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Notation and Conventions

Throughout this talk,

G is a finite group,

` is a prime,

k is a field of characteristic `,

B is a block of kG , with defect group D and Brauer correspondent b;

P is a Sylow `-subgroup of G .

I will (try to) use red for definitions and green for technical bits that can
be ignored.

Some of this talk is joint work with Raphaël Rouquier.
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Reduction to Simple Groups

Many conjectures and theorems about groups and their representations
have reductions to simple groups with decorations (normally quasisimple,
almost simple, or some combination of the two).

For example, we have so
far seen Brauer’s height zero conjecture, Alperin’s weight conjecture and
the Alperin–McKay conjecture.

However, there are other conjectures that so far resist a reduction to
simple groups, such as Broué’s conjecture for all blocks of finite groups.
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Principal Blocks Are Good

In general, there is no (known) reduction of Broué’s conjecture to simple
groups, but for principal blocks there is.

Theorem

Let G be a finite group. If P is abelian, then there are normal subgroups
H ≤ L of G such that

` - |H|,
` - |G : L|, and

L/H is a direct product of simple groups and an abelian `-group.

For principal blocks, we may assume that H = 1. A derived equivalence
for L (compatible with automorphisms of the simple components) passes
up to G . Thus if Broué’s conjecture for principal blocks holds for all
simple groups (with automorphisms), it holds for all groups.
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up to G . Thus if Broué’s conjecture for principal blocks holds for all
simple groups (with automorphisms), it holds for all groups.
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Classification of Finite Simple Groups

We need to know Broué’s conjecture for the finite simple groups. If the
Sylow `-subgroups of a simple group G are abelian, then one of the
following holds:

1 G = An (Broué’s conjecture known: Chuang, Kessar, Marcus,
Rickard, Rouquier)

2 G is a sporadic group (Broué’s conjecture known if ` > 11)

3 G = SL2(q) and ` | q (Broué’s conjecture known: Okuyama)

4 G = G (q) is a Lie-type group and ` - q.

Hence in order to prove Broué’s conjecture for principal blocks, we need to
understand groups of Lie type in non-defining characteristic.
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David A. Craven (Birmingham) Broué’s Conjecture:The Story So Far 27th March, 2012 5 / 27



Classification of Finite Simple Groups
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Groups of Lie Type

Let G = G (q) be a group of Lie type: the order of G is

|G | = qN
∏
i∈I

Φi (q).

Suppose that ` - q divides exactly one of the cyclotomic polynomials
Φd(q) in the product. Then the Sylow `-subgroup is abelian, and
contained in a Φd -torus.

The unipotent characters of G are certain irreducible characters of G , not
depending on q. A unipotent block of G is one containing a unipotent
character, such as the principal block, which contains the trivial character.
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Geometric Broué

Broué’s conjecture has a special version for unipotent blocks of groups of
Lie type, called the geometric form, which we have seen before.

Conjecture

Let G = G (q) be a finite group of Lie type, and let D be an abelian defect
group of a unipotent block B of G . We may embed D inside a Φd -torus
T , and there is a Deligne–Lusztig variety Y , carrying an action of G on
the one side and T on the other, whose complex of cohomology Γ has the
following properties:

1 the action of T can be extended to an action of NG (T ) = NG (D);

2 the complex induces a derived equivalence between B and its Brauer
correspondent.
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Geometric Broué

In fact, if ζ is a primitive dth root of unity, then there should be a
Deligne–Lusztig variety Yζ associated naturally to ζ, and whose complex
of cohomology produces the desired equivalence.

While this is (a lot) more specific than the abstract version of Broué’s
conjecture, it still needs to be more specific, as the variety Yζ can be
hideously complicated.

This equivalence should be a perverse equivalence, which requires some
combinatorial data. If these data can be extracted without analyzing the
variety Yζ , then the derived equivalence should be able to be constructed
without the variety at all, purely combinatorially.
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What is a Perverse Equivalence?

