On the Unit Conjecture for Supersoluble Groups Joint with Peter Pappas

David A. Craven

The same of the sa

University of Oxford

Leeds Algebra Seminar, 26th October, 2009

A Toy Example

Let K be a field of characteristic $p \ge 0$ and let $R = K[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ be the Laurent polynomial ring with n variables.

What are the zero divisors of R?

Clearly there are no zero divisors in R.

Thinking of R as KG, where G is the group \mathbb{Z}^n , we see that there are no zero divisors in the group rings of torsion-free abelian groups.

The Zero Divisor Conjecture

If G is a group and x is an element of order n in G, then $x^n=1$, and so the element x-1 is a zero divisor. Hence if we want that there are no zero divisors in KG, as in the case of the abelian group \mathbb{Z}^n , then we need G to be torsion free (i.e., have no non-trivial elements of finite order).

Conjecture

If G is a torsion-free group and K is a field, then KG has no zero divisors.

Zero Divisors in Group Rings

The zero divisor conjecture has been solved for increasingly large classes.

Theorem (Bovdi, 1960)

Let G be a poly- \mathbb{Z} group. Then KG has no zero divisors.

Theorem (Formanek, 1973)

Let G be a torsion-free supersoluble group and K be a field. Then KG has no zero divisors.

Theorem (Farkas-Snider, 1976, and Cliff, 1980)

Let G be a torsion-free, virtually polycyclic group and K be a field. Then KG has no zero divisors.

Theorem (Kropholler-Linnell-Moody, 1988)

Let G be a torsion-free, virtually soluble group and K be a field. Then KG has no zero divisors.

A Toy Example Again

Let K be a field of characteristic $p \ge 0$ and let $R = K[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ be the Laurent polynomial ring with n variables.

What are the invertible elements of R?

These are simply the monomials $\lambda x_{i_1} x_{i_2} \dots x_{i_m}$, with $\lambda \in K \setminus \{0\}$.

Thinking of R as KG, where G is the group \mathbb{Z}^n , we see that the units of R = KG are simply λg , where $\lambda \in K$ and $g \in G$.

The Unit Conjecture

Let G be a finite 2-group, and let K be the field \mathbb{F}_2 . If ζ lies in the Jacobson radical of the group algebra KG, then $1+\zeta$ is a unit. Since the Jacobson radical has codimension 1, this means that half of the elements of KG are units.

More generally, if G is a group and x has order p in G, then $\hat{x}^p - p\hat{x} = 0$ (where $\hat{x} = 1 + x + \dots + x^{p-1}$) and so often $(\hat{x} - a)(\hat{x} - 1/a) = 1$ for some a. (For the other cases, there are similar constructions.) Hence if we want

$$U(KG) = \{ \lambda g : \lambda \in K, \ g \in G \},\$$

as in the case of the abelian group \mathbb{Z}^n , then we need G to be torsion free (i.e., have no non-trivial elements of finite order).

We always have that λg is a unit: these are called **trivial units**.

Conjecture (Kaplansky, 1969)

If G is a torsion-free group and K is a field, then all units of KG are trivial.

Facts about the Unit Conjecture

- If there is a zero divisor in KG then there is a non-trivial unit in KG.
 Hence the unit conjecture for G implies the zero divisor conjecture for G.
- If G is a unique-product group then G satisfies the unit conjecture for all fields K. A group is a UP group if, whenever X and Y are finite subsets, there is an element z such that z is expressible **uniquely** as a product $x \cdot y$, where $x \in X$ and $y \in Y$. (Strojnowski proved that every UP group is a 2-UP group.)
- Are all torsion-free groups unique-product groups? **NO**. It was proved by Rips and Segev that there are torsion-free, non-UP groups. An easier example, Γ, was considered by Promislow.
- Using a computer, Promislow searched randomly in Γ , and found a subset X (with |X|=14) such that $X \cdot X$ had no unique product.
- This was the first real use of the computer in this field.

