Weight 2 Blocks of Symmetric Groups

David A. Craven

University of Oxford
Kinderseminar, University of Oxford, 23rd February, 2011

Symmetric Groups

The irreducible complex characters χ^{λ} of the symmetric group S_{n} are parametrized by partitions λ. The combinatorics of partitions allows one to deduce information about the symmetric group and its representations.

Symmetric Groups

The irreducible complex characters χ^{λ} of the symmetric group S_{n} are parametrized by partitions λ. The combinatorics of partitions allows one to deduce information about the symmetric group and its representations.
As an example, the degrees of characters (in fact, the whole character table) can be found using partitions. More importantly, the actual irreducible representations can be constructed, using combinatorics associated with partitions. These are called Specht modules, and denoted S^{λ}.

Symmetric Groups

The irreducible complex characters χ^{λ} of the symmetric group S_{n} are parametrized by partitions λ. The combinatorics of partitions allows one to deduce information about the symmetric group and its representations.
As an example, the degrees of characters (in fact, the whole character table) can be found using partitions. More importantly, the actual irreducible representations can be constructed, using combinatorics associated with partitions. These are called Specht modules, and denoted S^{λ}.

The construction actually defines these modules as $\mathbb{Z} S_{n}$-modules, and so for any field K we can get Specht modules S^{λ} : in general, if K has positive characteristic, these modules will not be irreducible.

Tableaux and Hooks

The standard device is to represent partitions as tableaux. So (11,10,10,8,5,3,3,2,1,1) becomes

Tableaux and Hooks

The standard device is to represent partitions as tableaux. So (11,10,10,8,5,3,3,2,1,1) becomes

Choose a box.

Tableaux and Hooks

The standard device is to represent partitions as tableaux. So (11,10,10,8,5,3,3,2,1,1) becomes

Find all of the boxes to the right and below it. Count the size of the hook. It is 9. (The arm has length 6 and the leg has length 4.)

Tableaux and Hooks

The standard device is to represent partitions as tableaux. So (11,10,10,8,5,3,3,2,1,1) becomes

So 9 goes in the box. It's the hook length.

Tableaux and Hooks

The standard device is to represent partitions as tableaux. So (11,10,10,8,5,3,3,2,1,1) becomes

	17	15	12		9		8	7	5	4	1
18	15		10	9	7		6	5	3	2	
	14	12	9	8	6		5	4	2	1	
14	11	9	6	5	3		2	1			
10	7	5	2	1							
7	4	2									
6	3	1									
4	1										
2											
1											

Repeat until bored.

What Can You Do with Hooks?

What Can You Do with Hooks?

- This gives a method of calculating the dimension of S^{λ}. Indeed, if $H(\lambda)$ is the set of hook lengths, and $|\lambda|=n$, then

$$
\chi^{\lambda}(1)=\frac{n!}{\prod_{h \in H(\lambda)} h}
$$

What Can You Do with Hooks?

- This gives a method of calculating the dimension of S^{λ}. Indeed, if $H(\lambda)$ is the set of hook lengths, and $|\lambda|=n$, then

$$
\chi^{\lambda}(1)=\frac{n!}{\prod_{h \in H(\lambda)} h}
$$

- One may remove a hook. This involves removing the boxes of a hook, and pushing the orphaned part of the partition up and across until it fits into the gap.

What Can You Do with Hooks?

- This gives a method of calculating the dimension of S^{λ}. Indeed, if $H(\lambda)$ is the set of hook lengths, and $|\lambda|=n$, then

$$
\chi^{\lambda}(1)=\frac{n!}{\prod_{h \in H(\lambda)} h}
$$

- One may remove a hook. This involves removing the boxes of a hook, and pushing the orphaned part of the partition up and across until it fits into the gap. Continually removing hooks of length d results in the d-core, a partition that is independent of the way that you remove hooks. (We will "prove" this later, and see an example.)

What Can You Do with Hooks?

- This gives a method of calculating the dimension of S^{λ}. Indeed, if $H(\lambda)$ is the set of hook lengths, and $|\lambda|=n$, then

$$
\chi^{\lambda}(1)=\frac{n!}{\prod_{h \in H(\lambda)} h}
$$

- One may remove a hook. This involves removing the boxes of a hook, and pushing the orphaned part of the partition up and across until it fits into the gap. Continually removing hooks of length d results in the d-core, a partition that is independent of the way that you remove hooks. (We will "prove" this later, and see an example.)

