Burnside's $p^{\alpha}q^{\beta}$ Theorem without Burnside

David A. Craven

30th May, 2007

One of the first great results in twentieth-century group theory is that if a group has order divisble by at most two primes, then it is soluble. Burnside's original proof requires characters. We will not.

1 Introduction

Recall that if G is a group and π is a set of primes, then a Hall π -subgroup is a π -subgroup whose index is coprime with any prime in π . Hall's theorem on soluble groups is the following.

Theorem 1.1 (Hall, 1928) Let G be a finite group. Then G is soluble if and only if G contains Hall π -subgroups for all sets of primes π .

Let us suppose that G is a finite group such that $\pi(G)$, the set of primes dividing the order of G, contians exactly two elements. Then this theorem becomes the following, assuming the existence of Sylow *p*-subgroups.

Theorem 1.2 (Burnside, 1904) Let G be a group such that $\pi(G) = \{p, q\}$ for $p \neq q$. Then G is soluble.

Hall's theorem is a generalization of Burnside's theorem; to prove that if a group G has Hall π -subgroups for all sets π then G is soluble is an induction on $|\pi(G)|$. The base case is, of course, Burnside's theorem.

During the proof of the Feit–Thompson theorem, the structure of the groups with $|\pi(G)| = 2$ became important. Burnside's proof gave basically no structural information about these groups. Hence, we will proceed differently.

2 The Broad Outline

From now on, G will denote a minimal counterexample to Burnside's theorem, of order $p^{\alpha}q^{\beta}$.

Lemma 2.1 Let *H* be a simple group, *K* be a proper subgroup of *H* and $A \leq K$. Suppose that $H = K \operatorname{N}_{H}(A)$. Then A = 1.

Proof: This is easy; write h = xy with $x \in N_H(A)$, so that $A^h = A^y \leq K$. Thus the normal closure of A is contained within K. Thus the normal closure is not H, so it must be trivial.

Lemma 2.2 The following properties of G hold:

- (i) G is a simple group;
- (ii) |G| is divisible by exactly two different primes p and q;
- (iii) every proper subgroup of G is soluble; and
- (iv) if P denotes a Sylow p-subgroup of G then P does not normalize any non-trivial qsubgroup of G.

Proof: (i) is obvious, as are (ii) and (iii). (iv) needs the previous lemma, vindicating its presence; if Q is a non-trivial q-subgroup, and $P \leq N_G(Q)$, then since Q is contained in R, a Sylow q-subgroup, we have $G = PR = N_Q(G)R$, a contradiction.

The first key step is to prove the following theorem.

Theorem 2.3 Let M be a maximal subgroup of G. Then M does not have both a normal p-subgroup and a normal q-subgroup.

That M has a normal p-subgroup or a normal q-subgroup follows from the fact that minimal normal subgroups of soluble groups are elementary abelian.

The second key step is to understand the intersection of a maximal subgroup and its conjugates.

Theorem 2.4 Let M be a maximal subgroup of G, and $g \in G \setminus M$. If $O_p(M) = 1$, then $M \cap M^g$ is a *p*-group.

From this step we can get a contradiction. Let M be a maximal subgroup containing a Sylow *p*-subgroup. By Lemma 2.2(iv), $O_q(M) = 1$, and so $M \cap M^g$ is a *q*-group for any $g \notin M$. Hence the index of $M \cap M^g$ in M is at least p^{α} , and so

$$(p^{\alpha})^2 \leqslant \frac{|M| \cdot |M^g|}{|M \cap M^g|^2} \leqslant \frac{|M| \cdot |M^g|}{|M \cap M^g|} = p^{\alpha} q^{\beta}$$

It is also true that $q^{2\beta} \leq p^{\alpha}q^{\beta}$ by the same method, and we reach a contradiction.

In the next section we will prove Theorem 2.3; the proof of Theorem 2.4 is beyond the scope of this lecture, as we would have to introduce the J-subgroup as well as prove some rather delicate technical lemmas. The next section gives a flavour of the manipulations involved.

3 Theorem 2.3

The proof of this is not easy, and proceeds in stages. We begin by letting F(M) denote the largest normal nilpotent subgroup. To think of it another way,

$$F(M) = O_p(M) \times O_q(M)$$

We are supposing that neither $O_p(M)$ nor $O_q(M)$ are trivial. We first claim that F(M) either has more than one subgroup of order p or more than one subgroup of order q. If this is false, then a strong theorem proves the following.

Theorem 3.1 Either $O_p(M)$ is cyclic or p = 2 and $O_p(M)$ is generalized quaternion.

The proof of this is not easy either, and will be omitted.

Assuming this, suppose that the Sylow subgroups of M are all cyclic, and that p < q. Then, since q doesn't divide $|\operatorname{Aut} O_p(M)|$ which is $(p-1)p^a$ for some a, a Sylow q-subgroup Q of M must centralize $O_p(M)$, and so

$$Z(Q) \leq C_M(F(M)) \leq F(M),$$

by a famous theorem of Fitting as M is soluble. Hence Z = Z(Q) is a characteristic Qsubgroup of $O_q(M)$, and so is a characteristic subgroup of M. However, as G is simple, $N_G(Z) = M$. However, the following is true.

Proposition 3.2 Let Q be a q-subgroup of a group G. Let Z be a characteristic subgroup of Q and suppose that Q is a Sylow q-subgroup of $N_G(Z)$; then Q is a Sylow q-subgroup of G.

