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In this talk we are going to construct the octonian algebra, both the split form and the

compact form, and use it as a vehicle to define the simple groups G2(q), where q is a prime

power. Using G2(2)′ = PSU3(3), we construct a simple group J2 as the automorphism group

of a graph on 100 vertices. Finally, we see how the representation theory of the groups G2(4)

and G2(2) = PSU3(3) : 2 affects the representation theory of the group J2, and in particular

prove which simple modules for J2 are non-algebraic, over a field of characteristic 2.

1 Quaternions

In this short section we recap how the quaternions are built up, and try to see how we can

generalize this notion. Firstly, let i, j and k be elements, and let

H = {α + βi + γj + δk : α, β, γ, δ ∈ R},

with addition pointwise and multiplication defined on the basis elements by i2 = j2 = k2 =

−1, ij = k, ki = j and jk = i, and the other products defined by anticommutativity. To get

the multiplication on the whole of H, extend this by linearity. This forms a 4-dimensional

non-commutative R-algebra. There is a bijective involution ¯ given by

α + βi + γj + δk 7→ α− βi− γj − δk,

and a norm given by

N(q) = qq̄,

where q ∈ H. Notice that N(q) = α2 +β2 + γ2 + δ2, where q = α +βi+ γj + δk. As a vector

space, it has basis {1, i, j, k}.
We can legitimately replace R with any field K, except possibly a field of characteristic

2, since −1 = 1, which is bad for the definition we have given above. We can thus create
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a K-algebra of quaternions, HK . Such an algebra has an automorphism group: since any

automorphism fixes 1, it must fix the orthogonal complement, 〈{i, j, k}〉, and since {i, j, k}
is a collection of vectors of norm 1, Aut(HK) is a subgroup of O3(K). In fact, one can check

that

Aut(HK) = SO3(K).

These ideas will be applied to the algebra of octonians.

2 Octonians

The octonians can be derived from the quaternions using the Fano plane.

The idea is to make every line into a copy of the quaternions, and every point into a

complex number. Notice that every two points lie on a unique line, and so their product can

be determined in their enveloping quaternion algebra.

More specifically, let ij with 1 6 j 6 7, together with 1, be the elements of a basis for

an 8-dimensional real vector space. We will define a multiplication on them by assuming

that {in, in+1, in+3} (modulo 8) form a basis for the imaginary quaternions. [Note that

in, in+1, in+3 modulo 8, as n varies, gives seven collections of three basis elements, such that

any two collections intersect in a unique basis element, and any two basis elements lie inside

a unique collection.]

If one needs the basis multiplication written in a table, here it is.
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i1 i2 i3 i4 i5 i6 i7

i1 −1 i4 i7 −i2 i6 −i5 −i3

i2 −i4 −1 i5 i1 −i3 i7 −i6

i3 −i7 −i5 −1 i6 i2 −i4 i1

i4 i2 −i1 −i6 −1 i7 i3 −i5

i5 −i6 i3 −i2 −i7 −1 i1 i4

i6 i5 −i7 i4 −i3 −i1 −1 i2

i7 i3 i6 −i1 i5 −i4 −i2 −1

The multiplication is then extended by linearity to the whole vector space. This 8-

dimensional vector space, together with this multiplication, becomes an 8-dimensional, non-

commutative, non-associative, R-algebra.

The group of units of this algebra, {±1,±ij}, do not form a group, although this is

difficult to see just from the multiplication table. The reason is that this collection is non-

associative. However, it does satisfy certain types of associativity laws, which we will come

to soon. Before this, we will define a quasigroup and a loop.

A quasigroup is a set Q with a binary operation such that if a, b ∈ Q then there exists

unique elements x and y such that ax = b and ya = b. Another way of thinking of this is

that the multiplication table has as rows and columns permutations of the set Q. A loop is

a quasigroup with an identity.

If we impose certain conditions about bracketing, we get a Moufang loop. A Moufang

loop (Ruth Moufang 1905–1977) is a loop that satisfies any one of the three (equivalent)

conditions

(i) (xy)(zx) = (x(yz))x;

(ii) x(y(xz)) = ((xy)x)z; and

(iii) ((xy)z)x = x(y(zx)).

