 and eG2 take 1 on f . Therefore BG
1 = BG

2 , as

required.

Now suppose that BG
1 = BG

2 . If ω1 and ω2 denote the central characters of B1 and B2, we know

that ωG1 = ωG2 . But ωGi = ωi ◦ σ. This means that ω1 (
∑
αxx) and ω2 (

∑
αxx) (for x ∈ CG(D))

take the same value.

Now the sum of block idempotents e1, . . . , en that are G-conjugate to e1 (the block idempotent

of B1) lies in the centre of both kG and kH. Suppose that ω1 and ω2 agree on this region. If c
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denotes the sum of the G-conjugate block idempotents,

ωGi (c) = ωi

 n∑
j=1

ej

 ,

and so ω1(ei) = 1 and ω2(ej) = 1 for some i, j. Hence B1 and B2 are G-conjugate.

It remains to show that ω1 and ω2 agree on this region. The image of σ is Z (kG) ∩ kCG(D),

and so certainly ω1 and ω2 agree on this region. If C is a conjugacy class with a class sum not in

kCG(D), it must intersect CG(D) trivially, since CG(D) is normal in G. But since D is contained

in every defect group (since D P G), Lemmas 1.3(i) and 1.1 imply that both central characters

vanish on this class sum. We have proved that ω1 and ω2 agree on Z (kH) \ CG(D). Then ω1 and

ω2 agree on

(Z (kG) ∩ kCG(D)) ∪ (Z (kH) \ kCG(D)) = Z (kG) ∩ Z (kH) ,

as required.

This proves the first half of Theorem 1.12, since we have a bijective correspondence from G

down to NG(D), and thanks to this lemma, a correspondence between NG(D) (in which D is, of

course, normal) and H. The second part of Theorem 1.12 requires the map to be surjective. We

will demonstrate this now.

Lemma 1.14 In the situation of the Extended First Main Theorem, the Brauer Correspondence

defined is surjective.

Proof: Let B be a block of kG, with block idempotent e. Then σ(e) is a central idempotent of

kH, and so splits up as a sum
∑
ei of primitive idempotents, with associated blocks bi. Now if ω

is the central character associated with ej , then ω(ej) = 1. However

ωG(e) = ω ◦ σ(e) =
∑

ω(ej) = 1,

and so ωG is associated with the block B, and so the Brauer Correspondence is surjective, as re-

quired.

In proving this, we actually showed that every factor of σ(e) corresponded to B. By Lemma

1.13, this means that all factors of σ(e) are G-conjugate. In fact, the factors of σ(e) are the only

Brauer correspondents of B. A proof of this fact is given in [79]; we do not need this fact here.

Indeed, we need only the one implication of Lemma 1.13 in the next section.

Finally, remember that we proved that the block B containing the trivial character is not G-

conjugate to any other block. Together with the Extended First Main Theorem, this shows that B

is the unique block that corresponds to BG. This will be necessary in the next section.
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1.4 The Third Main Theorem

Definition 1.15 The principal block of the group algebra kG is the block containing the trivial

character 1G. We often denote it by B0(G) or b0(G).

Given this definition, we can now state Brauer’s Third Main Theorem.

Theorem 1.16 (Brauer’s Third Main Theorem) Let G be a finite group, and let D be a p-

subgroup of G. Let H be a subgroup with DCG(D) 6 H. Let B be a block of kH with defect

group D. Then B is the principal block of kH if and only if BG is the principal block of kG.

We will prove this result in several stages, the first being to prove one of the implications in the

case where D P H.

Lemma 1.17 Suppose that H is a subgroup of G, with DCG(D) 6 H 6 NG(D). Let B be a

block of kH with defect group D. If B is the principal block of kH, BG is the principal block of

kG.

Proof : Suppose that B is the principal block of kH. Let ω denote the central character associated

with B. Recall that if χ is an irreducible character of B, and if c̄ is a class sum of the conjugacy

class C̄ for which ω(c̄) 6= 0, then

ω(c̄) = |C̄ |χ(x)
χ(1)

,

where x ∈ C̄ . Applying this to χ = 1G, the trivial character, gives ω(c̄) = |C̄ | for all conjugacy

classes for which ω(c̄) 6= 0. Consider the induced central character ωG, and let C be a conjugacy

class of G, with class sum c. Then if ωG(c) 6= 0,

ωG(c) = ω(σ(c)) = |C ∩ CG(D)|,

since ω(c̄) = |C̄ |. Let D act on C by conjugation. Then the fixed points of this action are those

elements of C centralized by all of D; i.e., those elements of C who centralize D themselves. So,

since D is a p-group acting on a set, we have |FixG(X)| ≡ |X| mod p. In this case,

|C ∩ CG(D)| ≡ |C | mod p.

Since k is of characteristic p, this means that ωG(c) = ω(c̄) for all conjugacy classes of G for which

ωG(c) 6= 0. Thus ωG(c) = |C |. Using the fact that ωG(c) = |C |χ(x)/χ(1), we see that χ lies in the

same block as the trivial character; i.e., the principal block. So ωG is associated to the principal

block, as required.

However, proving the other way is harder, and requires the following lemma before the proof

itself.
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Lemma 1.18 Suppose that DCG(D) 6 H 6 L 6 NG(D), and that B is a block of kH with defect

group D. Then BL is the principal block of kL if and only if B is the principal block of kH.

Proof: The one way implication is precisely that of Lemma 1.17. Since L 6 NG(D), we haveD P L.

Also, DCG(D) P L. Let b0 denote the principal block of kDCG(D). Since BL is the principal block

of kL, we can use Lemma 1.17 to get bL0 = BL. Since the Brauer Correspondence is onto, there is

a block b of kDCG(D) such that bH = B. Then by the transitivity of the Brauer Correspondence,

bL = (bH)L = BL. So b corresponds with the principal block of kL. But in the discussion of

the extension of Brauer’s First Main Theorem, we said that the principal block was in its own

equivalence class. Thus b = b0 is the principal block itself. Then we can apply Lemma 1.17 again

to b, which is the principal block of kDCG(D), to find that bH = B is the principal block of kH.

Proof of Theorem 1.16: Now let G be a counterexample to Brauer’s Third Main Theorem,

so there exists a p-subgroup D of G, a subgroup H of G containing DCG(D), a block B of kH

with defect group D such that BG is the principal block of kG but B is not the principal block

of kH. Choose D to be of maximal order inside G subject to this system (G,D,H,B) being a

counterexample.

Firstly notice that D 6P G, else Lemma 1.18 would apply. This proof splits up into the cases

where H contains NG(D) and when it does not. Firstly suppose that H 6 NG(D). Let N = NG(D).

BN has defect group Q, say. Since Q is a defect group of N , Q 6 N . Also, any element of G that

centralizes Q centralizes D, so CG(Q) 6 CG(D) 6 N . Thus QCG(Q) 6 N . Also (BN )G = BG, the

principal block of kG. So either BN is the principal block of kN , or we have another counterexample

to Brauer’s Third Main Theorem, namely (G,Q,NG(D), BN ). Since D was chosen to be maximal,

and D 6 Q, we must have D = Q. So BN has defect group D.

By the First Main Theorem, there is a block B′ of kG such that (BN )G = B′, and had D as a

defect group. But (BN )G = BG, and so is the principal block of kG. Thus D is a Sylow p-subgroup

of G, and so is a Sylow p-subgroup of every subgroup of G containing it. Thus D is a defect group

of the principal block b of kN , and so by Lemma 1.17, bG = BG, so (BN )G = bG, and by the First

Main Theorem, BN = b. But then Lemma 1.18 shows that B is the principal block of kH, since b

is the principal block of kN .

Now suppose that H properly contains NG(D), and that B is a block of kH with defect group

D. We also have that BG is the principal block of kG, but B is not the principal block of kH. But

the Brauer Correspondence gives a bijection between the blocks of kH of defect group D to those

of kG of defect group D. Since B has defect group D, so must BG, the principal block. This means

that D is actually a Sylow p-subgroup of G, and so also a Sylow p-subgroup of H. But then if b

is the principal block of kH, then b has defect group D (since D is a Sylow p-subgroup, all Sylow

p-subgroups are conjugate, and the defect groups of a block form a conjugacy class of subgroups

of G), so by Lemma 1.17, bG = BG, the principal block. However, Brauer’s First Main Theorem

quickly shows that b is equal to B, so that B is the principal block of kH, as required.
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1.5 The Second Main Theorem

In the introduction to this chapter we mentioned generalized decomposition numbers, which we

will now proceed to define. As we have said in the preface, suppose that R is a complete discrete

valuation ring with maximal ideal J(R), such that R/J(R) is a finite field of characteristic p with

enough roots of unity for our purposes. Let K be a field of characteristic zero with R as its ring of

algebraic integers (so that K is its field of fractions and R is integrally closed in K).

We know that there exist free RG-modules V1, . . . , Vl such that every irreducible KG-module

is of the form Vi ⊗R K for precisely one of the Vi. Reduce modulo p the modules Vi, and denote

these by V̄i. Let χi be the ordinary character afforded by Vi ⊗R K. Then the function

φi(x) =

χi(x), x is p-regular

0, otherwise

is the modular character afforded by V̄i. Then the composition factors of V̄i are uniquely determined

by φi. Recall that the irreducible kG-modules are the quotients Wj/J(Wj), where the Wj are the

indecomposable submodules of kG, (which are uniquely determined up to ordering by the Krull–

Schmidt Theorem). Then the number of times Wj/J(Wj) appears in the decomposition of V̄i is

uniquely determined. We denote this by dij , and call it the decomposition number. The matrix

Dij is called the decomposition matrix. (Also important is the fact that if Cij denotes the Cartan

matrix, then DT
ijDij = Cij .)

The number l is the number of conjugacy classes of G, and there are m, say, of the Wj , where

m is the number of conjugacy classes of p′-elements of G.

Now let t denote a p-element of G, and let C = CG(t). Denote by χ1, . . . , χr and ψ1, . . . , ψs

the irreducible ordinary and modular characters of C. Suppose that ζ1, . . . , ζ l are the ordinary

characters of G. Then the restriction ζiH can be written as a linear combination of the ordinary

characters of H. But each of the ordinary characters can be written as

χi(x) =
s∑
j=1

dijψ
j .

Furthermore, since every element of C centralizes t, t is a central element of C, and so χi(t) = µi,

where µi is a root of unity, and so is algebraic. Thus we can write

χi(tx) = µiχ
i(x) =

s∑
j=1

(µidij)ψj(x).

Now consider ζi(tx), which can be written as an integral linear combination of the χi
′
(tx), and

each of these can be written as an integral linear combination of the ψj . Then we can write

ζi(tx) =
s∑
j=0

dtijψ
j(x),

and the dtij , the generalized decomposition numbers, are algebraic.

Given this theory, we can now state Brauer’s Second Main Theorem.
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Theorem 1.19 (Brauer’s Second Main Theorem) Given the notation introduced in the above

discussion, suppose that dtij 6= 0 for some p-singular t, and C = CG(t). If ζi lies in the block B of

kG, and ψj lies in the block b of kC, then bG = B.

The proof of this statement will not be given here, and will be delayed until Chapter 2. The

reason is that although the First and Third Main Theorems are proven without much reference to

modules, this theorem really is best done using the modules themselves. In particular, we will use

the Nagao Decomposition, which is described in Chapter 2.

1.6 Brauer Correspondence in S7

Denote by G the group S7, which we consider acting on the set {1, . . . , 7}. Consider the blocks of

G. There are fifteen characters of G, corresponding to the fifteen conjugacy classes of G. These

are given in the table below. In this table, the conjugacy classes are labelled in Atlas notation,

the classes being labelled as nX, where n refers to the order of the elements, and X is an indexer.

Where there is some ambiguity, 2A refers to (1 2)(3 4), 2B refers to (1 2), 2C to (1 2)(3 4)(5 6),

3A to (1 2 3), 3B to (1 2 3)(4 5 6), 4A to (1 2 3 4)(5 6), 4B to (1 2 3 4), 6A to (1 2)(3 4)(5 6 7),

6B to (1 2 3)(4 5), and 6C to (1 2 3 4 5 6). We list the characters up to multiplication by χa, the

alternating character. All characters except χ3 can be multiplied by χa to give another irreducible

character.

1A 2A 3A 3B 4A 5A 6A 7A 2B 2C 4B 6B 6C 10A 12A

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χa 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1

χ2 6 2 3 0 0 1 −1 −1 4 0 2 1 0 1 −1

χ3 20 −4 2 2 0 0 2 −1 0 0 0 0 0 0 0

χ5 14 2 2 −1 0 −1 2 0 6 2 0 0 −1 1 0

χ6 14 2 −1 2 0 −1 −1 0 4 0 −2 1 0 −1 1

χ7 15 −1 3 0 −1 0 −1 1 5 −3 1 −1 0 1 −1

χ8 21 1 −3 0 −1 1 1 0 1 −3 −1 1 0 1 −1

χ9 35 −1 −1 −1 1 0 −1 0 5 1 −1 −1 1 0 −1

The reason for the lack of χ4 and for the strange ordering of the conjugacy classes is that this

also serves as a character table for A7 as well. In A7, the character χ3 splits as the sum of two

irreducible characters, called χ3 and χ4, and the class 7A splits into two as well. All of the classes

up to 7A are the classes of A7, and so the restriction of this table to those classes serves as an

almost complete character table (since the values of the now-split 7B and the now-split χ3 and χ4,

although not given, are deducible).

From this character table we can see that there are no blocks of defect zero for both primes

2 and 3, since there are no characters with degrees multiples of 16 or 9. This means that we do

indeed have some non-trivial block theory for 2 and 3.
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Using the formula χi(C )|C |/χi(1) ≡ χj(C )|C |/χj(1) mod p if and only if χ1 and χj are in the

same block, and the fact that we cannot have a block with no characters at all in it, we find that

for the prime 2 there are two blocks, and for the prime 3 there are three blocks.

For the prime 2, we have two blocks, say B0(G) and B1(G), where B0(G) is the principal 2-

block. The block B0(G) contains the characters χ1, χ5, χ7, χ8, and χ9, together with their products

with χa. The block B1(G) contains the remaining five characters χ2, χ3, χ6, together with their

products with χa (which in the case of χ3 is just χ3 again).

For the prime 3, we have three blocks, say b0(G), b1(G) and b2(G), where b0(G) is the principal

3-block. The block b0(G) contains the characters χ1, χ3, χ5, χ6 and χ9, together with their products

with χa. In b1(G) we have the characters χ2, χ7 and χ8, with their products by χa in the block

b2(G). The reason that we now have to split these two is that the multiplication by χa actually

alters the sign of the central character, because we are not working over a characteristic 2 field.

We would like to know the defects of the blocks involved. Certainly B0(G), the principal 2-block

of G, has full defect, and so has defect groups the Sylow 2-subgroups of G. The six characters of

B1(G) each have degree a multiple of 2, and four do not have degree a multiple of 4. This means

that B1(G) has defect 3.

In the case p = 3, the principal 3-block of G has full defect, and so has defect groups the Sylow

3-subgroups of G. The three characters in b1(G) and the three in b2(G) all have degrees multiples

of 3, and so both b1(G) and b2(G) have defect 1. This obviously means that they have defect group

C3.

Firstly, consider the 2-subgroups of G. Without loss of generality, we can restrict our attention

to subgroups of a particular Sylow 2-subgroup, which we construct now. Note that

|S7| = 24 · 32 · 5 · 7.

If we can find a subgroup of G of order 16, we have found our Sylow 2-subgroup. Certainly we can

find a group isomorphic with C3
2 by taking the three involutions (1 2), (3 4) and (5 6). We can

act on this set by permuting two of these transpositions, say (1 2) and (3 4). So we can adjoin the

element (1 3 2 4), to get the p-subgroup P .

We know that P is the Sylow 2-subgroup generated by (1 2), (1 3 2 4) and (5 6). Then

the maximal subgroups of this group are 〈(1 2), (1 3 2 4)〉 ∼= D8, 〈(1 3 2 4), (5 6)〉 ∼= C4 × C2,

〈(1 2), (3 4), (5 6)〉 ∼= C3
2 and 〈(1 4)(2 3), (1 2)(3 4), (5 6)〉 ∼= C3

2 .

We have found all of the possible maximal subgroups of P , and the defect group of B1(G) must

be one of these. We now state a useful proposition. This was originally proved in [51], although

the proof we give here is due to Thompson (see [96]).

Proposition 1.20 Let D be a defect group, contained in a Sylow p-subgroup P . Then D = P ∩P g

for some g ∈ G.

Proof: First we consider the case where a block B has defect zero. Then B contains an irreducible

kG-module, M say, that is projective. Let P denote a Sylow p-subgroup of G. Then MP is free, and
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for each element of P \ {1}, MP contains all of the elements of M fixed by it. Choose 0 6= v ∈ M
such that vx = v for all x ∈ P . Since M is irreducible, there is some h ∈ G such that vh /∈ MP .

Suppose that g ∈ P ∩ h−1Ph. Then, for some y ∈ G, g = h−1yh, and

vhg = vh(h−1yh) = vyh = xh,

which is clearly fixed by g. But vh /∈ MP , a contradiction to the fact that MP contains all of the

elements of M fixed by the element g ∈ P . Then g = 1, and P ∩ h−1Ph = 1, as we need.

In the general case, let B be a block with defect group D, and let N = NG(D). By Brauer’s

First Main Theorem, there is a block b in NG(D) with defect D, and so this block’s correspondent

in NG(D)/D has defect zero. So we have already proved that there exist p-subgroups P1 and P2

of N such that P1/D ∩ P2/D = 1, and so P1 ∩ P2 = D. If Qi denotes a Sylow p-subgroup of G

containing Pi, then Qi ∩N = Pi. Suppose that this is false, so that Q1 ∩Q2 > D. Since p-groups

are nilpotent, NQ1∩Q2(D) > D, and so Q1 ∩Q2 ∩N > D. But

Q1 ∩Q2 ∩N = (Q1 ∩N) ∩ (Q2 ∩N) = P1 ∩ P2 = D,

a clear contradiction. Then the result is proven in the general case.

In fact, this result can be strengthened somewhat. Alperin [2] has shown that D is, in fact,

the tame intersection of two Sylow p-subgroups; that is, D = P ∩Q, where NQ(D) and NP (D) are

Sylow p-subgroups of NG(D). This follows from a theorem of Green [53], where he shows that g in

the above proposition can be taken to lie inside CG(D).

We can use these results to restrict the possible choices of defect group. However, in this case

it is not much help. This is because both 〈(1 2), (1 3 2 4)〉 ∼= D8 and 〈(1 2), (3 4), (5 6)〉 ∼= C3
2 are

tame intersections. So we need another way to calculate the defect group of B1(G).

We construct the central character of B1(G) from an irreducible character in B1(G), say χ2,

determining the conjugacy classes whose class sum does not vanish under ω. Then we simply

find the Sylow 2-subgroups of CG(x) (x ∈ C ) for these particular conjugacy classes, and pick the

smallest.

Let C be a conjugacy class with class sum c. Then ω(c) = |C |χi(C )/χi(1) is the definition of

the central character. In this case, we consider χ2 and the conjugacy class 3A. Then |C | = 70, and

ω(c) = 70
3
6

= 35 6≡ 0 mod 2.

So the defect group of B1 is contained within a Sylow 2-subgroup of CG(x). But if x ∈ C , then

CG(x) ∼= S4 ×C3, and a Sylow 2-subgroup of this is isomorphic with D8. Therefore a defect group

of B1 is isomorphic with D8.

Now consider NG(D8), where this D8 is equal to the one determined above. Then certainly

D8×S3 normalizesD8. This turns out to be equal to the normalizer. In this case, P 6 NG(D8) = N ,

and so the Brauer Correspondence is defined between kG and kN . Furthermore, it is bijective
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between the blocks with defect group D8 = D and between the blocks with defect group P as well.

Now NG(D) has D as a normal p-subgroup, and so every block has defect group containing D.