The Passman group Γ

This group Γ is given by the presentation

$$\Gamma = \langle x, y \mid x^{-1}y^2x = y^{-2}, \ y^{-1}x^2y = x^{-2} \rangle.$$

Write z = xy, $a = x^2$, $b = y^2$, $c = z^2$.

Idea 1: $H = \langle a, b, c \rangle$ is an abelian normal subgroup, and G/H is the group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Idea 2: $N=\langle a,b\rangle$ is an abelian normal subgroup, and G/N is the infinite dihedral group D_{∞} . This second quotient gives a length function on the elements of the group.

- The elements of N (of the form $a^i b^j$) are defined to be length 0.
- Length 1 elements are αx or αy , with $\alpha \in N$.
- Length 2 elements are αxy or αyx , with $\alpha \in N$.
- And so on.

The group ring $K\Gamma$

- We now want to consider the group ring $K\Gamma$, where K is any field.
- We extend the length function from Γ to $K\Gamma$: the length of a sum of elements of G is the maximum of the lengths of the elements.
- We want to rewrite the elements of $K\Gamma$, using the subgroup $H = \langle a, b, c \rangle$ this time. Any element may be written as Ax + By + C + Dz, where $A, B, C, D \in KH$.
- This rewriting allows us to construct a representation as matrices over $K\langle a,b,c\rangle$.

$$\begin{pmatrix} C & A & B & D \\ A^{x}a & C^{x} & D^{x}a & B^{x} \\ B^{y}b & D^{y}a^{-1}c^{-1} & C^{y} & A^{y}a^{-1}bc^{-1} \\ D^{z}c & B^{z}b^{-1} & A^{z}b^{-1}c & C^{z} \end{pmatrix}$$

(Here, A^{x} indicates the conjugate of A by x, and so on.)

Theorems on $K\Gamma$

Using a splitting theorem for units in $K\Gamma$, we can produce two important theorems.

Theorem

The length of a unit in $K\Gamma$ is equal to the length of its inverse.

Theorem

An element of $K\Gamma$ is a unit if and only if its determinant is in K.

Thus it must be really easy to check if an element of $K\Gamma$ is invertible, simply by checking its determinant. A length-3 element looks like the following:

$$\alpha_1 x + (\alpha_2 + \alpha_3 c)y + \alpha_4 + (\alpha_5 + \alpha_6 c^{-1})z$$
.

(Here, $\alpha_i \in N$.)

