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-
A Toy Example

Let K be a field of characteristic p > 0 and let R = K[x, ..., xF!] be
the Laurent polynomial ring with n variables.
What are the zero divisors of R?

Clearly there are no zero divisors in R.

Thinking of R as KG, where G is the group Z", we see that there are no
zero divisors in the group rings of torsion-free abelian groups.

David A. Craven (University of Oxford) The Unit Conjecture 26th October, 2009 2 /16



-
The Zero Divisor Conjecture

If G is a group and x is an element of order nin G, then x" =1, and so
the element x — 1 is a zero divisor. Hence if we want that there are no
zero divisors in KG, as in the case of the abelian group Z", then we need
G to be torsion free (i.e., have no non-trivial elements of finite order).

Conjecture
If G is a torsion-free group and K is a field, then KG has no zero divisors. J
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-
Zero Divisors in Group Rings

The zero divisor conjecture has been solved for increasingly large classes.

Theorem (Bovdi, 1960)
Let G be a poly-Z group. Then KG has no zero divisors.

Theorem (Formanek, 1973)

Let G be a torsion-free supersoluble group and K be a field. Then KG has
no zero divisors.

v

Theorem (Farkas—Snider, 1976, and Cliff, 1980)

Let G be a torsion-free, virtually polycyclic group and K be a field. Then
KG has no zero divisors.

Theorem (Kropholler-Linnell-Moody, 1988)

Let G be a torsion-free, virtually soluble group and K be a field. Then KG
has no zero divisors.

v
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-
A Toy Example Again

Let K be a field of characteristic p > 0 and let R = K[x, ..., xF!] be
the Laurent polynomial ring with n variables.
What are the invertible elements of R?

These are simply the monomials Ax; x;, . .. x;,, with A € K\ {0}.

Thinking of R as KG, where G is the group Z", we see that the units of
R = KG are simply A\g, where A € K and g € G.
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-
The Unit Conjecture

Let G be a finite 2-group, and let K be the field F». If C lies in the
Jacobson radical of the group algebra KG, then 1 4 ( is a unit. Since the
Jacobson radical has codimension 1, this means that half of the elements
of KG are units.

More generally, if G is a group and x has order p in G, then XP — px =0
(where X = 1+ x4 ---+xP~1) and so often (X — a)(X —1/a) = 1 for some
a. (For the other cases, there are similar constructions.) Hence if we want

UKG)={)g: A€ K, ge G},

as in the case of the abelian group Z", then we need G to be torsion free
(i.e., have no non-trivial elements of finite order).
We always have that A\g is a unit: these are called trivial units.

Conjecture (Kaplansky, 1969)
If G is a torsion-free group and K is a field, then all units of KG are trivia/.J
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-
Facts about the Unit Conjecture

@ If there is a zero divisor in KG then there is a non-trivial unit in KG.
Hence the unit conjecture for G implies the zero divisor conjecture for
G.

o If G is a unique-product group then G satisfies the unit conjecture for
all fields K. A group is a UP group if, whenever X and Y are finite
subsets, there is an element z such that z is expressible uniquely as a
product x - y, where x € X and y € Y. (Strojnowski proved that
every UP group is a 2-UP group.)

@ Are all torsion-free groups unique-product groups? NO. It was proved
by Rips and Segev that there are torsion-free, non-UP groups. An
easier example, ', was considered by Promislow.

@ Using a computer, Promislow searched randomly in I', and found a
subset X (with |X| = 14) such that X - X had no unique product.

@ This was the first real use of the computer in this field.
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-
The Passman group I

This group I is given by the presentation

M=,y | xy2x=y2 y Iy =x73).

Write z = xy, a = x2, b:yz, c =22

Idea 1: H = (a, b, c) is an abelian normal subgroup, and G/H is the
group Z/27 x 7./ 2.

Idea 2: N = (a, b) is an abelian normal subgroup, and G/N is the infinite
dihedral group D.,. This second quotient gives a length function on the
elements of the group.

@ The elements of N (of the form a’b/) are defined to be length 0.
@ Length 1 elements are ax or ay, with aw € N.

o Length 2 elements are axy or ayx, with a € N.

@ And so on.
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-
The group ring KT

@ We now want to consider the group ring KT, where K is any field.

@ We extend the length function from I' to KT: the length of a sum of
elements of G is the maximum of the lengths of the elements.

@ We want to rewrite the elements of KT, using the subgroup
H = (a, b, ¢) this time. Any element may be written as
Ax + By + C + Dz, where A, B, C,D € KH.

@ This rewriting allows us to construct a representation as matrices over

K{(a, b, c).
C A B D
AXa cx D*a B*
BYb DYalc1 cY AYa lpct
D?c Bzp1! AZp~1c Cc?

(Here, A indicates the conjugate of A by x, and so on.)
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]
Theorems on KT

Using a splitting theorem for units in KT, we can produce two important
theorems.

Theorem
The length of a unit in KT is equal to the length of its inverse. J

Theorem
An element of KT is a unit if and only if its determinant is in K. J

Thus it must be really easy to check if an element of KT is invertible,
simply by checking its determinant. A length-3 element looks like the
following:

a1x + (g + azc)y + aq + (as + aﬁcfl)z.