Again, we can exchange the ground field from R to any field of characteristic not equal

to 2: to deal with the case when the field has characteristic 2, we will have to be sneaky.

Before we do this, we will consider the automorphism group of OK , the algebra of octonians

over the field K. (If K = GF(q), we will also write Oq.

3 The Automorphism Groups

The automorphism group of this non-associative algebra will be referred to as G2(K), where

K is the field over which we are taking our octonians, or G2(q) when K has order q. It turns
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out that this is a finite simple group, and is in fact the group of Lie type corresponding to

the Dynkin diagram of type G2 (hence the name).

We will give a brief sketch of how to calculate the order of G2(q), when q is odd, from the

natural 7-dimensional representation. Notice that i1, i2 and i3 generate the entire algebra,

so we simply need to determine the images of these elements. The triple (i1, i2, i3) are a set

of mutually orthogonal purely imaginary octonians of norm 1, and i3 is orthogonal to i1i2.

The idea is to show that G = G2(q) is transitive on such triples. Then we count such triples.

In fact, we count the number of such triples (i, j, k) first. Let ε = ±1 so that ε ≡ q

mod 4. Then i is a vector of norm 1 in the 7-dimensional normed vector space, and so there

are | SO7(q)|/| SOε
6(q)| = q6 + εq3 choices for i. Next, to choose j, we can pick any vector of

norm 1 in the space Oε
6(q), so we get q5 − εq2. Lastly, we need to pick k, and it has to be

orthogonal to i, j, and ij, so that k has to chosen from a O+
4 (q)-space, and there are q3 − q

such vectors.

Putting all of this together, we get

|G2(q)| = q6(q6 − 1)(q2 − 1).

It remains to show that G is transitive on all triples (i, j, k) where all elements are

mutually orthogonal and ij is orthogonal to k. If i, j, k, and ij = l are purely imaginary

norm 1 octonians, then i2 = −1, and so on with all of the others. Secondly, when one

multiplies i by j, one gets a series of terms in iαiβ, and notice that the co-efficient of iαiβ is

the negative of that of iβiα, unless α = β, in which case the sum over all α is zero (as ij is

purely imaginary). Hence ij = −ji.

In the expansion of (ij)k, the terms that are associative correspond to the real parts

of ij, jk, ik or (ij)k, and each of these sets of terms individually adds up to 0, so that

(ij)k = −k(ij). Finally, N(xy) = N(x)N(y), so that multiplication by a norm 1 octonian

preserves norms and inner products. Thus

{1, i, j, ij, k, ik, jk, (ij)k}

is an orthonormal basis for Oq. We can see that all multiplications of elements of Oq are

determined by those of the basis, and so we are done.

4 A Change of Basis

At the moment we can only deal with the cases where the field has odd order. However,

there are also groups of Lie type corresponding to G2 over fields of even characteristic as
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well. To get an algebra over GF(2n), we need to muck about with our basis, to get one that

doesn’t become commutative in characteristic 2.

If q is odd, then inside GF(q), there are solutions to the equation a2 + b2 = −1 and b 6= 0.

We will define a basis using a and b.

2x1 = ai4 + i6 + bi7 2x8 = −ai4 + i6 − bi7

2x2 = ai2 + bi3 + i5 2x7 = −ai2 − bi3 + i5

2x3 = −i1 − bi4 + ai7 2x6 = −i1 + bi4 − ai7

2x4 = 1− ai3 + bi2 2x5 = 1 + ai3 − bi2

With respect to this basis, we have the multiplication as given below.

x1 x2 x3 x4 x5 x6 x7 x8

x1 0 0 0 0 x1 −x2 x3 −x4

x2 0 0 x1 x2 0 0 −x5 −x6

x3 0 −x1 0 x3 0 −x5 0 x7

x4 x1 0 0 x4 0 x6 x7 0

x5 0 x2 x3 0 x5 0 0 x8

x6 x2 0 −x4 0 x6 0 −x8 0

x7 −x3 −x4 0 0 x7 x8 0 0

x8 −x5 x6 −x7 x8 0 0 0 0

Since a2 + b2 = −1 has no solutions in the real numbers, the algebra generated by the

xj is not isomorphic with the traditional, compact form of the octonians: this form is called

the split form.