The determinant of a length-3 element

```
-\alpha_1\alpha_0^{\star}\alpha_1^{\prime}\alpha_0^{\star}b + \alpha_1\alpha_0^{\star}\alpha_2^{\prime}\alpha_2^{\prime}ab - \alpha_2\alpha_1^{\star}\alpha_1^{\prime}\alpha_2^{\prime} + \alpha_2\alpha_1^{\star}\alpha_0^{\prime}\alpha_2^{\prime} + \alpha_2\alpha_2^{\star}\alpha_2^{\prime}\alpha_2^{\prime} + \alpha_2\alpha_2^{\star}\alpha_2^{\prime}\alpha_2^{\prime} - \alpha_2\alpha_2^{\star}\alpha_2^{
                            -\alpha_2\alpha_2^{\star}\alpha_2^{\star}\alpha_2^{\star}\alpha_3^{\star}\alpha_2^{\star}\alpha_3^{\star}\alpha_2^{\star}\alpha_3^{\star}\alpha_2^{\star}\alpha_3^{\star}\alpha_2^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3^{\star}\alpha_3
          +\alpha_3\alpha_2^{\mathsf{x}}\alpha_3^{\mathsf{y}}\alpha_2^{\mathsf{z}} - \alpha_3\alpha_2^{\mathsf{x}}\alpha_5^{\mathsf{y}}\alpha_6^{\mathsf{z}}a^{-1} + \alpha_3\alpha_3^{\mathsf{x}}\alpha_2^{\mathsf{y}}\alpha_2^{\mathsf{z}} + \alpha_3\alpha_3^{\mathsf{x}}\alpha_3^{\mathsf{y}}\alpha_3^{\mathsf{z}} - \alpha_3\alpha_3^{\mathsf{x}}\alpha_5^{\mathsf{y}}\alpha_5^{\mathsf{z}}a^{-1} - \alpha_3\alpha_3^{\mathsf{x}}\alpha_6^{\mathsf{y}}\alpha_6^{\mathsf{z}}a^{-1} + \alpha_3\alpha_4^{\mathsf{x}}\alpha_1^{\mathsf{y}}\alpha_6^{\mathsf{z}}ba^{-1}
                     -\alpha_{3}\alpha_{4}^{x}\alpha_{3}^{y}\alpha_{4}^{z}b - \alpha_{4}\alpha_{2}^{x}\alpha_{4}^{y}\alpha_{2}^{z}b^{-1} + \alpha_{4}\alpha_{2}^{x}\alpha_{5}^{y}\alpha_{5}^{z}a^{-1}b^{-1} - \alpha_{4}\alpha_{3}^{x}\alpha_{4}^{y}\alpha_{3}^{z}b^{-1} + \alpha_{4}\alpha_{3}^{x}\alpha_{6}^{y}\alpha_{5}^{z}a^{-1}b^{-1} - \alpha_{4}\alpha_{4}^{x}\alpha_{5}^{y}\alpha_{5}^{z}a^{-1}
                                                           +\alpha_4\alpha_4^{\mathsf{x}}\alpha_4^{\mathsf{y}}\alpha_4^{\mathsf{y}} + \alpha_4\alpha_5^{\mathsf{x}}\alpha_1^{\mathsf{y}}\alpha_3^{\mathsf{y}} - \alpha_4\alpha_5^{\mathsf{x}}\alpha_6^{\mathsf{y}}\alpha_4^{\mathsf{y}} + \alpha_4\alpha_6^{\mathsf{x}}\alpha_1^{\mathsf{y}}\alpha_2^{\mathsf{y}} - \alpha_4\alpha_6^{\mathsf{x}}\alpha_1^{\mathsf{y}}\alpha_2^{\mathsf{y}} + \alpha_5\alpha_1^{\mathsf{x}}\alpha_4^{\mathsf{y}}\alpha_2^{\mathsf{y}}\mathsf{a}\mathsf{b}^{-1} - \alpha_5\alpha_1^{\mathsf{x}}\alpha_5^{\mathsf{y}}\alpha_1^{\mathsf{y}}\mathsf{b}^{-1}
+\alpha_5\alpha_4^{\prime}\alpha_3^{\prime}\alpha_1^{\prime}-\alpha_5\alpha_4^{\prime}\alpha_4^{\prime}\alpha_6^{\prime}-\alpha_5\alpha_5^{\prime}\alpha_2^{\prime}\alpha_2^{\prime}a-\alpha_5\alpha_5^{\prime}\alpha_3^{\prime}\alpha_2^{\prime}a-\alpha_5\alpha_5^{\prime}\alpha_3^{\prime}\alpha_3^{\prime}a+\alpha_5\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}+\alpha_5\alpha_5^{\prime}\alpha_6^{\prime}\alpha_6^{\prime}-\alpha_5\alpha_6^{\prime}\alpha_3^{\prime}\alpha_2^{\prime}a+\alpha_5\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_5^{\prime}\alpha_