(Here, aj € N.)
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-
The determinant of a length-3 element

XY~z XYz XY~z XYz o AXAY NZ X Yz X Yz XY Az
ajafalof — apafogaja — arazazaf + a1azagaf — a1azanof + arazogaf — aragoq agb + a1a5a21a4ab
7a1aga{a§b + alaga’;aiab — azafoz{oé + azoffagai + (12(1)2((1;(15 =+ azocgagoé — mzaga‘gaéa’
7u2a§agaéa’1 + (l2a§a’2va§ - a2a§aéa§a’1 + aguﬁa{agbafl - uQaf{agaib — agu’l‘a{ai + aga’l‘a';aﬁ

XYz XY Za—1 XY Z XY Z XY Za—1 XY Za—1 XY zpo—1
+a3a2a3ya2 — a3a2a5ayﬁa -ﬁ;a3a3a2(xy2 + a31a3(i3a3 — a3c;3a5a513 — “3(;3%“(%3 ) + a3a4alya6ba .
Xy "z XV o zp— P X Vo zp— X Yozo—1p— X Y 7o
—azajagazh — auazogasb™ + auazagaia bt — agazoga3bT + auazagaia {7 — (14@401(1119
+a4aj{a{ai + oqa%‘a{ai — Cma%‘agai + oqaéoz{oé — ou;ozgozgai + asafaiaéab* — a5a)1‘a';afb’
+asajodaf — asafalof — asafayoda — asagadoda + asafod of + asafogaf — asafajada + asafagod
+asafayodab! — asafafaib ! + asafodaf — asaial i — apaiadada + asafatod — asagala3a
7&504;0%/0453 + aﬁag‘o%ag + aﬁagagag + C(foqaﬁagozf + alagaﬁag — alaga{aéb + alag(‘z;ajab
+apa3adal — azajagaiat — azafa)of + azafod ol + azalayal + azazadod — a3u§a§u§a*1
—aze3afaial + azeiadaf — asafafaiaT! + asafayaZbat — azafadaib — agaialabt
+agadatafa b 4 agafad 0 — agafalad + asafalafab™t — asafalaib ! 4+ asafadaf — asafadad
40X 1 400 O3 406 g g 51 A A3 501 (e 1 54 1 5 X g
7a5a>5‘oz'zva§a + asag‘a'gag — a5a’6‘0f2va§a — (xsag‘agaéa + ayxéu?aé + asag‘a'gaé — uea’ﬁ‘agaéa
X Yz —1(_ XYz XYz XY ~Z XY Zah XYz XYz
+asagaga) + cH(—a15odof + arofogof — arodoy b + aragajafab — axafalad + avafagag
+ax03adad — mpajataiat + apafadad + axaladad — axafateia! — apaafeia! + axafayagba?
7a2a§a'§aib + agaia{aé — a3a§a§aga’l — awéoz{aﬁb’l + a;;a%‘o%afa*lb’l + a;;a;a{as — m;ai,jaéai
y y y —1 Yo zp—1 y y y
—asazaza5a+ a5a§asaé + aeaf(x4a§ib - aeai‘%sa{b + aﬁyozia3af - ("6(;;1(0‘4“% — apazana3a
—apaaayaja + aeazagaf + aeasag g — asagazada + asagagag)

You don't want to see the length-4
determinant.
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.
A Splitting Theorem for Supersoluble Groups

Suppose that G has an infinite dihedral quotient with kernel N, generated
by Nx and Ny.

Let o be an element of KG, and suppose that there is 7 such that
orT € KN. Then

0= 77_1(041 + 6171)(a2 + /82'72) cee (an + ﬁn'yn)a

with v; € {x,y}, and o;, Bi,n € KN.

This splitting is unique in the following sense: if
_ =17 / / / ! /
o=¢c (o1 + Pim)(ay + B72) - - (o + Brvn)

is some other splitting, then (up to units) n = ¢, a; = o} and §; = .
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-
What is this n?

Write s for the split of o, so that 0 = ™!

s = (a1 + B1x)(a2 + B2y), then

s. For example, if

s = arap + a1y + frazx + P13 xy,
In order for n71s to be in KG, we must have that 7 divides each
coefficient in front of the words in x and y.
Proposition

If n =1 in the split of o, then o is not a unit.

Theorem

In a ‘minimal counterexample’ to the unit conjecture, there are no
non-trivial units of length 1 or 2.
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-
This Doesn’'t Work for Length 3

The length-3 elements are as follows:

Word | Coefficient
xyx | P1B30y

yx | a1
xy | BB5od”

y a1 203
x | cqazfB3 + frazag
1 a3 + ol B5x3

let G=T.fag=apx=a3=03=1 01=—-a fo=1—a, thena—1
divides each of the coefficients, and so you can have ) # 1 for length-3

elements.
At the moment we cannot do length-3 elements in full generality, and so

we need another idea.
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.
The x-antiautomorphism

Let * denote the antiautomorphism g — g~!. Extend * to a K-linear map
on KG. An element of KG is x-symmetric if c* = o, and *-inverse if
oo* € K.

Proposition

There are no non-trivial units in KG if and only if there are no non-trivial
*-Symmetric or *-inverse units.

1

*, x—1

Let o be a non-trivial x-inverse unit; write ¢ = n~ s, so that o* = s™n
*

We have oo* = 7 1ss*(n*) 71, so if 0o = k € K, then ss* = knn*.
In the case where G is the Passman group I', the element ss* is

[T(eia; + 8:67) =] O

This makes the left-hand side particularly easy to evaluate, and allows us
to prove that there are no length-3, *-inverse units in I.
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-
Higher Lengths?

This is where things start getting interesting, and unfortunately right now
we don't have an answer. It seems as though length 4 can be tackled in a
similar way, but with more complications. However, as the length increases
it seems possible that one can have that each of the D; divides either 1 or

,'7*
This is assuming that there are non-trivial units, which is my current
opinion.

If this is not the case, then an inductive approach might work. This would
prove either that there are non-trivial *-inverse units or there are not.

Even if there are not, there still might be x-symmetric units. These might
need a different approach, since there is no ‘nice’ expression for the
product of the splits in this case.
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