A Group of Order 8 That's

Hard: Indecomposable String

Modules for the Dihedral

Groups

David A. Craven

Yet Another Kinderseminar

31st January, 2007

Green's Indecomposability Criterion: If M is an indecomposable KH-module, $H \leqslant \leqslant G$, and $|G:H|=p^a$, then $M \uparrow^G$ is indecomposable.

Mackey Decomposition Theorem: If M is a KH_1 -module, then

$$(M\uparrow^G)\downarrow_{H_2} = \bigoplus_{t\in T} (M\downarrow_{H_1^t\cap H_2})^t\uparrow^{H_2},$$

where T is a set of (H_1, H_2) -double coset representatives.

Mackey Tensor Product Theorem: If M and N are KH-modules, then

$$M \uparrow^G \otimes N \uparrow^G = \bigoplus_{t \in T} (M^t \downarrow_{H^t \cap H} \otimes N \downarrow_{H^t \cap H}) \uparrow^G,$$

where T is a set of (H,H)-double coset representatives.

Theorem (Conlon): Tensor products behave as in the table below.

$n \leqslant n'$	A_n	B_n
$A_{n'}$	$nn'D \oplus A_{n+n'}$	$n(n'+1)D \oplus A_{n'-n}$
$B_{n'}$	$\mid n(n'+1)D \oplus B_{n'-n} \mid$	$nn'D\oplus B_{n+n'}$
$C_{n'}(\pi')$	$nn'mD\oplus C_{n'}(\pi')$	$nn'mD \oplus C_{n'}(\pi')$
$C_{n'}(\infty)$	$nn'D\oplus C_{n'}(\infty)$	$nn'D\oplus C_{n'}(\infty)$
$n\leqslant n'$	$C_n(\pi)$	$C_n(\infty)$
$A_{n'}$	$nn'mD\oplus C_n(\pi)$	$nn'D\oplus C_n(\infty)$
$B_{n'}$	$nn'mD\oplus C_n(\pi)$	$nn'D\oplus C_n(\infty)$
$C_{n'}(\pi')$	X	nn'mD
$C_{n'}(\infty)$	nn'mD	$n(n'-1)D\oplus 2C_n(\infty)$

The remaining entry X is nmn'm'D if $\pi \neq \pi'$, and $nm(n'm-1)D \oplus 2C_n(\pi)$ if $\pi = \pi'$.

Corollary: The modules $C_n(\pi)$, D and K are algebraic, and the modules A_n and B_n are not.