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1 Introduction

In this talk, I will survey the theory of algebraic modules. Let M be a finite-dimensional

KG-module, where K is a field of characteristic p and G is a finite group. Write a(KG) for

the Green ring, which is all formal sums of indecomposable KG-modules, with addition and

multiplication given by direct sum and tensor product. An algebraic module is an element

of a(KG) that is algebraic over K; that is to say, the module M satisfies a polynomial f(x)

with integer coefficients.

This definition will only be usseful if it includes some interesting modules, excludes some

modules, and has some nice properties. For the first, all trivial source modules are algebraic,

and for example we have the following theorem.

Theorem 1.1 (Feit, 1979) Let G be a finite p-soluble group, and let M be a simple KG-

module. Then M is algebraic.

Thus there are interesting modules in the class of algebraic modules. In addition, for

example an endo-permutation module is algebraic if and only if it has finite order in the

Dade group, so there is overlap with other definitions. It also needs to exclude some modules.

Here is an example.

Theorem 1.2 (C., 2008) Let M be an indecomposable algebraic module, of complexity

at least 3. Then M lies on the end of its Auslander–Reiten component, and no other module

on that component is algebraic.

[This is reminiscent of various theorems on the locations of simple modules on Auslander–

Reiten components by Kawata, Michler, and Uno.]

There is no example of a non-periodic component of the Auslaner–Reiten quiver that

contains at least two algebraic modules, but there is no proof extending to all non-periodic

modules.
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It also needs to have various properties.

Proposition 1.3 The class of algebraic modules is closed under taking summands, sums,

tensor products, induction, restriction, taking sources and Green correspondents (in either

direction).

So it forms a nice subring of the Green ring of a finite group.

2 Simple Modules

In the case of simple modules, much of the results are about blocks with abelian defect

groups. In 1979, Alperin proved the following theorem.

Theorem 2.1 (Alperin, 1979) Let G be the group SL2(2
n) for some n, and let K be a

field of characteristic 2. Then all simple KG-modules are algebraic.

Shortly afterwards, Kovacs extended this to SL2(p
n), over a field of characteristic p. From

here, it might be reasonable to conjecture that groups with abelian Sylow p-subgroups might

have algebraic simple modules. Things get even better, because the groups PSL2(q) with

Klein four Sylow 2-subgroup also have only algebraic simple modules. In total, we can prove

the following theorem.

Theorem 2.2 (C., 2009) Let G be a finite group with abelian Sylow 2-subgroup, and let

K be a field of characteristic 2. Then all simple KG-modules are algebraic.

Let’s stay with the prime 2 for a while: moving from groups to blocks, we look at whether

the simple modules in blocks with abelian defect group are algebraic. In 1982, Erdmann

determined the sources of the simple modules in blocks with Klein four defect group, up to

some iteration of the Heller operator. In particular, the sources are all either odd-dimensional

(and so some Heller translate of the trivial module) or periodic. Conlon (1966) proved an

indecomposable module for V4 is algebraic if and only if it is even-dimensional (and hence

periodic) or trivial. Using the classification of the finite simple groups, this parameter can

be identified, proving the following theorem.

Theorem 2.3 (C., Eaton, Kessar, Lickelmann) Let K be a field of characteristic 2.

Let B be a 2-block of a finite group, with Klein four defect group.

(i) B is Puig equivalent to one of KV4, KA4, and B0(KA5).

(ii) All simple B-modules are algebraic.
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(iii) The source of a simple B-module is either trivial or a periodic 2-dimensional simple

module, realizable over GF(4).

Given that we have such a result for both abelian Sylow 2-subgroups and Klein four

2-blocks, one might try to combine the two into a conjecture.

Conjecture 2.4 Let B be a 2-block with abelian defect groups. Then all simple B-modules

are algebraic.

Another direction is changing the prime. This is less successful.

Theorem 2.5 (C.) Let G be a finite group with Sylow 3-subgroup C3×C3, and let K be a

field of characteristic 3. Then the simple module in the principal block are algebraic if and

only if neither M11 nor M23 is a composition factor of G.

So there is not such a satisfactory result moving to odd primes, but with only finitely

many exceptions (up to O3′(G)) the theorem holds, at least for this particular Sylow 3-

subgroup.

Moving beyond 3, even this result cannot be rescued. Let G = F4(2), and let p = 5. Then

the Sylow p-subgroup of G is C5 × C5, and there is a simple module of dimension 875823

in the principal 5-block that lies on the second row of the Auslander–Reiten component.

Although the theorem I gave earlier does not apply in this case, it can be shown that an

algebraic module cannot lie on the second row in this case, and so this simple module is

non-algebraic. There should be infinitely many groups G = F4(q) whose principal 5-block is

Puig equivalent to that of F4(2), providing infinitely many examples of simple groups with

abelian Sylow 5-subgroups, and with non-algebraic simple modules in the principal block.

3 Indecomposable Modules

Moving away from simple modules, let us look at the whole module category. The only

(non-cyclic) p-group for which we have perfect knowledge is V4. There are some results for

dihedral groups, but we will focus on Cp × Cp for odd primes.

Conjecture 3.1 Let p be an odd prime, let P = Cp × Cp, and let K be a finite field of

characteristic p. Let M be an absolutely indecomposable KP -module. Then M is algebraic

if and only if M is periodic.

The presence of the finite field is because it is not clear whether periodic should be

equivalent to algebraic, or merely that the dimensions of the summands are bounded; for
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finite fields, these notions coincide of course. This conjecture is interesting because it relates

the tensor structure of the group algebra to the homological structure in a way that does

not appear to have been considered before.

4 Non-algebraic Modules

Having had a look at algebraic modules, let’s ask similar questions about other modules.

Given a module M , let an(M) denote the number of non-isomorphic indecomposable sum-

mands of

K ⊕M ⊕M⊗2 ⊕ · · · ⊕M⊗n.

Then a module is algebraic if and only if an(M) is universally bounded, i.e., eventually

constant. (Also notice that if an(M) = an1(M) for some n, then M is algebraic.) Thus if M

is non-algebraic, the slowest that the function an(M) can grow is linearly.

Proposition 4.1 Let M be an algebraic module. Then an(Ωi(M)) is bounded by a linear

function in n.

This still leaves almost all modules, for which very little is known. However, one may

attach to each module a growth type, and this stratifies the module category by an invariant

dependent on the monoidal structure of the module category. Algebraic objects, and this

more general notion, may of course be defined for any symmetric monoidal category, like

Hopf algebras for example. Results here are obviously not as impressive as for groups, but

something may still be said.
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