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Symmetric Groups

The irreducible complex characters χλ of the symmetric group Sn are
parametrized by partitions λ. The combinatorics of partitions allows one
to deduce information about the symmetric group and its representations.

As an example, the degrees of characters (in fact, the whole character
table) can be found using partitions. More importantly, the actual
irreducible representations can be constructed, using combinatorics
associated with partitions. These are called Specht modules, and denoted
Sλ.

The construction actually defines these modules as ZSn-modules, and so
for any field K we can get Specht modules Sλ: in general, if K has
positive characteristic, these modules will not be irreducible.
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Tableaux and Hooks

The standard device is to represent partitions as tableaux. So
(11,10,10,8,5,3,3,2,1,1) becomes
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Tableaux and Hooks

The standard device is to represent partitions as tableaux. So
(11,10,10,8,5,3,3,2,1,1) becomes

?

Choose a box.
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Tableaux and Hooks

The standard device is to represent partitions as tableaux. So
(11,10,10,8,5,3,3,2,1,1) becomes

? • • • • •
•
•
•

Find all of the boxes to the right and below it. Count the size of the hook.
It is 9. (The arm has length 6 and the leg has length 4.)
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Tableaux and Hooks

The standard device is to represent partitions as tableaux. So
(11,10,10,8,5,3,3,2,1,1) becomes

9

So 9 goes in the box. It’s the hook length.
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Tableaux and Hooks

The standard device is to represent partitions as tableaux. So
(11,10,10,8,5,3,3,2,1,1) becomes

20 17 15 12 11 9 8 7 5 4 1
18 15 13 10 9 7 6 5 3 2
17 14 12 9 8 6 5 4 2 1
14 11 9 6 5 3 2 1
10 7 5 2 1
7 4 2
6 3 1
4 1
2
1

Repeat until bored.
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What Can You Do with Hooks?

This gives a method of calculating the dimension of Sλ. Indeed, if
H(λ) is the set of hook lengths, and |λ| = n, then

χλ(1) =
n!∏

h∈H(λ) h
.

One may remove a hook. This involves removing the boxes of a hook,
and pushing the orphaned part of the partition up and across until it
fits into the gap. Continually removing hooks of length d results in
the d-core, a partition that is independent of the way that you
remove hooks. (We will “prove” this later, and see an example.)

The possible d-cores classify the d-blocks of the symmetric group.
(More later!)
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Removing hooks

Removing a hook is equivalent to removing a rim hook, which involves
peeling off part of the rim, start at the arm of the hook, and ending at the
leg.

• • • • • •
•
•
•
•

It is easier (for me, at least) to visualize removing rim hooks than
removing hooks.

What does this do to the hook numbers? To see this, we use the abacus,
and the hook lengths of the first column.
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The Abacus
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Modular Representations: Blocks

If G is a finite group then the algebra CG is semisimple, so that it is a
direct sum of simple (matrix) algebras. If K is a field of characteristic p,
then KG need not be semisimple, and never is if p | |G |.

No matter, simply decompose KG into a sum of indecomposable
(two-sided) ideals,

KG = B1 ⊕ B2 ⊕ · · · ⊕ Br .

The Br are called the blocks of KG . Since 1 ∈ KG , we can write

1 = e1 + e2 + · · ·+ er ,

where ei ∈ Bi is a central idempotent.
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Modular Representations: Modules and Blocks

If M is any KG -module, then M · 1 = M, so that

M = M · 1 = M · (e1 + · · ·+ er ) =
r⊕

i=1

M · ei .

If M is indecomposable then all of the M · ei except for one, say ej , are
zero. In this case, we say that M belongs to Bj . The simple KG -modules
are distributed throughout the blocks in this way, with each block getting
at least one.
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Modular Representations: Ordinary Representations

There is a way to pass from ordinary to modular representations, and so
assign irreducible complex representations to blocks. In general, this bit is
quite difficult (think the p-adic rationals Qp, the p-adic integers Zp, and
the quotient field Fp), but for the symmetric group things are easy.

The Specht modules, Sλ, are defined over Z, so can be defined over any
field. When the field is C, these form a complete set of irreducible
complex representations of Sn.

We can also define them over K = Fp, where they will no longer be
simple. However, the composition factors of Sλ will always belong to a
single block. (It is always true that the “reduction modulo p” of a complex
representation belongs to a single block, for any finite group. How this
representation breaks up is the content of the decomposition matrix.)