                                          +\alpha_6\alpha_1^{\mathsf{x}}\alpha_2^{\mathsf{y}}\alpha_3^{\mathsf{z}}ab^{-1} - \alpha_6\alpha_1^{\mathsf{x}}\alpha_6^{\mathsf{y}}\alpha_1^{\mathsf{z}}b^{-1} + \alpha_6\alpha_4^{\mathsf{x}}\alpha_2^{\mathsf{y}}\alpha_1^{\mathsf{z}} - \alpha_6\alpha_4^{\mathsf{x}}\alpha_2^{\mathsf{y}}\alpha_2^{\mathsf{z}} - \alpha_6\alpha_5^{\mathsf{x}}\alpha_2^{\mathsf{y}}\alpha_3^{\mathsf{z}} + \alpha_6\alpha_5^{\mathsf{x}}\alpha_2^{\mathsf{y}}\alpha_3^{\mathsf{z}} - \alpha_6\alpha_6^{\mathsf{x}}\alpha_2^{\mathsf{y}}\alpha_2^{\mathsf{z}}a
                                                        -\alpha_6\alpha_6^{\alpha}\alpha_3^{\gamma}\alpha_3^{\gamma}a + \alpha_6\alpha_6^{\alpha}\alpha_3^{\gamma}\alpha_5^{\gamma} + \alpha_6\alpha_6^{\alpha}\alpha_3^{\gamma}\alpha_5^{\gamma} + c(-\alpha_1\alpha_2^{\gamma}\alpha_2^{\gamma}\alpha_1^{\gamma} + \alpha_1\alpha_2^{\gamma}\alpha_3^{\gamma}\alpha_5^{\gamma} - \alpha_1\alpha_6^{\gamma}\alpha_1^{\gamma}\alpha_5^{\gamma}b + \alpha_1\alpha_6^{\gamma}\alpha_2^{\gamma}\alpha_4^{\gamma}ab)
                                                                  +\alpha_2\alpha_3^2\alpha_2^4\alpha_3^2 - \alpha_2\alpha_3^2\alpha_6^4\alpha_5^2a^{-1} - \alpha_3\alpha_1^2\alpha_1^4\alpha_3^2 + \alpha_3\alpha_1^2\alpha_6^4\alpha_4^2 + \alpha_3\alpha_2^2\alpha_2^4\alpha_2^2 + \alpha_3\alpha_3^2\alpha_3^4\alpha_3^2 - \alpha_3\alpha_3^2\alpha_5^4\alpha_5^2a^{-1}
                                                                                           -\alpha_3\alpha_2^{\mathsf{x}}\alpha_6^{\mathsf{y}}\alpha_6^{\mathsf{z}}a^{-1} + \alpha_3\alpha_3^{\mathsf{x}}\alpha_2^{\mathsf{y}}\alpha_3^{\mathsf{z}} - \alpha_3\alpha_3^{\mathsf{x}}\alpha_6^{\mathsf{y}}\alpha_5^{\mathsf{z}}a^{-1} + \alpha_3\alpha_4^{\mathsf{x}}\alpha_1^{\mathsf{y}}\alpha_5^{\mathsf{z}}ba^{-1} - \alpha_3\alpha_4^{\mathsf{x}}\alpha_2^{\mathsf{y}}\alpha_4^{\mathsf{z}}b - \alpha_4\alpha_2^{\mathsf{x}}\alpha_3^{\mathsf{y}}\alpha_3^{\mathsf{z}}b^{-1}
       +\alpha_4\alpha_2^{\alpha}\alpha_5^{\alpha}\alpha_1^{z}a^{-1}b^{-1}+\alpha_4\alpha_5^{\alpha}\alpha_1^{\alpha}\alpha_2^{z}-\alpha_4\alpha_5^{\alpha}\alpha_5^{\alpha}\alpha_4^{z}+\alpha_5\alpha_1^{z}\alpha_4^{y}\alpha_3^{z}ab^{-1}-\alpha_5\alpha_1^{x}\alpha_5^{\alpha}\alpha_1^{z}b^{-1}+\alpha_5\alpha_4^{x}\alpha_2^{y}\alpha_1^{z}-\alpha_5\alpha_4^{x}\alpha_4^{y}\alpha_2^{z}a^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{y}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{x}\alpha_5^{z}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{x}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{x}ab^{x}ab^{-1}+\alpha_5\alpha_5^{x}\alpha_5^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}ab^{x}a