The possible d-cores classify the d-blocks of the symmetric group. (More later!)

Removing hooks

Removing a hook is equivalent to removing a rim hook, which involves peeling off part of the rim, start at the arm of the hook, and ending at the leg.

Removing hooks

Removing a hook is equivalent to removing a rim hook, which involves peeling off part of the rim, start at the arm of the hook, and ending at the leg.

Removing hooks

Removing a hook is equivalent to removing a rim hook, which involves peeling off part of the rim, start at the arm of the hook, and ending at the leg.

Removing hooks

Removing a hook is equivalent to removing a rim hook, which involves peeling off part of the rim, start at the arm of the hook, and ending at the leg.

It is easier (for me, at least) to visualize removing rim hooks than removing hooks.

Removing hooks

Removing a hook is equivalent to removing a rim hook, which involves peeling off part of the rim, start at the arm of the hook, and ending at the leg.

It is easier (for me, at least) to visualize removing rim hooks than removing hooks.

What does this do to the hook numbers? To see this, we use the abacus, and the hook lengths of the first column.

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

The Abacus

Modular Representations: Blocks

If G is a finite group then the algebra $\mathbb{C} G$ is semisimple, so that it is a direct sum of simple (matrix) algebras. If K is a field of characteristic p, then $K G$ need not be semisimple, and never is if $p||G|$.

Modular Representations: Blocks

If G is a finite group then the algebra $\mathbb{C} G$ is semisimple, so that it is a direct sum of simple (matrix) algebras. If K is a field of characteristic p, then $K G$ need not be semisimple, and never is if $p||G|$.

No matter, simply decompose $K G$ into a sum of indecomposable (two-sided) ideals,

$$
K G=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{r}
$$

The B_{r} are called the blocks of $K G$.

Modular Representations: Blocks

If G is a finite group then the algebra $\mathbb{C} G$ is semisimple, so that it is a direct sum of simple (matrix) algebras. If K is a field of characteristic p, then $K G$ need not be semisimple, and never is if $p||G|$.

No matter, simply decompose $K G$ into a sum of indecomposable (two-sided) ideals,

$$
K G=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{r}
$$

The B_{r} are called the blocks of $K G$. Since $1 \in K G$, we can write

$$
1=e_{1}+e_{2}+\cdots+e_{r},
$$

where $e_{i} \in B_{i}$ is a central idempotent.

Modular Representations: Modules and Blocks

If M is any $K G$-module, then $M \cdot 1=M$, so that

$$
M=M \cdot 1=M \cdot\left(e_{1}+\cdots+e_{r}\right)=\bigoplus_{i=1}^{r} M \cdot e_{i} .
$$

Modular Representations: Modules and Blocks

If M is any $K G$-module, then $M \cdot 1=M$, so that

$$
M=M \cdot 1=M \cdot\left(e_{1}+\cdots+e_{r}\right)=\bigoplus_{i=1}^{r} M \cdot e_{i} .
$$

If M is indecomposable then all of the $M \cdot e_{i}$ except for one, say e_{j}, are zero. In this case, we say that M belongs to B_{j}.

Modular Representations: Modules and Blocks

If M is any $K G$-module, then $M \cdot 1=M$, so that

$$
M=M \cdot 1=M \cdot\left(e_{1}+\cdots+e_{r}\right)=\bigoplus_{i=1}^{r} M \cdot e_{i} .
$$

If M is indecomposable then all of the $M \cdot e_{i}$ except for one, say e_{j}, are zero. In this case, we say that M belongs to B_{j}. The simple $K G$-modules are distributed throughout the blocks in this way, with each block getting at least one.

Modular Representations: Ordinary Representations

There is a way to pass from ordinary to modular representations, and so assign irreducible complex representations to blocks. In general, this bit is quite difficult (think the p-adic rationals \mathbb{Q}_{p}, the p-adic integers \mathbb{Z}_{p}, and the quotient field \mathbb{F}_{p}), but for the symmetric group things are easy.

Modular Representations: Ordinary Representations

There is a way to pass from ordinary to modular representations, and so assign irreducible complex representations to blocks. In general, this bit is quite difficult (think the p-adic rationals \mathbb{Q}_{p}, the p-adic integers \mathbb{Z}_{p}, and the quotient field \mathbb{F}_{p}), but for the symmetric group things are easy.

