
Normal Subsystems of Fusion Systems

David A. Craven

28th April 2010

1 Fusion in Groups

Let G be a finite group. In the classification of the finite simple groups, results like the

following are fundamental.

Theorem 1.1 (Glauberman’s Z∗-theorem) Let G be a finite group such that O2′(G) =

1 with a Sylow 2-subgroup P , and let x be an involution. If xG ∩ P = {x} then x ∈ Z (G).

This result is also true for odd primes, but requires CFSG. Much earlier than this, we

had results such as the following.

Theorem 1.2 (Frobenius’s normal p-complement theorem) Let G be a finite group

and let P be a Sylow p-subgroup of G. If, for any two subgroups A and B of P , and any

conjugation map cg : A → B for some g ∈ G, there is some x ∈ P such that cg|A = cx|A,

then G possesses a normal Hall p′-subgroup.

If we look at Frobenius’s theorem, this suggests that we should focus on the subgroups

of a fixed Sylow p-subgroup P , and all of the conjugation maps cg for the various g ∈ G

between the subgroups of P . Often, if g ∈ G and Q 6 P , Q · cg = Qg does not lie inside

P , and so we simply ignore those maps, and only keep the ones where both the domain and

the image are inside P . This leads us to define the fusion system of a finite group to be just

this.

Definition 1.3 Let G be a finite group and let P be a Sylow p-subgroup of G. The fusion

system of G, denoted by FP (G), is a category, with objects all subgroups of P , and as

morphism sets

HomFP (G)(A,B) = {cg|A | g ∈ G, Ag 6 B}.

1



(Notice that we allow all injective maps, not just the bijections induced by conjugation

by g ∈ G. This is just a technical fact that makes stating many things easier.) Frobenius’s

theorem becomes the statement that if FP (G) = FP (P ) then G has a normal Hall p′-

subgroup, and Glauberman’s Z∗-theorem becomes the statement that if an involution is not

FP (G)-conjugate to any other involution then it lies in the centre of G/O2′(G).

2 From Fusion to Fusion

It’s all well and good studying the fusion system of a finite group (and it is good) but we

want to have an abstract definition of a fusion system. The reason for this is that, as it

stands, the fusion system is an object attached to a finite group, and so working with it is

equivalent to working with the group. If we had an axiomatic definition of a fusion system,

we could work from the axioms directly, and this might make results that otherwise would

not be clear appear so.

In addition, an axiomatic framework might let in other fusion systems than fusion systems

of groups. This is a double-edged sword: we are no longer making statements about just

groups, so we can no longer use any statement from group theory directly. However, we gain

new fusion systems, both as interesting objects in their own right, and as objects that would

be ‘obstacles’ to proving theorems about groups using fusion arguments.

We will give the definition of a fusion system now.

Definition 2.1 Let P be a finite p-group. A fusion system on P is a category F , whose

objects are all subgroups of P and whose morphisms HomF(A,B) are sets of injective ho-

momorphisms A→ B satisfying three axioms:

(i) FP (P ) ⊆ F ;

(ii) if φ : A→ B is a map in F then so is the induced isomorphism A→ Aφ; and

(iii) if φ : A→ B is an isomorphism in F , then φ−1 : B → A lies in F .

This definition is very loose, and we need to make a restriction on which fusion systems

we consider. For motivation, we go back to groups. Let Q be a subgroup of P . It is not

always true that NP (Q) is a Sylow p-subgroup of NG(Q), but it is not difficult to show that

there is some g ∈ G such that NP (Qg) is a Sylow p-subgroup of NG(Qg) (and Qg is also

contained in P ); i.e., Q is FP (G)-conjugate to a subgroup whose P -normalizer is a Sylow

p-subgroup of its G-normalizer. In fact, this subgroup Qg is simply a subgroup R such that

|NP (R)| > |NP (S)| whenever S is FP (G)-conjugate to R.
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Suppose that NP (Q) is a Sylow p-subgroup of NG(Q). Notice that AutG(Q) = NG(Q)/CG(Q).

The quotient of a Sylow p-subgroup is a Sylow p-subgroup, and so AutP (Q) is a Sylow p-

subgroup of AutG(Q) = AutFP (G)(Q). We have found our first condition.