This means that there are two blocks of kNG(D), one with defect group D, and one with defect

group P .

Now consider the characters of N . Since N is a direct product of D8 with S3, the characters

of N are simply the products of the characters of D8 and S3. Now, there are five characters of

D8, with degrees 1, 1, 1, 1, and 2, and there are three characters of S3, with degrees 1, 1, and 2.

This means that there are fifteen irreducible ordinary characters of N , eight with degree 1, six with

degree 2, and one with degree 4. We will now try to work out where these ordinary characters lie.

Let B0(N) and B1(N) be the Brauer correspondents of B0 and B1 respectively. All eight linear

characters of N must lie in B0(N). The Alperin–McKay Conjecture (see Conjecture 5.6) suggests

that there are four characters of degree 2 in B1(N). This conjecture also suggests that there are two

characters of degree 2 in B0(N). It seems likely that the character of degree 4 lies in B1(N). (In

fact it has to, since the defect group of B1(N) is non-abelian, and Brauer’s Height Zero Conjecture

has been proven for p-soluble groups (see Conjecture 5.13) so all characters of a block are of height

zero if and only if its defect group is abelian. This also applies to B0(N), and so at least one of the

characters of degree 2 must lie in B0(N).)

D8 1 (1 2)(3 4) (1 2) (1 3 2 4) (1 3)(2 4)

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 1 −1 1 −1

χ4 1 1 −1 −1 1

χ5 2 −2 0 0 0

S3 1 (5 6) (5 6 7)

ψ1 1 1 1

ψ2 1 −1 1

ψ3 2 0 −1

We can show quite easily that the degree-four character χ does not lie in the principal block:

consider the conjugacy class C = {(1 2)(3 4)(5 6), (1 2)(3 4)(5 7), (1 2)(3 4)(6 7)}. Then χ takes the

value 0 on this conjugacy class, and so |C |χ(C )/χ(1) ≡ 0 mod 2, contrary to the trivial character,

which takes value 3 ≡ 1 mod 2. So χ /∈ B0(N).

This method also works for ψ3χi for all other i, and so all five of these characters lie in B1(N).

Finally, we must decide the fate of χ5ψ1 and χ5ψ2. Since we are working modulo 2, we need only

consider one of these characters, say χ5ψ1. In fact, rather than comparing the values of the central

character for all conjugacy classes with that of the trivial character, we will simply note that on

the same conjugacy class C that we considered before, |C |(χ5ψ1)(C )/(χ5ψ1)(1) = 3× (−2)/2 ≡ 1

mod 2, which is different from that of χ5ψ3. This means that they do not lie in the same block.

Therefore, all eight linear characters, χ5ψ1 and χ5ψ2 lie in B0(N), and all of the rest lie in

B1(N). This agrees with the Alperin–McKay Conjecture and the Height Zero Conjecture.

Now we consider the prime 3. We know the defect group of b0(G), and so we only need to

calculate the defect groups for the other two blocks. Consider the conjugacy class 2A, which has
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order 105, and the character χ2. If x lies in 2A, then CG(x) = S3 × (C2 o S2), which has Sylow

3-subgroups generated by (up to conjugacy) (1 2 3). Now |2A|χ2(x)/χ2(1) = 35 ≡ −1 mod 3, and

so 〈(1 2 3)〉 is a defect group for b1(G). Similarly, |2A|(χ2χa)(x)/(χ2χa)(1) = −35 ≡ 1 mod 3, and

so the defect groups of b1(G) and b2(G) are equal.

We fix some notation: letQ be a Sylow 3-subgroup of G, and R = 〈(1 2 3)〉. So NG(R) ∼= S3×S4,

and has order 144, and NG(Q) ∼= S3 o S2, and has order 72. Then Brauer’s First Main Theorem

says that NG(Q) has only one block, naturally of full defect. It also says that NG(R) has three

blocks, one of full defect and two of defect 1. This is because it acts bijectively on those of defect

1, and that it also acts (not necessarily bijectively) on those of defect more than 1. But since there

is only one such block, B0(G), there must be a block in kNG(R).

Consider the characters of NG(R) ∼= S3 × S4.

S4 1 (1 2) (1 2)(3 4) (1 2 3) (1 2 3 4)

χ1 1 1 1 1 1

χ2 1 −1 1 1 −1

χ3 3 1 −1 0 −1

χ4 3 −1 −1 0 1

χ5 2 0 2 −1 0

S3 1 (5 6) (5 6 7)

ψ1 1 1 1

ψ2 1 −1 1

ψ3 2 0 −1

In the direct product S4 × S3, there are nine characters of degree prime to 3, which have to lie in

the principal block b0(N), since the other two blocks must have defect 1. So we have to decide

where the other six characters – χ4ψi and χ5ψi for 1 6 i 6 3 – lie. Now the defect groups are

abelian, and so one of the consequences of the Alperin–McKay and Alperin’s Weight Conjectures

is that all characters of B0(N) have degrees prime to 3 (see [62]). We will verify this now.

Consider the conjugacy class C with representative x = (1 2)(5 6 7), which has order 12. Then,

working modulo 3, we have

|C |(χ1ψ1)(x)/(χ1ψ1)(1) = 0,

|C |(χ4ψ1)(x)/(χ4ψ1)(1) = 1,

|C |(χ4ψ2)(x)/(χ4ψ2)(1) = 1,

|C |(χ4ψ3)(x)/(χ4ψ3)(1) = 1,

|C |(χ5ψ1)(x)/(χ5ψ1)(1) = −1,

|C |(χ5ψ2)(x)/(χ5ψ2)(1) = −1,

|C |(χ5ψ3)(x)/(χ5ψ3)(1) = −1.

So b0(N) contains all of the characters of degree prime to 3, b1(N) contains the characters χ4ψi

(1 6 i 6 3), and b2(N) contains the characters χ5ψi (1 6 i 6 3).
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Chapter 2

Green Correspondence and Module

Theory

The Green Correspondence is one of the most fundamental results in the module-theoretic approach

to modular representation theory. First proven in 1964 by James Green in [52], this correspondence

links certain indecomposable RG modules with certain indecomposable RNG(D) modules.

In the first section we will exhibit relatively projective modules as a natural generalization

of projective modules. Recall that a module is projective if it is a direct summand of a free

module. This is not the only characterization of projective modules: indeed, we have the following

theorem, whose proof is not given here and is easily available throughout the literature. Notice

that Proposition 2.3 is a variation of this theorem.

Theorem 2.1 Let R be a ring, and M an R-module. Then the following are equivalent:

(i) M is projective;

(ii) if φ is a homomorphism from any R-module N onto M , then kerφ is a summand of N ; and

(iii) if N and L are two R-modules, and φ : N → L is onto and ψ : M → L is any homomorphism,

then there is θ : M → N such that the diagram

M

N L
��

ψ

���
�

�
�

�
θ

//

φ

commutes.

Once we have finished our discussion of relatively projective modules, we consider vertices,

which are minimal p-subgroups with respect to which our chosen module is relatively projective.

We will prove that minimal such objects actually exist, and form a conjugacy class of p-subgroups.

With the concept of vertex behind us, we can address the word ‘certain’ in the Green Corre-

spondence. ‘Certain’ can be replaced with ‘with a vertex in a collection of p-subgroups of G’. In
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fact, the correspondence holds for individual p-subgroups, so that if Q is a p-subgroup of G, there

is a naturally defined one-to-one correspondence between the indecomposable RG-modules with

vertex Q and the indecomposable RNG(Q)-modules with vertex Q.

We then move on to prove the Nagao Decomposition, which splits up the summands of a

restriction of a module into two collections – one that consists of Brauer correspondents of the

block which the original module lies in, and the other that consists of modules whose vertices are

severely restricted in shape. This result can be used to give a link between the Green and Brauer

Correspondences.

Then we use the Nagao Decomposition to prove the Second Main Theorem in a way that is

both enlightening and easier than the character-theoretic proofs that are available, and the way

that Brauer proved it in [17]. The proof here is that of Nagao, and considerably simplifies the

calculations.

We need an important result, called Green’s Indecomposability Criterion, first stated and proved

in [50].

Theorem 2.2 (Green’s Indecomposability Criterion) Let G be a group, and H a normal

subgroup of index p. Suppose that M is an absolutely indecomposable RH-module. Then MG,

the induced module, is also absolutely indecomposable.

We recall that we can assume that all of our indecomposable modules are absolutely indecom-

posable, since we can assume that R contains enough roots of unity for our needs.

2.1 Relatively Projective Modules

Recall the definitions of free and projective modules: if A is a ring, a module M is A-free (or simply

free if the context is clear) if there is a subspace U of M such that any linear transformation from

U to another A-module N can be extended uniquely to an A-module homomorphism M → N . A

module is A-projective (or simply projective if the context is clear) if it is a direct summand of a

free module. We will introduce the notation N |M to mean that N is (isomorphic to) a summand

of M . Then N is projective if N |M where M is free.

Now a subspace of a kG-module is simply a k1-module, so we could say that a kG-module M

is free if there exists a k1-module U in M such that every k1-module homomorphism from U to a

kG-module N extends uniquely to a kG-module homomorphism M → N .

We can clearly generalize this notion, and say that a module M is relatively H-free if there is

a kH-submodule U of M such that any kH-module homomorphism from U into a kG-module N

extends uniquely to a kG-module homomorphism M → N . A module is relatively H-projective if

it is a summand of a relatively H-free module.

Similarly, we can consider RG modules, and say that an RG-module is relatively H-projective

and relatively H-free accordingly. Many of the results of this section apply equally well for either

R or k, echoing the statement made in the preface.
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The following characterization of relatively H-projective modules is due to Higman (see [55]

and [56]).

Proposition 2.3 (Higman’s Criterion) Let U be an RG-module and H be a subgroup of G.

Then the following are equivalent.

(i) U is relatively H-projective.

(ii) U |(UH)G.

(iii) Any homomorphism ψ of an RG-module V onto U which splits as an RH-module homomor-

phism splits as an RG-module homomorphism.

(iv) For any two RG-modules V and W , and any two RG-module homomorphisms θ : V → W

and ψ : U → W , there is an RG-module homomorphism ρ : U → V , causing the diagram to

commute, if and only if there is such an RH-module homomorphism.

Proof: Suppose that (iv) holds, and let θ be an RG-module homomorphism from V onto U . Let

W = U , and ψ be the identity. Then an RG-module homomorphism ρ : U → V exists if and only if

an RH-module homomorphism does, and by the commutativity of the diagram, ρψ is the identity.

This implies (iii).

Now suppose that (iii) holds. Let ψ : (UH)G → U be the canonical map. If this splits as an

RH-module homomorphism, it can be extended to an RG-module homomorphism, since (UH)G is

relatively H-free, and so U |(UH)G, proving (ii). Certainly if U |(UH)G then U is a summand of a

relatively H-free module, and so is relatively H-projective, demonstrating (i).

Finally, suppose that U is relatively H-projective. We need to show (iv). So U is a direct

summand of a relatively H-free module F = U ⊕ U ′. Let πU be the projection onto U , and let

ψ̄ : F → W be ψ̄ = ψπU . If there exists ρ̄ : F → V such that θρ̄ = ψ̄, then ρ = ρ̄|U : U → V will

have the desired property that θρ = ψ.

Suppose that ρ : U → V is an RH-module homomorphism causing the diagram to commute as

a diagram of RH-module homomorphisms. We can let ρ̄ : F → V be ρ̄ = ρπU . Then this is an

RH-module homomorphism, and so can be extended to an RG-module homomorphism since F is

relatively H-free. This is as required, and so (iv) follows.

Notice that every RG-module is relatively G-projective, from the definition of relative projec-

tivity. [Every RG-module is also relatively G-free as well.] A natural question is whether every

RG-module is relatively H-projective for some proper subgroup H of G.

Proposition 2.4 Suppose that P is a Sylow p-subgroup of the group G. Then if H > P , any

RG-module is relatively H-projective.
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Proof: Suppose that φ : V → U is a homomorphism from V onto U , where U and V are RG-

modules. Suppose that φ splits as an RH-module homomorphism. So kerφ is a direct summand

of V , when we consider V as an RH-module. Let π be the (RH-module) projection of V onto

kerφ = M . We need to construct an RG-homomorphism π′ which is the identity on M and is zero

everywhere else. Then π′ is a projection, and so M is a direct summand of V as an RG-module, φ

splits as an RG-module homomorphism, and U is relatively H-projective.

Let G/H denote the set of right cosets of H in G, and let π′ be defined by

π′ = |G : H|−1
∑

s∈G/H

sπs−1,

where s denotes both the element of G/H and the corresponding linear transformation of V . We

need to show that this is an RG-homomorphism. Since s and π are linear transformations, so is

π′. The image of any element of V is in M , since

π′(V ) = |G : H|−1
∑

s∈G/H

sπs−1V ⊆ |G : H|−1
∑

s∈G/H

sπV = |G : H|−1
∑

s∈G/H

sM = |G : H|−1
∑

s∈G/H

M = M.

Also, π′ is the identity on M , since s−1v ∈M whenever V is, and so

π′(v) = |G : H|−1
∑

s∈G/H

sπs−1(v) = |G : H|−1
∑

s∈G/H

s(s−1(v)) = |G : H|−1
∑

s∈G/H

v = |G : H|−1|G : H|v = v.

Finally, we need to show that π′ is an RG-homomorphism. Let g ∈ G, and v ∈ V . Then

π′(gv) = |G : H|−1
∑

s∈G/H

sπs−1(gv) = |G : H|−1
∑

s∈G/H

gg−1sπs−1gv

= g|G : H|−1
∑

s∈G/H

g−1sπs−1gv

= g|G : H|−1
∑

r∈G/H

rπr−1v = gπ′(v),

since as s runs through all elements of G/H, so does g−1s. This means that g−1s represents

every linear transformation of V that s does, when summed over all right cosets. So φ is an

RG-homomorphism, as required.

2.2 Vertices and Sources

The concept of a vertex is closely related to how projective a module is. A vertex of a module M

will be a p-subgroup such that M is relatively P -projective. By Lemma 2.4 we know that Sylow

p-subgroups fit this description. We choose a minimal such member amongst the collection of all

p-subgroups which satisfy this criterion.

Definition 2.5 Let M be an indecomposable RG-module. A p-subgroup Q of G is a vertex of M

if M is relatively Q-projective but not relatively P -projective for any P such that P g < Q for some

g ∈ G.
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Since M is projective relative to a Sylow p-subgroup, vertices of M exist. We could equivalently

define a vertex as a minimal member of the partially ordered set of all p-subgroups P of G such

that M is relatively projective to P . Although we are guaranteed that vertices exist, a priori we

know nothing about their structure. In fact, all vertices of a RG-module M are conjugate. To

prove this, we need the Mackey decomposition formula, or Mackey’s Theorem:

Theorem 2.6 (Mackey’s Theorem) Suppose that H and L are subgroups of the group G, let

M be an RH-module, and let S be a set of double coset representatives for G with respect to H

and L. Then

(MG)L =
⊕
s∈S

((M s)L∩sHs−1)L .

Theorem 2.7 Let Q be a vertex of M , an indecomposable RG-module, and let H be a subgroup

of G. M is relatively H-projective if and only if H contains a conjugate of Q.

Proof: Firstly, ifH contains Q, thenM is a direct summand of a relatively Q-free module. Trivially

from the definition of a relatively Q-free RG-module F , F is also relatively H-free, and so M is

relatively H-projective. Now suppose that Qg 6 H. Then M is relatively Qg-projective, since in

the equivalent conditions of relative projectivity, we can simply factor any homomorphism through

the conjugation isomorphism to get the required map. So M is relatively Qg-projective, and thus

is relatively H-projective, by the previous part.

Now suppose that M is relatively H-projective. We must show that H contains a conjugate of

Q. Since M is relatively H-projective, there is a module N with M |NG. Then MH |(NG)H . By

Mackey’s Theorem, we can decompose (NG)H via (Q,H)-double cosets, and get

(NG)H =
⊕
s∈S

(
(N s)H∩sQs−1

)H
,

where S is a set of double coset representatives. Then M divides this direct sum, so it divides(
(N s)H∩sQs−1

)H for some s since M is indecomposable. Then M |
(
(N s)H∩sQs−1

)G, and so this

means that M is relatively H ∩ sQs−1-projective since
(
(N s)H∩sQs−1

)G is relatively H ∩ sQs−1-

free. Then it is relatively (H ∩ sQs−1)s-projective by the previous part of the theorem. But

(H ∩ sQs−1)s = Hs ∩Q 6 Q,

and by virtue of the fact that Q is a vertex, Hs ∩Q = Q; that is, Hs contains Q, so H contains a

conjugate of Q, as required.

Dual to the concept of a vertex is that of a source: the two are so closely related that they are

often described together, whereas here we have separated the proofs of the existence of each. The

reason behind this is so that we can compare the concept of a vertex easily in the next chapter. So

now we discuss the idea of a source. In the proof above, we often needed the statement that M

is a summand of some induced module. In fact, there is an indecomposable RQ-module, which is

unique in NG(Q), such that M is a summand of its induction to G.
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Theorem 2.8 Let Q be a vertex of an indecomposable RG-module M . Then there is an inde-

composable RQ-module S, called the source, such that M |SG, and S is unique up to conjugacy in

NG(Q).

Proof: Since M |(MQ)G, M |SG for some summand S of MQ, since M is indecomposable. We

can clearly choose S to be indecomposable. Now suppose that V is some other indecomposable

RQ-module with M |V G. But S|MQ, and M |V G so S|(V G)Q, and again by Mackey’s Theorem and

the fact that S is indecomposable, we decompose with respect to the (Q,Q)-double cosets to get

S|
(
(V s)Q∩sQs−1

)Q. Then since Q is a vertex, Q = sQs−1, so s ∈ NG(Q), and V s ∼= V .

2.3 The Green Correspondence

In this section we will state and prove the Green Correspondence. We fix a particular p-subgroup,

Q, and write N for the normalizer in G of this subgroup. We will define a one-to-one correspondence

between a subset of the indecomposable RG-modules and a similar subset of the indecomposable

RN -modules. In fact, we will define this correspondence for H > N , but even if we only defined it

for N , we could apply the same technique as we did in the case of Brauer’s First Main Theorem to

extend it to H > N . The first step is to define three types of subset that we will consider.

Definition 2.9 Let G be a finite group, Q a p-subgroup of G, and H > NG(Q). Let X denote the

set

X = {K : K 6 Q ∩Qg for some g ∈ G \H}.

[Notice that since H contains the normalizer of Q, Q ∩Qx 6= Q.] Let N be defined by

N = {K : K 6 H ∩Qg for some g ∈ G \H}.

Finally, let A be defined by

A = {K : K 6 Q and Kg /∈ X for all g ∈ G}.

We can easily see that N contains X, and that since Q /∈ X (by the remark made after its

definition), Q ∈ A. We extend the definitions of relatively H-projective to say that a module M is

relatively T -projective for some set of subgroups T if it is relatively H-projective for some H ∈ T .

Lemma 2.10 Let K be a subgroup of Q. The following are equivalent:

(i) there exists g ∈ G such that Kg ∈ X;

(ii) K ∈ X;

(iii) K ∈ N; and

(iv) there exists h ∈ H such that Kh ∈ N.
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Proof: Suppose that there is some g ∈ G such that Kg ∈ X. So there exists x ∈ G \ H such

that Kg 6 Q ∩ Qx. Conjugating by g−1 and noting that xg−1 /∈ H, we have K 6 Qxg
−1

. So

K 6 Q ∩Qxg−1
since K is a subgroup of Q. This proves (i)=⇒(ii).

The statement (ii)=⇒(iii) follows from the fact that X ⊆ N. The statement (iii)=⇒(iv) is

obvious, so it remains to show (iv)=⇒(i). Suppose that (iv) holds, so that there exists some h ∈ H
such that Kh ∈ N. Then Kh 6 H ∩Qx for some x ∈ G \H. We can conjugate by h−1, and notice

that xh−1 ∈ G\H, to get K 6 H∩Qxh−1
. Since K 6 Q, this gives K 6 Q∩Qxh−1

, as required.