How can we tell to which block the module Sλ belongs?
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Modular Representations: Blocks and Cores

Let K be a field of characteristic p, and we consider the blocks of KSn.

Theorem (Nakayama Conjecture)

Two Specht modules Sλ and Sµ belong to the same block if and only if λ
and µ have the same p-core.

Let B be a block of Sn, with p-core λ. Since you get from a partition of n
to λ by removing p-hooks, we have that n − |λ| = wp, where w is the
number of p-hooks removed. Define the weight of B to be w .

Having distributed the complex representations into blocks, we now need
to understand the simple KSn-modules, and we have done everything.
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Modular Representations: the Dλ

By a theorem of Brauer, the number of simple KG -representations is equal
to the number of conjugacy classes of elements of order prime to p For the
symmetric group, this is the same number as the p-restricted partitions,
those that do not have p parts all the same size.

Define the dominance order, a partial order, on partitions:
(λ1, . . . , λr ) P (µ1, . . . , µs) if

k∑
i=1

λi ≤
k∑

i=1

µi

for all i . (If i > r or i > s, pretend that λi = 0 or µi = 0.) It turns out
that the composition factors of Sλ modulo p are all present in Sµ for
λ P µ, except for exactly one if and only if λ is p-restricted, which we
denote Dλ. The Dλ form a complete set of irreducible KSn-modules.
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Going by Weight

Broadly speaking, the higher the weight of the block, the more
complicated it is.

Theorem

A block of weight 0 is a matrix algebra, with one simple KG-module and
one irreducible CG-module.

For weight 1, things are slightly more complicated. One may count the
number of partitions in a block using the abacus.

Theorem

In a block of weight 1, there are p complex irreducible characters and
p − 1 simple KSn-modules.

In the weight 1 case the defect group is cyclic, and there is an extensive
theory of these blocks. Weight 2 is the first time that things get
non-trivial.
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The Branching Rule

The branching rule tells you how to restrict a complex character from Sn
to Sn−1, and by Frobenius reciprocity, how to induce a complex character
from Sn−1 to Sn.

Theorem (Branching Rule)

Let χλ be an irreducible character of Sn. The character χλ ↓Sn−1 is a sum
of all possible χµ, where µ is obtained from λ by removing a box (i.e.,
removing any box with hook length 1).

The modular analogue of this, understanding Dλ ↓Sn−1 , is much more
complicated, and uses the crystal basis.

Adding a box to a partition is the same thing as moving a bead on the
abacus up a runner, and similarly removing a box of a partition is the same
thing as moving a bead on the abacus down a runner.

We are interested in the modular branching rule for weight 2 blocks.
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Weight 2 Blocks

Let p be an odd prime. Let B be a weight 2 block, with p-core κ. If λ is a
partition of n with p-core κ, then on the abacus, we must move two beads
left in order to reach κ. Hence we can parametrize the partitions with
p-core κ by symbols 〈i , j〉, 〈i , i〉 and 〈i〉. These mean:

〈i , j〉: push the beads on runner i and j one to the right.

〈i , i〉: push two beads on runner i one to the right.

〈i〉: push one bead on runner i two to the right.

This is the full list of complex irreducibles Sλ in B, and there are
p(p + 3)/2 of them. For how many of these are p-restricted, notice that
being p-restricted means that there are (at least) p consecutive hook
numbers, or on the abacus, a complete column of beads (wrapping around
the top of the abacus.) Assuming we are in the case of an empty core, this
means the symbols 〈1, 2〉 and 〈i , i〉, so p + 1. (This is true in general, but
with different symbols.)
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Morita Moves

The amazing thing about symmetric groups is that you can move between
blocks with the same weight, using Scopes equivalences. These were
proved to be derived equivalences by Chuang and Rouquier, proving
Broué’s conjecture for symmetric groups.

Let κ be a p-core of size m, and label the runners r0 to rp−1. Suppose
that there are k more beads on ri+1 than ri . We want to swap the beads
on runners ri and ri+1. Write σ for this transposition. This results in some
new p-core κ̄, of size m + k . Hence if B is a weight 2 block of Sn with
core κ (n = m + 2p), then there is a block B̄ of Sn+k with core κ̄.

It is an important theorem of Scopes that if k > 1, then the two blocks B
and B̄ are “the same” (Morita equivalent). If Dµ has symbol 〈a, b〉, then
Dµ ↓B has summand Dλ, which has symbol 〈aσ, bσ〉.