Let A and B be finite-dimensional algebras, A = mod-A, B = mod-B

An equivalence F : Db(A)→ Db(B) is perverse if there exist

orderings on the simple modules S1,S2, . . . ,Sr , T1,T2, . . . ,Tr , and

a function π : {1, . . . , r} → Z
such that, if Ai denotes the Serre subcategory generated by S1, . . . ,Si ,
and Db

i (A) denotes the subcategory of Db(A) with support modules in
Ai , then

F induces equivalences Db
i (A)→ Db

i (B), and

F [π(i)] induces an equivalence Ai/Ai−1 → Bi/Bi−1.

Note that mod-B is determined, up to equivalence, by A, π, and the
ordering of the Si .
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Properties of a Perverse Equivalence

1 If B is a unipotent block, then there should be a perverse equivalence
from B to its Brauer correspondent b.

2 There is an algorithm that gives us a perverse equivalence from any
block B for a group G to some algebra, and we need to check that
the target is the Brauer correspondent b. (This is simply checking
that the Green correspondents are the last terms in the complexes.)
This algorithm is very useful!

3 The alternating sum of the cohomology of the complex Xi

corresponding to Si constructed by this algorithm gives a row of the
decomposition matrix, with only Sj appearing for π(Sj) < π(Si ),
except for a single copy of Si . When placed in ascending order of
π(−), this yields a lower unitriangular decomposition matrix.

David A. Craven (Birmingham) Broué’s Conjecture:The Story So Far 27th March, 2012 11 / 27



Properties of a Perverse Equivalence

1 If B is a unipotent block, then there should be a perverse equivalence
from B to its Brauer correspondent b.

2 There is an algorithm that gives us a perverse equivalence from any
block B for a group G to some algebra, and we need to check that
the target is the Brauer correspondent b. (This is simply checking
that the Green correspondents are the last terms in the complexes.)
This algorithm is very useful!

3 The alternating sum of the cohomology of the complex Xi

corresponding to Si constructed by this algorithm gives a row of the
decomposition matrix, with only Sj appearing for π(Sj) < π(Si ),
except for a single copy of Si . When placed in ascending order of
π(−), this yields a lower unitriangular decomposition matrix.
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Properties of a Perverse Equivalence

4 The lower triangularity of the matrix gives a bijection between the
simple B-modules and some of the ordinary B-characters. If B has
cyclic defect group then this association sends a simple module to the
incident vertex farther from the exceptional node.

5 The ordinary characters in the upper square part are the unipotent
characters when B is a unipotent block, and hence this gives a
natural bijection between the unipotent characters and the simple
modules of B (of course, this bijection is the same as given by the
triangularity of the decomposition matrix by the a-function).

6 The algorithm’s output should be ‘generic’ in `. (This is ongoing
research of Rouquier and me.) This would imply that, assuming this
version of the geometric version of Broué’s conjecture, the
decomposition numbers of unipotent blocks are independent of `, for
all sufficiently large `. It would also suggest an answer to ‘sufficiently
large’.
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The Perversity Function

The cohomology of the variety Yζ over Q̄` should have the property that
each unipotent character χ should appear in exactly one degree πζ(χ).
(This degree will depend on ζ.) These degrees should be the perversity
function for the perverse equivalence from B to b. (Actually, this is the
cohomology with non-compact support. For compact support, take
−πζ(χ) and shift by twice the length of the variety.)

If ` | Φd , where d is the largest integer such that Φd | |G |, i.e., d is the
Coxeter number, then Lusztig calculated the cohomology for
ζ = exp(2πi/d). Let f (q) be a polynomial. If a(f ) denotes the multiplicity
of q in a factorization of f , and A(f ) = deg(f ), then the degree of the
cohomology that χ is in is (a(χ(1)) + A(χ(1)))/d plus half the power of
(q − 1) in χ(1).

If d = 1 or d = 2 then Digne–Michel–Rouquier conjectured, for the
principal block, that the degree of cohomology in which χ lies is
2A(χ(1))/d .
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(q − 1) in χ(1).