We want to understand how RG-modules and RH-modules relate to one another. The first

result is preliminary in nature, but indicates how the Green Correspondence may work.

Proposition 2.11 Let U be a RG-module with vertex Q. Then there exist RH-modules V and

V ′, both with vertex Q, such that U |V G and V ′|UH .

Proof: U is relatively Q-projective, and so the source S of U is a RQ-module such that U |SG. In

the proof of Theorem 2.8, we showed that S|UQ. Notice that (SH)G = SG, and so since U |SG,

U |V G for some summand V of SH . Since (UH)Q = UQ and S|UQ, S|V ′
Q for some summand V ′|UH .

We will show that both V and V ′ can be chosen to have vertex Q.

Consider V first. Now V |SH , and so V |SG, and V is relatively Q-projective. Let Q′ be a vertex

of V , which can be chosen to be contained in Q. Then there is some RQ′-module W such that

V |WH , and so V G|WG. Then U |WG, and so U has vertex Q′. This means that Q = Q′, and V

has vertex Q.

Next consider V ′. Now V ′|UH |(SG)H , and so we can apply the Mackey decomposition, to get

V ′|
⊕
t∈T

((St)H∩tQt−1)H

(where T is a set of representatives for the (H,L)-double cosets), and so V ′|((St)H∩tQt−1)H for

some t. So V ′ is relatively H ∩ tQt−1-projective. Let Q′ be a vertex of V ′, contained in H ∩ tQt−1,

and T be a source for V ′, so that V ′|TH . Notice that |Q′| 6 |Q|. Also, we know that S|V ′
Q, and

hence S|(TH)Q, so we can decompose (TH)Q with respect to the (Q,Q′)-double cosets, yielding

S|((T x)Q∩xQ′x−1)Q,

for some x ∈ H. But this means that S is relatively Q ∩ xQ′x−1-projective, and so |Q| 6

|Q∩xQ′x−1|. Since |Q′| 6 |Q|, we can only have xQ′x−1 = Q, and V ′ has vertex Q, as required.

We shall now state the Green Correspondence, but its proof will require several preliminary

results.

Theorem 2.12 (Green Correspondence) Up to isomorphism, there is a one-to-one correspon-

dence between the set of all RG-modules with vertex in A and the set of all RH-modules with
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vertex in A. Furthermore, it is defined by

UH = V ⊕X, V G = U ⊕ Y,

where X is a relatively N-projective RH-module and Y is a relatively N-projective RG-module.

Furthermore, if U has vertex Q, V has vertex Q as well.

We will prove this theorem in several stages, the first being to show that V is a summand of

(V G)H , with an important restriction on the other summands.

Proposition 2.13 Let M be a relatively Q-projective RH-module, where Q 6 H 6 G. Then

(MG)H ∼= M ⊕W,

where every indecomposable summand of W is relatively gQg−1∩H-projective for some g ∈ G\H.

Proof: Since M is relatively Q-projective, there is some RQ-module N such that NQ = M ⊕M0,

where M0 is relatively Q-projective as well. Then

(NG)H =
⊕
s∈S

(
((NH)s)H∩sQs−1

)H
.

Now every module on the right-hand side of this expression is relatively H ∩ g−1Qg-projective for

various g ∈ G. Since we can choose S to include 1, we see that NH appears in this decomposition.

We can write

(NG)H = (MG)H ⊕ (MG
0 )H .

But every term on the left-hand side is already H ∩ g−1Qg-projective, and so therefore is every

term of MG
H . Since M |NH |(MG)H , we see that we can write

(MG)H ∼= M ⊕W,

where W is as stated in the proposition.

We can now prove the first half of the Green Correspondence, that of the decomposition of UH .

Theorem 2.14 Let U be an indecomposable RG-module with vertex Q′ in A. Then UH = V ⊕X,

where U |V G and X is a relatively N-projective module.

Proof: Proposition 2.11 implies that there exists an indecomposable RH-module V such that

U |V G, and V has vertex Q′. Now UH |(V G)H ∼= V ⊕W by the previous proposition, with every

summand ofW relatively Q′g∩H-projective, and soW is relatively N-projective, from the definition

of N. So UH is isomorphic with a summand of V ⊕W , either V ⊕X or X for some summand X of

W . Notice that W is relatively N-projective, and so therefore is X. We aim to show that UH 6∼= X,

and obtain the result.
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But by using the second part of Proposition 2.11, we see that UH has an indecomposable

summand with vertex Q′. If UH ∼= X, a relatively N-projective and hence relatively X-projective

(by Lemma 2.10) module, this would mean that Q′ ∈ X, a contradiction to the fact that Q′ ∈ A.

So UH ∼= V ⊕X, with X relatively N-projective, as required.

Theorem 2.15 Let V be an indecomposable RH-module with vertex Q′ in A. Then V G = U ⊕Y ,

where U is an indecomposable RG-module with V |UH , and Y is a relatively N-projective RG-

module.

Proof: Since V is relatively Q′-projective, there is some RQ′-module U such that UH = V ⊕M (and

so M is relatively Q′-projective as well). Then UG = V G⊕MG, and so (UG)H = (V G)H ⊕ (MG)H .

Now we can apply the Mackey decomposition theorem to get

(UG)H =
⊕
s∈S

(
(U s)H∩sQ′s−1

)H
.

where s is a set of (H,Q′)-double coset representatives in G. But U s ∼= U , and since we can choose

S so that 1 ∈ S, we can write

(UG)H = UH ⊕N,

where N is a direct sum of RH-modules which are relatively N-projective. The Krull–Schmidt

Theorem now applies, yielding

(V ⊕M)⊕N = (V G)H ⊕ (MG)H .

Using Proposition 2.13 on V , and the fact that V is indecomposable, we obtain (V G)H = V ⊕ Y ′,

where Y ′ is a sum of relatively X-projective modules, and so there is some summand U of V G

such that UH = V ⊕ Y , where Y is a summand of Y ′, and hence consists of relatively N-projective

modules, as required.

From this we have enough to easily demonstrate the truth of the Green Correspondence. We

have to show that the two methods of defining the correspondence are equal; i.e., if UH = V ′ ⊕ Y

or V G = U ′ ⊕ X for some other modules U ′ and V ′ with vertex Q′, then U = U ′ and V = V ′.

But the Krull–Schmidt Theorem, together with the fact that U , U ′, V and V ′ are not relatively N-

projective and both X and Y are, gives that U ′ = U and V ′ = V . Thus the Green Correspondence

is proven.

We now give one final very useful result in this section, the Burry–Carlson–Puig Theorem. We

do not prove it here; the reader is referred to, for example, [64] or [10].

Theorem 2.16 (Burry–Carlson–Puig Theorem) Let Q be a p-subgroup of G, and let H be

a subgroup of G containing NG(Q). If M is an indecomposable RG-module such that a summand

N of MH has vertex D, then M has vertex D, and M and N are Green correspondents.

26



2.4 Nagao Decomposition

Let us fix a p-subgroup D of G, and a subgroup H such that DCG(D) 6 H 6 NG(D). We quote

the following result of Curtis and Reiner, (see [26, 58.11]).

Theorem 2.17 Let e be a block idempotent of RG, associated with the block B. Then either

σ(e) ≡ 0 mod J(RH) or σ(e) ≡
∑
ei mod J(RH), where the sum is taken over block idempotents

ei of RH associated with blocks that are Brauer correspondents of B. Furthermore, σ(e) ≡ 0

mod J(RH) if and only if there are no Brauer correspondents of B in RH.

Although the statement of the Nagao Decomposition is accessible at this point, the proof requires

some of the concepts from Sections 3.1 and 3.2.

Theorem 2.18 (Nagao Decomposition) Let e be an idempotent of RG, and M an RG-module

such that eM = M . Then e = e1 + e2, where e1 and e2 are either orthogonal idempotents such

that ehi = ei for arbitrary h ∈ H, or one of the ei is zero, and the resulting decomposition of the

restricted module

MH = e1M ⊕ e2M

has the following properties:

(i) e1M is either zero or a direct sum of indecomposable RH-modules belonging to blocks that

are Brauer correspondents of e(RG); and

(ii) e2M is either zero or a direct sum of indecomposable RH-modules whose vertices do not

contain D.

Proof: Let B denote the block with idempotent e. Consider σ(e). Then by Theorem 2.17, σ(b) is

congruent modulo the (unique) maximal ideal of AH to the sum of the block idempotents of RH

that are Brauer correspondents of B. So either σ(e) ≡ 0 or σ(e) ≡ ē modulo the unique maximal

ideal J(AH). If σ(e) ≡ 0, let ē = 0. Let e1 = eē, and e2 = e(e− ē). Then e = e1 + e2, and e1 and

e2 are orthogonal. Also, since ei ∈ AH , ehi = ei for all h ∈ H. Also,

M = eM = (e1 + e2)M = e1M ⊕ e2M.

Since M = eM , e1M = ēM , and so (i) is true by construction of ē. We will now demonstrate (ii).

Let C be a conjugacy class of G, with class sum c, and write c = c1 = c2, where c1 = σ(c).

Then c2 is a sum of elements each of which lies outside CG(D). Since CG(D) P H, C splits up as

C1 ∪ C2, where ci is the class sum of Ci, and Ci is a union of conjugacy classes of H. Lemma 3.10

implies that, modulo J(AH), AHD′ ≡
∑

iRCi, where each class sum Ci comes from a conjugacy class

with defect group contained within D. So let x ∈ C2, and let D′ be a defect group of C2. Then

D′ ∈ AHD′ , and since x does not centralize D, D 66 D′. So c− c1 belongs to AHD′ for some D′ 6 H

that does not contain D. Thus

c− σ(c) ∈
∑
D 66D′

AHD′ .
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But the block idempotent e is a linear combination of class sums, and so

e− σ(e) ∈
∑
D 66D′

AHD′ .

Now AHD′ is an ideal of AH , and so e(e− σ(e)) ∈
∑
D 66D′

AHD′ . But e(e− σ(e)) ≡ e2 mod J(AH), and

so

e2 ∈
∑
D 66D′

AHD′ + J(AH).

Either e2 = 0 or e2 is a sum of primitive orthogonal idempotents that live in AH , and so live in∑
D 66D′

AHD′ + J(AH), since this is an ideal and e2 lies in this ideal. We can use Rosenberg’s Lemma,

Theorem 3.1, to show that each of these primitive idempotents lies in one of the AHD′ for some

D 66 D′. So these primitive idempotents are sums of indecomposable modules that are relatively

D′-projective, and so have vertices not containing D, as required.

We will give a link between the Green and Brauer Correspondences in the next result, which

can be found in [26, §59].

Corollary 2.19 Let H = NG(D), and suppose that M is an indecomposable RG-module. Let

M ′ be its Green correspondent in H, an indecomposable RH-module, and suppose that both M

and M ′ have vertex D. Then M and M ′ lie inside blocks that are Brauer correspondents of one

another.

Proof: Let B be the block that M ′ lies in. The Green Correspondence demonstrates that M ′|MH ,

and so since M ′ is indecomposable, it is a summand of either e1M or e2M , where these are given in

the Nagao Decomposition. If M ′|e2M , then M ′ does not have vertex D, contrary to assumption.

If M ′|e1M , then M ′ belongs to a block that is a Brauer correspondent of B, as required.

What this result says is that the Green Correspondence behaves well with respect to the Brauer

Correspondence: the Brauer Correspondence maps sets of kH-modules to sets of kG-modules, and

the Green Correspondence maps individual RH-modules to individual RG-modules, but respects

the partitioning that the Brauer Correspondence sets up.

2.5 Brauer’s Second Main Theorem

Before we start, recall the following famous result of Green, which he proved in [51].

Theorem 2.20 (Green’s Theorem on Zeros of Characters) Let Q be a p-subgroup of G,

and let H > Q. Suppose that M is a relatively Q-projective RH-module. If x is an element

of G whose p-part is not H-conjugate to an element of Q, then the character afforded by K ⊗RM
is zero on x.
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Proof: Let t denote the p-part of x. By assumption, t is not an element of D, so in particular is

not the identity. Hence o(x) is a multiple of p. Set K = 〈x〉 and L = 〈xp〉. Then |L : K| = p

and L P K. (We are planning to use Green’s Indecomposability Criterion here.) We know that M

is relatively Q-projective, and so there is an RQ-module N such that M |NH . Then, by Mackey’s

Theorem,

(NH)K =
⊕
s∈S

((N s)K∩Qs)K ,

where s is a set of representatives for the (K,Q)-double cosets of H. But since t is not H-conjugate

to an element of Q, t /∈ Qh for all h ∈ H, and so Qh ∩K 6 L. So we can write (NH)K as

(NH)K =
⊕
s∈S

(
((N s)K∩Qs)L

)K
.

Now (NK∩Qs)L can be written as a direct sum of indecomposable RL-modules, say (NK∩Qs)L =⊕
Vi. Then for each Vi, V K

i is indecomposable by Green’s Indecomposability Criterion, and so

(NK∩Qs)K is a sum of indecomposable RK-modules. But K is abelian and x /∈ L, so the trace of

any induced indecomposable representation from L to K vanishes on x. Thus the representation

afforded by (NK∩Qs)K takes zero on x. But MK is a sum of such modules, so vanishes on x. Thus

M vanishes on x, as required.

The proof given here of Brauer’s Second Main Theorem follows that of Curtis and Reiner (see

[26]), itself based on Nagao’s proof. We first give a preparatory lemma, which relates characters to

the Nagao Decomposition of the previous section.

Lemma 2.21 Let e be a block idempotent in RG, and letM be an RG-module such that eM = M .

Let x ∈ G, and write x = vu, where v is p-regular and u is p-singular. Set D = 〈u〉, and H = CG(u).

Let

MH = e1M ⊕ e2M

be the Nagao Decomposition of MH . If χ is the character of K ⊗R M and ψ is the character of

K ⊗R e1M , then χ(x) = ψ(x).

Proof: Certainly, since M = e1M ⊕ e2M , the trace of the representations ρ, ρ1 and ρ2 afforded by

the modules M , e1M and e2M , satisfy

Tr(ρ(x)) = Tr(ρ1(x)) + Tr(ρ2(x)).

Now Tr(ρ(x)) = χ(x), and Tr(ρ1(x)) = ψ(x), so we are actually trying to show that Tr(ρ2(x)) = 0.

So let V be an indecomposable submodule of e2M . Then V does not have vertex containing D.

Let Q be a vertex of V , and notice that V is an RH-module that is relatively Q-projective. Since

V does not have vertex containing D, D 66 Q. But this means that since H = CG(u), u is not

H-conjugate to an element of Q. Then Theorem 2.20 above demonstrates that the trace of V
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vanishes on x. This was an arbitrary summand of e2M , and so the result follows.

We can now give Brauer’s Second Main Theorem. At this point, the reader is advised to look

back at the end of Chapter 1, where we defined the generalized decomposition numbers.

Theorem 2.22 (Second Main Theorem) Given the notation introduced in the above discus-

sion, suppose that dtij 6= 0 for some p-singular t, and C = CG(t). If ζi lies in the block B of kG,

and ψj lies in the block b of kC, then bG = B.

Proof: Since ζi is an irreducible ordinary character of G, it is afforded by some module K ⊗RM .

Then, if e is the block idempotent of B, eM = M . Let

MC = e1M ⊕ e2M

be the Nagao Decomposition of MC . Suppose that x is an element of G with p-part t, and write

x = tu. Then Lemma 2.21 tells us that ζi(x) = χ(x), where χ is the character afforded by the

module e1M . But Theorem 2.18 says that e1M is either zero or a sum of indecomposable RH-

modules belonging to blocks that are Brauer correspondents of B. If (ζH)b′ denotes the contribution

to ζH from irreducible characters of H lying in the block b′, we have

ζH(x) =
∑

(b′)G=B

(ζH)b′(x).

Now, if b′ does not correspond to B, then (ζH)b′(x) = 0, since the contribution to ζH(x) from

every summand of e2M is zero. Since each ordinary character can be written as a linear combination

of modular characters in its block, and the modular characters in a block are linear independent,

this implies that dtij = 0 for all modular characters ψj for which bG 6= B. Then the result follows.
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Chapter 3

G-Algebras

The notions of defect groups and vertices look very different. However, they are intimately linked,

via the notion of G-algebras. These were first introduced by Green [53] in 1968, although it was

not until the time of Puig in the 1980s that the theory really came of age. In [23], Broué and Puig

generalize the Brauer homomorphism, first considered in [16] and [17] with regards to blocks, to

get the Brauer map, defined between subalgebras of fixed points of a particular G-algebra. The

next development came in [76], where Puig extended the notion of subpairs created by Alperin and

Broué in [6] to that of pointed groups. By considering ordering between pointed groups, we can

extend the notion of defect groups to pointed groups.

The main aim of this chapter is to see how the block-theoretic and module-theoretic methods

are similar. As such, we do not prove many important results in this chapter. One particularly

important result is that there is a correspondence between pointed groups, called the Puig Cor-

respondence, which mirrors that of the Green Correspondence; in fact, it is possible to derive the

Green Correspondence from the Puig Correspondence. For the statement and proof of the Puig

Correspondence, see [95], the book by Thévenaz.

In this chapter we will need an important result from commutative algebra.

Theorem 3.1 (Rosenberg’s Lemma) Let R be an artinian ring, and I1, . . . , In be a collection

of ideals. If a primitive idempotent lies inside I1 + · · ·+ In, then it lies inside Ij for some j.

3.1 G-Algebras

In this short section we will give the definition of a G-algebra and interior G-algebra, and give two

fundamental examples of G-algebras.

Definition 3.2 Let A be an R-algebra, and let φ : G→ Aut(A) be a group homomorphism. Then

A is said to be a G-algebra. If instead A is equipped with a map ζ : G→ A∗ (the group of units of

A), then A is said to be an interior G-algebra.

31



Notice that since there is always a homomorphism ψ : A∗ → Aut(A) by sending a to conjugation

by a, an interior G-algebra is always a G-algebra because we can construct the map ζ. The existence

of this homomorphism ψ is why interior G-algebras are so-called: conjugation by a is an inner

automorphism. There is no uniqueness regarding ζ; there may be more than one way of making a

G-algebra into an interior G-algebra. Also, there exist G-algebras that are not interior G-algebras.

Notice that G can act on A by filtering through φ; if a ∈ A and g ∈ G, then ag = (φ(g))(a), the

element a is sent to by the automorphism φ(g). This action is very natural, and will be considered

in the sequel. We will call this action the left G-action on A.

Example 3.3 As an example of an interior G-algebra, consider the group algebra RG itself. The

map we need is immediately obvious: g 7→ 1 ·g. This makes RG into an interior G-algebra. Indeed,

this is one of two very important examples of interior G-algebras, which we will consider in the rest

of this chapter.

This is the first of two G-algebras that we shall consider, although there are more examples

around, for example, the twisted group algebras – see [95] for more information on these and other

G-algebras.

Before we continue with the other main example, we recall how modules are connected with

representation theory. An R-moduleM together with a map G→ AutR(M) can be easily made into

an RG-module, and any RG-module can be thought of as an R-module with a map G→ AutR(M).

Example 3.4 Consider an RG-module M . So we have the map ζ : G → AutR(M). Let A =

EndR(M), which is an R-module. Then AutR(M) = A∗, and therefore we have a map ζ : G→ A∗.

This makes EndR(M) for any RG-module M into an interior G-algebra.

The reason that these two interior G-algebras are important lies in the Brauer homomorphism,

although it does not look that way at the moment. In the next section we will define an important

map Br, which we will call the Brauer map, between a certain subset AH of A, and a quotient of

AH . It will become clear as to why this map is called the Brauer map.

3.2 Defect Groups and the Brauer Map

For this section, we let H be a subgroup of G, a finite group, and consider a G-algebra A. Recall

the left G-action on A given by ag = (φ(g))(a), and that this is an automorphism of A. It seems

natural to consider the set of all elements of A fixed by this action. Then this is a subalgebra, since

a 7→ ag is an automorphism.