Definition 2.2 Let F be a fusion system on P . If Q is a subgroup of P , we say that Q is

fully automized if AutP (Q) is a Sylow p-subgroup of AutF(Q).

If F = FP (G) then we know that every F -conjugacy class of subgroups of P contains a

fully automized member.

The other condition we want to understand concerns extensions of isomorphisms. Let

φ : A → B be an isomorphism in F . We want to know whether we can extend the domain

of φ to some larger subgroup C, so that there is a map ψ : C → P in F such that A 6 C

and ψ|A = φ. If there is such a C > A, then NC(A) > A, so assume A P C.

If g lies in C, then gψ lies in NP (B), since g normalizes a. Furthermore, we actually

know the automorphism that gψ induces on B, namely cφg , since any isomorphism A → B

induces an isomorphism Aut(A)→ Aut(B).

If we think just about Aut(A) then, in order for φ to extend to C, the image of AutC(A)

under φ must lie inside AutP (B). This is the second condition.

Definition 2.3 Let F be a fusion system on P . If Q is a subgroup of P , we say that Q is

receptive if, whenever φ : R → Q is an isomorphism in F , and S is a subgroup of NP (R)

containing Q such that AutS(Q)φ 6 AutP (Q), there is an extension ψ of φ to S.

Exercise: prove that, for finite groups, if Q is a subgroup of P such that NP (Q) is a

Sylow p-subgroup of NG(Q), then Q is receptive.

We can now state the definition of saturation.

Definition 2.4 A fusion system F is saturated if every F -conjugacy class of subgroups

contains a fully automized, receptive member.

3 Normal Subsystems

Let F and E be two fusion systems, on P and Q respectively. If φ : P → Q is a group

homomorphism, then any morphism of F passes through φ and induces a morphism between

subgroups of Q. If this morphism lies in E for any morphism in F then φ is said to induce

a morphism of fusion systems. If Φ : F → E is a morphism of fusion systems, then the

kernel K of the underlying morphism is strongly F-closed : that is, any morphism in F with
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domain a subgroup of K has image a subgroup of K. It turns out that, for every strongly

F -closed subgroup of P , there is a surjective morphism of fusion systems with kernel that

subgroup, and the morphism is determined by the underlying group homomorphism.

With morphisms come normal subsystems, but a slight defect of the theory is that with

the definition of a normal subsystem we have (and it seems like the right one), there is not

always a normal subsystem on a given strongly closed subgroup.

Definition 3.1 Let F be a saturated fusion system on P . A saturated subsystem E of F , on

a strongly F -closed subgroup Q of P is weakly normal if every element of AutF(Q) induces

an automorphism of E , and for A,B 6 Q, every φ ∈ HomF(A,B) may be written as φ = αβ,

where α ∈ AutF(Q) and β ∈ HomE(Aα,B).

If, in addition, every α ∈ AutE(Q) extends to an automorphism β ∈ AutF(QCP (Q))

such that β acts trivially on QCP (Q)/Q.

The definition of a weakly normal subsystem given here is not the standard one, and is

an analogue of the Frattini argument.

Example 3.2 Let G be a finite group, and let H be a normal subgroup of G. Let P be a

Sylow p-subgroup of G, and let Q = P ∩H. If F = FP (G) and E = FQ(H), then identifying

E with the corresponding subsystem of F , we have that E is a normal subsystem of F .

Proposition 3.3 Let F be a saturated fusion system on P , and let E be a weakly normal

subsystem on T . If Q 6 T then AutE(Q) P AutF(Q).

In particular, if E is a weakly normal subsystem on P itself, then AutE(P ) is a normal

subgroup of p′-index in AutF(P ).

Proposition 3.4 Let T be a strongly F -closed subgroup of P , and suppose that there are

(weakly) normal subsystems on T . Order this set by inclusion. There exists a unique minimal

(weakly) normal subsystem and a unique maximal (weakly) normal subsystem, denoted (in

the weakly normal case) by RF(T ) and RF(T ) respectively.

How are weakly normal and normal subsystems related to one another?

Theorem 3.5 If T has weakly normal subsystems, then RF(T ) is normal in F .

One pleasing consequence of this is the following.

Corollary 3.6 F has no proper, non-trivial normal subsystems if and only if it has no

proper, non-trivial weakly normal subsystems.
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