If d = 1 or d = 2 then Digne–Michel–Rouquier conjectured, for the
principal block, that the degree of cohomology in which χ lies is
2A(χ(1))/d .
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The Perversity Function

Define ζ = e2kπi/d , and for f a polynomial in q write φζ(f ) for the
number of non-zero zeroes of f (with multiplicity) of argument at most
that of ζ (with argument in [0, 2π) ), and φ̄ζ(f ) for the number of positive
real zeroes. Write a(f ) for the multiplicity of the zero at 0.

Write

πζ(f ) = k(deg f + a(f ))/d + φζ(f )− φ̄ζ(f ).

Conjecture

If f denotes the relative degree of χ, then πζ(f ) is the unique degree in the
cohomology with non-compact support of Yζ in which χ appears, and the
πζ(χ) form the perversity function for a perverse equivalence from B to b.
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k ≥ d

We have e2kπi/d = e2(k+d)πi/d , so the same root ζ can be obtained by
both k and k + d .

What is the change to πζ(f )?

πζ(f ) = k(A(f ) + a(f ))/d + φζ(f )− φ̄ζ(f ).

The first term gains A(f ) + a(f ). The second term gains 1 for each
non-zero root of f , so this is A(f )− a(f ). The third term remains
unchanged. Thus πζ(f ) changes by 2A(f ).

Therefore, by increasing or reducing k by d we can replace (conjecturally)
a perverse equivalence with one where the πζ-function is incremented or
decremented by 2A(−).

In particular, when d = 1, for k = 0 we get πζ ≡ 0 and for k = 1 we get
πζ ≡ 2A(−). The first is Puig’s Morita equivalence, and the second is the
predicted equivalence of Digne–Michel–Rouquier.
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Pulling π Downstairs

The quantity πζ(χ) is defined for unipotent characters in B, but for the
algorithm computing perverse equivalences it needs to be defined on the
simple b-modules, which can be thought of as the ordinary characters of
the automizer E = NG (D, b)/CG (D).

This means we need a bijection between the unipotent characters of B and
the ordinary characters of E . Recall that E is a complex reflection group,
and its action on the torus T is as complex reflections.

The object we should need for this is the cyclotomic Hecke algebra, which
in one specialization gives the characters of B and in another gives the
characters of b.

David A. Craven (Birmingham) Broué’s Conjecture:The Story So Far 27th March, 2012 16 / 27



Pulling π Downstairs

The quantity πζ(χ) is defined for unipotent characters in B, but for the
algorithm computing perverse equivalences it needs to be defined on the
simple b-modules, which can be thought of as the ordinary characters of
the automizer E = NG (D, b)/CG (D).

This means we need a bijection between the unipotent characters of B and
the ordinary characters of E . Recall that E is a complex reflection group,
and its action on the torus T is as complex reflections.

The object we should need for this is the cyclotomic Hecke algebra, which
in one specialization gives the characters of B and in another gives the
characters of b.
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David A. Craven (Birmingham) Broué’s Conjecture:The Story So Far 27th March, 2012 16 / 27



The Cyclic Case, I

The case where the defect group is cyclic is one where we can say the
most. Here the πζ-function and bijection are both fully understood.

Theorem

Suppose that G is of Lie type, B is a unipotent block, and D is cyclic. If
G does not have type E7 or E8 (and even then in many cases) the
‘combinatorial form’ of Broué’s conjecture is true, with π(−) = πζ(−) and
bijection given by mapping χ to ωχζ

(a(χ)+A(χ))/`(b) (ωχ is a root of unity,
normally ±1), with the Brauer tree of b (a star) being represented on the
complex plane.

In order for this theorem to make sense, for non-principal blocks anyway,
we have to fix a rotation of the Brauer tree of b, to decide which
non-exceptional b-character is placed at the position 1 (in C). This can be
done by taking Green correspondents of a simple B-module with smallest
πζ-function.
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The Cyclic Case, II

The theorem suggests that we should think of a Brauer tree as being
embedded in C, not in R2: one of the important directions this research
might take is a generalization of the Brauer tree to (some other) abelian
defect groups.