                                                                                       -\alpha_5\alpha_5^x\alpha_2^y\alpha_3^z\mathbf{a} + \alpha_5\alpha_5^x\alpha_6^y\alpha_5^z - \alpha_5\alpha_6^x\alpha_2^y\alpha_2^z\mathbf{a} - \alpha_5\alpha_6^x\alpha_2^y\alpha_3^z\mathbf{a} + \alpha_5\alpha_6^x\alpha_5^y\alpha_5^z + \alpha_5\alpha_6^x\alpha_6^y\alpha_6^z - \alpha_6\alpha_6^x\alpha_2^y\alpha_3^z\mathbf{a}
                                          +\alpha_6\alpha_6^x\alpha_6^y\alpha_5^z) + c^{-1}(-\alpha_1\alpha_3^x\alpha_3^y\alpha_1^z + \alpha_1\alpha_3^x\alpha_4^y\alpha_5^z - \alpha_1\alpha_5^x\alpha_1^y\alpha_5^zb + \alpha_1\alpha_5^x\alpha_3^y\alpha_4^zab - \alpha_2\alpha_1^x\alpha_1^y\alpha_2^z + \alpha_2\alpha_1^x\alpha_5^y\alpha_4^zab - \alpha_2\alpha_1^x\alpha_1^y\alpha_2^z + \alpha_2\alpha_1^x\alpha_3^y\alpha_4^zab - \alpha_2\alpha_1^x\alpha_3^y\alpha_3^zab - \alpha_2\alpha_1^x\alpha_3^zab - \alpha_2\alpha_1^x\alpha_3^x\alpha_3^zab - \alpha_2\alpha_1^x\alpha_3^x\alpha_3^zab - \alpha_2\alpha_1^x\alpha_3^x\alpha_3^zab - \alpha_2\alpha_1^x\alpha_3^x\alpha_3^xab - \alpha_2\alpha_1^x\alpha_3^x\alpha_3^x\alpha_3^xab - \alpha_2\alpha_1^x\alpha_3^x\alpha_3^xab - \alpha_2\alpha_1^x\alpha_3^x\alpha_3^x\alpha_3^xab - \alpha_2\alpha_1^x\alpha_3^x\alpha_3^xab - \alpha_2\alpha_1^x\alpha_3^x\alpha_3^xab - \alpha_2\alpha_1^
          +\alpha_2\alpha_3^{\alpha}\alpha_3^{\gamma}\alpha_2^{\zeta}-\alpha_2\alpha_3^{\alpha}\alpha_5^{\zeta}\alpha_6^{\zeta}a^{-1}+\alpha_2\alpha_3^{\alpha}\alpha_3^{\gamma}\alpha_2^{\zeta}+\alpha_2\alpha_3^{\alpha}\alpha_3^{\gamma}\alpha_3^{\zeta}-\alpha_2\alpha_3^{\alpha}\alpha_5^{\zeta}\alpha_6^{\zeta}a^{-1}-\alpha_2\alpha_3^{\alpha}\alpha_5^{\zeta}\alpha_6^{\zeta}a^{-1}+\alpha_2\alpha_4^{\alpha}\alpha_1^{\gamma}\alpha_6^{\zeta}ba^{-1}
          -\alpha_5\alpha_5^x\alpha_2^y\alpha_2^za + \alpha_5\alpha_5^x\alpha_2^y\alpha_2^z + \alpha_6\alpha_1^x\alpha_2^y\alpha_2^zab^{-1} - \alpha_6\alpha_1^x\alpha_2^y\alpha_1^zb^{-1} + \alpha_6\alpha_4^x\alpha_2^y\alpha_1^z - \alpha_6\alpha_4^x\alpha_2^y\alpha_2^z - \alpha_6\alpha_5^x\alpha_2^y\alpha_2^zab^{-1}
                                                                                                                                                                                                                                                                                           -\alpha_6\alpha_5^x\alpha_3^y\alpha_3^z a + \alpha_6\alpha_5^x\alpha_5^y\alpha_5^z + \alpha_6\alpha_5^x\alpha_6^y\alpha_6^z - \alpha_6\alpha_6^x\alpha_3^y\alpha_2^z a + \alpha_6\alpha_6^x\alpha_5^y\alpha_6^z
```

