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This lecture grew out of a theorem, which has an attached story. In September 2007, I

went to two conferences involving Dan Segal: the first was an EPSRC short course organized

by him, and the second was a conference in Italy for him. On both occasions, the concept of

representation growth was brought up: in the first conference it was a side-line introduced

by Ben Klopsch; and in the second conference it seemed to play a much more important rôle.

Let G be a group. We define rn(G) to be the number of inequivalent irreducible repre-

sentations of G over the complex field, whose image is finite. Thus if G = GLn(C), we do

not take the natural n-dimensional representation. There is no guarantee that the numbers

rn(G) are finite; indeed, in the case where G is the infinite cyclic group, r1(G) = ∞ and

ri(G) = 0 for all i > 1.

In the next theorem, we suppose that G is a group for which all of the rn(G) are finite.

Conditions that guarantee this will be discussed later.

Theorem A (Craven, Jaikin, Liebeck, Moretó, Shalev, 2006/7) Let G be a group

for which rn(G) is finite for all n, and write R for the finite residual of G; that is, for the

intersection of all normal subgroups of finite index. Then the following are equivalent:

(i) |G : R| is finite;

(ii) there is a constant c such that rn(G) < c for all n; and

(iii)
∑

n∈N rn(G) is finite, so that G has only finitely many irreducible finite representations.

There are a lot of names attached to this theorem, because different parts of it were

proved at different times. Indeed, the theorem itself was proved in 2006, although it was

not stated until 2007, during the conference in Italy. The idea of this lecture is to give an

idea of the background of representation growth, and then have a look at how to prove this

theorem, and where the various people come into its proof.
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1 Subgroup Growth

Subgroup growth is by now an established field, and there are serious results relating the

arithmetic properties of the subgroup lattice and the algebraic properties of the group. Write

an(G) for the number of subgroups of G of index n.

Lemma 1.1 Let G be a finitely generated group. Then an(G) is finite for all n.

This is true for a free group of finite rank, and so is true for all finitely generated groups.

Lemma 1.2 Suppose that rn(G) is finite for all n. Then an(G) is finite for all n.

This is easy, by considering the permutation representations on the infinitely many sub-

groups of a particular index.

2 Representation Growth

We have seen that if G is a finitely generated group then an(G) is finite for all n, and we

have seen that this is a necessary condition for rn(G) to be finite for all n. We are going to

assume therefore that G is a finitely generated group. Also, since we are only considering the

finite images of the group, all invariants of G reachable like this can be found in the quotient

of G by the finite residual, and so we will assume that G is residually finite. The class of

all finitely generated, residually finite groups is still interesting (for example, it contains all

virtually polycyclic groups) and we may extend this to the class of all finitely generated

profinite groups because the finite quotients are still governed in the same way.

Now suppose that an abstract group G is finitely generated. We want a necessary and

sufficient condition on G such that all of the rn(G) are finite.

Proposition 2.1 Let G be a finitely generated group. Then rn(G) is finite for all n if, and

only if, for every normal subgroup H of finite index, H ′ has finite index in H.

Proof: Suppose that H is a normal subgroup of finite index n such that H/H ′ is infinite.

Therefore there are infinitely many inequivalent 1-dimensional representations of H, and

these representations, induced to G, provide infinitely many representations of G of a degree

n. Thus ri(G) is infinite for some i 6 n.

Now suppose that rn(G) is infinite for some n ∈ N, and let {Ni : i ∈ I} be the collection

of normal subgroups that form the kernels of these representations. By a famous theorem of

Jordan, there is an integer r such that each Ni has an abelian normal subgroup of index at

most r. Since there are only finitely many subgroups of index at most r, we may choose an
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infinite subset J ⊆ I such that there is a normal subgroup N with Nj 6 N for j ∈ J , and

N/Nj is abelian. Therefore N has infinite abelianization, as required.

Like the zeta functions associated with subgroup growth, we may define a zeta function

associated with representation growth, by

ζG(s) =
∑

χ∈Irr(G)

χ(1)−s =
∞∑

n=1

rn(G)n−s.

Then ζG×H(s) = ζG(s)ζH(s) and ζG(s) > Rn(G)n−s, where Rn(G) is the partial sum of the

ri(G).

One of the results that started representation growth was work of Liebeck and Shalev on

the zeta functions associated with infinite families of finite simple groups.

Proposition 2.2 (Liebeck, Shalev) For each s > 0, we have

ζAn(s) = 1 + O(n−s)

as n →∞.