Definition 3.5 Let H be a subgroup of G and A be a G-algebra. The set AH is given by

AH = {a ∈ A : ah = a for all h ∈ H}.
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Since it is the intersection of subalgebras, AH is also a subalgebra. However, it is not necessarily

a G-algebra. Now consider a conjugate g−1Hg of H. Since φ is a homomorphism, (ag1)g2 = ag1g2 ,

and so if a ∈ AH and h ∈ H,

(ag)g
−1hg = agh = ag,

and so ag is fixed under the action of g−1Hg. Now suppose that g ∈ NG(H). Then ag is fixed

by g−1Hg = H, and so ag ∈ AH . So AH is preserved under the left NG(H)-action. This means

that the map φ|N : NG(H) → Aut(AH) is defined, since if g ∈ NG(H), then φ(g) acts as an

automorphism which preserves AH (because (φ(g))(a) = ag ∈ AH), and so we can make AH into

an NG(H)-algebra. We can also make AH into an interior CG(H)-algebra: if g ∈ CG(H), then

ζ(g) = g · 1 in A, and certainly g · 1 ∈ AH , since gh = g for all h ∈ H (as g centralizes H). Thus

ζ|CG(H) maps into AH .

Now suppose that K is a subgroup of H, and let T be a right transversal of K in H. Before we

describe the Brauer map, we need to consider another map, called the relative trace map, TrHK (see

[53], although Green denotes this by TK,H). This is defined as

TrHK : AK → AH , TrHK : a 7→
∑
h∈T

ah.

We first ought to check that this map is well-defined. But if T ′ is another transversal, then for

t ∈ T and t′ ∈ T ′ with t, t′ in the same right coset. Then t′ = kt for k ∈ K, and akt = (ak)t = at,

so this map is indeed well-defined.

Since a 7→ ah is a homomorphism, TrHK is also a homomorphism. This means that the image of

TrHK(AK), written AHK , is a subalgebra. In fact, it is an ideal. This follows from (i) and (ii) of the

lemma below, which collects several properties of the trace map that we will need.

Lemma 3.6 Let H, K and L be subgroups of G with L,K 6 H, and let T and T be sets of

representatives for the K cosets of H and the (K,L)-double cosets of H respectively.

(i) bTrHK(a) = TrHK(ba) for all a ∈ AK and b ∈ AH .

(ii) TrHK(a)b = TrHK(ab) for all a ∈ AK and b ∈ AH .

(iii) If L 6 K, TrHK TrKL = TrHL .

(iv) TrHK(a) =
∑

t∈T TrLKt∩L(at).

(v) AHKA
H
L 6

∑
h∈H A

H
Kh∩L.

Proof: Let a ∈ AK , and b ∈ AH . Then

bTrHK(a) = b
∑
h∈T

ah =
∑
h∈T

bhah =
∑
h∈T

(ba)h = TrHK(ba),

and

TrHK(a)b =

(∑
h∈T

ah

)
b =

∑
h∈T

ahbh =
∑
h∈T

(ab)h = TrHK(ab),
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proving (i) and (ii).

To prove that the trace map is transitive is fairly straightforward: if T is a transversal to K in

H, and S is a transversal to L in K, then ST is a transversal to L in H, and

TrHK TrKL (a) =
∑
t∈T

(∑
s∈S

as

)t
=
∑
t,s

ast = TrHL a,

proving (iii).

Now let T be a set of representatives for the (K,L)-double cosets. Then for each t ∈ T , we

can find a Kt ∩ L transversal of L, say St. Then the union T of all of the transversals tSt is a

transversal of K in H, and so

TrHK(a) =
∑
t∈T

at =
∑
t∈T

∑
u∈St

atu =
∑
t∈T

TrLKt∩L(at),

proving (iv).

Now consider TrHK(a) TrHL (b), for a ∈ AK and b ∈ AL. Then by (i),

TrHK(a) TrHL (b) = TrHL (TrHK(a)b),

and by (ii) and (iv),

TrHL (TrHK(a)b) = TrHL

(∑
t∈T

TrLKt∩L(ahb)

)
.

Finally, by (iii), the transitivity of the trace map,

TrHL

(∑
t∈T

TrLKt∩L(ahb)

)
=
∑
t∈T

TrHKt∩L(ahb).

So AHKA
H
L consists of elements in

∑
h∈H A

H
Kh∩L, proving (v).

Parts (i) and (ii) demonstrate that indeed AHK is an ideal of AH .

We now come to the definition of a defect group, given in [53]. In this paper, Green first defines

defect groups of G-algebras, then shows that the two notions of defect group coincide when our

G-algebra is RG (or kG), and this notion of defect group coincides with the notion of a vertex

when the G-algebra is EndR(M), for M an indecomposable R-module.

Definition 3.7 Let A be a G-algebra over R or k, and let e be a primitive idempotent in AG. If

e ∈ AGD and whenever e ∈ AGH for any H of G, some conjugate of D lies in H, then D is said to be

a defect group of the idempotent e.

In this definition, we have associated a defect group to an idempotent. This can be reconciled

with the definition of defect group we already have by noting that to every block there is associated

a unique primitive idempotent. We now show that these objects exist. The following result is due

to Green [53].
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Theorem 3.8 Let A be a G-algebra, with a primitive idempotent e. Then a defect group D of e

exist, any two defect groups are conjugate, and D is a p-group.

Proof: Consider the partially ordered set of all subgroups H of G such that e ∈ AGH . This set is

non-empty, since e ∈ AGG. Let D be a smallest member of this set. Then e ∈ D. Now suppose that

H is another subgroup such that e ∈ AGH . By Lemma 3.6(v),

e ∈ AGHAGD 6
∑
g∈G

AGHg∩D.

By Rosenberg’s Lemma, Theorem 3.1, e lies in one of the ideals AGHg∩D. But D was chosen to be

the smallest group with e ∈ AGD, so Hg contains D. Then H contains D−1, as required.

Finally we need to show that D is a p-group. Equivalently, we can show that for some Sylow

p-subgroup P , e ∈ AGP . Then some conjugate of D must lie inside P , making D a p-group. Let

a ∈ AG. Recall that therefore a ∈ AP . Then

TrGP (a) =
∑
g∈T

ag,

where T is a transversal to P in G. But a ∈ AG, so TrGP (a) = |G : P |a. But |G : P | is not divisible

by p, and so an inverse to |G : P | exists, and notice that as a constant, it lies inside AG. So by

Lemma 3.6(i),

TrGP

(
a

|G : P |

)
= |G : P |−1 TrGP (a) = |G : P |−1|G : P |a = a.

Therefore AGP = AG, and since e ∈ AG, e ∈ AGP , proving that D is a p-group.

We have associated a defect group to a G-algebra. In the next section we shall prove that the

two notions of defect group coincide, as well as show that in the case of the G-algebra EndR(M),

the defect groups are the vertices. We will end this section by defining the Brauer map.

Earlier, we showed that AHK is an ideal of AH . We will use this fact to define the Brauer map.

Since AHK is an ideal of AH for all K 6 H, we can take the sum of various of these ideals. We will

also quotient out by the Jacobson radical of this quotient ring to get

BrAP : AP → Ā(P ),

the canonical surjection given by quotienting AP by the ideal
∑
Q<P

APQ + J(AP ). This is called the

Brauer map. Note that this is the zero map unless P is a p-group.

3.3 kG and EndR(M)

Our first aim is to show that the G-algebra and block-theoretic definitions of defect group coincide.

Because of the obvious confusion that may arise in this section, we refer to the block-theoretic

defect groups as ‘class defect groups’, until we have shown that they do, indeed, coincide. Our first

35



result is Osima’s Theorem, which gives an equivalent definition of the class defect group of a block

idempotent.

Theorem 3.9 (Osima’s Theorem) Suppose that P is a p-subgroup of G. Let MP be the sub-

module of Z (kG) generated by the class sums of conjugacy classes with defect group contained in

P . Then MP is an ideal of Z (kG). Let B be a block of kG, with block idempotent e. Then D is a

class defect group of B if and only if e ∈MD but e /∈MP for P < D.

We can see that this formulation of class defect group looks much more likely to be shown

equivalent to that of a defect group. Before we prove this, we need a lemma, which we made use

of in the proof of the Nagao Decomposition, in the previous chapter.

Lemma 3.10 Let A denote the G-algebra RG, and let H be a subgroup of G. Then AH has a

basis consisting of the class sums corresponding to the H-conjugacy classes. If D 6 H 6 G, and

D is a p-subgroup of G, then

AHD ≡
∑

Rci mod J(AH),

where the terms in the sum are all H-class sums ci whose conjugacy classes have class defect groups

H-conjugate to a subgroup of D.

Now let e be a block idempotent lying in AG. Suppose that e has defect group D. Then e ∈ AGD,

and so may be written as

e ≡
∑
Di=D

aici +
∑
Dj<D

bjcj mod J(AG),

where the first sum consists of class sums whose conjugacy classes have class defect groups conjugate

to D, and the second sum consists of class sums whose conjugacy classes have class defect groups

conjugate to proper subgroups of D. If ai = 0 for all i, then e would be in
∑
AGD′ over the proper

subgroups D′ of D, and so lies in one of the AGD′ for some D′ by Rosenberg’s Lemma, contradicting

the fact that D is a defect group for e. Thus one of the ai is non-zero, and so by Osima’s Theorem,

D is a class defect group for e. By reducing modulo the Jacobson radical, the class defect groups

and the defect groups coincide when the G-algebra is kG, as we have asserted. So from now on, we

will simply refer to class defect groups as defect groups, as before.

Our next task is to consider the G-algebra EndR(M), where M is an RG-module. Recall

Higman’s Criterion, Proposition 2.3. At that time, we did not have the relative trace map, and so

could not give one of the equivalent conditions for relative projectivity.

Proposition 3.11 (Higman’s Criterion) Let U be an RG-module and H be a subgroup of G.

Then the following are equivalent.

(i) U is relatively H-projective.

(ii) There exists f ∈ EndRG(U) such that TrGH(f) = 1.
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The proof of this fact is given in [35, II.3.8].

Example 3.12 Consider the G-algebra A = EndR(M), where M is indecomposable. We will

show that the defect groups of A are simply the vertices of M . Recall that the action of G on A

worked by sending φ ∈ A to g−1φg, which makes sense because gm is defined for m ∈ M . If H

is a subgroup of G, then AH is the subalgebra of A that is fixed by this action, so it is all of the

R-endomorphisms of M that commute with h ∈ H; i.e., all RH-endomorphisms of M . Now since

M is indecomposable, 1M , the identity morphism, is a primitive idempotent of AG (since it clearly

belongs to AG). Now if H is any subgroup of G,

1M ∈ AGH ⇐⇒ 1 = TrGH(φ),

for some φ ∈ AH , the set of all RH-endomorphisms of M . But this is precisely Higman’s Criterion,

and so 1M ∈ AGH if and only if M is relatively H-projective. Then clearly the two concepts of defect

group, as a minimal subgroup D such that 1 ∈ AGD, and vertex, as a minimal subgroup D such that

m is relatively D-projective, are equivalent.

So the defect groups of EndR(M) are the vertices of M , as we have asserted before.

3.4 Pointed Groups

In this section we will introduce most of the definitions and terminology that are required to study

Puig’s work on G-algebras. Pointed groups are fundamental tools in this approach to representation

theory. First, we recall the definition of a point:

Definition 3.13 Let A be an R-algebra. A point of A is a conjugacy class of primitive idempotents

of A.

The reasoning behind calling these conjugacy classes points is that they are in one-to-one

correspondence with the maximal ideals of A, the correspondence being defined by sending the

maximal ideal to the unique point that is not contained within it.

Definition 3.14 Let A be a G-algebra. A pointed group on A is a pair (H,α), where H is a

subgroup of G and α is a point of AH .

Following [76], we will denote a pointed group (H,α) by Hα. We will want to consider pointed

groups as a generalization of the notion of subgroups, and so we need to define a partial order

between pointed groups. Let Hα and Kβ be pointed groups. Suppose that K 6 H. Notice that

every element a ∈ AH is also an element of AK . Then we write Kβ 6 Hα if for some idempotent

e ∈ α, there is some f ∈ β such that f appears in a decomposition of e, viewed as an element of

AK .

More formally, we can define the restriction map, rHK : AH → AK , given by simply embedding

AH into AK . Then for two pointed groups Hα and Kβ , we say that Kβ 6 Hα if K 6 H and for
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some e ∈ α there exists f ∈ β such that a decomposition of rHK(e) includes f . Alternatively, we

can write this as for some e ∈ α there exists f ∈ β such that f = efe. In fact, if it is true for

some e ∈ α, it is true for every e′ ∈ α, since e′ = g−1eg by the definition of a point, and so g−1fg

appears in a decomposition of rHK(e′).

We can introduce another relation as well as 6: we say that Hα is relatively Kβ-projective

if K 6 H and α ⊆ TrHK(AKβAK). Let us examine what this second condition means – firstly,

AKβAK is an ideal of AK (we need this rather than AKβ since AK is noncommutative). This

means that TrHK(AKβAK) is an ideal of AH , by Lemma 3.6. So α ⊆ TrHK(AKβAK) simply means

that one of the e ∈ α is also in this ideal, since we can conjugate to get the rest. In fact, if we write

I for TrHK(AKβAK), then e ∈ I if and only if α ⊆ I, and α ⊆ I if and only if AHαAH ⊆ I. So we

can see this as the fact that the principal ideal generated by β, then filtered through TrHK , contains

the principal ideal generated by α.

Example 3.15 Consider the G-algebra A = RG. Then AG = Z (RG), and a point of AG is simply

a block idempotent of RG. This gives us pointed groups (G, e), where e is any block idempotent

of G. Now Z (RH) ⊆ AH , and so corresponding to any block idempotent of RH there is a point of

AH , and so a pointed group.

We now define the concept of a local pointed group. Our final aim is to define yet another

formulation of defect group, this time for pointed groups. As such, they will be called defect

pointed groups. We first define the notion of a local pointed group.

Definition 3.16 A pointed group Pα of a G-algebra A is a local pointed group if BrAP (α) 6= 0. In

this case α is called a local point of P on A.

Of course, this definition precludes the possibility that Ā(P ) = 0, so in particular P has to be a

p-group, as the notation suggested. We can take the collection of all local pointed groups contained

within a particular pointed group, and choose the maximal elements. These will be p-groups, of

course, and so we will have picked a collection of p-groups that have been maximized with respect

to inclusion. This sounds a lot like defect groups and vertices, and in fact they are the same thing.

Definition 3.17 Let A be a G-algebra, and Hα be a pointed group (so that α is a point of AH).

Let S denote the set of all local pointed groups Pγ for which Pγ 6 Hα, in the sense defined above.

Partially ordering this set with respect to 6, the maximal elements of S are called defect pointed

groups of Hα.

It turns out that the maximal local pointed groups contained in Hα are also the minimal groups

Pγ such that Hα is relatively Pγ-projective (see [95, 18.3]).

We can already see that the definition of a defect pointed group may well be applied to the

G-algebra RG, whose pointed groups Gα are simply (G, e) where e is a block idempotent. So we

would essentially be associating a p-subgroup of G to a block idempotent.

We now state without proof a result regarding defect pointed groups (see [76, Theorem 1.2]).
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Theorem 3.18 Let Hα be a pointed group on a G-algebra A. If P is a minimal subgroup of G

such that α ⊆ AGP , there exists a local point γ of P such that α ⊆ TrGP (APγAP ).

Example 3.19 Consider the G-algebra A, and let Gα be a pointed group of A. Let Pβ be a defect

pointed group of Gα. Then Gα is relatively Pβ-projective, and so α ⊆ TrGP (APβAP ) ⊆ AGP . Thus

α is contained in AGP , and every idempotent of α has a defect group contained within P . Let Q be

such a defect group. Then if e ∈ α, e ∈ AGQ, and so by the above result, there is some local point γ

of Q such that

α ⊆ TrGQ(AQγAQ),

and so Gα is relatively Qγ-projective, contrary to the hypothesis that Pβ is a defect pointed group

of Gα. So the defects of Gα are equivalent to the defect groups of e, where α = {e}.
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Chapter 4

Simple Group Theory

The applications of modular representation theory were most immediate in the field of simple group

theory. Richard Brauer used the modular character theory to stunning effect in the 1950s and 1960s

to massively restrict the structure of simple groups with certain properties.

His character-theoretic techniques were used firstly in the Brauer–Suzuki Theorem [21], in which

the two authors use modular character theory to demonstrate that there are no finite simple groups

with a Sylow 2-subgroup isomorphic to a generalized quaternion group. This was one of the first

steps in the Classification of the Finite Simple Groups.

After his initial successes with the Brauer–Suzuki Theorem, Brauer applied his almost magical

ability with characters to play a pivotal rôle in the proof of the Alperin–Brauer–Gorenstein Theorem

[5], which classifies all possible simple groups with a quasi-dihedral or wreathed Sylow 2-subgroup.

After the publication of the Brauer–Suzuki Theorem, Glauberman generalized the result, consid-

ering a very special way in which the Sylow 2-subgroup is embedded. More precisely, Glauberman

considered the case where an involution in the Sylow 2-subgroup is not conjugate to any of the

other involutions in that subgroup. The result is his celebrated Z∗-Theorem, which is proven in

Section 4.4.

Also in this chapter we consider in detail the modular representations of the smallest (non-

abelian) simple group, A5.

4.1 Modular Representations of A5

Consider the group G = A5, the smallest non-abelian simple group. It has order 60 = 22 · 3 · 5,

and has five conjugacy classes with representatives 1, (1 2 3), (1 2)(3 4), (1 2 3 4 5) and (1 3 4 5 2) of

orders 1, 20, 15, 12 and 12. So there are four classes of 2-regular elements, four classes of 3-regular

elements and three classes of 5-regular elements.

In characteristic 0, there are five irreducible ordinary characters, namely
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χi 1 (1 2 3) (1 2)(3 4) (1 2 3 4 5) (1 3 4 5 2)

χ1 1 1 1 1 1

χ2 3 0 −1 α β

χ3 3 0 −1 β α

χ4 4 1 0 −1 −1

χ5 5 −1 1 0 0

where α = (1 +
√

5)/2 and β = (1−
√

5)/2.

Now consider a subgroup of the form NG(P ), where P is a 2-subgroup. The only 2-local

subgroups of G are isomorphic to A4, the normalizer of C2 × C2 in A5. This has four conjugacy

classes, with representatives 1, (123), (132) and (12)(34), of cardinalities 1, 4, 4 and 3 respectively.

The ordinary character table for A4 is given by

ζi 1 (1 2 3) (1 3 2) (1 2)(3 4)

ζ1 1 1 1 1

ζ2 1 1 ω ω2

ζ3 1 1 ω2 ω

ζ4 3 −1 0 0

where ω is a primitive cube root of unity.

The only non-trivial 3-subgroup is C3, and has normalizer S3. Its ordinary character table was

given in Section 1.6. The only non-trivial 5-subgroup is C5, which is normalized by D10. If the

Sylow 5-subgroup is given by 〈x〉 = 〈(1 2 3 4 5)〉, we know that a generating involution must map

x to x−1. The involution (2 5)(3 4) does that. The conjugacy classes of M = D10 are represented

by 1, (1 2 3 4 5), (1 3 5 2 4) and (2 5)(3 4), and have cardinalities 1, 2, 2, and 5 respectively. The

ordinary character table is given below.