The method of proof of the theorem is fairly simple: using the πζ-function
and bijection, we construct the Brauer tree of the block, and compare it to
the known one (when it is known, i.e., not for some blocks of E7 and E8).
Combinatorial Broué’s conjecture holds if and only if the Brauer tree is
correct.

Notice that this allows us to make conjectures as to the shape of the
Brauer tree in the remaining cases, and this has led to some outstanding
cases being resolved.
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Examples: Known Tree

G = 2F4(q2), ` | Φ′24(q). (By Φ′24 we mean the polynomial factor of Φ24

with ζ24 as a root.)

Character ωiq
aA/e k = 5 k = 11 k = 13 k = 19

φ1,0 1 0 0 0 0
2B2[ψ3]; 1 ψ7q 4 10 12 18

2F II
4 [−i] −iq2 8 18 22 32

2F4[−θ2] −θq2 8 18 22 32
2B2[ψ5]; 1 ψq 4 10 12 18
φ2,1 q2 7 17 21 31

2B2[ψ3]; ε ψ7q3 9 21 25 37
2F4[−θ] −θ2q2 8 18 22 32

2F II
4 [i] iq2 8 18 22 32

2B2[ψ5]; ε ψq3 9 21 25 37
φ1,8 q4 10 22 26 38

2F II
4 [−1] −q2 10 20 24 32
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2B2[ψ5]; ε

2B2[ψ3]; ε

φ1,8 φ2,1 φ1,0
2F II

4 [−1]

071010

8

8

4

4

8

8

9

9 2B2[ψ3]; 12F II
4 [−i]

2F4[−θ2]

2B2[ψ5]; 12F II
4 [i]

2F4[−θ]
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Examples: Conjectured Tree

G = E8(q), ` | Φ15(q).

φ1,0φ8,1

E6[θ], φ1,6

E6[θ], φ2,2

E6[θ], φ1,0

E6[θ2], φ1,6

E6[θ2], φ2,2

E6[θ2], φ1,0

E8[ζ4]

E8[ζ] E8[θ]

E8[θ2]

E8[ζ3]

E8[ζ2]
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Examples: Made-up Stuff

G = H3(q), ` | Φ′5(q). (By Φ′5 we mean the polynomial (q− ζ2
5 )(q− ζ3

5 ).)

Character ωiq
aA/e k = 2 k = 3

φ1,0 q0 0 0

φ4,3 −q3/2 9 15
I2(5)[1, 3]; ε ζ2q2 11 17
I2(5)[1, 3]; 1 −ζ2q 7 11
I2(5)[1, 2]; ε ζ3q2 11 17
I2(5)[1, 2]; 1 −ζ3q 7 11

φ4,4 q3/2 9 15
φ1,15 −q3 12 18
φ3,6 q2 12 16
φ3,1 −q 8 10
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David A. Craven (Birmingham) Broué’s Conjecture:The Story So Far 27th March, 2012 23 / 27



Examples: Made-up Stuff

G = H3(q), ` | Φ′5(q). (By Φ′5 we mean the polynomial (q− ζ2
5 )(q− ζ3

5 ).)

φ1,0φ4,4φ3,6φ15,5φ4,3φ3,1

I2(5)[1, 3]; 1

I2(5)[1, 3]; ε I2(5)[1, 2]; 1

I2(5)[1, 2]; ε

09121298

11

11

7

7
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Examples: Even-more-made-up Stuff

One can do this for non-real reflection groups, and end up with the Brauer
trees, and possibly the non-cyclic representation theory, of spetses.

This slide would have another example on it, but Olivier and Gerhard
(mathematically) distracted me last night.