Proof: If Q is not a Sylow q-subgroup of G, then it is contained within one, R say. Thus $N_R(Q) > Q$, and since

$$Z \operatorname{char} Q \leq \operatorname{N}_R(Q),$$

and so $N_R(Q) \leq N_G(Z)$. Thus we see that $N_R(Z) > Q$. This is a contradiction to the fact that Q is a Sylow q.

Returning to our original problem, we have that Z is a characteristic q-subgroup of $M = N_G(Z)$, and Q is a Sylow q-subgroup of M. Hence Q is a Sylow q-subgroup of G. By Lemma 2.2, Q cannot normalize any non-trivial p-sugbroups, but it normalizes $O_p(M)$, a contradiction.

Hence we may assume that p = 2 and $O_2(M)$ is generalized quaternion, and $O_q(M)$ is cyclic. Let P be a Sylow 2-subgroup of M, and note that since $O_q(M)$ is cyclic, P' must act trivially on it. Since P' is a normal subgroup, it hits the centre non-trivially, so let X be a subgroup of order 2 lying in $P' \cap Z(P)$. Hence

$$Z(P) \cap P' \leq C_M(F(M)) \leq F(M),$$

just as in the last part, and so $P' \cap Z(P) \leq O_2(M)$, which is generalized quaternion. Hence the subgroup X is unique.

Since X is characteristic in $Z(P) \cap P'$, it is characteristic in P, and since it is characteristic in $O_2(M)$, it is characteristic in M. Hence P is a Sylow 2-subgroup of $N_G(X)$, and so P is a Sylow 2-subgroup of G, so P cannot normalize any non-trivial q-subgroup. In particular, since P normalizes $O_q(M)$, we must have $O_q(M) = 1$.

Thus we have proven that (if we no longer assume that p < q) then we can assume that there are at least two subgroups of order p in $O_p(M)$.

The second ingredient we need is that if F(M) is not of prime-power order, then if L is any other maximal subgroup with $Z(F(M)) \leq L$, then F(L) is not of prime-power order either, and $F(L) \leq F(M)$. This seems a little bizarre, so let's prove the theorem with it, before proving this part.

Let X be an elementary abelian p-subgroup of order p^2 in $O_p(M)$ (which exists by the first part), and let Z = Z(F(M)). If x is a non-trivial element from X, then $C_G(x) \neq G$, since G is simple. Let L be a maximal subgroup of G containing $C_G(x)$, and note that

$$Z \leqslant \mathcal{C}_G(x) \leqslant L,$$

whence F(L) is not of prime-power order and $F(L) \leq F(M)$. But now, since $F(L) \leq F(M)$, we clearly have

$$Z(F(L)) \leqslant M,$$

and so $F(L) \ge F(M)$, proving that F(L) = F(M). However, since G is simple, we must have

$$M = \mathcal{N}_G(\mathcal{F}(M)) = \mathcal{N}_G(\mathcal{F}(L)) = L,$$

and so M contains $C_G(x)$ for all $x \in X \setminus \{1\}$.

From this, it can be shown that M contains any q-subgroup of G normalized by X.

Let P be a Sylow p-subgroup of M, and suppose that $g \in G$ normalizes P. The P normalizes $O_q(M)^g$, and hence $O_q(M)^g$ is a q-subgroup of G normalized by X, (as $X \leq O_p(M)$). Hence by the remark above, $O_q(M)^g \leq M$, and so g normalizes $O_q(M)$. Since $O_q(M)$ is non-trivial, its normalizer must be exactly M, and so

$$N_G(P) = M.$$

Hence P is a Sylow p-subgroup of G, and so $O_q(M) = 1$, as required.

Hence it remains to prove the statement about the second maximal subgroup above. Let Z_p and Z_q denote the Sylow *p*- and Sylow *q*-subgroups of Z(F(M)). Since *M* is a maximal subgroup of *G*, we see that $N_G(Z_p) = N_G(Z_q) = M$. Thus

$$N_L(Z_q) \leqslant M.$$

Since $Z_p \leq M$ and $Z_p \leq N_L(Z_q)$; hence $Z_p \leq N_L(Z_q)$, and so

$$Z_p \leq \mathcal{O}_p(\mathcal{N}_L(Z_q)).$$

Now we need the notion of p-constraint to progress. Well, we don't if you assume that for all soluble groups H, and for all p-subgroups P,

$$O_{p'}(N_H(P)) \leq O_{p'}(G).$$

Applying this in our situation, with $q' = \{p\}$, we see that $Z_p \leq O_p(L)$. Hence $O_q(L)$ and Z_p commute, implying that

$$O_q(L) \leq N_G(Z_p) = M.$$

Similarly, $O_p(L) \leq M$, and so $F(L) \leq M$. But we need $F(L) \leq F(M)$, so we need to dig deeper. We can slightly improve this, since $O_p(L)$ and $O_q(L)$ commute, to $O_p(L) \leq N_M(O_q(L))$.

Since $Z_p \leq O_p(L)$, we see that $N_G(O_p(L)) = L$. Hence $O_q(L) \leq N_M(O_p(L))$, and hence

$$O_q(L) \leq O_{p'}(N_M(O_p(L))).$$

Thus $O_q(L) \leq O_{p'}(M) \leq F(M)$, as we wanted.

Phew!