θi 1 (2 5)(3 4) (1 2 3 4 5) (1 3 5 2 4)

θ1 1 1 1 1

θ2 1 −1 1 1

θ3 2 0 α− 1 β − 1

θ4 2 0 β − 1 α− 1

Characteristic 2

In characteristic 2, there are four irreducible Brauer characters, labelled φ1, φ2, φ3 and φ4. We know

that φ1 is the trivial character, and so it remains to find the other three. Let ω be a primitive cube

root of unity in k. We have the isomorphism A5
∼= SL2(4), and so there is a natural representation

of A5 as 2× 2 matrices over GF(4). This is given by

(1 2)(3 4) 7→

(
1 0

ω 1

)
, (1 3 5) 7→

(
0 1

1 1

)
.
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Of course, GF(4) has a field automorphism of order 2, since it is field of order q2, and so we can

apply this field automorphism to get another representation

(1 2)(3 4) 7→

(
1 0

ω2 1

)
, (1 3 5) 7→

(
0 1

1 1

)
.

These two representations are irreducible. The Brauer characters afforded by these two represen-

tations will be labelled φ2 and φ3.

Finally, we have the 4-dimensional representation of A5 as Ω−
4 (2), as 4-dimensional matrices

over GF(2),

(1 2)(3 4) 7→


1 0 0 0

0 0 1 0

0 1 0 0

1 1 1 1

 , (1 3 5) 7→


0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

 .

This is irreducible as well, and we label the Brauer character afforded by this representation φ4.

To calculate the Brauer character, we calculate the eigenvalues of the matrix, and express them as

roots of unity inside k. Then we pull back to our field K, where we sum the eigenvalues to give the

Brauer character. For example, in the 4-dimensional representation of (1 3 5 2 4), which has matrix

(1 3 5 2 4) ∼


0 0 1 0

0 0 0 1

1 1 1 1

1 0 0 0

 ,

we find that the characteristic polynomial is x4 + x3 + x2 + x + 1, and so the eigenvalues are the

fifth roots of unity other than 1, in k. Pulling back to K, we sum the non-unital fifth roots of unity

and this is equal to −1. So φ4

(
(1 3 5 2 4)

)
= −1. Doing this for all of the representations, we have

the table

φi 1 (1 2 3) (1 2 3 4 5) (1 3 5 2 4)

φ1 1 1 1 1

φ2 2 −1 α− 1 β − 1

φ3 2 −1 β − 1 α− 1

φ4 4 −1 −1 −1

where α and β are as before. From these two tables we can easily see that χ1 = φ1, χ2 = φ1 + φ2,

χ3 = φ1 + φ3, χ4 = φ4 and χ5 = φ1 + φ2 + φ3. Now two irreducible ordinary characters χi and

χj lie in the same block if and only if |Cs|χi(xs)/χi(1) ≡ |Cs|χj(xs)/χj(1) for all conjugacy classes

Cs, where xs ∈ Cs. This means that χ1, χ2, χ3 and χ5 all lie in the principal block B0(G), and

the remaining character χ4 lies in the other block B1(G). Since φ4 = χ4 on G◦, φ4 lies in B1(G),

and all of the other modular characters lie in B0(G). The principal block has defect group a Sylow

2-subgroup, and so has defect group C2 × C2. The block B1(G) has defect zero.
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The decomposition numbers for G are

φ1 φ2 φ3 φ4

χ1 1 0 0 0

χ2 1 1 0 0

χ3 1 0 1 0

χ4 0 0 0 1

χ5 1 1 1 0

and we can use these decomposition numbers to get the Cartan matrix, namely

Γ =


4 2 2 0

2 2 1 0

2 1 2 0

0 0 0 1

 .

The algebra kG decomposes into
⊕4

i=1Mi, where Mi is an indecomposable module with Mi/J(Mi)

affording the character φi. The Cartan matrix tells us the irreducible constituents in a decomposi-

tion of Mi.

We now consider the subalgebra kNG(C2 × C2) = kN , and decompose it into blocks, to see

the Brauer Correspondence. Since C2 × C2 P A4, it lies in the kernel of every irreducible 2-

representation, and so there are three representations which can be lifted from the abelian quotient

C3. These are therefore given by (1 2 3) 7→ ωi, where ω is a primitive cube root of unity and

i = 0, 1, 2. We can easily find the Brauer character of a linear representation, and the Brauer

character table is given by

ψi 1 (1 2 3) (1 3 2)

ψ1 1 1 1

ψ2 1 ω ω2

ψ3 1 ω2 ω

From this we can easily see that ζ1 = ψ1, ζ2 = ψ2, ζ3 = ψ3 and ζ4 = ψ1 +ψ2 +ψ3. The fact that ζ4
is made up from all of the modular characters means that all modular and all ordinary characters

lie in the principal block B0(N), which has defect 2. By Brauer’s First or Third Main Theorem,

B0(N)G = B0(G). There are no more defect groups in this characteristic. For completeness, we

give the Cartan matrix for kH,

ΓH =


2 1 1

1 2 1

1 1 2

 .

Characteristic 3

In characteristic 3 there are four irreducible modular representations, of dimensions 1, 3, 3 and 4.

We will denote the Brauer characters afforded by these φ1, φ2, φ3 and φ4, and let φ1 be the trivial
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character. We have the irreducible 3-dimensional representation of G over GF(9) given by

(1 2)(3 4) 7→


−1 0 0

0 −1 0

λ λ 1

 , (1 3 5) 7→


0 1 0

0 0 1

1 0 0

 ,

where λ denotes a generator for GF(9), (so that λ4 = −1 and λ8 = 1). Since GF(9) has a field

automorphism mapping λ to λ3, we have another representation

(1 2)(3 4) 7→


−1 0 0

0 −1 0

λ3 λ3 1

 , (1 3 5) 7→


0 1 0

0 0 1

1 0 0

 .

Finally, we have a 4-dimensional irreducible representation over GF(3), given by

(1 2)(3 4) 7→


−1 0 0 0

0 0 −1 0

0 −1 0 0

1 1 1 1

 , (1 3 5) 7→


0 −1 0 0

0 0 0 −1

0 0 −1 0

−1 0 0 0

 .

These give rise to the four irreducible Brauer characters, which we will calculate by other means.

Consider the blocks of kG. They have defect either 1 or 0. Now an irreducible ordinary character

χ lies in a block of defect 0 if 3 | ζ(1), and in a block of defect 1 if 3 - ζ(1). This means that χ2 and

χ3 lie in blocks of defect 0, and χ1, χ4 and χ5 lie in blocks of defect 1. If an ordinary character and

a modular character lie in different blocks, the ordinary character does not involve the modular

character in its decomposition. So χ2 can only involve modular characters in its own block. But

if a block has defect 0, then there is only one irreducible modular and ordinary character in the

block. So there are at least three blocks, say B0(G) (principal block), B1(G), the block containing

χ2 (and without loss of generality, φ2), and B2(G), the block containing χ3 (and therefore φ3).

Given that φ1 = 1G◦ , so far we have constructed the table

φi 1 (1 2)(3 4) (1 2 3 4 5) (1 3 5 2 4)

φ1 1 1 1 1

φ2 3 −1 α β

φ3 3 −1 β α

φ4 4

and we are left to decide where χ4, χ5, and φ4 go, whether into the principal block or into some

other block. Now φ4 is the only modular character left, so there can be at most one other block. If

φ4 were in a different block from B0(G), then both χ4 and χ5 cannot be expressed as a multiple of

the trivial character, and so must lie in the same block as φ4. But certainly they cannot be both

expressed as a multiple of any single Brauer character, so cannot lie in the same block as φ4 on its

own either. This means that φ4 lies in the principal block, as does χ4 and χ5.
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We have three blocks, B0(G) containing φ1, φ4, χ1, χ4, and χ5, B1(G) containing φ2 and χ2,

and B2(G) containing φ3 and χ3. Then χ4 can be expressed as a non-negative linear combination

of φ1 and φ4. This means that either χ4 = 4φ1 (absurd) or χ4 = φ4, and we have the full table, as

shown below.

φi 1 (1 2)(3 4) (1 2 3 4 5) (1 3 5 2 4)

φ1 1 1 1 1

φ2 3 −1 α β

φ3 3 −1 β α

φ4 4 1 −1 −1

The decomposition numbers were found in the discussion above, and they are given below,

together with the Cartan matrix they yield.

φ1 φ2 φ3 φ4

χ1 1 0 0 0

χ2 0 1 0 0

χ3 0 0 1 0

χ4 0 0 0 1

χ5 1 0 0 1

Γ =


2 0 0 1

0 1 0 0

0 0 1 0

1 0 0 2

 .

The Brauer Correspondence in this case is even less interesting than in the characteristic 2

case. Since NG(P ) ∼= S3, there are only two irreducible modular characters, since C3 is a normal

subgroup. These are both linear, and so the ordinary character of degree 2 of S3 must be the

sum of these two. Hence again there is only one block, B0(NG(P )), naturally of defect 1, and

B0(NG(P ))G = B0(G).

Characteristic 5

There are just three conjugacy classes of 5-regular elements, and so there are three irreducible

5-representations. Along with the trivial representation, we have the irreducible representations

over GF(5) given by

(1 2)(3 4) 7→


−1 0 0

0 −1 0

−2 −2 1

 , (1 3 5) 7→


0 1 0

0 0 1

1 0 0

 ,

and

(1 2)(3 4) 7→



1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

−1 −1 −1 −1 −1


, (1 3 5) 7→



0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

−1 −1 −1 −1 −1


.
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We again calculate the modular characters without resorting to characteristic polynomials.

Label the trivial character φ1, the degree 3 character φ2, and the degree 5 character φ3. It seems

likely that φ1 and φ2 lie in the principal block along with all but one of the ordinary characters,

and φ3 lies in its own block along with χ5. This is indeed the case. The ordinary character χ5 has

degree 5, and it lies in a block of defect 0 (since the maximal power of 5 in |G| divides the degree of

the representation). It has to take with it a single modular character, and this modular character

must have degree a multiple of the maximal power of 5 dividing |G|. Thus χ5 and φ3 are separated

off in a block of defect 0. Thus φ3 = χ5 on the 5-regular elements of G.

It remains to find φ2, which lies in the principal block, else we could not get all of the ordinary

characters from multiples of modular characters. But χ3 is a positive linear combination of φ1 and

φ2, and so φ2 = χ2 on the 5-regular elements of G. Then χ3 = φ2 and χ4 = φ1 + φ2, and so we

have the Brauer character table

φi 1 (1 2 3) (1 2)(3 4)

φ1 1 1 1

φ2 3 0 −1

φ3 5 −1 1

We have determined the decomposition numbers. These are the Cartan matrix are given below.

φ1 φ2 φ3

χ1 1 0 0

χ2 0 1 0

χ3 0 1 0

χ4 1 1 0

χ5 0 0 1

Γ =


2 1 0

1 3 0

0 0 1

 .

The Brauer Correspondence is uninteresting in this case as well. Consider the normalizer of the

group C5 = P in G. Then NG(P ) = D10 = M , and since C5 P M , any irreducible 5-representation

must have kernel at least P . So there are two irreducible 5-representations of D10, lifted from the

two 5-representations of M/P ∼= C2,

(2 5)(3 4) 7→ 1, (2 5)(3 4) 7→ −1.

There is only one block, B0(M), which has defect 1, and B0(M)G = B0(G).

4.2 Preliminary Lemmas – Decomposition Numbers Revisited

In the proofs of the Brauer–Suzuki Theorem and Glauberman Z∗-Theorem we will need quite a

few results on decomposition numbers with respect to an arbitrary basis of Char(G◦). We will give

these without proof: the interested reader is referred to [79].

Firstly we will consider the following situation. In the section on Brauer’s Second Main Theo-

rem, we defined the decomposition numbers to be the integers dij such that χi(x) =
∑n

j=1 ψj(x),
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where χi is an irreducible ordinary character and the ψj are the irreducible modular characters. We

could write χi in such a way because the irreducible modular characters form a basis for Char(G◦).

But there is nothing stopping us from choosing any other Z-basis for Char(G◦) = M and decom-

posing χi relative to that. In fact we can decompose ψj relative to any Z-basis, and so relative to

an arbitrary basis ψ̄1, . . . , ψ̄n, we have

χi =
n∑
j=1

aijψ̄j .

These are called the decomposition numbers relative to the bases ψ̄i. We will always place bars on

top of any basis element which is not an irreducible modular character, to distinguish it from the

natural basis. We define the Cartan matrix relative to the basis ψ̄i as ∆T∆, where ∆ is the matrix

of decomposition numbers relative to that basis.

We can also define generalized decomposition numbers relative to any basis. Let z be a p-

singular element of G, and let H = CG(z). Then the irreducible ordinary characters of G χi,

restricted to H, can be written as an algebraic combination of the irreducible modular characters

of H, ψj , by

χi(zx) =
n∑
j=1

dzijψj(x).

Now let ψ̄j be a Z-basis for Char(H◦). Then again we can write ψl as an integral linear combination

of ψ̄j , and so we have

χi(zx) =
n∑
j=1

dzijψ̄j(x).

Note that the dzij in the two equations are different. These are called the generalized decomposition

numbers relative to the basis ψ̄i.

We now give several results regarding generalized decomposition numbers: again, the interested

reader is referred to [79], and in this case [35].

Theorem 4.1 Let the Cartan matrix of the basis ψ̄i be given by cij . Then

n∑
l=1

dzlid
z
lj = cji,

where the bar denotes complex conjugate. If t is a non-trivial p-singular element of G not conjugate

to z, and dtij are the generalized decomposition numbers at t relative to a Z-basis ψ̄i of Char(CG(t)◦),

then
n∑
l=1

dzljd
t
lj = 0.

Corollary 4.2 Let t be a p-singular element of G. Denote by χ1, . . . , χs the irreducible ordinary

characters in the principal block of kG, and denote by ζ1, . . . , ζr the irreducible ordinary characters

in the principal block of kCG(t). Let x ∈ CG(t)◦. Then
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(i)
s∑
i=1

|χi(tx)|2 =
r∑
i=1

|ζi(x)|2.

(ii) If y is another p-singular element not conjugate to t, then
∑s

i=1 χi(tx)χi(yx) = 0.

(iii) If CG(t) has a normal p-complement, then
s∑
i=1

|χi(tx)|2 = |P |, where P is a Sylow p-subgroup

of CG(t).

Lemma 4.3 Let t be a non-trivial 2-singular element of G, and let C1 and C2 be two classes of

involutions such that no element of C1C2 has t as its 2-part. Let χ1, . . . , χs denote the ordinary

characters in the principal block of G, and let ψ̄1, . . . , ψ̄r be a Z-basis of Char(CG(t)◦) such that

the first n of them form a Z-basis for the submodule generated by modular characters lying in the

principal block of kCG(t). Let dtij denote the generalized decomposition numbers relative to the

basis above. If x ∈ C1 and y ∈ C2 we have

s∑
i=1

dtij
χi(x)χi(y)
χi(1)

= 0,

for j = 1, . . . , n, and
s∑
i=1

χi(t)χi(x)χi(y)
χi(1)

= 0.

Theorem 4.4 Let B = B0(G), the principal block of kG. If x ∈ Op′(G), then x ∈ kerφ for each

irreducible modular character φ.

Lemma 4.5 Suppose that a Sylow p-subgroup P of a group G is isomorphic to C2 ×C2, and that

G contains only one conjugacy class of involutions. Then there are exactly four irreducible ordinary

characters in the principal block B0(G), labelled χ1 = 1, χ2, χ3 and χ4, and if the χi are chosen

in a particular order, then the restrictions of χ1, χ2 and either χ3 or −χ3 form a Z-basis for the

submodule of Char(G◦) generated by the modular characters in B0(G). Furthermore, the Cartan

matrix ∆ with respect to this basis is ∆ij = 1 + δij , where δij is the Kronecker delta.

4.3 Groups of 2-Rank 1

Definition 4.6 Let G be a (non-abelian) finite simple group. Then the p-rank of G is the rank of

a maximal elementary abelian p-subgroup of G. The 2-local p-rank of G is the maximal p-rank of

a 2-local subgroup of G.

By the Feit–Thompson Theorem, every non-abelian finite simple group is of even order, and

therefore has a Sylow 2-subgroup. We can classify finite simple groups according to their 2-rank.

Lemma 4.7 Suppose that G has 2-rank 1. Then a Sylow 2-subgroup of G is either cyclic or

generalized quaternion.
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Suppose that a Sylow 2-subgroup P of G is cyclic, say P = 〈x〉. The automorphism group of

P has order 2n−1, where |P | = 2n, since each automorphism sends a generator for p to one of the

φ(2n) = 2n−1 other generators. But NG(P )/CG(P ) is isomorphic to a subgroup of AutP . So since

CG(P ) contains P (recall P is abelian), NG(P )/CG(P ) has odd order. Thus NG(P ) = CG(P ). By

Burnside’s Transfer Theorem, G has a normal p-complement.

Now suppose that a Sylow 2-subgroup of G is generalized quaternion. The Brauer–Suzuki

Theorem is as follows.

Theorem 4.8 (Brauer–Suzuki Theorem) Let G be a group with a generalized quaternion Sy-

low 2-subgroup of order at least 16. Then Z
(
G/O2′(G)

)
is of order 2. In particular, G is not

simple.

The proof of this theorem, whilst able to be done using modular representation theory, is more

often done using exceptional character theory, and is not of concern here – for a proof, see [48].

The Brauer–Suzuki Theorem also holds when the Sylow 2-subgroup has order 8, and this is the

case which interests us here. The proof of this fact is best done using modular characters, although

Glauberman has produced a proof without modular character theory. The proof of the Brauer–

Suzuki Theorem in the case of quaternion Sylow 2-subgroups is the main aim of this section.

Theorem 4.9 Let G be a group with a Sylow 2-subgroup P which is a quaternion group. Then

Z (G/O2′(G)) has order 2.

The proof of this theorem goes in stages: P is generated by two elements x and y of order 4,

with x2 = y2 and x−1yx = y−1. We denote by t the (unique) involution in P . Suppose that G is

a counterexample to the theorem of minimal order. We first quotient by O2′(G). Notice that the

Sylow 2-subgroup of G/O2′(G) is also quaternion, so that G/O2′(G) is a counterexample to the

theorem whenever G is. So since G is minimal we can assume that O2′(G) = 1.

Lemma 4.10 All elements of order 4 in P are conjugate in NG(P ).

Proof: The six elements of order 4 are x, y, xy, x−1, y−1 and (xy)−1. The other elements are t (of

order 2) and 1. Now x−1yx = y−1, so y and y−1 are conjugate. But by the symmetry of P = Q8, x

and x−1 and xy and (xy)−1 are conjugate. (Alternatively, y−1xy = x−1 and x−1(xy)x = (xy)−1.)

So there are at most three conjugacy classes of elements of order 4 in NG(P ), namely {y, y−1},
{x, x−1}, and {xy, (xy)−1}. If these are not all conjugate in G, then one of them is not conjugate

to either of the others. Assume without loss of generality that {x, x−1} is a conjugacy class of

NG(P ).

Since in a Sylow p-subgroup Q, two elements of Q are conjugate in G if and only if they are

conjugate in NG(Q) (standard result that will not be proven here), this means that {x, x−1} is

not conjugate to either of the other two sets in G either. So let A = {x, x−1, t, 1} and B =

{y, y−1, xy, (xy)−1}. Then no element of A is conjugate to an element of B, and A ∪ B = P . Let
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χ : G→ K be the class function given by χ(g) = 1 if the p-part of g lies in A and χ(g) = −1 if it

lies in B.

We want to show that this is a character of G. Since it is linear (χ(1) = 1) it will therefore be

an irreducible character of G. Consider two elements ag and a′g′ of G (where a, a′ are the p-parts of

ag and a′g′). Then χ(aga′g′) = χ(a(ga′g−1)gg′). Since no element of A is conjugate to an element

of B, both χ(a′) = χ(ga′g−1). So χ(aga′g′) = χ(aa′), since χ(ag) = χ(a) for all p′-parts g. Notice

also that the product of any two elements of A is in A, as is the product of any two elements of B.

However, the product of one element of B and one element of A is in B. Hence χ(aa′) = χ(a)χ(a′)

for all elements a, a′ ∈ P , and χ is a linear character.