You don't want to see the length-4 determinant.

A Splitting Theorem for Supersoluble Groups

Suppose that G has an infinite dihedral quotient with kernel N, generated by Nx and Ny.

Let σ be an element of KG, and suppose that there is τ such that $\sigma\tau\in KN$. Then

$$\sigma = \eta^{-1}(\alpha_1 + \beta_1 \gamma_1)(\alpha_2 + \beta_2 \gamma_2) \dots (\alpha_n + \beta_n \gamma_n),$$

with $\gamma_i \in \{x, y\}$, and $\alpha_i, \beta_i, \eta \in KN$.

This splitting is unique in the following sense: if

$$\sigma = \varepsilon^{-1}(\alpha_1' + \beta_1'\gamma_1)(\alpha_2' + \beta_2'\gamma_2)\dots(\alpha_n' + \beta_n'\gamma_n)$$

is some other splitting, then (up to units) $\eta = \varepsilon$, $\alpha_i = \alpha_i'$ and $\beta_i = \beta_i'$.

What is this η ?

Write s for the split of σ , so that $\sigma = \eta^{-1}s$. For example, if $s = (\alpha_1 + \beta_1 x)(\alpha_2 + \beta_2 y)$, then

$$s = \alpha_1 \alpha_2 + \alpha_1 \beta_2 y + \beta_1 \alpha_2^{\mathsf{x}} x + \beta_1 \beta_2^{\mathsf{x}} x y,$$

In order for $\eta^{-1}s$ to be in KG, we must have that η divides each coefficient in front of the words in x and y.

Proposition

If $\eta = 1$ in the split of σ , then σ is not a unit.

Theorem

In a 'minimal counterexample' to the unit conjecture, there are no non-trivial units of length 1 or 2.

This Doesn't Work for Length 3

The length-3 elements are as follows:

Word	Coefficient
xyx	$\beta_1 \beta_2^{x} \beta_3^{yx}$
yx	$\alpha_1\beta_2\beta_3^y$
xy	$\beta_1 \beta_2^{x} \alpha_3^{yx}$
У	$\alpha_1\beta_2\alpha_3^y$
X	$\alpha_1 \alpha_2 \beta_3 + \beta_1 \alpha_2^{x} \alpha_3^{x}$
1	$\alpha_1 \alpha_2 \alpha_3 + \beta_1 \alpha_2^{x} \beta_3^{x} x^2$

Let $G = \Gamma$. If $\alpha_1 = \alpha_2 = \alpha_3 = \beta_3 = 1$, $\beta_1 = -a$, $\beta_2 = 1 - a$, then a - 1 divides each of the coefficients, and so you can have $\eta \neq 1$ for length-3 elements.

At the moment we cannot do length-3 elements in full generality, and so we need another idea.

The *-antiautomorphism

Let * denote the antiautomorphism $g \mapsto g^{-1}$. Extend * to a K-linear map on KG. An element of KG is *-symmetric if $\sigma^* = \sigma$, and *-inverse if $\sigma\sigma^* \in K$.

Proposition

There are no non-trivial units in KG if and only if there are no non-trivial *-symmetric or *-inverse units.

Let σ be a non-trivial *-inverse unit; write $\sigma=\eta^{-1}s$, so that $\sigma^*=s^*\eta^{*-1}$. We have $\sigma\sigma^*=\eta^{-1}ss^*(\eta^*)^{-1}$, so if $\sigma\sigma^*=k\in K$, then $ss^*=k\eta\eta^*$. In the case where G is the Passman group Γ , the element ss^* is

$$\prod (\alpha_i \alpha_i^* + \beta_i \beta_i^*) := \prod D_i.$$

This makes the left-hand side particularly easy to evaluate, and allows us to prove that there are no length-3, *-inverse units in Γ .

Higher Lengths?

This is where things start getting interesting, and unfortunately right now we don't have an answer. It seems as though length 4 can be tackled in a similar way, but with more complications. However, as the length increases it seems possible that one can have that each of the D_i divides either η or η^* .

This is assuming that there are non-trivial units, which is my current opinion.

If this is not the case, then an inductive approach might work. This would prove either that there are non-trivial *-inverse units or there are not.

Even if there are not, there still might be *-symmetric units. These might need a different approach, since there is no 'nice' expression for the product of the splits in this case.