With this action we can now define an algebra in characteristic 2. The automorphism

group, G2(2
n), is both simple, and has the same order as its odd counterparts, q6(q6−1)(q2−

1).

5 The Group J2

The group PSU3(3) is a permutation group on 28 points, or is a matrix group of 3×3 unitary

matrices, generated by 
ω 0 0

0 ω2 0

0 0 ω5

 and


ω5 −1 1

−1 −1 0

1 0 0

 .
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It has a single conjugacy class of involutions, I , totalling some 63 members. It also has

a single conjugacy class of 36 maximal subgroups H , isomorphic with SL3(2), a element of

which is given by

H =

〈
w5 w2 1

ω 0 ω6

2 ω3 ω7

 ,


ω6 0 2

ω6 2 2

ω5 1 ω


〉

.

We produce a graph Γ, consisting of a hundred vertices, {?}∪I ∪H , where ? is connected

to every vertex in H , two elements of I are connected if their product has order 4, two

elements of H are connected if their intersection is S4, and joining an element of I to and

element of H whenever the subgroup contains the involution. Let G denote the group of

automorphisms of this graph. It can be thought of as a permutation group on 100 points.

We need |G|: since G is transitive on Γ (not obvious), we simply need the size of a vertex

stabilizer, which is PSU3(3) : 2. Hence |G| = 1209600.

[There is an odd permutation: if one fixes a point in the 36-orbit, it breaks up as 1 + 7 +

7 + 21 under the action of SL3(2), and the 63-orbit breaks up as three 21-orbits. There is a

symmetry in SL3(2) that fixes the 7-orbits pointwise, swaps the four 21-orbits in pairs, and

commutes with the action of SL3(2).]

This action is not contained within A100, and so we see that G has a subgroup of index

2. It is this group that we will denote by J2.

By construction, J2 contains a (maximal) subgroup isomorphic with PSU3(3) = G2(2)′.

Also, J2 is contained as a maximal subgroup in G2(4). This ‘sandwiching’ considerably

restricts its representation theory. Here is the table of J2’s simple modules in characteristic

2.

Block Simple Modules Defect Group

1 {1, 61, 62, 141, 142, 36, 84} Sylow

2 {641, 642, 160} Defect 2

Each of these simple modules, with the exception of the 160-dimensional module, is the

restriction of a simple module for G2(4). To finish off, there is a 196-dimensional representa-

tion of G2(4) that restricts to the direct sum of the 160-dimensional representation and the

36-dimensional representation.

Now let us go in the opposite direction, restricting J2-modules down to PSU3(3) = G2(2)′.

Firstly, we need a table of PSU3(3)-modules.

Block Simple Modules Defect Group

1 {1, 6, 14} Sylow

2,3 {32}, {32∗} Defect 0
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The two 6-dimensional modules for J2 have simple restriction, as do the two 14-dimensional

modules. The two 64-dimensional modules have semisimple restriction. The 36- and 160-

dimensional modules have complicated restriction, and the 84-dimensional module restricts

to the two 32-dimensionals plus a 20-dimensional uniserial module, with socle layers 6, K,

6, K, 6.

We can now quite easily read off facts about J2 from this: the three modules in the

unique block of defect V4 are all algebraic, by general results that will be published at

some point. The 6- and 14-dimensional modules for PSU3(3) are both non-algebraic, and so

therefore are all except perhaps for the 36- and 84-dimensional modules for J2. These two

can easily be dealt with by restricting down to a V4-subgroup and applying the fact that an

indecomposable V4-module is algebraic if and only if it is trivial or even-dimensional. Hence

we get the following theorem.

Theorem 5.1 Let G = J2, and let M be a simple KG-module, where K is a splitting field

of characteristic 2. Then M is algebraic if and only if M is trivial or M lies in a block of

defect V4.
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