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For the purposes of this talk, G is a finite group, K is an algebraically closed field of

characteristic p, where p | |G|, and all modules are finite-dimensional.

1 Algebraic Modules

The Green ring of KG-modules is defined to be the free abelian group on the basis set

of all indecomposable KG-modules, with M + N defined to be equal to M ⊕ N , and the

product of two modules defined as M ⊗ N . Notice that not all elements of the Green ring

can be thought of as modules, since they could have negative multiplicities attached; they

are virtual modules.

The structure of the Green ring, while a commutative ring with a 1, is far from that of

traditional commutative rings. For example, it is not an integral domain: in general, it has

nilpotent elements. It is also in general infinite-dimensional. We can still, however, carry

over some notions from algebraic number theory. One of those is algebraic modules.

A module is said to be algebraic if it satisfies some polynomial equation in the Green

ring, with co-efficients in Z.

Proposition 1.1 Let M be a KG-module. Then the following are equivalent:

(i) M is algebraic;

(ii) M satisfies a monic polynomial equation in the Green ring with co-efficients in Z; and

(iii) there are only finitely many different indecomposable summands of the (infinite-dimensional)

module

T (M) = M ⊕M⊗2 ⊕M⊗3 ⊕ · · · .

The third equivalent condition is often the easiest to use in actually deciding if modules

are algebraic or not. In particular, it is very easy to use this condition to prove the following.
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Lemma 1.2 Let M and N be KG-modules.

(i) M and N are algebraic if and only if M ⊕N is algebraic.

(ii) If M and N are algebraic, then so is M ⊗N .

Hence the algebraic modules form a subring Alg(G) of the Green ring.

We pause to briefly give some examples of algebraic modules.

Example 1.3 All permutation modules are algebraic, as are all projective modules.

A module is called endo-trivial if M ⊗M∗ is the direct sum of a projective module and

the trivial module K. These crop up all over representation theory, and have recently been

classified, in a sequence of long papers. The most complicated case is proving the general

non-existence of torsion endo-trivial module, by which we mean M⊗n = K ⊕ P for some

projective module P and some n > 0. It is easy to see that an endo-trivial is torsion if

and only if it is algebraic, and so the methods of algebraic modules might be applicable to

shorten this proof somewhat, or even offer an alternative proof.

On a related note to algebraic modules, a module is said to be simply generated if it is a

summand of some tensor product of simple modules.

Lemma 1.4 The sum and tensor product of two simply generated modules are simply

generated. Also, summands of simply generated modules are simply generated.

Again, the simply generated modules form a subring SG(G) of the Green ring. One

natural object to study in the context of these two subrings is their intersection, Alg(G) ∩
SG(G). We will come back to this later.

Let H be a subgroup of G, and let M be a KG-module. We can simply think of M as

a KH-module, and get the restriction of M to H, denoted by M ↓H . Note that dim M =

dim M ↓H . Dual to this is induction, which takes a KH-module N , and produces a KG-

module, namely the module

N ⊗KH KG.

This module has dimension |G : H| dim N .

Lemma 1.5 Suppose that M is an algebraic KG-module, and let H be a subgroup of

G. Then M ↓H is an algebraic KH-module. Conversely, suppose that N is an algebraic

KH-module. Then N ↑G is an algebraic KG-module.

Let M denote an indecomposable KG-module. It turns out that there is a certain p-

subgroup P (determined only up to conjugacy) and a certain indecomposable KP -module
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S such that M is a summand of S ↑G, and that this property does not hold for any smaller

subgroups Q of P . The subgroup P is called a vertex, and the module S is called a source.

Theorem 1.6 Let M be an indecomposable KG-module, and let P and S be its vertex and

source. Then M is algebraic if and only if S is.

Notice that if P is cyclic, we have mentioned previously that there are only finitely many

indecomposable KP -modules, and so all KP -modules are algebraic.

2 Algebraic Modules and p-Soluble Groups

The first theorem in this direction came fairly soon after Alperin defined algebraic modules,

in 1976.

Theorem 2.1 (Berger (1976)) Let G be a soluble group. Then every simply generated

module is algebraic. In particular, all simple modules are algebraic. Hence SG(G) 6 Alg(G).

In 1980, Walter Feit extended this to p-soluble groups. His proof is five pages long

(which is a substantial reduction on Berger’s proof) but requires the classification of the

finite simple groups. In his proof he noted that it was curious that while the result was only

about p-soluble groups, the proof required knowledge about all finite simple groups.