The Specht modules, S^{λ}, are defined over \mathbb{Z}, so can be defined over any field. When the field is \mathbb{C}, these form a complete set of irreducible complex representations of S_{n}.

Modular Representations: Ordinary Representations

There is a way to pass from ordinary to modular representations, and so assign irreducible complex representations to blocks. In general, this bit is quite difficult (think the p-adic rationals \mathbb{Q}_{p}, the p-adic integers \mathbb{Z}_{p}, and the quotient field \mathbb{F}_{p}), but for the symmetric group things are easy.

The Specht modules, S^{λ}, are defined over \mathbb{Z}, so can be defined over any field. When the field is \mathbb{C}, these form a complete set of irreducible complex representations of S_{n}.

We can also define them over $K=\mathbb{F}_{p}$, where they will no longer be simple. However, the composition factors of S^{λ} will always belong to a single block.

Modular Representations: Ordinary Representations

There is a way to pass from ordinary to modular representations, and so assign irreducible complex representations to blocks. In general, this bit is quite difficult (think the p-adic rationals \mathbb{Q}_{p}, the p-adic integers \mathbb{Z}_{p}, and the quotient field \mathbb{F}_{p}), but for the symmetric group things are easy.

The Specht modules, S^{λ}, are defined over \mathbb{Z}, so can be defined over any field. When the field is \mathbb{C}, these form a complete set of irreducible complex representations of S_{n}.

We can also define them over $K=\mathbb{F}_{p}$, where they will no longer be simple. However, the composition factors of S^{λ} will always belong to a single block. (It is always true that the "reduction modulo p " of a complex representation belongs to a single block, for any finite group. How this representation breaks up is the content of the decomposition matrix.)

Modular Representations: Ordinary Representations

There is a way to pass from ordinary to modular representations, and so assign irreducible complex representations to blocks. In general, this bit is quite difficult (think the p-adic rationals \mathbb{Q}_{p}, the p-adic integers \mathbb{Z}_{p}, and the quotient field \mathbb{F}_{p}), but for the symmetric group things are easy.
The Specht modules, S^{λ}, are defined over \mathbb{Z}, so can be defined over any field. When the field is \mathbb{C}, these form a complete set of irreducible complex representations of S_{n}.

We can also define them over $K=\mathbb{F}_{p}$, where they will no longer be simple. However, the composition factors of S^{λ} will always belong to a single block. (It is always true that the "reduction modulo p " of a complex representation belongs to a single block, for any finite group. How this representation breaks up is the content of the decomposition matrix.) How can we tell to which block the module S^{λ} belongs?

Modular Representations: Blocks and Cores

Let K be a field of characteristic p, and we consider the blocks of $K S_{n}$.

Modular Representations: Blocks and Cores

Let K be a field of characteristic p, and we consider the blocks of $K S_{n}$.
Theorem (Nakayama Conjecture)
Two Specht modules S^{λ} and S^{μ} belong to the same block if and only if λ and μ have the same p-core.

Modular Representations: Blocks and Cores

Let K be a field of characteristic p, and we consider the blocks of $K S_{n}$.
Theorem (Nakayama Conjecture)
Two Specht modules S^{λ} and S^{μ} belong to the same block if and only if λ and μ have the same p-core.

Let B be a block of S_{n}, with p-core λ. Since you get from a partition of n to λ by removing p-hooks, we have that $n-|\lambda|=w p$, where w is the number of p-hooks removed. Define the weight of B to be w.

Modular Representations: Blocks and Cores

Let K be a field of characteristic p, and we consider the blocks of $K S_{n}$.
Theorem (Nakayama Conjecture)
Two Specht modules S^{λ} and S^{μ} belong to the same block if and only if λ and μ have the same p-core.

Let B be a block of S_{n}, with p-core λ. Since you get from a partition of n to λ by removing p-hooks, we have that $n-|\lambda|=w p$, where w is the number of p-hooks removed. Define the weight of B to be w.

Having distributed the complex representations into blocks, we now need to understand the simple $K S_{n}$-modules, and we have done everything.

Modular Representations: the D^{λ}

By a theorem of Brauer, the number of simple $K G$-representations is equal to the number of conjugacy classes of elements of order prime to p For the symmetric group, this is the same number as the p-restricted partitions, those that do not have p parts all the same size.

Modular Representations: the D^{λ}

By a theorem of Brauer, the number of simple $K G$-representations is equal to the number of conjugacy classes of elements of order prime to p For the symmetric group, this is the same number as the p-restricted partitions, those that do not have p parts all the same size.