Thus if for any a > 0, and n sufficiently large, we have that Rk(An) 6 ka for all k ∈ N.

However, if m(n) = maxk rk(An), then as n →∞ we have that m(n) →∞.

3 Representation Growth Can Be Fast

Let Si be a finite group for all i ∈ N, and let G =
∏∞

i=1 Si be their Cartesian product. Then

define a frame subgroup of G to be a finitely generated subgroup G of S such that

(i) G contains the direct product of the Si, and

(ii) the natural surjection Ĝ → G is a surjection.

It is not immediately obvious that frame subgroups exist. They do, but we will not touch

upon this subject.

Lemma 3.1 Let n and f be natural numbers, and take G = Af
n+1. Then, if n is sufficiently

large,

rk(G) 6 kf logn k,

and rk(G) = 0 for 1 < k < n.
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Let f(n) be a function, and let Gf be a frame subgroup of∏
k>5

A
f(k)
k+1 .

Every finite-dimensional representation of Gf factors through a finite-index subgroup, and

so it is a representation of some finite collection Gf,N of the Ak+1 with k < N . We will prove

that with certain growth conditions on the function f , the representation growth of Gf is

the same as the growth of F (n) =
∑

i<n f(i).

Let f : N → N be a function. Then f is called admissible if f(n) < n!, f(xy) > f(x)f(y),

and f is non-decreasing for all n.

Lemma 3.2 Let f(n) be an admissible function. Then for all sufficiently large k,

F (k)− F (4) 6 RGf,k
(k) 6 k4f(k).

If f(n) = [nb] for b > 0 and ε > 0, then for all sufficiently large k,

F (k)− F (4) 6 RGf,k
(k) < kb+1+ε.

Proof: We will only prove (b). If s > 0, then for all n > 5,

ζAn+1(s) 6 1 + Cn−s

for some C = C(s) > 0. Now

log ζGf,N
(s) =

N∑
n=5

nb log ζAn(s).

If a ∈ [0, 1], we know that log(1 + a) 6 a, and so

log ζAn+1(s) 6 Cn−s < 1

for all large n. Hence log ζGf,N
(s) 6 C

∑N
n=5 nb−s. Now let s > b + 1. It follows that the last

sum is bounded for all N , and so

ζGf,N
(s) < M

for some constant depending on ε = s− b− 1. This proves the upper bound as

ζGf
(s) > RGf

(k)/ks.

The lower bound is obvious since Ak+1 has an irreducible representation of degree k, and so

rGf
(k) > [kb].
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Theorem 3.3 (Kassabov, Nikolov) Let f : N → N be an admissible function. Assume

that f(n) grows faster than any polynomial in n; that is, that log n = o(log f(n)). Then

there is a finitely generated residually finite group G such that log rn(G)/ log f(n) → 1 as

n → ∞. In addition, for each b > 0, there is a group G such that log Rn(G)/ log n → b as

n →∞.

4 Representation Growth Cannot Be Slow

Before, we denoted by m(n) the maximum of the integers rk(An); now we will look at

symmetric groups, and so we define m(n) to be the maximum of rk(Sn) instead.

Theorem 4.1 (Craven, 2008) Let i be a positive integer. Then Sn has 2i irreducible

characters of the same degree if

n >
15− 16 · 3i−1 + 1025 · 9i−2 + 1584 · 27i−2 + 576 · 81i−2 − 8i

32
.

This is indeed slower than any rational function, as proved by Liebeck and Shalev.

Theorem 4.2 (Liebeck and Shalev, 2005) For a fixed Lie type L, with Coxeter number

h, there is a constant c = c(L) such that

rn(L(q)) < cn2/h

for all q. Moreover, the exponent 2/h is best possible.

In other words, if the rank r of the groups is bounded, then there is a constant ε = ε(r)

such that the representation growth ‘looks’ like nε. Determining exactly what these growth

types are is one of the aims of my current research.

Theorem 4.3 (Liebeck and Shalev, 2005) Given any ε > 0, there exists r = r(ε) such

that, if H is a classical group of rank at least r, then

rn(H) < nε

for all n.

This means that if we allow the ranks of the classical groups to grow unboundedly, we

will not get a growth type fo nε.

Finally, there is the case of p-groups and more generally soluble groups, which was settled

by Andrei Jaikin. However, in his paper in 2004, it was only proved that a constant actually

exists, not what it was. This is another of my aims for this research.

Work of Moretó will allow me to put all of these disparate functions together to give an

explicit lower bound for the growth type of rn(G).
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