Our first result is that Feit’s theorem can be extended, simplified, and have its dependence

on the classification removed. The first obvious statement that a group G has algebraic

simple modules if and only if G/ Op(G) has, since Op(G) acts trivially on all simple modules.

One can similarly consider passing from G to Op(G) and G to Op′
(G), and this proves the

follwoing result.

Theorem 2.2 (C. (2006)) Let G be a finite group, let H be a normal subgroup, and

suppose that G/H is p-soluble. Let M be a simple KG-module. Then M is algebraic if and

only if M ↓H is algebraic. In particular, if all simple KH-modules are algebraic then all

simple KG-modules are algebraic.

We will briefly discuss the proof of this theorem, since it is entirely elementary, modulo

basic representation theory. Firstly, notice that we may assume that Op′
(G) = G, since if

M is a simple KG-module, and H = Op′
(G), then M is a summand of (M ↓H) ↑G (every

simple module is relatively H-projective if p - |G : H|). Hence our only problem comes from

a normal subgroup H of index p. In this case, either M ↓H is simple or it is not. If it is not,

then again

M |(M ↓H) ↑G,
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and in the simple case, the KG-module M is simple the extension of the simple KH-module

M ↓H by a trivial G/H-action. In all cases, then M is algebraic if and only if M ↓H is

algebraic, and induction proves the result.

We can go in the opposite direction to this theorem.

Proposition 2.3 Let G be a finite group with algebraic simple modules, and let H be a

normal subgroup of G. Then both H and G/H have algebraic simple modules. Consequently,

if G has algebraic simple modules then so do all composition factors.

The converse to this, as a natural extension to the p-soluble case, is unfortunately still

conjectural; this conjecture appears to strictly control how complicated simple KG-modules

can get, based on the composition factors for G.

Conjecture 2.4 Let G be a finite group. The G has the SMA property if and only if all

composition factors of G have the SMA property.

Theorem 2.2 gives us some headway in this conjecture.

Corollary 2.5 Let G be a finite group all of whose composition factors have simple algebraic

modules. Suppose that E(G) is centreless, and that G/F ∗(G) is p-soluble. Then G has

algebraic simple modules.

The requirement on E(G) comes from the fact that we do not yet know whether a

quasisimple group G has algebraic simple modules whenever G/ Z (G) does. An equivalent

condition is to require that for all simple composition factors of E(G), the corresponding

universal central extension has algebraic simple modules. This is true in all cases tested so

far.

3 Simple Groups for p = 2

We will concentrate on the case where p = 2, although there are results for odd primes as

well. The first result suggests that having algebraic simple modules signifies that the simple

group is ‘small’. The positive case is due to Alperin, and the negative case is considered

‘well-known’ by Berger.

Theorem 3.1 Let G = GLn(2a), and let K be a field of characteristic 2. Then G has

algebraic simple modules for n = 2, and the natural module is not algebraic for n > 3.

One would think, therefore, that most finite simple groups have non-algebraic modules,

because PSL3(2) is quite a small group, and appears inside many larger simple groups.
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Theorem 3.2 (C. (2006)) Let G = SL2(q), where q is odd. Then G has algebraic simple

modules if and only if q 6≡ 7 mod 8.

In particular, this offers an infinite sequence of simple groups

PSL2(7) < PSL2(7
2) < PSL2(7

3) < · · ·

such that the terms alternate between having algebraic simple modules and not.

In fact, the groups PSL2(q) almost exhaust those simple groups with dihedral Sylow

2-subgroup, with the remaining group being A7.

Theorem 3.3 Let G be a simple group with dihedral Sylow 2-subgroups. Then G is alge-

braic unless G ∼= PSL2(8n + 7) for some n.

In fact, if we assume that whenever G/ Op′(G) has algebraic simple modules then G has

algebraic simple modules, we can get a stronger result.

Theorem 3.4 (C. (2006)) Let G be a finite group with dihedral Sylow 2-subgroups. Then

G/ O2′(G) has algebraic simple modules unless PSL2(8n + 7) is a composition factor of G.

In simple groups with abelian Sylow 2-subgroups we get a similar result, which has to be

modified to reflect the fact that we do not know whether J1 has algebraic simple modules.

(The three largest simple modules in the principal block are of unknown algebraicity.)

Theorem 3.5 (C. (2006)) Let G be a finite group with abelian Sylow 2-subgroups, and

assume that J1 is not a composition factor of G. Then G/ O2′(G) has algebraic simple

modules.

In particular this implies that the groups 2G2(3
2n+1) have algebraic simple modules.

For simple groups with semidihedral Sylow 2-subgroup, the picture is more difficult. The

following appears to be true.