Define the dominance order, a partial order, on partitions: $\left(\lambda_{1}, \ldots, \lambda_{r}\right) \preccurlyeq\left(\mu_{1}, \ldots, \mu_{s}\right)$ if

$$
\sum_{i=1}^{k} \lambda_{i} \leq \sum_{i=1}^{k} \mu_{i}
$$

for all i. (If $i>r$ or $i>s$, pretend that $\lambda_{i}=0$ or $\mu_{i}=0$.)

Modular Representations: the D^{λ}

By a theorem of Brauer, the number of simple $K G$-representations is equal to the number of conjugacy classes of elements of order prime to p For the symmetric group, this is the same number as the p-restricted partitions, those that do not have p parts all the same size.

Define the dominance order, a partial order, on partitions:
$\left(\lambda_{1}, \ldots, \lambda_{r}\right) \preccurlyeq\left(\mu_{1}, \ldots, \mu_{s}\right)$ if

$$
\sum_{i=1}^{k} \lambda_{i} \leq \sum_{i=1}^{k} \mu_{i}
$$

for all i. (If $i>r$ or $i>s$, pretend that $\lambda_{i}=0$ or $\mu_{i}=0$.) It turns out that the composition factors of S^{λ} modulo p are all present in S^{μ} for $\lambda \vDash \mu$, except for exactly one if and only if λ is p-restricted, which we denote D^{λ}. The D^{λ} form a complete set of irreducible $K S_{n}$-modules.

Going by Weight

Broadly speaking, the higher the weight of the block, the more complicated it is.

Going by Weight

Broadly speaking, the higher the weight of the block, the more complicated it is.

Theorem
A block of weight 0 is a matrix algebra, with one simple $K G$-module and one irreducible $\mathbb{C} G$-module.

Going by Weight

Broadly speaking, the higher the weight of the block, the more complicated it is.

Theorem
A block of weight 0 is a matrix algebra, with one simple KG-module and one irreducible $\mathbb{C} G$-module.

For weight 1 , things are slightly more complicated. One may count the number of partitions in a block using the abacus.

Going by Weight

Broadly speaking, the higher the weight of the block, the more complicated it is.

Theorem
A block of weight 0 is a matrix algebra, with one simple KG-module and one irreducible $\mathbb{C} G$-module.

For weight 1 , things are slightly more complicated. One may count the number of partitions in a block using the abacus.

Theorem
In a block of weight 1, there are p complex irreducible characters and $p-1$ simple $K S_{n}$-modules.

Going by Weight

Broadly speaking, the higher the weight of the block, the more complicated it is.

Theorem
A block of weight 0 is a matrix algebra, with one simple KG-module and one irreducible $\mathbb{C} G$-module.

For weight 1 , things are slightly more complicated. One may count the number of partitions in a block using the abacus.

Theorem
In a block of weight 1, there are p complex irreducible characters and $p-1$ simple $K S_{n}$-modules.

In the weight 1 case the defect group is cyclic, and there is an extensive theory of these blocks. Weight 2 is the first time that things get non-trivial.

The Branching Rule

The branching rule tells you how to restrict a complex character from S_{n} to S_{n-1}, and by Frobenius reciprocity, how to induce a complex character from S_{n-1} to S_{n}.

The Branching Rule

The branching rule tells you how to restrict a complex character from S_{n} to S_{n-1}, and by Frobenius reciprocity, how to induce a complex character from S_{n-1} to S_{n}.

Theorem (Branching Rule)
Let χ^{λ} be an irreducible character of S_{n}. The character $\chi^{\lambda} \downarrow_{S_{n-1}}$ is a sum of all possible χ^{μ}, where μ is obtained from λ by removing a box (i.e., removing any box with hook length 1).

The Branching Rule

The branching rule tells you how to restrict a complex character from S_{n} to S_{n-1}, and by Frobenius reciprocity, how to induce a complex character from S_{n-1} to S_{n}.

Theorem (Branching Rule)
Let χ^{λ} be an irreducible character of S_{n}. The character $\chi^{\lambda} \downarrow_{S_{n-1}}$ is a sum of all possible χ^{μ}, where μ is obtained from λ by removing a box (i.e., removing any box with hook length 1).

The modular analogue of this, understanding $D^{\lambda} \downarrow s_{n-1}$, is much more complicated, and uses the crystal basis.