Also note that |G/ kerχ| = 2. Now every subgroup of P of index 2 is cyclic, so kerχ has a

cyclic Sylow 2-subgroup, and so by Burnside’s Transfer Theorem kerχ has a normal 2-complement

L. But L char kerχ P G, so L P G. But then L 6 O2′(G) = 1, so L = 1 and kerχ is a 2-group,

and thus so is G since |G/ kerχ| = 2. Thus G = P , and so G satisfies the theorem. So since G is a

minimal counterexample, all elements of order 4 in P are conjugate in NG(P ).

We shall label the irreducible ordinary characters of G that lie in the principal 2-block B0(G)

as χ1, χ2, . . . , χs. We now aim to determine χi(x) for each i.

Firstly notice that since x has order 4, the eigenvalues of any representation of x will be fourth

roots of unity. Let T be a representation, and let the eigenvalues of T (x) have multiplicities

m1, m−1, mi and m−i respectively. Then χi(x) = m1 − m−1 + (mi − m−i)i. Now χi(x2) =

χi(t) = m1 +m−1 −mi −m−i (since (−1)2 = 1, etc.), and χi(1) = m1 +m−1 +mi +m−i. Also

χi(x−1) = m1 −m−1 − i(mi −m−i), and since χi(x) = χi(x−1), we must have m3 −m4 = 0. Then

χi(x) = m1 −m−1, χi(t) = m1 +m−1, and χi(1) = m1 +m−1 + 2m−i, and so χi(x) is congruent

to χi(t) mod 2, and χi(1) mod 2. This is true for all characters χi in the principal 2-block.

Now x /∈ Z (P ), and so CG(x) < G. Since x is of order 4, the Sylow 2-subgroup of CG(x)

must be 〈x〉. But this means that CG(P ) has a cyclic Sylow 2-subgroup, and so has a normal

2-complement. Then by Corollary 4.2(ii),
s∑
i=1

|χi(x)| = |〈x〉| = 4.

Now χ1(x) = 1G(x) = 1, so the sum of the squares of the remaining characters χi for 2 6 i 6 s

is 3. This must mean that χi(x) = ±1 for three of the characters, and χi(x) = 0 for the remaining

characters. In this case χi(1) is odd for three of the characters, and even for the rest.

Denote by H a subgroup CG(t), and let H̄ = H/〈t〉. If α is a 2′-element of H, then it is the only

one in its coset of 〈t〉 (since this coset is {α, tα}). Conversely, if {β, tβ} is a 2′-element in H̄, then

βn = 1 or (tβ)n = 1, where n is odd, providing us with a 2′-element of H. So there is a bijection

between the set of 2′-elements of H and the 2′-elements of H̄. Let P̄ denote the image of P under

this quotient. We know that Q8/Z (Q8) ∼= C2
2 , the direct product of two C2 groups. Any element of

G that normalizes P must centralize t since {t} is a characteristic subset of P . Since all elements of

order 4 are conjugate in NG(P ) ⊆ CG(t), their images – all three involutions in P̄ – are conjugate in

H̄. By Lemma 4.5, the submodule M of Char(H◦) corresponding to the principal block B0(H̄) has
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a basis (as a Z-module) consisting of three generalized modular characters, which we denote ψ̄1, ψ̄2

and ψ̄3. Let ψ̄1 be the trivial modular character of H̄. The Cartan matrix relative to this basis has

the form cij = 1+δij . Now 〈t〉 is a normal 2-subgroup of H, and so every irreducible representation

of H over a field of characteristic 2 has kernel including 〈t〉. So we can link the irreducible modular

characters of H to those of H̄ by ψ(x) 7→ ψ̄(x〈t〉). In particular, we can map upwards the three

generalized modular characters ψ̄1, ψ̄2 and ψ̄3 to three generalized modular characters of H, which

generate the submodule of Char(H◦) corresponding to the principal block B0(H). We have

〈ψi, ψj〉H◦ =
1
2
〈ψi, ψj〉H̄◦ ,

since |H◦| = |H̄◦|, but |H| = 2|H̄|. This means that the Cartan matrix for ψ1, ψ2, ψ3 is twice that

of ψ̄1, ψ̄2, ψ̄3, namely cij = 2 + 2δij
Finally, the principal block of kH̄ has defect 2, since it has Sylow C2

2 . This means that the

degrees of the irreducible modular characters in B0(H) have odd degree. By this correspondence

just described, the degrees of the irreducible modular characters in B0(H̄) are also odd.

Now we shall apply the Second and Third Main Theorems to obtain information about the

decomposition relative to the basis ψ1, ψ2 and ψ3.

Proposition 4.11 With the notation introduced previously in this section, t lies in the kernel of

χ2.

Proof: We know that ψ1, ψ2 and ψ3 form a basis for Char(H◦), and so by the Second and Third

Main Theorems

χi(th) =
3∑
j=1

aijψj(h),

for all 2-regular h ∈ H. Now t has order 2, so the λi in the definition of the (ordinary) generalized

decomposition numbers are ±1, and so in particular are integers. Also, since ψ1, ψ2, ψ3 form a

Z-basis of Char(H◦), each modular character in B0(H) can be expressed as an integer combination

of these three modular characters. This means that aij is an integer for all i and j.

By Theorem 4.1, with the Cartan matrix cij = 2 + 2δij ,

s∑
i=1

a2
ij = 4, (1 6 j 6 3),

s∑
l=1

alialj = 2 (1 6 i 6= 2 6 3).

We know that the degrees of the irreducible modular characters in B0(H) have odd degree, and so

χi(1) ≡ χi(t) =
3∑
j=1

aijψj(1) ≡
3∑
j=1

aij mod 2,

since χi(t) ≡ χi(1) mod 2 and ψj(1) ≡ 1 mod 2.

Next, the ordinary orthogonality relations give

0 =
s∑
i=1

χi(1)χi(th) =
3∑
j=1

s∑
i=1

aijχi(1)ψj(h),
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from the expression we have for χi(th). Since the ψj are linearly independent, for a linear combi-

nation of them to be 0, each co-efficient must be 0, and so

s∑
i=1

aijχi(1) = 0.

Consider the matrix A = [aij ]. Suppose a row of A is full of zeros; i.e., aij = 0 for j = 1, 2, 3.

Then χi(t) = 0 and so χi(1) is even since it is even whenever χi(t) is. Since χi(1) is even, we have

shown before that χi(x) = 0, and so the only element g ∈ P for which χi(g) 6= 0 is g = 1. So

〈χi, 1P 〉P = 8−1χi(1).

Thus χi(1) is a multiple of 8, and so χi lies in a block of defect 0 since 8 is the highest power of 2

dividing |G|. But χi ∈ B0(G), a contradiction. So no row of A is zero.

Since the sum of the squares of aij down the columns is 4, if any of the aij were not equal to

0 or ±1, aij = ±2 and then all other entries in that column would be zero. Then
∑
aijχi(1) 6= 0,

contradicting a previous assertion. So each entry in A is 0 or ±1. Also, each column has four

non-zero entries since the sum of their squares is 4.

So far we have not used the fact that
∑s

l=1 alialj = 2 for i 6= j. We can use this to show that

the non-zero entries of any row are the same sign. Indeed, suppose that for column i and column

j, ali = 1 and alj = −1. Then their product is −1, and since there are only four non-zero entries

in each column, for all other rows l′, al′i = al′j . But then the sum
∑t

l′=1 al′iχl′(1) is not the same

as
∑t

l′=1 al′jχl′(1), since ali 6= alj and all other terms are equal. But both of these are meant to be

zero, a clear contradiction.

How many rows of the matrix aij are there; that is, what is s? Well, each row has either one,

two, or three non-zero entries, and so we can denote the number of rows with i non-zero entries by

ri. We need three simultaneous equations for these three unknowns. Firstly,

s∑
i=1

a2
ij = 4 =⇒ r1 + 2r2 + 3r3 = 12, (1)

by adding together a2
ij for all i and j. On the one hand, it is equal to 3× 4, and on the other, it is

equal to r1 + 2r2 + 3r3.

Next,
s∑
l=1

alialj = 2 =⇒ r2 + 3r3 = 6, (2)

since summing i = 1 and j = 2, i = 1 and j = 3, and i = 2 and j = 3, and noticing that the

non-zero entries in each row are of the same sign, we count each row with two non-zero entries once

and each row with three non-zero entries three times. This is also equal to 2× 3 = 6.

Finally,
3∑
j=1

aij ≡ χi(1) mod 2 =⇒ r1 + r3 = 4, (3)
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since exactly four of the χi(1) are odd, and exactly r1 + r3 of the sums across j of aij are odd.

There is a unique solution to these three simultaneous equations, namely r1 = 3, r2 = 3 and

r3 = 1. [(2) − (3) gives r2 + r3 = 4, which combined with (1) gives r3 = 1. Substituting this into

(3) and (1) gives r2 = 3 and r1 = 3.] Thus s = 7. χ1 = ψ1, and so there are three other rows with

ai1 = ±1, say i = 2, 3, 4. One of these, say i = 2, is the unique row with three non-zero entries.

Since two distinct columns i and j have non-zero entries in exactly two of the same rows, we have

χ3 involving ψ1 and ψ2, χ4 involving ψ1 and ψ3, and χ5 involving ψ2 and ψ3. This leaves χ6 and χ7

as involving only ψ2 and only ψ3 respectively, since each column has to have four non-zero entries.

So the table is as below.

χi ψ1 ψ2 ψ3

χ1 1 0 0

χ2 α2 α2 α2

χ3 α3 α3 0

χ4 α4 0 α4

χ5 0 α5 α5

χ6 0 α6 0

χ7 0 0 α7

Now consider χi(x). We know that it is equal to 0 for three of the characters, and for these

characters χi(1) is even – we need to determine which ones. Well, we know that
∑3

j=1 aij ≡ χi(1)

mod 2, and we can evaluate the left-hand side of this easily. Then χi(1) is even for i = 3, 4, 5 and

odd for the rest. So χi(x) = 0 for i = 3, 4, 5 and for the remaining characters χi(x) = ±1. Let βi
denote the value that χi(x) takes.

Consider CG(x). Now a Sylow 2-subgroup of CG(x) must be contained in a Sylow 2-subgroup

of G, and if so must be either equal to 〈x〉 or a quaternion group. But then x would centralize a

quaternion group, so lie in its centre, which is not possible. So CG(x) has a cyclic Sylow 2-subgroup,

and therefore has a normal 2-complement. [Notice that this means that CG(x) is actually the direct

product of 〈x〉 with a group of odd order.]

Putting this together, a basis for Char(CG(x)◦) consists of one element, the trivial character χ1.

Then the generalized decomposition numbers dzij are simply the values χi(x). Applying Theorem

4.1 to the sets of generalized decomposition numbers dtli and dzl1 gives (recalling βi = 0 for i = 3, 4, 5)

1 + α2β2 = 0, (i = 1), α2β2 + α6β6 = 0, (i = 2), α2β2 = α7β7 = 0, (i = 3).

Remembering that αi, βi = 0,±1, we get α2 = −β2 from the first equation, and then α6 = β6,

α7 = β7 for the second and third equations.

Now if a and b are involutions in G, then ab cannot be 2-singular (and not equal to 1). To see

this, suppose that ab is, in fact, 2-singular. Then 〈a, b〉 = 2o(ab) is a power of 2, and so since 〈a, b〉
is a dihedral group, it is a subgroup of Q8. But Q8 contains only one involution, so a = b and

ab = 1.
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By Lemma 4.3, with C1 = C2 the unique class of involutions of G, we have for t,

7∑
i=1

aij
χi(t)2

χi(1)
= 0, (1,2,3)

and for the second equation

1 + β2
χ2(t)2

χ2(1)
+ β6

χ6(t)2

χ6(1)
+ β7

χ7(t)2

χ7(1)
= 0.

The aij are given in the table above, and replacing the βi with the corresponding expressions

involving αi gives

1− α2
χ2(t)2

χ2(1)
+ α6

χ6(t)2

χ6(1)
+ α7

χ7(t)2

χ7(1)
= 0. (4)

We have four equations, the three (1), (2) and (3) depending on j = 1, 2, 3 and Equation (4).

Consider the sum (1)− (2)− (3) + (4). Then this is

7∑
i=1

(ai1 − ai2 − ai3 + χi(x))
χi(t)2

χi(1)
= 0.

It remains to determine the terms in this sum. Substituting in our expressions for αi (and dividing

by 2) gives

1− α2
χ2(t)2

χ2(1)
− α5

χ5(t)2

χ5(1)
= 0. (5)

Consider Lemma 4.3 again, but instead we use 1 rather than t. So we have the equations

7∑
i=1

aijχi(1) = 0, (6,7,8)

and

1− α2χ2(1) + α6χ6(1) + α7χ7(1) = 0. (9)

(Here we have substituted in the expressions for βi in terms of αi.) In fact, these are exactly the

same equations as before, except with χi(1) instead of χi(t)2/χi(1). So (6)− (7)− (8) + (9) gives

1− α2χ2(1)− α5χ5(1) = 0. (10)

Finally consider the decomposition numbers: χ2(t) = α2(1 + ψ2(t) + ψ3(t)) and χ5(t) =

α5(ψ2(t) + ψ3(t)). So α5χ2(t) = α2α5 + α2χ5(t), and since αi = ±1, we can divide by α2α5

to get

1− α2χ2(t) + α5χ5(t) = 0. (11)

Multiplying (11) by χ5(t)/χ5(1) and adding it to (5) gives(
1 +

χ5(t)
χ5(1)

)
− α2χ2(t)

(
χ2(t)
χ2(1)

+
χ5(t)
χ5(1)

)
= 0.

Multiplying (10) by χ5(t)/χ5(1) and adding it to (11) gives(
1 +

χ5(t)
χ5(1)

)
− α2χ2(1)

(
χ2(t)
χ2(1)

+
χ5(t)
χ5(1)

)
= 0.
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These two equations clearly imply χ2(t) = χ2(1), and t ∈ kerχ2.

Proof of Theorem 4.9: Consider the kernel of the character χ2. Denote this by N . Suppose

firstly that P is contained in N . Since N 6= G (χ2 is not the trivial character), and G is a minimal

counterexample to the theorem, N must satisfy it, and so Z (N) = {1, u}. So 〈u〉 is characteristic

in N .

Now suppose that P 66 N . Then the Sylow 2-subgroup of N is P ∩N , and is thus cyclic of order

2 or 4 (else N is a normal 2′-group, contrary to the statement that O2′(G) = 1). In either case, by

Burnside’s Transfer Theorem, N has a normal 2-complement, say M . Then M lies inside O2′(N),

which itself is contained within O2′(G) = 1. Then N = P ∩N , and so N 6 P . Then Z (N) = 〈u〉
and so 〈u〉 is again characteristic in N .

In either case, {1, u} P G, and so u is a central element of G. Now {1, u} = Z (P ). Since

O2′(G) = 1, every central element of G is a central element of P , and so Z (G) = 〈u〉, agreeing with

the theorem.

The proof of this theorem does not require modular characters – in 1974, Glauberman proved

Theorem 4.9 using only ordinary character theory. This proof is in [41]. The original proof, by

Brauer and Suzuki, was briefly given in [21].

4.4 Glauberman’s Z∗-Theorem

Before we begin, we will state without proof the following lemma about dihedral groups.

Lemma 4.12 Let G be a dihedral group of order 2n, generated by the involutions x and y. Then

o(xy) = n, and n is odd if and only if x and y are conjugate in G.

The proof of Glauberman’s Z∗-Theorem requires a specific lemma regarding the values of char-

acters, which we will state and prove now.

Lemma 4.13 Suppose that x and y are distinct involutions, contained in conjugacy classes C1 and

C2 respectively. Let χ be a character, and assume that for each a ∈ C2, χ(xy) = χ(xa). Then

χ(x)χ(y) = χ(1)χ(xy).

Proof: Let c1 and c2 be the class sums of C1 and C2 respectively. Suppose that T is a representation

which affords the character χ. Now T (c1) and T (c2) are scalars, and so by taking traces we find

(since x ∈ C1 and y ∈ C2)

T (c1) = |C1|
χ(x)
χ(1)

, T (c2) = |C2|
χ(y)
χ(1)

.

Consider a product ab where a ∈ C1 and b ∈ C2. Then ag = x for some g ∈ G, and so (ab)g = xbg.

So every product ab is conjugate to xd, where d ∈ C2. Now χ(ab) = χ(xd) = χ(xy), the first
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equality since conjugate elements have the same character values, and the second by assumption.

Now

T (c1)T (c2) =
∑

a∈C1,b∈C2

T (ab).

Evaluating both sides, we have(
|C1|

χ(x)
χ(1)

)(
|C2|

χ(y)
χ(1)

)
= |C1| |C2|

(
χ(xy)
χ(1)

)
.

Cancelling |C1| |C2|/χ(1) from both sides, we have

χ(x)χ(y) = χ(1)χ(xy),

as required.

Recall that a subset S of a group is weakly closed in a subgroup H if the only conjugates of S

in H are already in S.

Theorem 4.14 (Glauberman’s Z∗-Theorem) Let G be a finite group and t an involution in G

such that t is weakly closed in a Sylow 2-subgroup P . Then t∗ ∈ Z (G∗), where G∗ = G/O2′(G).

Proof : Suppose that G is a minimal counterexample to the theorem, and suppose that O2′(G) is

non-trivial. Let t be an involution weakly closed in a Sylow 2-subgroup P . Now P O2′(G)/O2′(G)

is a Sylow 2-subgroup containing tO2′(G), so if tO2′(G) is weakly closed in P O2′(G)/O2′(G) then

since G/O2′(G) is of strictly lower order tO2′(G) ∈ Z (G/O2′(G)), a contradiction to the fact that

G is a minimal counterexample.

Since we are quotienting by O2′(G), our cosets are of the form xO2′(G), where x ∈ P O2′(G).

By expressing x as a 2-element multiplied by a 2′-element zq, we can write

xO2′(G) = zqO2′(G) = zO2′(G),

and so we can assume that our coset representatives are all 2-singular, so that they come from P .

Suppose that tO2′(G) is conjugate to xO2′(G) ⊆ P O2′(G)/O2′(G). We can assume that x is

2-singular, and

t = g−1xgh,

where g ∈ G and h ∈ O2′(G). But the decomposition into 2-part and 2′-part is unique, and so

h = 1 and t = xg. But x ∈ P and t is weakly closed in P , and so t = x. Thus tO2′(G) = xO2′(G)

as required, and tO2′(G) is weakly closed in its Sylow 2-subgroup. This is a contradiction, and so

we can assume that O2′(G) = 1. This also means that Z (G) 6 O2(G).

Suppose that t lies inside a proper normal subgroup N of G. Now O2′(N) = 1, since O2′(N) 6

O2′(G) = 1. Also, if P is a Sylow 2-subgroup of G containing t, then P ∩N is a Sylow 2-subgroup

of N containing t. Clearly t is weakly closed in P ∩N , and so since G is a minimal counterexample

to the theorem, t is central in N . Since O2′(N) = 1, there are no 2-regular elements in Z (N). So
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Z (N) 6 O2(N) 6 P ∩N . Also, any conjugate of t by an element of G lies inside N , and so by the

same argument this conjugate also lies in Z (N). But t is weakly closed in P > Z (N), and so {t}
is a conjugacy class of G. So t ∈ Z (G), contrary to the fact that G is a minimal counterexample.

So t lies outside every proper normal subgroup of G.

Next we will show that Z (G) = 1, by proving O2(G) = 1. Then O2(G) 6 P , and for any

x ∈ O2(G), x−1tx ∈ P , and so t centralizes O2(G). Since the centralizer of O2(G) is a normal

subgroup containing t, G centralizes O2(G), whence O2(G) 6 Z (G). [This means Z (G) = O2(G).]

Hence O2′(G/Z (G)) is trivial. If tZ (G) is conjugate to some other element of P Z (G), then g−1tg

is an element of P , contrary to the fact that t is weakly closed in P . Then tZ (G) is weakly closed

in G/Z (G), and the fact that G is a minimal counterexample means that tZ (G) ∈ Z (G/Z (G)),

so t ∈ Z (G). But then Z (G) = G, and so G is not a counterexample. So Z (G) = O2(G) = 1.