Conjecture 3.6 Let G be a simple group with semidihedral Sylow 2-subgroups. If G is

isomorphic with M11 or PSU3(q) for q ≡ 1 mod 4, then G has algebraic simple modules,

and if G is isomorphic with PSL3(q) for q ≡ 3 mod 4, then G has algebraic simple modules

if and only if q ≡ 3 mod 8.

This result is true for all of the modules in the principal block by work of Karin Erdmann

in the late 1970s.

Moving from positive results to negative results, we have the following result, most of

which follows easily from the fact that GL3(2) has non-algebraic simple modules, and facts

about modules for V4, which we will talk about later.
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Theorem 3.7 (C. (2006)) let G be a finite simple group, and let K be a field of charac-

teristic 2. Then G has non-algebraic simple modules in all of the following cases:

(i) PSLn(2a), n > 3;

(ii) PSp2n(2a), n > 3;

(iii) PΩ+
2n(2a), n > 4;

(iv) PΩ−2n(2a), n > 4;

(v) PSUn(2a), n > 6;

(vi) E6(2
a);

(vii) E7(2
a);

(viii) F4(2
a);

(ix) G2(2
a);

(x) 2E6(2
a);

(xi) 3D4(2
a); and

(xii) M12, M22, M23, M24, J2, J3, J4, Suz, He, HN , Fi22, and Ru.

The missing sporadics are: M11, which does have algebraic simple modules, J1, which

is not known, Ly, which has smallest simple module 2480, ON , whose simple modules are

huge—10000 and above—B and M , whose simple modules are obviously big, B having

4370, Fi24 with 3774-dim, Fi23 with 782-dim, Th with 248-dim, but has smallest perm rep

of degree 143 127 000, the Conway groups and McL, whose 24-dimish rep might actually be

algebraic.

One notable result is that in characteristic 3, M22 has algebraic simple modules.

4 Blocks with V4 Defect Group

The easiest case in modular representation theory is blocks with cyclic defect group. The

next easiest is when the defect group is V4. In the case of V4-modules, the following result is

due to Conlon.

Theorem 4.1 (Conlon) Let M be an indecomposable KV4-module. Then M is algebraic

if and only if M is even-dimensional or trivial.
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It is true that if M is a simple module lying in a block B, then a vertex of M is contained

within a defect group of B. In the case where the defect group is abelian, all vertices of

simple modules are equal to the defect group, and so we will focus on simple modules with

V4 vertex.

Conjecture 4.2 Let M be a simple KG-module with V4 vertex. Then M is algebraic.

This more general conjecture is much more amenable to reduction than the weaker con-

jecture that if B is a block with V4 defect group, then all simple B-modules are algebraic.

(The result is not true for general abelian defect groups, at least in the case where p is odd,

and is also not true for blocks with dihedral defect group.)

Proposition 4.3 (C. (2007)) Let G be a minimal counterexample to the conjecture above.

Then G is perfect and M is faithful.

The reason for interest in this is the Puig conjecture.

Theorem 4.4 (C. (2006)) Suppose that Conjecture 4.2 is true. Then Puig’s conjecture

holds for blocks with V4 defect group.

5 The Heller Translate

Recall that if M is a non-projective indecomposable module then Ω(M) is the kernel of the

projection from the projective cover of M onto M . This is defined inductively for Ωi(M),

and Ω−i(M) = Ωi(M∗)∗. If Ωi(M) = M for some i > 0, then M is referred to as periodic. A

periodic module for a group of p-rank at least 2 has dimension divisible by p.

Theorem 5.1 (C. (2006)) Assume that the p-rank of G is at least 2. Let A(n) denote the

number of isomorphism classes of indecomposable KG-module of dimension prime to p and

at most n, and let B(n) denote the number of algebraic modules of dimension prime to p

and at most n. Then

lim
n→∞

B(n)

A(n)
= 0.

Theorem 5.2 (C. (2006)) Let G be a group of 2-rank 2. Let A(n) denote the number

of isomorphism classes of indecomposable non-periodic KG-modules of dimension at most

n, and let B(n) denote the number of algebraic indecomposable non-periodic modules of

dimension at most n. Then

lim
n→∞

B(n)

A(n)
= 0.
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Proposition 5.3 Let G be a finite group of p-rank at least 2, and let M be a self-dual

non-periodic indecomposable module. Then Ωi(M) is not algebraic for i 6= 0.

Proposition 5.4 Let G be a finite group, and let M be a periodic indecomposable module.

Then M is algebraic if and only if Ωi(M) is algebraic for all i.
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