The Branching Rule

The branching rule tells you how to restrict a complex character from S_{n} to S_{n-1}, and by Frobenius reciprocity, how to induce a complex character from S_{n-1} to S_{n}.

Theorem (Branching Rule)
Let χ^{λ} be an irreducible character of S_{n}. The character $\chi^{\lambda} \downarrow_{S_{n-1}}$ is a sum of all possible χ^{μ}, where μ is obtained from λ by removing a box (i.e., removing any box with hook length 1).

The modular analogue of this, understanding $D^{\lambda} \downarrow S_{n-1}$, is much more complicated, and uses the crystal basis.

Adding a box to a partition is the same thing as moving a bead on the abacus up a runner, and similarly removing a box of a partition is the same thing as moving a bead on the abacus down a runner.

The Branching Rule

The branching rule tells you how to restrict a complex character from S_{n} to S_{n-1}, and by Frobenius reciprocity, how to induce a complex character from S_{n-1} to S_{n}.

Theorem (Branching Rule)
Let χ^{λ} be an irreducible character of S_{n}. The character $\chi^{\lambda} \downarrow_{S_{n-1}}$ is a sum of all possible χ^{μ}, where μ is obtained from λ by removing a box (i.e., removing any box with hook length 1).

The modular analogue of this, understanding $D^{\lambda} \downarrow S_{n-1}$, is much more complicated, and uses the crystal basis.

Adding a box to a partition is the same thing as moving a bead on the abacus up a runner, and similarly removing a box of a partition is the same thing as moving a bead on the abacus down a runner.

We are interested in the modular branching rule for weight 2 blocks.

Weight 2 Blocks

Let p be an odd prime. Let B be a weight 2 block, with p-core κ. If λ is a partition of n with p-core κ, then on the abacus, we must move two beads left in order to reach κ. Hence we can parametrize the partitions with p-core κ by symbols $\langle i, j\rangle,\langle i, i\rangle$ and $\langle i\rangle$. These mean:

Weight 2 Blocks

Let p be an odd prime. Let B be a weight 2 block, with p-core κ. If λ is a partition of n with p-core κ, then on the abacus, we must move two beads left in order to reach κ. Hence we can parametrize the partitions with p-core κ by symbols $\langle i, j\rangle,\langle i, i\rangle$ and $\langle i\rangle$. These mean:

- $\langle i, j\rangle$: push the beads on runner i and j one to the right.

Weight 2 Blocks

Let p be an odd prime. Let B be a weight 2 block, with p-core κ. If λ is a partition of n with p-core κ, then on the abacus, we must move two beads left in order to reach κ. Hence we can parametrize the partitions with p-core κ by symbols $\langle i, j\rangle,\langle i, i\rangle$ and $\langle i\rangle$. These mean:

- $\langle i, j\rangle$: push the beads on runner i and j one to the right.
- $\langle i, i\rangle$: push two beads on runner i one to the right.

Weight 2 Blocks

Let p be an odd prime. Let B be a weight 2 block, with p-core κ. If λ is a partition of n with p-core κ, then on the abacus, we must move two beads left in order to reach κ. Hence we can parametrize the partitions with p-core κ by symbols $\langle i, j\rangle,\langle i, i\rangle$ and $\langle i\rangle$. These mean:

- $\langle i, j\rangle$: push the beads on runner i and j one to the right.
- $\langle i, i\rangle$: push two beads on runner i one to the right.
- $\langle i\rangle$: push one bead on runner i two to the right.

Weight 2 Blocks

Let p be an odd prime. Let B be a weight 2 block, with p-core κ. If λ is a partition of n with p-core κ, then on the abacus, we must move two beads left in order to reach κ. Hence we can parametrize the partitions with p-core κ by symbols $\langle i, j\rangle,\langle i, i\rangle$ and $\langle i\rangle$. These mean:

- $\langle i, j\rangle$: push the beads on runner i and j one to the right.
- $\langle i, i\rangle$: push two beads on runner i one to the right.
- $\langle i\rangle$: push one bead on runner i two to the right.

This is the full list of complex irreducibles S^{λ} in B, and there are $p(p+3) / 2$ of them. For how many of these are p-restricted, notice that being p-restricted means that there are (at least) p consecutive hook numbers, or on the abacus, a complete column of beads (wrapping around the top of the abacus.) Assuming we are in the case of an empty core, this means the symbols $\langle 1,2\rangle$ and $\langle i, i\rangle$, so $p+1$. (This is true in general, but with different symbols.)