We know from the Brauer–Suzuki Theorem, Burnside’s p-Complement Theorem and Lemma

4.7, P contains more than one involution. Label another of these involutions x. Note that t and

x are not conjugate. We consider the principal 2-block B of G. Let χ be an irreducible ordinary

character in B.

Let g be an arbitrary element of G. We will show that χ(tx) = χ(txg). If this is true, then

Lemma 4.13 shows that χ(tx) = χ(t)χ(x)/χ(1). Similarly, χ(x) = χ(t(tx)) = χ(t)χ(tx)/χ(1). Then

χ(tx) =
χ(t)χ(x)
χ(1)

=
χ(1)χ(x)
χ(t)

,

and so χ(x) = [χ(t)2/χ(1)2]χ(x), for all χ in the principal 2-block. Since t is not in the centre of G,

by assumption, for a non-trivial χ, χ(t) 6= χ(1). So either χ(x) = 0 or χ(t)2 = χ(1)2, which implies

χ(t) = −χ(1). We have, since χ(1) + χ(t) = 0 unless χ is the trivial character,∑
χ∈B

χ(1)χ(x) +
∑
χ∈B

χ(t)χ(x) =
∑
χ∈B

(χ(1) + χ(t))χ(x) = 2.

However, by Corollary 4.2(ii), with y = 1 (noting that t is not conjugate to x),∑
χ∈B

χ(x)χ(t) = 0,

and from the block orthogonality relations (since x is a 2-element and 1 is a 2′-element),∑
χ∈B

χ(x)χ(1) = 0.

This contradiction will prove the theorem.

It remains to show that χ(tx) = χ(txg) for all g ∈ G. Write y for txg. If y has odd order, then

xg and t are conjugate in the dihedral group 〈t, xg〉, and so y has even order 2n. Then yn is an

involution. Consider the subgroup CG(yn). Since t and xg both invert y, they centralize yn = y−n

and so lie inside CG(yn).

Suppose that b is a 2-block of CG(yn) with defect group D. Then since yn is a normal element

of CG(yn), yn ∈ D. Thus DCG(D) 6 CG(yn), and so b is the principal block of CG(yn) whenever
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bG is the principal block of G by Brauer’s Third Main Theorem. Now we use the Second Main

Theorem: if ψ1, . . . , ψs denote the irreducible modular characters, then for all p-regular elements

z,

χ(ynz) =
s∑
i=1

dy
n

i ψi(z),

where dy
n

j denote the generalized decomposition numbers of χ.

Since Z (G) = 1, CG(yn) 6= G, and so by the minimality ofG, t ∈ Z∗(CG(yn)). So txgt−1(xg)−1 ∈
O2′(H). But t−1 = t and (xg)−1 = xg, so (txg)2 = y2 ∈ O2′(H). This means that n is odd, since

o(y) = 2n. So yn+1 is an even power of y, and thus is a power of y2 and so in O2′(H). Consider

the equation above with z = yn+1, we have

χ(y) = χ(ynyn+1) =
s∑
i=1

dy
n

i ψi(y
n+1) =

s∑
i=1

dy
n

i ψi(1),

because yn+1 ∈ kerφ by Theorem 4.4. But

χ(yn) =
s∑
i=1

dy
n

i ψi(1),

by letting z = 1 in the equation above. So χ(y) = χ(yn).

We must now show that tx is conjugate to yn, and the proof is complete. Firstly notice that

since t is weakly closed in P , t ∈ Z (P ). Since x is also in P , t centralizes x. This fact will be

important. Also t ∈ CG(yn) and since both t and yn are involutions, tyn is an involution as well.

However, we also have

tyn = (ty)(yn−1) = xgyn−1 ∈ xg〈y2〉 ⊆ O2′(H).

This means that tynxg ∈ O2′(H), and so has odd order. By Lemma 4.12(i), tyn and xg are conjugate

in G, and so tyn is also conjugate to x. Therefore, there is an element z ∈ G such that z−1xz = tyn.

Recall that t ∈ CG(x), and so

z−1tz ∈ z−1 CG(x)z = CG(z−1xz) = CG(tyn).

Now t centralizes both t and yn, and so centralizes tyn. Thus both involutions z−1tz and t lie in

CG(tyn). But Z (G) = 1, and so CG(tyn) satisfies the theorem. Then t ∈ Z∗(CG(tyn)), and so

ztO2′(CG(tyn)) = tzO2′(CG(tyn)). But this means that z−1tzt is 2-regular and so by Lemma 4.12,

z−1tz is conjugate to t in the dihedral group generated by t and z−1tz. Thus there exists a ∈ Ctyn

such that a−1z−1tza = t. Then

(za)−1x(za) = a−1
(
z−1xz

)
a = a−1tyna = tyn =

(
(za)−1t(za)

)
yn,

since a centralizes tyn and za centralizes t. But this clearly means x = t(za)yn(za)−1, or in other

words

tx = (za)yn(za)−1,
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and so tx is conjugate to yn and hence to txg. So χ(tx) = χ(txg), as required, and the resault

follows.

Sometimes an alternative form of the Z∗-Theorem is required, and this is given now.

Theorem 4.15 (Glauberman’s Z∗-Theorem) Let G be a finite group, and t an involution,

contained in a Sylow 2-subgroup P . Then the following are equivalent:

(i) t is weakly closed in P ;

(ii) [g, t] is 2-regular for all g ∈ G; and

(iii) O2′(G)t lies in the centre of G/O2′(G).

Proof: The previous theorem dealt with (i)=⇒(iii). We will now show (i) ⇐⇒ (ii). Suppose that

[g, t] is a p-regular element of G, for every g in G. Let g−1tg be an element of P . Then so is

g−1tgt = [g, t]. But this is a p-regular element of G, and so since it lies in a 2-group, must be the

identity. So g−1tg = t, and t is weakly closed in P .

Conversely, suppose that t is weakly closed in P . Let g ∈ G, and suppose that [g, t] has even

order. Now the element tg is also an involution, and so H = 〈t, tg〉 is a dihedral group. Now 〈tgt〉
has index 2 in a dihedral group. But tgt = [g, t], and so |H| is a multiple of 4. Write u for tg. Then

t−1uit = u−i, and so the only power of u in Z (H) is uo(u)/2 (which exists since u = [t, gt] has even

order). Write z for this central involution. Notice that z 6= t, tg.

Let S be a Sylow 2-subgroup of H that contains t. Then z ∈ S since it lies in O2(H), and so

|S| > 2. Also S contains a non-central (and hence reflectional) involution of H, along with the

central (rotational) involution. So they generate a (finite) group of reflections and rotations which

fix a |H|-gon, and so therefore S is dihedral.

Now tg and t generate H, and (tgt)2 ∈ H ′. Since tgt has order |H|/2, and 〈(tgt)2〉 P H, this

means that |H : H ′| = 4. Also tH ′ 6= tgH ′, since neither t nor tg are elements of H ′, and so t and tg

are not conjugate in H, and so certainly not in S. Since tg is an involution, it is contained within

its own Sylow 2-subgroup of H. But all Sylow subgroups are conjugate in H, and so there exists

h ∈ H such that tgh ∈ S. Now tgh 6= t, by the argument earlier in this paragraph.

Finally, since P is a Sylow 2-subgroup of G, P ∩ H is a Sylow 2-subgroup of H, and so is

conjugate to S. Thus there is some element k ∈ H such that Sk = P ∩ H. Then tk ∈ T , since

t ∈ S. But tk = t since t is weakly closed in T . Also, (tgh)k ∈ P , since tgh ∈ S. Thus tghk = t as

well. But then (
tgh
)x

= t = tx,

so that tgh = t. But we have already said that tgh 6= t, a contradiction. So (i)=⇒(ii).

Lastly, we need to show that (iii) implies either (i) or (ii). But if O2′(G)t commutes with all

other cosets of O2′(G), this means that for all g ∈ G, tgO2′(G) = gtO2′(G), or that g−1t−1gt =
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[g, t] ∈ O2′(G), as required.

Proven in 1966 in [39], Glauberman’s Z∗-Theorem is of fundamental importance in the Clas-

sification. As an application of the Z∗-Theorem outside of the Classification, Glauberman proved

a special case of the Schreier Conjecture. Recall that the Schreier Conjecture is that Out(G) is

soluble for any finite simple group G. This conjecture is a corollary of the Classification, although

it is interesting that the following theorem is the only real progress made on this conjecture outside

of the Classification (see [49]).

Theorem 4.16 Let G be a finite group with O2′(G) = 1 (particularly G simple) and let P be a Sy-

low 2-subgroup of G. Then CAut(G)(P ) has abelian Sylow 2-subgroups and a normal 2-complement;

in particular, CAut(G)(S) is soluble.

The proof is described briefly in [49, p223]; Glauberman’s original proof of this theorem is [40].

The Z∗-Theorem has been generalized, in particular by Timmesfeld (see [97]), who considered

the case of an elementary abelian 2-group. We state it here, following [49], for simple groups.

Theorem 4.17 (Timmesfeld) Let G be a simple group and A a (non-trivial) elementary abelian

2-subgroup of G. If A is weakly closed in CG(a) with respect to G for each non-trivial a ∈ A, then

(i) G ∼= Ln(q), Sz(q), U3(q), q = 2n;

(ii) G ∼= An, 6 6 n 6 9; or

(iii) G ≡M22, M23, M24 or He.
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Chapter 5

Frontiers in the Theory

In this chapter we will take a broad look at some of the recent progress in representation theory.

We examine several long-standing conjectures, and look at some of the work that has been done to

prove them.

Firstly, we consider Broué’s Abelian Defect Group Conjecture. This conjecture says that if D is

an abelian defect group of a block B, then B and its Brauer correspondent in kNG(D) are derived

equivalent. This conjecture has been verified in a number of situations, most notably for blocks

with cyclic defect groups and for blocks with defect group C2 × C2.

We next examine two of the most famous conjectures in modular representation theory: the

Alperin–McKay and Alperin’s Weight Conjectures. The first has its origins in simple group theory:

it was becoming apparent that for certain simple groups, the number of irreducible ordinary char-

acters of odd degree in the principal block B0(G) was equal to that of B0(NG(D)), in characteristic

2. The Alperin–McKay Conjecture generalizes this property, using the definition of height zero, a

concept which coincides with having odd degree in the case of the principal block over characteristic

2.

Finally, we consider two other famous conjectures – Brauer’s k(B) and Height Zero Conjectures.

The first conjecturally bounds the number of irreducible ordinary characters lying in a block by the

order of its defect groups. That the number of irreducible ordinary characters is bounded above

by a function of the defect of the block was proven by Brauer and Feit, in the same paper as the

k(B) Conjecture itself. The second concerns itself with the powers of p dividing the degree of a

character lying in a block B with |D| = pd. It says that all of the ordinary characters lying in B

have degree χ(1) ≡ 0 mod pd but χ(1) 6≡ 0 mod pd+1 if and only if D is abelian.

For the relevant category theory and homological algebra, the books [70] and [99] are recom-

mended. We will assume a familiarity in particular with the notions of complexes and Morita and

derived equivalences.
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5.1 Broué’s Abelian Defect Group Conjecture

Broué’s Abelian Defect Group Conjecture first appeared in [22]. It relates to the structure of blocks

with abelian defect group, as its name suggests.

Conjecture 5.1 (Abelian Defect Group Conjecture) Let G be a finite group, and B a block

of RG with defect group D. Suppose that D is abelian. Let b be the (unique) block of RNG(D)

that is the Brauer correspondent of B. Then B and b are derived equivalent.

If the blocks B and b are derived equivalent, then this has many consequences; for example, the

two blocks will have the same numbers of irreducible ordinary and modular characters.

The Abelian Defect Group Conjecture is known to be true for blocks with a cyclic defect group.

This was proven in [81] and [67]. In the first paper, Rickard proves the following.

Theorem 5.2 (Rickard) Let G be a finite group, and B a block of kG with abelian defect group

D. Let E = NG(D)/CG(D). Then the derived categories of B and k(D : E) are equivalent, where

D : E denotes the semidirect product of D by E.

This theorem is proven by the method of tilting complexes (see later). In the second paper,

Linckelmann lifts the tilting complex up to the local ring, demonstrating the result for a block of

RG.

Another major area in which this conjecture is proven is for defect groups C2 × C2. The final

step in this proof was given by Linckelmann [68], building on work of Erdmann. In this paper,

Linckelmann actually proves more:

Theorem 5.3 (Erdmann, Linckelmann) Let B be a block of the group algebra RG, having

D = C2×C2 as its defect group. The source algebra is isomorphic to one of the interior D-algebras

Ωn
D(RD), Ωn

D(RA4) or Ωn
D(B0(RA5)) for some integer n.

Now the source algebra is Morita equivalent to the block algebra, and so this gives a list of

the possible isomorphism types of the block algebra. Now all of the Heller translates are Morita

equivalent, and so the block algebra B is Morita equivalent to either RD, RA4, or B0(RA5). Rickard

has shown that the algebras RA4 and b0(RA5) are derived equivalent, and so the block algebra B

is derived equivalent to either RD or RA4. Thus Broué’s Conjecture is proven in this case.

In the case of p-soluble groups, it is also known to be true. This fact was proven in 2000, by

Harris and Linckelmann [54], working on a result of Dade. Let B denote a block of RG, and b its

Brauer correspondent in RNG(D). In [28], Dade proves that B and b are Morita equivalent. Harris

and Linckelmann use this result to show that this Morita equivalence induces a derived equivalence,

which is isomorphic with a splendid derived equivalence, as defined by Rickard.

Koshitani and Kunugi in [63] prove the Broué Conjecture in the case where D = C3×C3 is the

defect group of the principal block. Their method is to reduce the case to that where O3′(G) = 1,

and then use a theorem of Yoshiara, which says that any finite group with elementary abelian Sylow
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3-subgroup of order 9 (and O3′(G) = 1) is either the direct product of two finite simple groups with

cyclic Sylow 3-subgroups, or a finite simple group itself. Their proof then follows by checking each

possible case, and so this relies heavily on the Classification of the Finite Simple Groups.

There are also results for all blocks of a particular type of group. One of the best examples is

the symmetric group, where the Chuang–Rouquier Theorem gives considerable information about

the structure of blocks in the symmetric group. One of the consequences of this theorem is that

the Abelian Defect Group Conjecture is proven true for all blocks of the symmetric group. In [71],

Andrei Marcus uses this result and some Clifford theory to show that the conjecture is also true

for all blocks of the alternating group.

There are also proofs for particular groups, normally simple, or connected with a simple group.

In this case it is often shown that the two blocks are derived equivalent directly, rather than in any

general theorem. What has appeared as the standard method of proving that two rings are derived

equivalent is the method of so-called tilting complexes. These are given in the following theorem

(see [84] and [82]).

Theorem 5.4 Two rings R and S are derived equivalent if and only if S is isomorphic to the

endomorphism algebra, in Db(R), of an object T such that

(i) T is a bounded complex of finitely generated projective R-modules,

(ii) HomDb(R)(T, T [i]) = 0 for i 6= 0, and

(iii) if X is an object of Db(R) such that HomDb(R)(T,X[i]) = 0 for all i ∈ Z, then X ∼= 0.

The object T described above is a one-sided tilting complex. There is also a two-sided tilting

complex, with the following theorem (see [83] and [60]).

Theorem 5.5 Two rings R and S are derived equivalent if and only if there is a bounded complex

X of (R,S)-bimodules and a bounded complex Y = HomR(X,R) of (S,R)-bimodules such that

(i) all the terms of X and Y are finitely generated and projective as left modules and as right

modules,

(ii) as a complex of R-bimodules, X ⊗R Y ∼= R⊕ C for some acyclic complex C, and

(iii) as a complex of S-bimodules, Y ⊗R X ∼= R⊕ C ′ for some acyclic complex C ′.

In this case X is called a two-sided tilting complex. Tilting complexes are seen to be one of

the best hopes for proving the Abelian Defect Group Conjecture for particular cases; for example,

Gollan and Okuyama [47] prove the conjecture in the Janko group J1, (p = 2), with defect group

C3
2 .

Work on the simple groups of Lie type includes, for example, Landrock’s and Michler’s proof

that all of the principal blocks of the Ree groups 2G2(32n+1) are Morita equivalent, which reduces

the Broué Conjecture to the case of 2G2(3), for which it is known to be true.
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5.2 Alperin–McKay Conjecture and Alperin’s Conjecture

Recall that ifG is a finite group, the character χ lies in a block of defect d, and the Sylow p-subgroups

of G have order pa, then the height of χ is χ(1)p − (a − d), where χ(1)p denotes the power of p

dividing χ(1). Particularly important are the height zero characters, for which χ(1)p = a− d; since

pa−d|χ(1) for all characters χ in a block of defect d, these are called height zero because they have

the smallest power of p dividing their degree.

We fix some notation: let ht(χ) be the height of the character χ; if B is a block, write k(B)

for the number of irreducible ordinary characters that lie in B, and write k0(B) for the number of

irreducible ordinary characters of height zero lying in B. The Alperin–McKay has its roots in [72],

and its modern formulation appeared in [1].

Conjecture 5.6 (Alperin–McKay Conjecture) Suppose that B is a block of the group algebra

kG with defect group D, and let b be its Brauer correspondent in NG(D). Then k0(B) = k0(b).

We next describe the other conjecture in this section. Following [62], let l(B) denote the

number of isomorphism types of simple B-modules, and f0(B) be the number of isomorphism

types of projective simple B-modules. Alperin’s Conjecture is given now (see [3]).

Conjecture 5.7 (Alperin’s Conjecture) For any finite group G,

l(G) =
∑
P∈P

f0(NG(P )/P ),

where P is a set of representatives for the conjugacy classes of p-subgroups of G.

This conjecture has been tightened to deal with individual blocks – if B is a block of G, and has

correspondents b1, . . . , bn in NG(P ), then the left-hand side becomes l(B), and the right-hand side

becomes the sum of the number of all projective simple NG(P )/P -modules that lie in one of the bi
when viewed as a kNG(P )-module.

Okuyama [74] has proven Alperin’s Conjecture for p-soluble groups, proceeding by induction

on |G|. Firstly, he supposes that Op(G) 6= 1. Then quotienting out by this normal subgroup sets

up an induction, and the result follows easily in this case. So he is reduced to considering the case

where Op(G) = 1. Then, since G is p-soluble, Op′(G) = E 6= 1. Again, he splits into cases, whether

or not ED is a normal subgroup of G. If it is not, then H = NG(D)E < G, and so he can perform

an induction argument to show that the result holds for H and NG(D).

If the inertia subgroup of a particular kE-module is not equal to G, then a result of Fong and

Cliff is used to get the needed result. If this inertia subgroup is G, Okuyama shows that Op′(G) is

central and Op(G) 6= 1, reducing to the earlier case. So only the case where DE P G remains, and

a similar argument to the case DE 6P G with the inertia subgroup of a particular block reduces

to the case that D is a Sylow p-subgroup of G, which is much easier to deal with and Okuyama

quickly proves the result in that case.
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It is also known that both Alperin’s and the Alperin–McKay Conjectures are true in the case of

finite groups with T.I. Sylow p-subgroups. Recall that a subgroup H is T.I. (or trivial intersection)

if Hg ∩ H = 1 for g ∈ G \ NG(H). In this case, the structure of the defect groups are very easy

to determine: by Proposition 1.20 any defect group is the intersection of two Sylow p-subgroups,

which in this case is either the Sylow p-subgroup itself or the trivial group.

Blau and Michler [12] have proven these two conjectures, as well as Brauer’s Height Zero Con-

jecture, for all finite groups with T.I. Sylow p-subgroups. Their method relies heavily on the

Classification, just as Koshitani and Kunugi did in their proof of a special case of Broué’s Conjec-

ture. For now, suppose that G is a finite group with a T.I. Sylow p-subgroup, and let P denote a

Sylow p-subgroup of G. Blau and Michler rely heavily on Proposition 1.20, so a block either had

defect P or defect zero.

