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One of the first great results in twentieth-century group theory is that if a group has

order divisble by at most two primes, then it is soluble. Burnside’s original proof requires

characters. We will not.

1 Introduction

Recall that if G is a group and π is a set of primes, then a Hall π-subgroup is a π-subgroup

whose index is coprime with any prime in π. Hall’s theorem on soluble groups is the following.

Theorem 1.1 (Hall, 1928) Let G be a finite group. Then G is soluble if and only if G

contains Hall π-subgroups for all sets of primes π.

Let us suppose that G is a finite group such that π(G), the set of primes dividing the order

of G, contians exactly two elements. Then this theorem becomes the following, assuming

the existence of Sylow p-subgroups.

Theorem 1.2 (Burnside, 1904) Let G be a group such that π(G) = {p, q} for p 6= q.

Then G is soluble.

Hall’s theorem is a generalization of Burnside’s theorem; to prove that if a group G has

Hall π-subgroups for all sets π then G is soluble is an induction on |π(G)|. The base case is,

of course, Burnside’s theorem.

During the proof of the Feit–Thompson theorem, the structure of the groups with

|π(G)| = 2 became important. Burnside’s proof gave basically no structural information

about these groups. Hence, we will proceed differently.

2 The Broad Outline

From now on, G will denote a minimal counterexample to Burnside’s theorem, of order pαqβ.
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Lemma 2.1 Let H be a simple group, K be a proper subgroup of H and A 6 K. Suppose

that H = K NH(A). Then A = 1.

Proof: This is easy; write h = xy with x ∈ NH(A), so that Ah = Ay 6 K. Thus the normal

closure of A is contained within K. Thus the normal closure is not H, so it must be trivial.

Lemma 2.2 The following properties of G hold:

(i) G is a simple group;

(ii) |G| is divisible by exactly two different primes p and q;

(iii) every proper subgroup of G is soluble; and

(iv) if P denotes a Sylow p-subgroup of G then P does not normalize any non-trivial q-

subgroup of G.

Proof: (i) is obvious, as are (ii) and (iii). (iv) needs the previous lemma, vindicating its

presence; if Q is a non-trivial q-subgroup, and P 6 NG(Q), then since Q is contained in R,

a Sylow q-subgroup, we have G = PR = NQ(G)R, a contradiction.

The first key step is to prove the following theorem.

Theorem 2.3 Let M be a maximal subgroup of G. Then M does not have both a normal

p-subgroup and a normal q-subgroup.

That M has a normal p-subgroup or a normal q-subgroup follows from the fact that

minimal normal subgroups of soluble groups are elementary abelian.

The second key step is to understand the intersection of a maximal subgroup and its

conjugates.

Theorem 2.4 Let M be a maximal subgroup of G, and g ∈ G \ M . If Op(M) = 1, then

M ∩ M g is a p-group.

From this step we can get a contradiction. Let M be a maximal subgroup containing

a Sylow p-subgroup. By Lemma 2.2(iv), Oq(M) = 1, and so M ∩ M g is a q-group for any

g /∈ M . Hence the index of M ∩ M g in M is at least pα, and so

(pα)2 6
|M | · |M g|
|M ∩ M g|2

6
|M | · |M g|
|M ∩ M g|

= pαqβ.

It is also true that q2β 6 pαqβ by the same method, and we reach a contradiction.
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In the next section we will prove Theorem 2.3; the proof of Theorem 2.4 is beyond the

scope of this lecture, as we would have to introduce the J-subgroup as well as prove some

rather delicate technical lemmas. The next section gives a flavour of the manipulations

involved.

3 Theorem 2.3

The proof of this is not easy, and proceeds in stages. We begin by letting F(M) denote the

largest normal nilpotent subgroup. To think of it another way,

F(M) = Op(M) × Oq(M).

We are supposing that neither Op(M) nor Oq(M) are trivial. We first claim that F(M)

either has more than one subgroup of order p or more than one subgroup of order q. If this

is false, then a strong theorem proves the following.

Theorem 3.1 Either Op(M) is cyclic or p = 2 and Op(M) is generalized quaternion.

The proof of this is not easy either, and will be omitted.

Assuming this, suppose that the Sylow subgroups of M are all cyclic, and that p < q.

Then, since q doesn’t divide |Aut Op(M)| which is (p− 1)pa for some a, a Sylow q-subgroup

Q of M must centralize Op(M), and so

Z (Q) 6 CM(F(M)) 6 F(M),

by a famous theorem of Fitting as M is soluble. Hence Z = Z (Q) is a characteristic Q-

subgroup of Oq(M), and so is a characteristic subgroup of M . However, as G is simple,

NG(Z) = M . However, the following is true.