Morita Moves

The amazing thing about symmetric groups is that you can move between blocks with the same weight, using Scopes equivalences. These were proved to be derived equivalences by Chuang and Rouquier, proving Broué's conjecture for symmetric groups.

Morita Moves

The amazing thing about symmetric groups is that you can move between blocks with the same weight, using Scopes equivalences. These were proved to be derived equivalences by Chuang and Rouquier, proving Broué's conjecture for symmetric groups.

Let κ be a p-core of size m, and label the runners r_{0} to r_{p-1}. Suppose that there are k more beads on r_{i+1} than r_{i}. We want to swap the beads on runners r_{i} and r_{i+1}. Write σ for this transposition. This results in some new p-core $\bar{\kappa}$, of size $m+k$. Hence if B is a weight 2 block of S_{n} with core $\kappa(n=m+2 p)$, then there is a block \bar{B} of S_{n+k} with core $\bar{\kappa}$.

Morita Moves

The amazing thing about symmetric groups is that you can move between blocks with the same weight, using Scopes equivalences. These were proved to be derived equivalences by Chuang and Rouquier, proving Broué's conjecture for symmetric groups.

Let κ be a p-core of size m, and label the runners r_{0} to r_{p-1}. Suppose that there are k more beads on r_{i+1} than r_{i}. We want to swap the beads on runners r_{i} and r_{i+1}. Write σ for this transposition. This results in some new p-core $\bar{\kappa}$, of size $m+k$. Hence if B is a weight 2 block of S_{n} with core $\kappa(n=m+2 p)$, then there is a block \bar{B} of S_{n+k} with core $\bar{\kappa}$.

It is an important theorem of Scopes that if $k>1$, then the two blocks B and \bar{B} are "the same" (Morita equivalent). If D^{μ} has symbol $\langle a, b\rangle$, then $D^{\mu} \downarrow_{B}$ has summand D^{λ}, which has symbol $\langle a \sigma, b \sigma\rangle$.

Morita Moves

The amazing thing about symmetric groups is that you can move between blocks with the same weight, using Scopes equivalences. These were proved to be derived equivalences by Chuang and Rouquier, proving Broué's conjecture for symmetric groups.

Let κ be a p-core of size m, and label the runners r_{0} to r_{p-1}. Suppose that there are k more beads on r_{i+1} than r_{i}. We want to swap the beads on runners r_{i} and r_{i+1}. Write σ for this transposition. This results in some new p-core $\bar{\kappa}$, of size $m+k$. Hence if B is a weight 2 block of S_{n} with core $\kappa(n=m+2 p)$, then there is a block \bar{B} of S_{n+k} with core $\bar{\kappa}$.

It is an important theorem of Scopes that if $k>1$, then the two blocks B and \bar{B} are "the same" (Morita equivalent). If D^{μ} has symbol $\langle a, b\rangle$, then $D^{\mu} \downarrow_{B}$ has summand D^{λ}, which has symbol $\langle a \sigma, b \sigma\rangle$.

This almost happens when $k=1$.

Scopes Moves

A move that swaps 1 bead is a Scopes move, and a move that swaps >1 bead is a Morita move.

Scopes Moves

A move that swaps 1 bead is a Scopes move, and a move that swaps >1 bead is a Morita move.

The minimal block is the weight 2 block with empty p-core, the principal p-block of $S_{2 p}$. The RoCK block is the weight 2 block with p-core with i beads on the i th runner r_{i}, a triangle.

Scopes Moves

A move that swaps 1 bead is a Scopes move, and a move that swaps >1 bead is a Morita move.

The minimal block is the weight 2 block with empty p-core, the principal p-block of $S_{2 p}$. The RoCK block is the weight 2 block with p-core with i beads on the i th runner r_{i}, a triangle. By a series of Scopes moves (since Morita moves do not affect things), you can get from the minimal block to the RoCK block, and pass through any Morita class of weight 2 block.

Scopes Moves

A move that swaps 1 bead is a Scopes move, and a move that swaps >1 bead is a Morita move.

The minimal block is the weight 2 block with empty p-core, the principal p-block of $S_{2 p}$. The RoCK block is the weight 2 block with p-core with i beads on the i th runner r_{i}, a triangle. By a series of Scopes moves (since Morita moves do not affect things), you can get from the minimal block to the RoCK block, and pass through any Morita class of weight 2 block. The paths from the minimal block to the RoCK block are of interest.