This almost happens when k = 1.

David A. Craven (University of Oxford) Weight 2 Blocks of Symmetric Groups 23rd February, 2011 15 / 18



Morita Moves

The amazing thing about symmetric groups is that you can move between
blocks with the same weight, using Scopes equivalences. These were
proved to be derived equivalences by Chuang and Rouquier, proving
Broué’s conjecture for symmetric groups.

Let κ be a p-core of size m, and label the runners r0 to rp−1. Suppose
that there are k more beads on ri+1 than ri . We want to swap the beads
on runners ri and ri+1. Write σ for this transposition. This results in some
new p-core κ̄, of size m + k . Hence if B is a weight 2 block of Sn with
core κ (n = m + 2p), then there is a block B̄ of Sn+k with core κ̄.

It is an important theorem of Scopes that if k > 1, then the two blocks B
and B̄ are “the same” (Morita equivalent). If Dµ has symbol 〈a, b〉, then
Dµ ↓B has summand Dλ, which has symbol 〈aσ, bσ〉.

This almost happens when k = 1.

David A. Craven (University of Oxford) Weight 2 Blocks of Symmetric Groups 23rd February, 2011 15 / 18



Morita Moves

The amazing thing about symmetric groups is that you can move between
blocks with the same weight, using Scopes equivalences. These were
proved to be derived equivalences by Chuang and Rouquier, proving
Broué’s conjecture for symmetric groups.

Let κ be a p-core of size m, and label the runners r0 to rp−1. Suppose
that there are k more beads on ri+1 than ri . We want to swap the beads
on runners ri and ri+1. Write σ for this transposition. This results in some
new p-core κ̄, of size m + k . Hence if B is a weight 2 block of Sn with
core κ (n = m + 2p), then there is a block B̄ of Sn+k with core κ̄.

It is an important theorem of Scopes that if k > 1, then the two blocks B
and B̄ are “the same” (Morita equivalent). If Dµ has symbol 〈a, b〉, then
Dµ ↓B has summand Dλ, which has symbol 〈aσ, bσ〉.

This almost happens when k = 1.

David A. Craven (University of Oxford) Weight 2 Blocks of Symmetric Groups 23rd February, 2011 15 / 18



Morita Moves

The amazing thing about symmetric groups is that you can move between
blocks with the same weight, using Scopes equivalences. These were
proved to be derived equivalences by Chuang and Rouquier, proving
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Scopes Moves

A move that swaps 1 bead is a Scopes move, and a move that swaps > 1
bead is a Morita move.

The minimal block is the weight 2 block with empty p-core, the principal
p-block of S2p. The RoCK block is the weight 2 block with p-core with i
beads on the ith runner ri , a triangle. By a series of Scopes moves (since
Morita moves do not affect things), you can get from the minimal block to
the RoCK block, and pass through any Morita class of weight 2 block.
The paths from the minimal block to the RoCK block are of interest.

Theorem (C, 2010)

There are exactly p(p − 1)/2 Scopes moves in any path from the minimal
block to the RoCK block.

Each Scopes move has the property that Dλ ↑B̄ is simple, except for
exactly one λ, the one with symbol 〈i , i〉.
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From Minimal to RoCK

Since there are p(p − 1)/2 Scopes moves, and each Scopes move “messes
up”one simple module, there are at most p(p − 1)/2 simple modules that
are messed up, going from the minimal block to the RoCK block. (The
same simple could be messed up twice.)

Theorem (C, 2010)

The same simple cannot be messed up twice. Consequently, there are
exactly p − 1 simple modules for the RoCK block such that restriction to
the minimal block has a simple summand. In particular, they share sources.

(A source is an indecomposable module M for the Sylow p-subgroup of
S2p such that the simple module is a summand of M ↑B .)
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From Minimal to RoCK

Since p − 1 simple modules share sources with modules from the RoCK
block (which has “easy” sources, as it looks like Sp o C2), the last thing
here is obviously to identify which simple modules from the minimal block
have this property.

Theorem (C, 2010)

The simple modules for the minimal block that share a source with the
RoCK block are labelled by 〈p〉 and 〈i , i + 1〉 for 2 ≤ i ≤ p − 1, which are
the partitions (2p) and (i2, 2p−1) for 3 ≤ i ≤ p.

Main open problem for weight two blocks: Find the sources for the other
simple modules!
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