Proposition 3.2 Let Q be a q-subgroup of a group G. Let Z be a characteristic subgroup

of Q and suppose that Q is a Sylow q-subgroup of NG(Z); then Q is a Sylow q-subgroup of

G.

Proof: If Q is not a Sylow q-subgroup of G, then it is contained within one, R say. Thus

NR(Q) > Q, and since

Z char Q P NR(Q),

and so NR(Q) 6 NG(Z). Thus we see that NR(Z) > Q. This is a contradiction to the fact

that Q is a Sylow q.
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Returning to our original problem, we have that Z is a characteristic q-subgroup of

M = NG(Z), and Q is a Sylow q-subgroup of M . Hence Q is a Sylow q-subgroup of G. By

Lemma 2.2, Q cannot normalize any non-trivial p-sugbroups, but it normalizes Op(M), a

contradiction.

Hence we may assume that p = 2 and O2(M) is generalized quaternion, and Oq(M) is

cyclic. Let P be a Sylow 2-subgroup of M , and note that since Oq(M) is cyclic, P ′ must act

trivially on it. Since P ′ is a normal subgroup, it hits the centre non-trivially, so let X be a

subgroup of order 2 lying in P ′ ∩ Z (P ). Hence

Z (P ) ∩ P ′ 6 CM(F(M)) 6 F(M),

just as in the last part, and so P ′ ∩ Z (P ) 6 O2(M), which is generalized quaternion. Hence

the subgroup X is unique.

Since X is characteristic in Z (P )∩P ′, it is characteristic in P , and since it is characteristic

in O2(M), it is characteristic in M . Hence P is a Sylow 2-subgroup of NG(X), and so P is

a Sylow 2-subgroup of G, so P cannot normalize any non-trivial q-subgroup. In particular,

since P normalizes Oq(M), we must have Oq(M) = 1.

Thus we have proven that (if we no longer assume that p < q) then we can assume that

there are at least two subgroups of order p in Op(M).

The second ingredient we need is that if F(M) is not of prime-power order, then if L

is any other maximal subgroup with Z (F(M)) 6 L, then F(L) is not of prime-power order

either, and F(L) 6 F(M). This seems a little bizarre, so let’s prove the theorem with it,

before proving this part.

Let X be an elementary abelian p-subgroup of order p2 in Op(M) (which exists by the

first part), and let Z = Z (F(M)). If x is a non-trivial element from X, then CG(x) 6= G,

since G is simple. Let L be a maximal subgroup of G containing CG(x), and note that

Z 6 CG(x) 6 L,

whence F(L) is not of prime-power order and F(L) 6 F(M). But now, since F(L) 6 F(M),

we clearly have

Z (F(L)) 6 M,

and so F(L) > F(M), proving that F(L) = F(M). However, since G is simple, we must have

M = NG(F(M)) = NG(F(L)) = L,
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and so M contains CG(x) for all x ∈ X \ {1}.
From this, it can be shown that M contains any q-subgroup of G normalized by X.

Let P be a Sylow p-subgroup of M , and suppose that g ∈ G normalizes P . The P

normalizes Oq(M)g, and hence Oq(M)g is a q-subgroup of G normalized by X, (as X 6

Op(M)). Hence by the remark above, Oq(M)g 6 M , and so g normalizes Oq(M). Since

Oq(M) is non-trivial, its normalizer must be exactly M , and so

NG(P ) = M.

Hence P is a Sylow p-subgroup of G, and so Oq(M) = 1, as required.

Hence it remains to prove the statement about the second maximal subgroup above. Let

Zp and Zq denote the Sylow p- and Sylow q-subgroups of Z (F(M)). Since M is a maximal

subgroup of G, we see that NG(Zp) = NG(Zq) = M . Thus

NL(Zq) 6 M.

Since Zp P M and Zp 6 NL(Zq); hence Zp P NL(Zq), and so

Zp 6 Op(NL(Zq)).

Now we need the notion of p-constraint to progress. Well, we don’t if you assume that

for all soluble groups H, and for all p-subgroups P ,

Op′(NH(P )) 6 Op′(G).

Applying this in our situation, with q′ = {p}, we see that Zp 6 Op(L). Hence Oq(L) and

Zp commute, impliying that

Oq(L) 6 NG(Zp) = M.

Similarly, Op(L) 6 M , and so F(L) 6 M . But we need F(L) 6 F(M), so we need to

dig deeper. We can slightly improve this, since Op(L) and Oq(L) commute, to Op(L) 6

NM(Oq(L)).

Since Zp 6 Op(L), we see that NG(Op(L)) = L. Hence Oq(L) P NM(Op(L)), and hence

Oq(L) 6 Op′(NM(Op(L)).

Thus Oq(L) 6 Op′(M) 6 F(M), as we wanted.

Phew!
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