Scopes Moves

A move that swaps 1 bead is a Scopes move, and a move that swaps >1 bead is a Morita move.

The minimal block is the weight 2 block with empty p-core, the principal p-block of $S_{2 p}$. The RoCK block is the weight 2 block with p-core with i beads on the i th runner r_{i}, a triangle. By a series of Scopes moves (since Morita moves do not affect things), you can get from the minimal block to the RoCK block, and pass through any Morita class of weight 2 block. The paths from the minimal block to the RoCK block are of interest.

Theorem (C, 2010)
There are exactly $p(p-1) / 2$ Scopes moves in any path from the minimal block to the RoCK block.

Scopes Moves

A move that swaps 1 bead is a Scopes move, and a move that swaps >1 bead is a Morita move.

The minimal block is the weight 2 block with empty p-core, the principal p-block of $S_{2 p}$. The RoCK block is the weight 2 block with p-core with i beads on the i th runner r_{i}, a triangle. By a series of Scopes moves (since Morita moves do not affect things), you can get from the minimal block to the RoCK block, and pass through any Morita class of weight 2 block. The paths from the minimal block to the RoCK block are of interest.

Theorem (C, 2010)
There are exactly $p(p-1) / 2$ Scopes moves in any path from the minimal block to the RoCK block.

Each Scopes move has the property that $D^{\lambda} \uparrow^{\bar{B}}$ is simple, except for exactly one λ, the one with symbol $\langle i, i\rangle$.

From Minimal to RoCK

Since there are $p(p-1) / 2$ Scopes moves, and each Scopes move "messes up" one simple module, there are at most $p(p-1) / 2$ simple modules that are messed up, going from the minimal block to the RoCK block. (The same simple could be messed up twice.)

From Minimal to RoCK

Since there are $p(p-1) / 2$ Scopes moves, and each Scopes move "messes up" one simple module, there are at most $p(p-1) / 2$ simple modules that are messed up, going from the minimal block to the RoCK block. (The same simple could be messed up twice.)

Theorem (C, 2010)
The same simple cannot be messed up twice. Consequently, there are exactly $p-1$ simple modules for the RoCK block such that restriction to the minimal block has a simple summand. In particular, they share sources.

From Minimal to RoCK

Since there are $p(p-1) / 2$ Scopes moves, and each Scopes move "messes up" one simple module, there are at most $p(p-1) / 2$ simple modules that are messed up, going from the minimal block to the RoCK block. (The same simple could be messed up twice.)

Theorem (C, 2010)
The same simple cannot be messed up twice. Consequently, there are exactly $p-1$ simple modules for the RoCK block such that restriction to the minimal block has a simple summand. In particular, they share sources.
(A source is an indecomposable module M for the Sylow p-subgroup of $S_{2 p}$ such that the simple module is a summand of $M \uparrow^{B}$.)

From Minimal to RoCK

Since $p-1$ simple modules share sources with modules from the RoCK block (which has "easy" sources, as it looks like S_{p} < C_{2}), the last thing here is obviously to identify which simple modules from the minimal block have this property.

From Minimal to RoCK

Since $p-1$ simple modules share sources with modules from the RoCK block (which has "easy" sources, as it looks like S_{p} (C_{2}), the last thing here is obviously to identify which simple modules from the minimal block have this property.

Theorem (C, 2010)
The simple modules for the minimal block that share a source with the RoCK block are labelled by $\langle p\rangle$ and $\langle i, i+1\rangle$ for $2 \leq i \leq p-1$, which are the partitions (2p) and $\left(i^{2}, 2^{p-1}\right)$ for $3 \leq i \leq p$.

From Minimal to RoCK

Since $p-1$ simple modules share sources with modules from the RoCK block (which has "easy" sources, as it looks like S_{p} (C_{2}), the last thing here is obviously to identify which simple modules from the minimal block have this property.

Theorem (C, 2010)
The simple modules for the minimal block that share a source with the RoCK block are labelled by $\langle p\rangle$ and $\langle i, i+1\rangle$ for $2 \leq i \leq p-1$, which are the partitions (2p) and $\left(i^{2}, 2^{p-1}\right)$ for $3 \leq i \leq p$.

Main open problem for weight two blocks: Find the sources for the other simple modules!