The first stage is to restrict the possibilities for G and P . If X is a finite group, and Z (X) =

Op′(X) = Z
(
Op′(X)

)
= CX(Op′(X)) and Op′(X)/Z

(
Op′(X)

)
is a non-abelian simple group,

then Blau and Michler call X almost simple with respect to p. They then show, in a lengthy

derivation, that a minimal counterexample G to the theorem must be almost simple. But in this

definition Op′(X) is quasisimple, and with the Classification of Finite Simple Groups, all of the

Schur multipliers and hence all of the quasisimple groups are known.

All of the non-abelian simple groups with T.I. Sylow p-subgroups are enumerated:

(i) PSL2(q) for q = pn, n 6= 1;

(ii) PSU3(q2) for q = pn;

(iii) p = 2, 2B2(22m+1);

(iv) p = 3, 2G2(32m+1) for m > 1, PSL3(4) and M11;

(v) p = 5, 2F4(2)′ and M cL; and

(vi) p = 11, J4.

They then check in turn each of the almost simple groups whose simple factors are the groups on

this list: if B is a block of kG, and b is a block of kNG(P ), then k(B) = k(b) and k0(B) = k0(b).

With this verification, these equations hold for all finite groups with a T.I. Sylow p-subgroup. Since

the only non-trivial defect group is P , if z(G) denotes the number of defect zero characters of G,

then k(G) = k(NG(P ))+ z(G). Finally, by [35, IV.6.6], and the fact that CG(x) 6 NG(P ) for every

non-identity x ∈ P , k(B)− l(B) = k(b)− l(b), and so l(B) = l(b).

So they prove the following theorem.

Theorem 5.8 (Blau, Michler) Let G be a finite group with T.I. Sylow p-subgroup P . Let B

be a block of kG with defect group P , and let b be its Brauer correspondent in NG(P ). Then

k(B) = k(b), k0(B) = k0(b), l(B) = l(b) and k(G) = k(NG(P )) + z(G).
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This demonstrates Alperin’s Conjecture and the Alperin–McKay Conjecture in one go, as well

as Brauer’s Height Zero Conjecture (see Section 5.3). These two cases are in some sense ‘easy’,

because in the one case the presence of normal p- and p′-subgroups is very useful, and in the second

case there is a great restriction placed on the possible defect groups. In general, Alperin’s Weight

Conjecture in this form is far from being understood. However, there are alternative forms of this

conjecture, which may well be more amenable to solution.

In [62], Knörr and Robinson introduce four types of simplicial complex: P, which consists of

all chains of p-subgroups; E , which consists of those of P which consist of elementary abelian

subgroups of G; N , which consists of those of P with the added condition that each term is

normal in the following; and U , which consists of those chains of P such that each term Qi has

the property that Qi = Op(NG(Qi)). If C is the chain Q0 < Q1 < · · · < Qn, then let |C| = n.

Denote by GC the stabilizer of the chain C (under conjugation), and BC = BrQn(1B)kGc, which is

either 0 or a sum of blocks of kGc.

The main result of this paper is the following:

Theorem 5.9 (Knörr–Robinson) Let B be a block of the group algebra kG, with G a finite

group, and write l0(B) for dimk(TrH1 (B)). Then∑
C∈∆1/G

(−1)|C|k(Bc) =
∑

C∈∆2/G

(−1)|C|l(Bc) =
∑

C∈∆3/G

(−1)|C|l0(Bc),

where the ∆i are any of the four complexes defined above.

Moreover, Alperin’s Conjecture is valid for the prime p if and only if each of these sums is zero

for every block B of non-zero defect in kG.

The proof of the first statement requires first to show that the sums do not depend on the choice

of simplicial complex. Then they prove
∑

C∈P/G

(−1)|C|k(Bc) =
∑

C∈P/G

(−1)|C|l0(Bc); they consider

the Lefschetz conjugation module of B, and show that this virtual module is virtually projective in

the Green ring. This then provides two ways of counting the fixed points, giving the result. After

demonstrating this, the other half of the equality

 ∑
C∈P/G

(−1)|C|k(Bc) =
∑

C∈P/G

(−1)|C|l(Bc)


is proven again making use of the virtual projectivity of the Lefschetz conjugation module.

Earlier in the paper, Knörr and Robinson had shown that Alperin’s Conjecture was equivalent

to the statement ∑
C∈N /G

(−1)|C|l(Bc) = 0,

thus completing the proof of Theorem 5.9.

Since this article appeared in 1989, many variants of Alperin’s Weight Conjecture have appeared,

due to Theorem 5.9. The first variant appears in [90] (it is easily seen to imply Alperin’s Conjecture,

and was actually proved equivalent to it in [66]), and other formulations appeared soon after that.

Another formulation, due to Robinson, (see [86]) is the so-called Ordinary Weight Conjecture.
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Again working from [62], the Dade Conjecture is actually a series of conjectures: we refrain

from presenting them here. In [29] he presents his ‘Ordinary Conjecture’, and shows that it is true

for blocks with cyclic defect groups and a couple of sporadic simple groups. In [30] he present

what is known as Dade’s Projective Conjecture (Charles Eaton has proven that Dade’s ‘Projective

Conjecture’ is equivalent to Robinson’s Ordinary Weight Conjecture in [34]), and in [32] he presents

other forms. In [31], Dade proves that his ‘Invariant Projective Conjecture’, which implies the

normal Projective Conjecture, holds for blocks with cyclic defect groups. The most general of

Dade’s Conjectures, the ‘Inductive Conjecture’, has the very useful property that if it holds for all

of the finite simple groups (and their automorphism groups and covering groups), then it holds for

all groups. However, a proof of this fact has not been published, and even the statement of the

conjecture in [32] is not fully correct.

Dade believes that this reduction to the case of simple groups is the best hope that there is

for proving Alperin’s Conjecture, and since Dade’s Projective Conjecture (and hence all further

forms of Dade’s Conjectures and the Ordinary Weight Conjecture) implies the Alperin–McKay

Conjecture, a proof of Dade’s Inductive Conjecture would significantly alter the field of modular

representation theory. However, a purely number-crunching approach to these conjectures will not

provide the insight into the way that p-local subgroups influence representation theory that we

need.

The body of evidence supporting all of these conjectures is enough to convince many of their

truth. To quote Jonathan Alperin in his review of [30], ‘Proofs of all these results elude us still but

the evidence for them is overwhelming and includes proofs of special cases and examples, derivation

of known results from the conjectures as well as connections between all the conjectures. If the

subject were physics and not mathematics all these special conjectures would be accepted truths.’

5.3 Brauer’s Conjectures

Brauer’s name is associated with two major conjectures, Brauer’s k(B) Conjecture and the Height

Zero Conjecture. We will deal firstly with the k(B) Conjecture, which appeared in 1959 in a paper

by Brauer and Feit [20].

Conjecture 5.10 (Brauer’s k(B) Conjecture) Let B be a block of kG, with defect d. Then

k(B) 6 pd.

In [20], Brauer and Feit prove k(B) 6 p2d/4 + 1, so it is known that k(B) is bounded by some

function of the defect. However, the k(B) Conjecture bounds this rather tighter than p2d/4 + 1.

The k(B) Conjecture has recently been verified for all p-soluble groups. The first results in this

area were due to Nagao [73], who proved the following statement.

Theorem 5.11 (Nagao) The Brauer k(B) Conjecture is valid for p-soluble groups if and only if

whenever G = SP , where P is a normal elementary abelian p-group of order pn, and S is a p′-group
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acting faithfully and irreducible on P , then G has at most pn conjugacy classes.

We can think of P in this case as a vector space of dimension n, and so for p-soluble groups the

conjecture is equivalent to the so-called k(GV ) Conjecture, which considers a p′-group G acting on

a vector space, and counting the number of conjugacy classes of the semidirect product GV .

Reinhard Knörr introduced an important technique in [61], which led to a proof of the k(GV )

Conjecture when |G| is odd by Gluck [42] – of course, since V is assumed to be a 2-group, this

means that GV is 2-soluble – and so it remained to consider the cases where V has odd order.

The next breakthrough came in the paper [91], where Robinson and Thompson proved the

k(GV ) Conjecture for all primes over 530 – the presence of 530 is because of a result of Liebeck’s

which determines the structure of certain GF(p)G modules, where G is a p′-group (see [91] for more

information). In fact, their paper goes much further than that – it proves the following theorem.

Theorem 5.12 (Robinson–Thompson) Let p be a prime such that for all finite p′-groups X,

finite fields GF(pn), and faithful GF(pn)X-modules M , either

(i) for some prime q, Oq(X) acts absolutely irreducibly on M , and every characteristic abelian

subgroup of Oq(X) is central; or

(ii) if E(X) is quasisimple and acts absolutely irreducibly on U , then there is a vector v ∈ M

such that ResXCX(v)(M) contains as a summand a faithful permutation module.

Then the k(B) Conjecture holds for this prime, so for all finite p-soluble groups G and p-blocks B

with defect group D, k(B) 6 |D|.

This allowed the problem to be assaulted, because not only had all but finitely many primes

been checked, but there were now two possible ways to attack a prime p. The first of these two

conditions became known as the ‘symplectic case’, and the second the ‘quasisimple case’. The work

on the quasisimple case by Riese in [98], and Gluck and Magaard in [43], solves the k(GV ) problem

for all primes except 3, 5, 7, 11, 13, 19, and 31. The problem now became very tractable, and only

seven cases needed to be decided.

All cases except for p = 5 were solved, mostly by Riese, Schmid, and Gluck, by 2002, and finally

the case p = 5 was settled last year in [44]: in the end they had to actually count conjugacy classes

to get the solution. This means that for p-soluble groups, the k(B) Conjecture is true. We are

still far from a solution in the general case, however, since no reductions of the form of Nagao are

known in this case, so the entire structure we have built up here no longer applies.

The second of the conjectures in this section is called Brauer’s Height Zero Conjecture. It is

easy to state.

Conjecture 5.13 (Brauer’s Height Zero Conjecture) Let B be a block of a finite group G.

Then k(B) = k0(B) if and only if B has abelian defect group.
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So the conjecture is that a block has only height zero characters precisely when its defect group

is abelian. The first real result in this area is in [36], where Fong proves the following theorem.

Theorem 5.14 (Fong) Let G be a p-soluble group, and B a block of kG, with defect group D.

If D is abelian, then all characters of B have height zero.

So this proves one direction of the Height Zero Conjecture for p-soluble groups. Fong also proves

the converse for the principal block.

The full converse had to wait until 1984. First, Gluck and Wolf in [46] prove the Height Zero

Conjecture for soluble groups. They then extend this result in [45] to p-soluble groups, proving:

Theorem 5.15 (Fong, Gluck–Wolf) Let G be a p-soluble group. Every character in a block B

of kG has height zero if and only if the block’s defect group is abelian.

As Gluck and Wolf do, we introduce the notation Irr(G|ψ) to mean the set of all irreducible

characters of G that are involved in a decomposition of ψG into irreducible constituents. Gluck

and Wolf prove the following theorem in both [46] and [45], with ‘soluble’ changed to ‘p-soluble’.

Theorem 5.16 (Gluck–Wolf) Suppose that N P G, that G/N is (p-)soluble, that ψ ∈ Irr(N),

and that p - (χ(1)/ψ(1)) for all χ ∈ Irr(G|ψ). Then the Sylow p-subgroups of G/N are abelian.

Proof of Theorem 5.15: Proceed by induction on |G : Op′(G)|. Since G is (p-)soluble, so

is G/Op′(G), and so Theorem 5.16 applies. We use an important result in [37], which states that

if G is a p-block of a p-soluble group G, then there is a subgroup H of G, and a block b of H,

such that there is a height-preserving bijection from Irr(B) onto Irr(b), and such that either H

contains Op′(G) or H/Op′(H) ∼= G/Op′(G), and Irr(b) = Irr(H|ψ) for some irreducible character

ψ of Op′(H), and b has full defect in H.

The first possibility falls to induction easily, and so we can assume that Irr(b) = Irr(H|ψ). We

can apply induction again to get Irr(B) = Irr(G|φ) for some irreducible character φ of Op′(G),

and the defect groups of B are Sylow p-subgroups of G. Since every character of B is of height

zero, p - χ(1) for all χ ∈ B. Then Theorem 5.16 shows that the defect groups of B are abelian, as

required.

The proof of Theorem 5.16 for p-soluble groups requires the Classification, because it has to pin

down the possible structure of a p-soluble group that is not soluble, and consider automorphism

groups of simple groups.

Considering the Height Zero Conjecture for arbitrary finite groups, in 1963 Reynolds [80] proves

(both directions of) the conjecture when D is a normal subgroup of G. In [11], Berger and Knörr

prove another reduction of the Height Zero Conjecture, possibly making it accessible to exhaustive

search methods.
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Theorem 5.17 (Berger, Knörr) The conjecture ‘every irreducible ordinary character in B has

height zero if its defrect group is abelian’ holds for all finite groups if it holds for quasisimple groups.

Including the previously mentioned results of Blau and Michler proving the Height Zero Conjec-

ture for groups with T.I. Sylow p-subgroups, this is broadly the current progress of directly tackling

this conjecture to date. The Berger–Knörr Theorem allows us to check every single quasisimple

group, and so prove one half of the conjecture. But this sounds like a daunting task, and it has not

been seriously attempted since the publication of the result in 1988.

However, there is interplay between the various conjectures: Knörr and Robinson in [62] state

that, for abelian defect groups, any two of Alperin’s Conjecture, the Alperin–McKay Conjecture and

the ‘if’ direction of Brauer’s Height Zero Conjecture imply the third. Given that if Dade’s Inductive

Conjecture is finally proved, it will simultaneously prove both Alperin’s Weight Conjecture and the

Alperin–McKay Conjecture, it will also prove one direction of Brauer’s Height Zero Conjecture. At

the moment, this really does seem the best way to prove this conjecture. Of course, a solution to

the Broué Conjecture would also yield a solution, but it seems that a proof even of the Height Zero

Conjecture is more likely than that.
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Chapter 6

Conclusions and Further Topics

In this short final chapter, we conclude this dissertation, and also give some suggestions for further

exploration of this topic.

6.1 Conclusions

The main aim of this dissertation was to examine the modular representation theory of finite groups,

and particularly to exhibit some non-trivial results from both the block-based and module-based

approaches.

We have seen Brauer’s approach, using block theory. The Three Main Theorems, and the Brauer

Correspondence in general, are the fundamental concepts in this way of doing representation theory.

In the module theory, we proved the Green Correspondence and the Nagao Decomposition,

certainly two non-trivial results in this area. The Green Correspondence can be seen as the module

equivalent of the Brauer Correspondence, since both lie at the centres of their respective fields.

Corollary 2.19, although not a major result in itself, hints at the subtle interplay of the two

correspondences, and of the two approaches. We used a module approach to prove Brauer’s Second

Main Theorem, mainly because the proof is cleaner and more illuminating, but it also illustrates

the co-dependency of the modules and of the blocks.

To demonstrate this relationship Green developed the concept of G-algebra, and we examined

this straight after the two approaches. There is some argument to place the applications of block

theory, Chapter 4, straight after Chapter 1, because nothing from the following two chapters is

required. However, this would break up the comparison between the two methods, and so was left

until Chapter 4.

To conclude, the comparison between the two methods was at least partially successful, although

the author believes that more weight could have been placed on the block theory, by perhaps

describing Brauer’s theory of blocks of defect one. On the whole, especially with the chapter on

G-algebras connecting the two, the author considers the main aim to have been fulfilled.

It was also important to stress how this theory is used to extract information about particular
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groups, and applications to group theory in general.

Ordinary character theory can be used to gain considerable knowledge about groups: we can

easily check if a group is simple, by examining the kernel of each character; and we can find out

the quantity |G : G′| by counting the number of linear characters, to name just two of the many

applications of ordinary character theory. In the preface we mentioned Burnside’s pαqβ theorem, a

major application of character theory to finite groups.

It seems important to stress the usefulness of modular representation theory, given that it

requires considerably more effort to understand the characteristic p representation theory of a

group than the characteristic 0 theory. We have tried to accomplish this in Chapter 4, giving two

theorems – the Brauer–Suzuki Theorem and Glauberman’s Z∗-Theorem – that are of fundamental

importance in finite group theory.

Finally, we tried to see some of the representation theory that is being done now, to place this

work in context. The applications that we gave of block theory were both simple group theory

related, indicative of how modular representations have been used in the past. However, with the

Classification of the Finite Simple Groups over, the field of modular representation theory, like

many fields of group theory, has had to change direction. It is perhaps not surprising that when

modular character theory stopped being useful in the Classification – about 1975 – the new methods

of representation theory started to appear.

The goal of Chapter 5 was to make clear this change in impetus and, in the author’s opinion,

it has succeeded. There is a definite sense of progress and vitality in representation theory, and it

is hoped that some of this has come across. Perhaps a more in-depth study of one or two results

would have been useful, but then considerably more methods and techniques would have had to

be described to make the jump between the first four chapters and the current research. It is the

author’s opinion that what has been done in Chapter 5 is all that could have reasonably been

achieved in an MSci project.

In summary, generally the aims have been achieved, although the author has concerns over the

depth of study in the block theory.

6.2 Further Topics

In the block theory, the major outstanding problems of Brauer, Alperin and McKay, Olsson, and

others, dominate the current research. In Chapter 5 we gave a brief description of the current state

of affairs on some of the conjectures, although the processes by which this knowledge is reached

are not given. For a better understanding of this research, the reader should consult the references

given in that chapter.

We have not really mentioned the theory of cyclic defect groups in any detail at all, and this

theory is very important in modern block theory. The blocks with cyclic defect groups are much

better understood than arbitrary blocks, and this theory is possibly the next logical step for a
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better understanding of this subject.

The blocks of defect zero have a very simple structure, having only one irreducible ordinary and

modular character, having trivial Cartan matrices and decomposition numbers, and so on. The

blocks of defect one were studied by Brauer in [13], [14] and [15]. Of course, a block of defect

one has a cyclic defect group. Brauer’s methods do not seem to generalize, and the theory of

blocks with arbitrary cyclic defect group was really started with Dade in [27], building on results of

Thompson. Later work by several mathematicians has lead to the current theory of these blocks.

For an introduction, the reader is referred to, for example, [35], which also gives a brief chronology

of this theory.

Clifford theory is concerned with how the representation theory is affected by the presence

of normal subgroups. Clifford’s Theorem itself describes how a simple module breaks up when

restricted to a normal subgroup; [26, §11] describes some of the results in Clifford theory, including

Clifford’s Theorem, and is recommended for further reading on this topic.

Moving on to the module-theoretic viewpoint, the books by David Benson [10] offer a concise

introduction to this area. This approach to representation theory is inextricably intertwined with

cohomology, and so a necessary background in cohomology is essential.

Auslander–Reiten theory is one of the central areas in this approach; the book [8] introduces

the subject. An Auslander–Reiten sequence (sometimes almost split sequence) of modules over the

ring R is one of the form

0 −−−−→ M −−−−→ E
σ−−−−→ N −−−−→ 0,

where M and N are indecomposable, σ does not split, and given any R-module L and homomor-

phism θ : L→ N that is not split onto, there is a homomorphism φ such that the diagram

L

0 M E N 0
��

θ

���
�

�
�

�
φ

// // //σ //

commutes.

In 1975 Auslander and Reiten proved that if R is finitely generated when viewed as a module

over its centre, and its centre is an artinian ring, then such sequences exist for any non-projective

indecomposable module N , and they are essentially unique. Auslander–Reiten sequences are con-

nected to objects known as quivers, which are broadly a type of directed graph. For a very readable

introduction to quivers see [85].

Finally, although we have given some of the foundations of the block-theoretic and module-

theoretic approaches, there is also the theory of integral representations, that is not considered at

all in this dissertation. For a reasonably comprehensive treatment of this topic, the book of Curtis

and Reiner [26] is recommended.
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