The πζ-function cannot go through without modification, because of the
following fact:

Proposition

Let f be a real polynomial whose roots are either 0 or roots of unity. If ζ
is a root of unity such that f (ζ) 6= 0 then

πζ(f )/π = arg(f (ζ)).
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Examples: Even-more-made-up Stuff

Proposition

Let f be a real polynomial whose roots are either 0 or roots of unity. If ζ
is a root of unity such that f (ζ) 6= 0 then

πζ(f )/π = arg(f (ζ)).

For complex polynomials this statement is false, and so the πζ-function
needs to be changed on non-real cyclotomic polynomials. This can be
done, and the structure of combinatorial Broué’s conjecture yielding a
Brauer tree (i.e., nodes alternate + to − a sign) might well produce
consistent choices of the signs in front of the unipotent degrees for spetses.
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Disclaimer

We have to make some choices of course with signs on the spetses. It
might well be that running the algorithm on any set of parameters and
bijections should produce some sort of Brauer tree, and so I have to look
at the signs in front of the parameters, together with the Coxeter case
philosophy of Hiss–Lübeck–Malle, to guess the right answer.

More generally, the combinatorial Broué conjecture for non-cyclic cases
relies on ordering the parameters in a certain way to get the bijection.
Although the bijection is defined independently of the cyclotomic Hecke
algebra in real life, i.e., there is only one choice, by permuting the
parameters associated to each root we get ‘different’ bijections.
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An Example: PSL4(q), ` = 3, 3 | (q + 1), P = C3 × C3

π Ord. Char. S1 S2 S5 S3 S4

0 1 1
3 q(q2 + q + 1) 1 1
4 q2(q2 + 1) 1 1
5 q3(q2 + q + 1) 1 1 1 1
6 q6 1 1 1

X2 : 0→ P(2)→ P(5)→ P(3)⊕M1,2 → C2 → 0.
X5 : 0→ P(5)→ P(345)→ P(234)⊕M4,1 → M4,1 ⊕M4,2 → C5 → 0.
X3 : 0→ P(3)→ P(34)→ P(45)→ P(5)⊕M1,1 → M1,1 ⊕M1,2 → C3 → 0.
X4 : 0→ P(4)→ P(4)→ P(3)→ P(3)→ P(4)→ M4,2 → C4 → 0.

David A. Craven (Birmingham) Broué’s Conjecture:The Story So Far 27th March, 2012 27 / 27



An Example: PSL4(q), ` = 3, 3 | (q + 1), P = C3 × C3

π Ord. Char. S1 S2 S5 S3 S4
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`-Extended Finite Groups

Let H be a finite group, and let ρ be a faithful complex representation of
H. It is well known that there exists an algebraic number field K , with ring
of integers O = OK , such that H ≤ GLn(O) and this embedding induces ρ.

Let ` be an integer with gcd(`, |H|) = 1, such that the map O → Z/`Z
induces a faithful representation of H over Z/`Z via ρ. Write M for the
Z/`ZH-module, and G` = M o H.

k(G`) is a polynomial in `, and k(G`) · |H| is a monic polynomial in `
with integer coefficients.

If H is a reflection group and ρ is its natural representation over Z,
then the second coefficient of k(G`) · |H| is 3N, where N is the
number of reflections in H. (A similar formula exists for complex
reflection groups.)
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Being Generic: An Example

Let G = PSU3(q), ` | (q + 1). There are three simple modules in the
principal block, as NG (P)/CG (P) ∼= S3. G has a permutation
representation on q3 + 1 points, let Q be a Sylow `-subgroup of the point
stabilizer, so that |Q| = `.

π Ord. Char. 11 21 12

0 1 1
2 q(q − 1) 1
3 q3 1 2 1

Let M1 be the trivial source module 23/13/23/ · · · /23 with vertex Q,
dim M1 = 3`. Let M2 be the relatively projective summand of (1/1/1) ↑NQ
with head 23, dim M2 = 9`. For ` = 5, 7, 17 we have the following:

X3 : 0→ P(3)→ Ω(M1)→ C3 → 0.
X2 : 0→ P(2)→ P(22)→ P(2)⊕M2 → C2 → 0.
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